The invention belongs to the field of a stepless transmission.
Since the most successful stepless transmission in the past was a continuously variable transmission (CVT), which transmits power by using a frictional force between a cone disc and a steel belt. A limitation of such a CVT limits a widespread use of the stepless transmission, while the present invention provides a stepless transmission which transmits power by using a pair of active cone discs, a pair of passive cone discs, a chain, and a chain wheel.
An object of the present invention is to solve the problem that the previous CVT transmits power directly by using the friction, and to provide a stepless transmission which transmits power by an engagement of a chain and a movable friction plate chain wheel.
The stepless transmission of the present invention comprises: a box 60; a pair of active cone discs cooperating with an input shaft 42, wherein the pair of active cone discs include a fixed cone disc 33 and a moving cone disc 2, the fixed cone disc 33 is fixedly connected to or integrated with the input shaft 42, and the moving cone disc 2 is capable of sliding on the input shaft 42 relative to the input shaft 42 but not capable of rotating relative to the input shaft 42; and a pair of passive cone discs cooperating with an output shaft 31, wherein the pair of passive cone discs include a fixed cone disc 33 and a moving cone disc 2, the fixed cone disc 33 is fixedly connected to or integrated with the output shaft 31, and the moving cone disc 2 is capable of sliding on the output shaft 31 relative to the output shaft 31 but not capable of rotating relative to the output shaft 31. There are a group of pulleys 3 in the middle of each pair of passive cone discs and in the middle of each pair of active cone discs respectively. The number of the group of pulleys 3 may be an arbitrary value, such as 2, 3, 4, 5, 6, 7, 8, etc. Each pulley 3 has its own cone disc guide rail 14 at its own pair of cone discs. As the distance between the fixed cone disc 33 and the moving cone disc 2 increases and decreases, the pulley 3 can slide back and forth along the cone disc guide rail 14, such that the pulley 3 goes close to or away from the input shaft 42 or the output shaft 31. The pulley 3 is provided with a movable friction plate chain wheel 8, a fixed friction plate 10, a first movable friction plate 11, a central shaft 5, a fixed friction plate positioning shaft 46, and a pressurizing shaft 13. A fixed cone disc cantilever 20 is fixedly connected to or integrated with the fixed cone disc support 24 and the fixed cone disc 33. A second pressure hinge plate 22 is fixedly connected to or integrated with a pressure bar 25. The first pressure hinge plate 18 has one end that is hinged to a pressure plate 16 through a first pressure plate hinge pin 17, and the other end that is hinged to the fixed cone disc cantilever 20 through a cantilever hinge pin 19. The second pressure hinge plate 22 has one end that is hinged to the pressure plate 16 through a second pressure plate hinge pin 21, and the other end that is hinged to the fixed cone disc support 24 through a fixed cone disc support hinge pin 23. The presser bar 25 has one end that is hinged to the fixed cone disc support 24 through the fixed cone disc support hinge pin 23, and the other end that is hinged to a wheel seat 29 through a pressure bar hinge pin 27. The wheel seat 29 has one end that is match with a wheel shaft 45, the wheel shaft 45 is in a central shaft hole of a wheel 28, the wheel 28 rotates about the wheel shaft 45 and rolls on a cam 30. The cam 30 is fixedly connected to the box 60. A stopper 1 is matched with the moving cone disc 2 through a bearing 32 so that the moving cone disc 2 can slide back and forth only along the input shaft 42 or the output shaft 31. When the moving cone disc 2 rotates along with the input shaft 42 or the output shaft 31, the stopper 1 does not rotate along with the moving cone disc 2. The moving cone disc 2 is matched with the input shaft 42 or the output shaft 31 through a spline. The moving cone disc 2 can slide only on the input shaft 42 or the output shaft 31 and cannot rotate relative to the input shaft 42 or the output shaft 31. The fixed cone disc 33 is fixedly connected to the input shaft 42 or the output shaft 31. The elastic force of a pressure spring 26 has one end that acts on the fixed cone disc cantilever 20 and the other end that acts on the wheel seat 29. When the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, the elastic force of the pressure spring 26 acts on the movable friction plate chain wheel 8 through the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, the pressure plate 16, and the pressurizing shaft 13. The movable friction plate chain wheel 8 presses tightly against the fixed friction plate 10. The fixed friction plate 10 presses tightly against the first movable friction plate 11. A square hole in the center of the movable friction plate chain wheel 8 and a square hole in the center of the first movable friction plate 11 are in shape-line fit with a square cross-section of the central shaft 5. A semicircular notch of the fixed friction plate 10 is matched with the fixed friction plate positioning shaft 46. A pulley positioning shaft hole 57 is matched with the fixed friction plate positioning shaft 46. The fixed friction plate 10 is matched with the pulley 3 through the fixed friction plate positioning shaft 46, and the fixed friction plate 10 can only slide on the fixed friction plate positioning shaft 46 without rotation. When the wheel 28 falls in a region c (i.e., a separation region 50), the wheel 28 is jacked up by the cam 30, and the elastic force of the pressure spring 26 is exerted on the cam 30 by the wheel 28. The wheel 28 drives the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, and the pressure plate 16 to move simultaneously. The pressure plate 16 is disengaged from the pressurizing shaft 13, and the movable friction plate chain wheel 8, the fixed friction plate 10, and the first movable friction plate 11 are released, and this results in that the pressing force to the movable friction plate chain wheel 8, the fixed friction plate 10, and the first movable friction plate 11 is disappeared. The first movable friction plate 11 and the movable friction plate chain wheel 8 are freely moved. The fixed cone disc 33 and the moving cone disc 2 hold the chain 34 at a certain operating pitch radius position. A speed regulating screw 43 rotates to drive a speed regulating nut 35 to move back and forth, and then drives the stopper 1 and the moving cone disc 2 through a speed regulating lever 40 to move back and forth, and a speed regulating lever shaft 41 is fixed on the box 60.
The pressure spring 26 has one end that abuts against the wheel seat 29 and acts on the pressure bar 25 through the wheel seat 29, i.e., the pressure spring 26 has one end that acts on the pressure bar 25 and the other end that abuts against the fixed cone disc cantilever 20. When the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, the pressure spring 26 is extended. When the wheel 28 falls in a region c (i.e., a separation region 50) of the cam 30, the wheel 28 is jacked up by the cam 30, and the pressure spring 26 is compressed.
The chain 34 is composed of a chain shaft 12, a chain shaft wheel 7, a chain piece 9, and a chain edge piece 6.
A first certain example: in the pulley 3, only the movable friction plate chain wheel 8 and the fixed friction plate 10 can be arranged alternatively and there is no first movable friction plate 11.
A second certain example: the fixed friction plate 10 stretches out two ears to match with the fixed friction plate positioning shaft 46.
A third certain example: the speed regulating nut 35 and the stopper 1 are not on the same vertical line.
A fourth certain example: there is a moving cone disc spring 61 behind the moving cone disc 2 on the output shaft 31, and the moving cone disc spring 61 applies a pressure to the moving cone disc 2 for speed regulation. The moving cone disc spring 61 has one end against the moving cone disc 2 and the other end against the moving cone disc spring base 62 which is fixed on the output shaft 31. Alternatively, there is a moving cone disc spring 61 behind the moving cone disc 2 on the input shaft 42, and the moving cone disc spring 61 applies a pressure to the moving cone disc 2 for speed regulation. The moving cone disc spring 61 has one end against the moving cone disc 2 and the other end against the moving cone disc spring base 62 which is fixed on the input shaft 42. The moving cone disc spring 61 pushes the moving cone disc 2 to press tightly against the chain 34.
A fifth certain example: There are balls 59 and back balls 51 on the pulley slide rail 4. Both the balls 59 and the back balls 51 are half in the semi-circular groove of the pulley slide rail 4 and the other half in the semi-circular groove of the cone disc guide rail 14, which act as ball sliding bearings, and meanwhile the balls 59 and the back balls 51 are return balls for each other.
The operating principle of the stepless transmission is shown as follows.
1. Working Process of Power Transmission:
Power enters the transmission from the input shaft 42, and on the pulley 3 in the region a (i.e., the engagement region 47), the elastic force of the pressure spring 26 presses the movable friction plate chain wheel 8 and the fixed friction plate 10 tightly on the pulley 3, i.e., the movable friction plate chain wheel 8 are fixed, through the pulley 3, on a pair of active cone discs and a pair of passive cone discs respectively, that is, the chain 34 is engaged with the movable friction plate chain wheel 8 of the pair of active cone discs and the movable friction plate chain wheel 8 of the pair of passive cone discs respectively. The input shaft 42 drives the pair of active cone discs to rotate. The pair of active cone discs drive the pair of passive cone discs to rotate through the movable friction plate chain wheel 8 of a pair of movable cone discs, a chain 34, and the movable friction plate chain wheel 8 of the pair of passive cone discs, and then drive the output shaft 31 to rotate and output power.
2. Speed regulation process: The speed regulating screw 43 rotates to drive the speed regulating lever 40 to swing, the speed regulating lever 40 drives the stopper 1 to move back and forth, and the stopper 1 drives the moving cone disc 2 to move back and forth, resulting in that the pulley 3 slides back and forth along the cone disc guide rail 14 together with the movable friction plate chain wheel 8, and a change in the operating pitch radius of the pair of active cone discs and the pair of passive cone discs on which the chain 34 matches with the movable friction plate chain wheel 8, which thus changes the rotating speed ratio of the input shaft 42 to the output shaft 31, realizes the speed ratio change of transmission, and realizes the speed regulation of transmission.
3. The working process in which movable friction plate chain wheel 8 is pressed tightly against the pulley 3 and integrated with the pulley 3:
(1) When the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, under the elastic force of the pressure spring 26, the movable friction plate chain wheel 8, the fixed friction plate 10, the first movable friction plate 11, and the pulley 3 are pressed tightly and have been integrated. The movable friction plate chain wheel 8 is engaged with the chain 34 to transmit power.
(2) When the wheel 28 falls in a region b (i.e., a separating region 49) of the cam 30, the wheel 28 is jacked up by the cam 30, and the elastic force of the pressure spring 26 is exerted on the cam 30 by the wheel 28. The wheel 28 drives the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, and the pressure plate 16 to move simultaneously. The pressure plate 16 is disengaged from the pressurizing shaft 13, and the fixed friction plate 10, the first movable friction plate 11, and the movable friction plate chain wheel 8 are released, and this results in that the pressing force to the fixed friction plate 10, the first movable friction plate 11 and the movable friction plate chain wheel 8 is disappeared. The first movable friction plate 11 and the movable friction plate chain wheel 8 are freely moved.
(3) When the wheel 28 falls in a region c (i.e., a separation region 50), the first movable friction plate 11 and the movable friction plate chain wheel 8 are not subject to the pressing force and are freely moved.
(4) When the wheel 28 falls in a region d (i.e., an engaging region) of the cam 30, the chain 34 and the movable friction plate chain wheel 8 are freely overlapped, the elastic force of the pressure spring 26 acts on the movable friction plate chain wheel 8 through the wheel seat 29, the pressure lever 25, the second pressure hinge plate 22, the pressure plate 16, and the pressurizing shaft 13. The movable friction plate chain wheel 8 presses tightly against the fixed friction plate 10. The fixed friction plate 10 presses tightly against the first movable friction plate 11 to integrate the movable friction plate chain wheel 8, the fixed friction plate 10, the first movable friction plate 11 and the pulley 3. The movable friction plate chain wheel 8 is engaged with the chain 34 to transmit power, i.e., after the movable friction plate chain wheel 8 presses tightly against the fixed friction plate 10, the movable friction plate chain wheel 8 is engaged with the chain 34 to transmit power. The movable friction plate chain wheel 8 is a chain wheel which can be engaged with the chain 34. A square hole in the center of the movable friction plate chain wheel 8 and a square hole in the center of the first movable friction plate 11 are in shape-line fit with a square cross-section of the central shaft 5. A semicircular notch of the fixed friction plate 10 is matched with the fixed friction plate positioning shaft 46. A pulley positioning shaft hole 57 is matched with the fixed friction plate positioning shaft 46. The fixed friction plate 10 is matched with the pulley 3 through the fixed friction plate positioning shaft 46, and the fixed friction plate 10 can only slide on the fixed friction plate positioning shaft 46 without rotation.
4. The motion principle of the first certain example: When the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, the elastic force of the pressure spring 26 acts on the movable friction plate chain wheel 8 through the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, the pressure plate 16, and the pressurizing shaft 13. The movable friction plate chain wheel 8 presses tightly against the fixed friction plate 10. A square hole in the center of the movable friction plate chain wheel 8 is in shape-line fit with a square cross-section of the central shaft 5. A semicircular notch of the fixed friction plate 10 is matched with the fixed friction plate positioning shaft 46. A pulley positioning shaft hole 57 is matched with the fixed friction plate positioning shaft 46. The fixed friction plate 10 is matched with the pulley 3 through the fixed friction plate positioning shaft 46, and the fixed friction plate 10 can only slide on the fixed friction plate positioning shaft 46 without rotation. When the wheel 28 falls in a region c (i.e., a separation region 50), the wheel 28 is jacked up by the cam 30, and the elastic force of the pressure spring 26 is exerted on the cam 30 by the wheel 28. The wheel 28 drives the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, and the pressure plate 16 to move simultaneously. The pressure plate 16 is disengaged from the pressurizing shaft 13, and the fixed friction plate 10 and the movable friction plate chain wheel 8 are released. The movable friction plate chain wheel 8 are free to rotate, and are freely overlapped with the chain 34.
When the pressurizing shaft 13 presses against the movable friction plate chain wheel 8 and the fixed friction plate 10, the movable friction plate chain wheel 8, the fixed friction plate 10, the fixed friction plate positioning shaft 46 and the pulley 3 are fixed together. When the pressurizing shaft 13 releases the movable friction plate chain wheel 8 and the fixed friction plate 10, the movable friction plate chain wheel 8 and the fixed friction plate 10 are disengaged, and the movable friction plate chain wheel 8 can rotate freely. The chain shaft wheel 7 on the chain 34 is freely overlapped the movable friction plate chain wheel 8. Then when the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, the chain 34 engages with the movable friction plate chain wheel 8, i.e., the chain 34, the fixed cone disc 33 and the movable cone disc 2 can transmit power to each other through the movable friction plate chain wheel 8, the fixed friction plate 10 and the pulley 3. The fixed cone disc 33 and the moving cone disc 2 then transmit power from the input shaft 42 to the output shaft 31 through the chain 34.
The stepless transmission adopting the structure of the present invention has the following beneficial effects of:
1. high power of power transmission and torque;
2. small power loss; and
3. realizing the mechanical stepless transmission.
The accompanying drawings are described below:
In the figures: stopper 1; moving cone disc 2; pulley 3; pulley slide rail 4; central shaft 5; chain edge piece 6; chain shaft wheel 7; movable friction plate chain wheel 8; chain piece 9; fixed friction plate 10; first movable friction plate 11; chain shaft 12; pressurizing shaft 13; cone disc guide rail 14; cone disc pressurizing shaft groove 15; pressure plate 16; first pressure plate hinge pin 17; first pressure hinge plate 18; cantilever hinge pin 19; fixed cone disc cantilever 20; pressure plate hinge pin 21; second pressure hinge plate 22; fixed cone disc support hinge pin 23; fixed cone disc support 24; pressure bar 25; pressure spring 26; pressure bar hinge pin 27; wheel 28; wheel seat 29; cam 30; output shaft 31; bearing 32; fixed cone disc 33; chain 34; speed regulating nut 35; speed regulating lever fork slider 36; speed regulating nut hinge pin 37; speed regulating lever fork 38; indicative interval range 39; speed regulating lever 40; speed regulating lever shaft 41; input shaft 42; speed regulating screw 43; speed regulating screw rotation direction 44; wheel shaft 45; fixed friction plate positioning shaft 46; engagement region 47; engaging region 48; separating region 49; separation region 50; back balls 51; cone disc rotation direction 52; tensioning wheel axis 53; tensioning wheel 54; stopper sliding key 55; pressurizing shaft hole 56; pulley positioning shaft hole 57; speed regulating lever shaft hole 58; balls 59; box 60; moving cone disc spring 61; moving cone disc spring seat 62; stopper hinge pin 63;
As can be seen from
The pressure spring 26 has one end that abuts against the wheel seat 29 and acts on the pressure bar 25 through the wheel seat 29, i.e., the pressure spring 26 has one end that acts on the pressure bar 25 and the other end that abuts against the fixed cone disc cantilever 20. When the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, the pressure spring 26 is extended. When the wheel 28 falls in a region c (i.e., a separation region 50) of the cam 30, the wheel 28 is jacked up by the cam 30, and the pressure spring 26 is compressed.
The chain 34 is composed of a chain shaft 12, a chain shaft wheel 7, a chain piece 9, and a chain edge piece 6.
The operating principle of the stepless transmission is shown as follows.
1. Working Process of Power Transmission:
Power enters the transmission from the input shaft 42, and on the pulley 3 in the region a (i.e., the engagement region 47), the elastic force of the pressure spring 26 presses the movable friction plate chain wheel 8 and the fixed friction plate 10 tightly on the pulley 3, i.e., the movable friction plate chain wheel 8 are fixed on a pair of active cone discs and a pair of passive cone discs respectively, that is, the chain 34 is engaged with the movable friction plate chain wheel 8 of the pair of active cone discs and the movable friction plate chain wheel 8 of the pair of passive cone discs respectively. The input shaft 42 drives the pair of active cone discs to rotate. The pair of active cone discs drive the pair of passive cone discs to rotate through the movable friction plate chain wheel 8 of a pair of movable cone discs, a chain 34, and the movable friction plate chain wheel 8 of the pair of passive cone discs, and then drive the output shaft 31 to rotate and output power.
2. Speed regulation process: The speed regulating screw 43 rotates to drive the speed regulating lever 40 to swing, the speed regulating lever 40 drives the stopper 1 to move back and forth, and the stopper 1 drives the moving cone disc 2 to move back and forth, resulting in that the pulley 3 slides back and forth along the cone disc guide rail 14 together with the movable friction plate chain wheel 8, and a change in the operating pitch radius of the pair of active cone discs and the pair of passive cone discs on which the chain 34 matches with the movable friction plate chain wheel 8, which thus changes the rotating speed ratio of the input shaft 42 to the output shaft 31, realizes the speed ratio change of transmission, and realizes the speed regulation of transmission.
3. The working process in which movable friction plate chain wheel 8 is pressed tightly against the pulley 3 and integrated with the pulley 3:
(1) When the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, under the elastic force of the pressure spring 26, the movable friction plate chain wheel 8, the fixed friction plate 10, the first movable friction plate 11, and the pulley 3 are pressed tightly and have been integrated. The movable friction plate chain wheel 8 is engaged with the chain 34 to transmit power.
(2) When the wheel 28 falls in a region b (i.e., a separating region 49) of the cam 30, the wheel 28 is jacked up by the cam 30, and the elastic force of the pressure spring 26 is exerted on the cam 30 by the wheel 28. The wheel 28 drives the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, and the pressure plate 16 to move simultaneously. The pressure plate 16 is disengaged from the pressurizing shaft 13, and the fixed friction plate 10, the first movable friction plate 11, and the movable friction plate chain wheel 8 are released, and this results in that the pressing force to the fixed friction plate 10, the first movable friction plate 11 and the movable friction plate chain wheel 8 is disappeared. The first movable friction plate 11 and the movable friction plate chain wheel 8 are freely moved.
(3) When the wheel 28 falls in a region c (i.e., a separation region 50), the first movable friction plate 11 and the movable friction plate chain wheel 8 are not subject to the pressing force and are freely moved.
(4) When the wheel 28 falls in a region d (i.e., an engaging region) of the cam 30, the chain 34 and the movable friction plate chain wheel 8 are freely overlapped, the elastic force of the pressure spring 26 acts on the movable friction plate chain wheel 8 through the wheel seat 29, the pressure lever 25, the second pressure hinge plate 22, the pressure plate 16, and the pressurizing shaft 13. The movable friction plate chain wheel 8 presses tightly against the fixed friction plate 10. The fixed friction plate 10 presses tightly against the first movable friction plate 11 to integrate the movable friction plate chain wheel 8, the fixed friction plate 10, the first movable friction plate 11 and the pulley 3. The movable friction plate chain wheel 8 is engaged with the chain 34 to transmit power, i.e., after the movable friction plate chain wheel 8 presses tightly against the fixed friction plate 10, the movable friction plate chain wheel 8 is engaged with the chain 34 to transmit power. The movable friction plate chain wheel 8 is a chain wheel which can be engaged with the chain 34. A square hole in the center of the movable friction plate chain wheel 8 and a square hole in the center of the first movable friction plate 11 are in shape-line fit with a square cross-section of the central shaft 5. A semicircular notch of the fixed friction plate 10 is matched with the fixed friction plate positioning shaft 46. A pulley positioning shaft hole 57 is matched with the fixed friction plate positioning shaft 46. The fixed friction plate 10 is matched with the pulley 3 through the fixed friction plate positioning shaft 46, and the fixed friction plate 10 can only slide on the fixed friction plate positioning shaft 46 without rotation.
As can be seen in
As can be seen in
As can be seen in
As can be seen in
As can be seen in
It can be seen, in
As can be seen in
In
In
In
In the first certain example, the motion principle of the first certain example: When the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, the elastic force of the pressure spring 26 acts on the movable friction plate chain wheel 8 through the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, the pressure plate 16, and the pressurizing shaft 13. The movable friction plate chain wheel 8 presses tightly against the fixed friction plate 10. A square hole in the center of the movable friction plate chain wheel 8 is in shape-line fit with a square cross-section of the central shaft 5. A semicircular notch of the fixed friction plate 10 is matched with the fixed friction plate positioning shaft 46. A pulley positioning shaft hole 57 is matched with the fixed friction plate positioning shaft 46. The fixed friction plate 10 is matched with the pulley 3 through the fixed friction plate positioning shaft 46, and the fixed friction plate 10 can only slide on the fixed friction plate positioning shaft 46 without rotation. When the wheel 28 falls in a region c (i.e., a separation region 50), the wheel 28 is jacked up by the cam 30, and the elastic force of the pressure spring 26 is exerted on the cam 30 by the wheel 28. The wheel 28 drives the wheel seat 29, the pressure bar 25, the second pressure hinge plate 22, and the pressure plate 16 to move simultaneously. The pressure plate 16 is disengaged from the pressurizing shaft 13, and the fixed friction plate 10 and the movable friction plate chain wheel 8 are released. The movable friction plate chain wheel 8 are freely rotated, and are freely overlapped with the chain 34.
When the pressurizing shaft 13 presses tightly against the movable friction plate chain wheel 8 and the fixed friction plate 10, the movable friction plate chain wheel 8, the fixed friction plate 10, the fixed friction plate positioning shaft 46 and the pulley 3 are fixed together. When the pressurizing shaft 13 releases the movable friction plate chain wheel 8 and the fixed friction plate 10, the movable friction plate chain wheel 8 and the fixed friction plate 10 are disengaged, and the movable friction plate chain wheel 8 can rotate freely. The chain shaft wheel 7 on the chain 34 is freely overlapped the movable friction plate chain wheel 8. Then when the wheel 28 falls in the region a (i.e., an engagement region 47) of the cam 30, the chain 34 engages with the movable friction plate chain wheel 8, i.e., the chain 34, the fixed cone disc 33 and the movable cone disc 2 can transmit power to each other via the movable friction plate chain wheel 8, the fixed friction plate 10 and the pulley 3. The fixed cone disc 33 and the moving cone disc 2 then transmit power from the input shaft 42 to the output shaft 31 through the chain 34.
It can be seen in
Number | Date | Country | Kind |
---|---|---|---|
201711380938.0 | Dec 2017 | CN | national |
This application is a National Stage of International Application No. PCT/CN2018/000416, filed Dec. 11, 2018, which claims priority to Chinese Patent Application No. 201711380938.0, filed Dec. 20, 2017, both of which are hereby incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/000416 | 12/11/2018 | WO | 00 |