The invention relates to an improved office chair having a suspension seat assembly, and to methods of making the suspension seat assembly and components thereof.
Office chairs include a seat-back arrangement having a horizontally enlarged seat and a back projecting upwardly from a rear edge of the seat. The seat often includes a cushion supported on a plastic support shell to support the occupant thereon. A similar arrangement is used for the back. While the seat conforms to the shape of a user, the deflection of the contour of the seats results from compression of the cushion material. Similar arrangements are used on the back.
In an alternate arrangement, the seat may be formed by a resilient fabric suspended from a frame. Such fabric is unsupported in the middle thereof and may be an open mesh-like material which improves the airflow or breathability of the seat. However, this fabric should be stretched taut to ensure proper support for the occupant.
The invention relates to an improved chair arrangement which uses a resilient fabric, which may be formed as a single layer of fabric material or a multi-layer pad and which is suspended in a frame unit. The suspension fabric is supported about its periphery on the frame unit while the center area thereof is unsupported. The invention relates further to improved constructions for attaching the fabric to the frame unit and for pretensioning the suspension fabric. In this regard, pretensioning may be provided by mounting the fabric to the frame unit and then flexing the opposite sides of the frame unit downwardly when mounting to a base frame section which thereby pulls the fabric taut.
Other objects and purposes of the invention, and variations thereof, will be apparent upon reading the following specification and inspecting the accompanying drawings.
Certain terminology will be used in the following description for convenience in reference only, and will not be limiting. For example, the words “upwardly”, “downwardly”, “rightwardly” and “leftwardly” will refer to directions in the drawings to which reference is made. The words “inwardly” and “outwardly” will refer to directions toward and away from, respectively, the geometric center of the system and designated parts thereof. Said terminology will include the words specifically mentioned, derivatives thereof, and words of similar import.
Referring to
Generally, the office chair 10 includes the base 14 having legs 21 radiating outwardly from a lower end of a vertical post 22. The outer ends of the legs 21 include conventional casters which support the office chair 10 on a floor or other similar surface.
The upper end of the pedestal 22 rigidly supports the seat unit 12 thereon. In particular, the seat unit 12 includes a structural seat frame 23 and the horizontally enlarged suspension seat assembly 17 which seat assembly 17 overlies and is supported on the seat frame 23.
Referring to
The base 14 further includes a front link 30 which is pivotally connected at a lower end 30A to the front 26B of the front arm 26 forwardly of the upright 27. The seat frame 23 is pivotally connected to the upper end 30B of the front link 30 and also to the lower portions 27A of the upright 27 at connecting points 27C to thereby define a four-bar linkage which governs simultaneous tilting of the seat unit 12 and the back unit 16. The four-bar linkage includes a spring arrangement to resist tilting wherein the linkage and spring arrangement effectively define a tilt control unit.
A pair of support arms 31 also are pivotally connected to opposite sides of the arm 26 at the intermediate arm portions 26A by lower ends 31A. Further, the support arms 31 have a slot 31B therein which receives a pivot pin 33 slidably received therein. As a result, rearward tilting of the back unit 16 causes a corresponding downward tilting of the seat unit 12 about the front link 30 and a corresponding pivoting movement of the arms 31.
Referring to the seat frame 23 (
The front cross bar 35 includes a pair of pivot flanges or ears 38 which project downwardly therefrom and are pivotally connected to the upper ends 30B of the front link 30. As seen in
Each side rail 36 includes an outer face 40 which has a groove 41 formed therein. The groove 41 (
The seat frame 36 is formed of a rigid, molded material such as PET.
Referring to the suspension seat assembly 17 (
The mesh 49 is normally in an undeflected condition as indicated by reference line 49A in
More particularly, the shell 47 comprises an enlarged front panel 50 which defines a front edge or lip 55 of the shell 47, a pair of laterally spaced apart side supports or edgings 51 which extend rearwardly from the front panel 50 and a rear bead 52 which extends laterally between and is connected to the rear ends of the edgings 51. These shell sections preferably are molded together wherein the peripheral edges of the suspension fabric 49 are encapsulated within the shell material 47 during the molding process.
Referring to
Therefore, the suspension seat assembly 17 is rigidly connected to but is only supported along its opposite side edges on the frame rails 36. This is accomplished by spreading the edgings 51 laterally apart from each other and snapping the edgings 51 onto the frame rail 36. Notably, however, the flexible front panel 50 and the rear bead 52 are not supported vertically on any underlying frame work 23 but instead extend laterally between and in effect are suspended from the side frame rails 36. Since the structural frame 23 is rigid, the edgings 51 have little if any inward deflection toward each other when the suspension fabric 49 is placed under load by the occupant as seen in
However, the rear bead 52 has a relatively small cross-sectional area, for example, as seen in
As to the front panel 50, the center section of the front panel 50 is deflectable downwardly near the juncture between the fabric 49 and the front panel 50. In other words, the deflection of the front panel 50 progressively increases or bows laterally towards the center.
Also, the front panel 50 is connected to and extends forwardly from the side rails 36 in cantilevered relation therewith. The front panel 50 is deflectable or generally pivotable also at the front lip 55 thereof to permit downward deflection of the front lip 55. To avoid formation of a sharp hinge line which extends laterally between the front ends of the side rails 36, the front panel 50 preferably has curved corners 50A. The added material of the corners 50A tends to cause bending of the front panel 50 about a larger radius of curvature and avoids a sharp hinge line.
More particularly, the front panel 50 is able to bow under the weight of the user to conform to the occupant's shape. The front lip thereof also may deflect downwardly to the deflected position illustrated in phantom outline in
Additionally, while the front panel 50 may deflect downwardly in response to the weight of the occupant, an adjustment mechanism 56 (
An adjustment handle 61 (
The front panel 50 also is perforated with apertures 62 to facilitate air flow to the occupant's legs and perform a function similar to the air-permeable or open-weave suspension fabric 49.
Also, the suspension seat assembly 17 may have an inflatable cushion 63, wherein inflation thereof is controlled by a pump/valve unit 64.
In the above arrangement, the suspension assembly 17 is molded separately and then snap fit onto the frame 23. Alternately, the suspension fabric 49 may be first connected to a frame in a first molding process and then the remainder of the seat suspension assembly 17 molded to the seat frame.
Referring to
Referring to
Referring to
In
The foregoing disclosure references the use of a pre-formed fabric such as a membrane or woven web. However, the suspension fabric also may be molded in place wherein mold jaws are provided which span the frame edges and mold the membrane so that it stretches across or spans the space between the frame edges and actually wraps around and encapsulates the frame edges therein.
In addition to the above described suspension fabrics, the suspension fabric may also be formed as a composite seat pad as illustrated in FIGS. 17 to 19.
In a first embodiment of the composite seat pad 90, the pad 90 comprises an upper layer 91 of an upholstery fabric of a suitable material, and a backing material 92 which preferably is an elastomeric stretchable fabric such as the material used above the suspension fabric 49. Further, a thermoplastic non-woven pad or cushion layer 93 is provided between the upper layer 91 and the backing material 92. This intermediate pad 93 is formed of a thermoplastic non-woven material (TPE) and is heat processed to cross-link the fibers therein. All three of these layers 91, 92 and 93 are compressed and heated together in the manufacturing process so that the edge sections thereof are bonded together. These edge sections then may be encapsulated within a suitable seat suspension shell such as the shell described above.
More particularly, the upper layer 91 is a suitable finish material such as polyester fabrics, leather or the like. The intermediate layer 93 preferably is a needle punched pad 94 of a thermoplastic material which is initially provided with a relatively large thickness of approximately one inch. The backing material 92 preferably is a suspension fabric as referenced above such as a woven Hytrel material. These three layers are laid together one above the other prior to the manufacturing process. During the manufacturing process, the peripheral edge areas 96 of this composite are placed into a press. Where the top layer 91 is a polyester or other similar material which will bond upon heating, then no additional adhesives are provided. However, where the top layer 91 is a different type of material such as leather, an additional adhesive material may be required in the perimeter region in order to bond the top layer 91 to the intermediate pad 93 and the backing layer 92.
Thereafter, the edge regions 96 are clamped about the perimeter and also heated to fuse the perimeter sections together. For example, as seen in
Referring to
Referring to
Referring to
In particular, the chair 190 includes a base 14 having a post 22 and a support arm or housing 26. A four-bar linkage is defined by an upright 27, a front link 30 and a structural seat frame 23-1 which forms part of the seat assembly 17-1.
The chair 190 further includes an adjustment handle 61 which is fixedly mounted to the support frame 23-1 by a mounting bracket 191. The adjustment handle 61 is formed substantially the same as that of
The primary distinction between the chair 190 and the chair 10 of
More particularly as to the seat assembly 17-1, the support frame 23-1 (
The bottom wall 203 of the frame 23-1 includes four cylindrical fastener anchors 203-1 formed with fastener bores 203-2 extending vertically therethrough. The fastener anchors 203-1 are located near the corners of the frame 23-1 adjacent the rear wall 199 and the front wall 204 near the window 197.
Additionally, a central strengthening rib structure 203-3 extends laterally across the frame 23-1. The rib structure 203-3 has a central lateral main rib and short ribs extending forwardly and rearwardly from the main rib.
The support shell 195 (
The shell 195 includes an upper rim 205 and a flexible front panel 206 which functions similar to the front panel 50 described above. The front panel 206 is formed with two rows of parallel slots 207 which facilitate downward flexing of the front edge 209 of the shell 195.
The bottom surface of the front panel 206 is formed with a horizontally elongate mounting rib 210 as seen in
As to the rim 205, the rim 205 is formed with vertical projections or posts 205-1 which project vertically from a top rib surface 205-2. As seen in
The rim 205 also has holes 205-3 spaced between each pair of posts 205-1. The holes 205-3 are provided to receive mold material therethrough for fixed securement of the cover pad 196 to the rim 205.
Referring to
Referring to
In particular, the edge 215 is compressed relative to a thick central section 196-1. The edge section 215 includes a plurality of alternating holes 216 and 217 which are respectively adapted to align with the posts 205-1 and the holes 205-3. The holes 216 receive the posts 205-1 vertically therethrough to fix the pad 196 on the rim 205 and also locate and hold the pad 196 laterally in place. Additionally, the holes 217 are aligned with the mold holes 205-3 as described herein.
Additionally, a peripheral trim piece 218 is either fixed onto or molded in place on the edge of the pad 196 and the shell 195. When molded in place, the holes 217 and 205-3 receive the mold material of the trim piece 218 vertically therethrough such that the trim piece 218, pad edge 215 and rim 205 are fixedly and rigidly joined together.
Where the trim piece 218 is formed separate and fitted in place, the trim piece 218 may be made of an elastically stretchable material for stretching of the trim piece 218 and fitting onto the rim 205. In this case, the holes 217 and 205-3 may be omitted. Rather, mechanical fasteners, such as staples, or adhesives could be applied to the rim 205 to prevent dislodgement of the pad 196.
Therefore, with this arrangement, locator pins 205-1 are provided in combination with mechanical connection means such as molding, stapling, adhesives or the like.
During installation of the pad 196, the pad 196 has little if any tensioning. Lateral or horizontal tensioning of the pad 196 is accomplished by flexing the shell 195 downwardly by the fasteners 214 to thereby spread the rim 205 outwardly. Accordingly, tensioning of the pad 196 is accomplished through the spreader configuration of the shell 195 and frame 23-1. It also is possible to provide an adjustment mechanism to permit manual control of the flexing of the shell 195 by a chair occupant for selective tensioning of the pad 196.
The illustrated arrangement furthermore is equally usable for the multi-layer pad 196 or a single layer fabric material such as that described above. Still further, by selective placement of fasteners 214 either in the side-to-side direction or front-to-back direction, the shell 195 may be selectively flexed laterally or forwardly to tension the shell 195 effectively in any horizontal direction and even with different tensions in the lateral and forward directions.
Although particular embodiments of the invention have been disclosed in detail for illustrative purposes, it will be recognized that variations or modifications of the disclosed apparatus, including the rearrangement of parts, lie within the scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 10/336,045, filed Jan. 2, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/186,267, filed Jun. 28, 2002, which claims the benefit of U.S. Provisional Application No. 60/302,178, filed Jun. 29, 2001, and which also is a continuation-in-part of U.S. patent application Ser. No. 10/209,950, filed Jul. 31, 2002, which claims the benefit of U.S. Provisional Application No. 60/309,129, filed Jul. 31, 2001.
Number | Date | Country | |
---|---|---|---|
60302178 | Jun 2001 | US | |
60309129 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10336045 | Jan 2003 | US |
Child | 11326850 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10186267 | Jun 2002 | US |
Child | 10336045 | Jan 2003 | US |
Parent | 10209950 | Jul 2002 | US |
Child | 10336045 | US |