Claims
- 1. A method of increasing the load-carrying capacity of a plate-link chain, said method comprising the steps of:a) providing a first pair of conical disks that are rotatable about a first axis of rotation, and a second pair of conical disk that are rotatable about a second axis of rotaton, wherein the first and second axes of rotation are substantially parallel to each other and the first and second pairs of conical disks are opposite each other; b) installing a closed loop chain on the respective conical disks so that the chain firmly engages portions of each of the pairs of conical disks, and so that portions of the chain between the pairs of conical disks define straight chain segments, wherein the chain is formed by a plurality of side-by-side plate links and a plurality of end-to-end plate links, and a plurality of rocker members that extend transversely through openings formed in the plate links to interconnect adjacent plate links to form a closed loop chain; c) applying a tensile force to the chain to cause the rocker members to press tightly against adjacent inner surfaces of the plate-link openings to conform the shape and orientation of contacting areas of the plate-link openings and of the rocker members with each other, wherein the tensile force applied to the chain is generated by applying a torque to at least one of the pairs of conical disks, and wherein the applied torque is greater than a nominal torque that is applied to the chain when it is operatively connected to a power transmission system.
- 2. A method of increasing the load-carrying capacity of a plate-link chain, said method comprising the steps of:a) providing a first pair of conical disks that are rotatable about a first axis of rotation, and a second pair of conical disks that are rotatable about a second axis of rotation, wherein the first and second axes of rotation are substantially parallel to each other and the first and second pairs of conical disks are opposite each other; b) installing a closed loop chain on the respective conical disks, so that the chain firmly engages portions of each of the pairs of conical disks and so that portions of the chain between the pairs of conical disk define straight chain segments, wherein the chain is formed by a plurality of side-by-side plate links and a plurality of end-to-end plate links, and a plurality of rocker members that extend transversely through openings formed in the plate links to interconnect adjacent plate links to form a closed loop chain; c) apply a tensile force to the chain to cause the rocker members to press tightly against adjacent inner surfacer of the plate-link openings to conform the shape and orientation of contacting areas of the plate-link openings and of the rocker members with each other, wherein the tensile force applied to the chain is generated by applying a torque to at least one of the pairs of conical disks, and wherein the applied torque is from about three to about five times a nominal torque that is applied to the chain when it is operatively connected to a power transmission system.
- 3. A method of increasing the load-carrying capacity of a plate-link chain, said method comprising the steps of:a) providing a first pair of conical disks that are rotatable about a first axis of rotation, and a second pair of conical disks that are rotatable about a second axis of rotation, wherein the first and second axes of rotation are substantially parallel to each other and the first and second pairs of conical disks are opposite each other; b) installing a closed loop chain on the respective conical disks so that the chain firmly engages portions of each of the pairs of conical disks, and so that portions of the chain between the pairs of conical disks define straight chain segments, wherein the chain is formed by a plurality of side-by-side plate links and a plurality of end-to-end plate links, and a plurality of rocker members that extend transversely through openings formed in the plate links to interconnect adjacent plate links to form a closed loop chain; c) applying a tensile force to the chain to cause the rocker members to press tightly against adjacent inner surfaces of the plate-link openings to conform the shape and orientation of contacting areas of the plate-link openings and of the rocker members with each other, and wherein the tensile force applied to the chain is provided by drawing apart the axes of the pairs of conical disks.
- 4. A method of increasing the load-carrying capacity of a plate-link chain, said method comprising the steps of:a) providing a first pair of conical disks that are rotatable about a first axis of rotation, and a second pair of concical disk that are rotatable about a second axis of rotation, wherein the first and second axes of rotation are substantially parallel to each other and the first and second pairs of conical disks are opposite each other; b) installing a closed loop chain on the respective conical disks that the chain firmly engages portions of each of the pairs of conical disks, and so that portions of the chain between the pairs of conical disks define straight chain segments, wherein the chain is formed by a plurality of side-by-side plate links and a plurality of end-to-end plate links, and a plurality of rocker members that extend transversely through openings formed in the plate links to interconnect adjacent plate links to form a closed loop chain; c) applying a tensile force to the chain to cause the rocker members to press tightly against adjacent inner surfaces of the plate-link openings to conform the shape and orientation of contacting areas of the plate-link openings and of the rocker members with each other, wherein the tensile force applied to the chain is sufficient to plastically deform areas of contact of the plate links and of the rocker members.
- 5. A method in accordance with claim 4, wherein the tensile force applied to the chain is generated by applying a torque to at least one of the pairs of conical disks.
- 6. A method in accordance with claim 4, wherein individual disks of the pairs of conical disks are movable relative to each other along their respective axes of rotation, and wherein the tensile force applied to the chain is provided by moving at least one disk of each pair of conical disks toward an opposing disk in the directions of their axes of rotation.
- 7. A method in accordance with claim 4, wherein the tensile force applied to the chain causes bending of the rocker elements and the formation of a bend angle, relative to a transverse axis of the chain, and the opposed plate-link opening surface contacted by the rocker member is plastically deformed to conform substantially with the rocker element bend angle.
- 8. A method in accordance with claim 4, wherein plate links adjacent to an outer side edge of the chain are more highly plastically deformed than are plate links that are inward of the chain outer side edge.
- 9. A method in accordance with claim 4, wherein laterally adjacent plate link opening surfaces that are contacted by the same rocker member lie on a curve having the shape of an nth degree polynomial.
Priority Claims (2)
Number |
Date |
Country |
Kind |
199 49 207 |
Oct 1999 |
DE |
|
199 55 956 |
Nov 1999 |
DE |
|
CROSS-REFERENCE TO RELATED APPLICATION
This application is a divisional of application Ser. No. 09/689,484, filed Oct. 12, 2000 now U.S. Pat. No. 6,558,281, the entire disclosure of which is hereby incorporated by reference.
US Referenced Citations (6)