In consideration of the following detailed description of various embodiments, the invention may be more completely understood in connection with the following drawings.
a) is a perspective view of one embodiment of a back pivot member of the present invention.
b) is a perspective view of one embodiment of a frame of the present invention.
c) is a perspective view of one embodiment of a seat of the present invention.
d) is a perspective view of an alternate embodiment of a back pivot member of the present invention.
e) is a top view of an embodiment of a back pivot member pivotally mounted to a frame of the present invention.
a) is a top view of an embodiment of a back pivot member pivotally mounted to a frame of the present invention.
b) is an exploded view of an embodiment of a back pivot member pivotally mounted to a frame of the present invention.
a) is a perspective view of an embodiment of a frame of the present invention.
b) is a perspective view of an embodiment of a seat of the present invention.
a) is a perspective view of an embodiment of a back pivot member pivotally mounted to a frame of the present invention.
b) is a side view of an embodiment of the present invention.
a) is a perspective view of another embodiment of a back pivot member pivotally mounted to a frame of the present invention.
b) is a side view of another embodiment of the present invention.
Although the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The present invention relates generally to a chair having an automatically adjusting resistance to tilt. As used herein, the term “back support” means any back rest or structure to support the back located on a chair. The term “seat” means any seating cushion, surface or structure to support the weight of an occupant of a chair.
Referring to the embodiment shown in
Referring still to the embodiment shown in
Back pivot member 121 has a back support extension 122 and a seat lift extension 123, and pivotally mounts to frame 113 with back pivot rod 125 to form a horizontal pivot point for back support 112. Seat lift extension 123 extends upward from back pivot member 121 such that its distal end is in contact with glide plate 124. Back support extension 122 extends rearward from back pivot member 121 to receive back support 112 for attachment thereto.
Frame 113 preferably comprises a rectangular frame supporting two pairs of frame extensions. Front pivot extensions 114, 115 are separated by a distance great enough to receive pivoting clevis 118, and pin 119 inserts into bores through front pivot extensions 114, 115 to pivotally mount seat 111 to frame 113. Rear pivot extensions 116, 117 are separated by a distance great enough to receive back pivot member 121, and back pivot rod 125 inserts into through-holes through rear pivot extensions 116, 117 to pivotally mount back pivot member 121 to frame 113. As shown in
Referring now to the embodiment shown in
In operation, an occupant of the chair sitting on seat 111 reclines by exerting a rearward force on back support 112. This rearward force causes back support 112 to move in a rearward direction, which, in turn, causes back pivot member 121 to rotate about back pivot rod 125. The rotation causes seat lift extension 123 to move in an upward direction, which exerts an upward force on glide plate 124. Seat 111 then rotates about pin 119 and the rearward portion of seat 111 moves substantially in the vertical direction to incline seat 111. It is preferred that the inclining of seat 111 to counteract the reclining of back support 112 raises seat 111 between about 0.2 and 2 inches from a substantially horizontal resting position. It is further preferred that the inclining of seat 111 raises seat 111 between about 0.4 and 1 inch from a substantially horizontal resting position. In a particularly useful embodiment, the inclining of seat 111 raises the forward portion of seat 111 about 0.6 inches, and raises the rearward portion of seat 111 about 0.8 inches.
As is apparent from the above description, the horizontal pivot point for the reclining of back support 112 is not the chair occupant's hip joint. Consequently, the reclining of the back support 112 circumscribes an arc that is displaced from the arc based on the chair occupant's hip joint. However, the concurrent action of the reclining mechanism described herein of raising the rearward portion of seat 111 produces a net positioning of the occupant of the chair that is substantially the same as the positioning which would have been achieved if the center of the arc circumscribed by the reclining of back support 112 recline were coextensive with the arc based upon the chair occupant's hip joint.
Referring now to alternative embodiments of frame 111 and seat 111 shown in
Referring now to the embodiment shown in
Referring still to the embodiment shown in
Back pivot member 221 includes back pivot rod 225, back support extension 222 and glider cam 223, and pivotally mounts to frame 213 with integral back pivot rod 225 to form a horizontal pivot point for back support 112. Glider cam 223 extends upward as back pivot member 221 pivots about back pivot rod 225 such that glider cam 223 contacts glide plate 224. Back support extension 222 extends rearward from back pivot member 221 to receive back support 112 for attachment thereto. Back pivot rod 225 may include a through-bore in order to facilitate pivotally securing back pivot member 221 to frame 213.
Frame 213 preferably comprises a rectangular frame supporting rear pivot extension 216, which may incorporate an integral through-hole, and front pivot extensions 214, 215. Front pivot extensions 214, 215 are separated by a distance great enough to receive pivoting clevis 218, and pin 219 inserts through front pivot extensions 214, 215 to pivotally mount seat 111 to frame 213. Rear pivot extension 216 receives back pivot rod 225 to pivotally mount back pivot member 221 to frame 213. Washer 226 secures back pivot rod 225 within rear pivot extension 216. Washer 226 may be a plate having a circumference greater than the through-hole of rear pivot extension 216, and washer 226 may be secured to a threaded slot (not shown) in back pivot member 221 by long bolt 227.
In operation, an occupant of the chair sitting on seat 111 reclines by exerting a rearward force on back support 112. This rearward force causes back support 112 to move in a rearward direction, which, in turn, causes back pivot member 221 to rotate about back pivot rod 225. The rotation causes glider cam 223 to move in an upward direction, which exerts an upward force on glide plate 124. Seat 111 then rotates about pin 119 and the rearward portion of seat 111 moves substantially in the vertical direction to incline seat 111. It is preferred that the inclining of seat 111 to counteract the reclining of back support 112 raises seat 111 between about 0.2 and 2 inches from a substantially horizontal resting position. It is further preferred that the inclining of seat 111 raises seat 111 between about 0.4 and 1 inch from a substantially horizontal resting position. In a particularly useful embodiment, the inclining of seat 111 raises the forward portion of seat 111 about 0.6 inches, and raises the rearward portion of seat 111 about 0.8 inches.
As is apparent from the above description, the horizontal pivot point for the reclining of back support 212 is not the chair occupant's hip joint. Consequently, the reclining of the back support 212 circumscribes an arc that is displaced from the arc based on the chair occupant's hip joint. However, the concurrent action of the reclining mechanism described herein of raising seat 211 produces a net positioning of the occupant of the chair that is substantially the same as the positioning which would have been achieved if the center of the arc circumscribed by the reclining of back support 212 recline were coextensive with the arc based on the chair occupant's hip joint.
Referring now to an alternative embodiment shown in
Referring still to
Alternatively, as shown in the embodiment in
In operation, an occupant of the chair sitting on seat 111 reclines by exerting a rearward force on back support 112. This rearward force causes back support 112 to move in a rearward direction, which, in turn, causes back pivot member 421 to rotate about rear seat extension 416. The rotation causes seat lift extension 423 to move in an upward direction, which exerts an upward force on glide plate 424. Seat 111 then rotates about pin 119 and the rearward portion of seat 111 moves substantially in the vertical direction to incline seat 411. It is preferred that the inclining of seat 411 to counteract the reclining of back support 112 raises seat 111 between about 0.2 and 2 inches from a substantially horizontal resting position. It is further preferred that the inclining of seat 111 raises seat 111 between about 0.4 and 1 inch from a substantially horizontal resting position. In a particularly useful embodiment, the inclining of seat 111 raises the forward portion of seat 111 about 0.6 inches, and raises the rearward portion of seat 111 about 0.8 inches.
In yet another alternative embodiment (not shown), seat lift extension 423 may be slidably connected to the underside of seat 111. The slidable connection could be accomplished by using a rail and a ball bearing connection or any means known in the art. The rearward force would cause back support 111 to move in a rearward direction, which, in turn, would cause back pivot member 421 to rotate about rear seat extension 416 of frame 413. The rotation would cause seat lift extension 423 to slide rearward, which exerts an upward force on seat 111. As seat lift extension 423 slides rearward, seat 111 then rotates about pin 119 and the rearward portion of seat 111 moves substantially in the vertical direction to incline seat 111. As would be readily envisioned by one of skill in the art, the various mechanisms described herein are particularly useful in combination for providing functional and attractive chairs. All combinations of the multiple mechanisms described herein are therefore encompassed by the present invention.
Preferentially, unless otherwise indicated, the various components of the present invention are constructed generally out of a strong, lightweight material, such as aluminum. Various different materials could also be used, such as other metals or plastics.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teaching presented in the foregoing descriptions and the associated drawings. For instance, as is well known in the art, base 111 may be mounted on vertical post 120 via a piston, such as a conventional gas cylinder and connected operating lever for raising or lowering the height of the chair. It is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application incorporates the contents of the provisional application Ser. No. 60/745,434, filed Apr. 24, 2006, by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60745434 | Apr 2006 | US |