This invention relates to an article suitable for placement on uneven surfaces and, in particular, to an article in the form of a folding chair suitable for placement on uneven surfaces. U.S. Pat. No. 6,095,607 to Wenzel notes the desirability of a chair with adjustable-length legs for accommodating the placement of the chair on uneven terrain. U.S. Pat. No. 6,095,607 to Wenzel notes that Wilson U.S. Pat. No. 5,494,333 describes a folding chair for uneven terrain with three adjustable legs and leveling feet and notes that Gleckler U.S. Pat. No. 4,772,068 shows a chair with U-shaped front and back leg members, similar to a beach chair, but with the leg members telescoping and adjustable as to length of extension down from the seat. According to U.S. Pat. No. 6,095,607 to Wenzel, the Gleckler U.S. Pat. No. 4,772,068 chair adjusts to uneven terrain in the forward and back direction, but not side to side.
U.S. Pat. No. 6,095,607 to Wenzel also notes that Hardison U.S. Pat. No. 5,364,163 discloses another example of a chair with adjustable-length legs, the chair having leg members that lock in position using spring-biased locking pins which engage in holes of the telescoping leg members.
U.S. Pat. No. 5,730,066 to Auten et al notes that, in connection with certain outdoor activities such as picnics and camping trips, it is often desirable to set up a table near a vehicle for serving lunch or the like. However, according to U.S. Pat. No. 5,730,066 to Auten et al, it is often difficult to use a conventional table such as a “card table,” “picnic table” or folding table for this purpose, as conventional tables are not well suited for use outdoors or on uneven terrain since, for example, conventional tables typically do not have adjustable legs to account for sloping or uneven ground.
Thus, there is a need for improvements for articles such as chairs and tables that can accommodate circumstances in which the surface on which the article is placed is not an even surface such as, for example, an uneven area of terrain. Such an improved article will preferably provide reliable adjustment for adjusting the article to accommodate surfaces of varying degrees of slope while improving the convenience and simplicity of use of the article.
According to one aspect of the present invention, there is provided a chair. The chair includes a person support structure on which a person can be supported. The chair also includes a first adjustment system having a first telescoping post and a first inter-stop element, and a second adjustment system having a second telescoping post and a second inter-stop element. Each of the first adjustment system and the second adjustment system is connected to the person support structure. The first adjustment system is disposable between a telescoping movement disposition and a stop set disposition. The first telescoping post and the first inter-stop element are movable relative to one another in the telescoping movement disposition. Relative movement between the first telescoping post and the first inter-stop element is resisted when the first telescoping post and the first inter-stop element are in the stop set disposition. The second adjustment system is disposable between a telescoping movement disposition and a stop set disposition. The second telescoping post and the second inter-stop element are movable relative to one another in the telescoping movement disposition. Relative movement between the second telescoping post and the second inter-stop element is resisted when the second telescoping post and the second inter-stop element are in the stop set disposition. The chair also includes a switch over element which is disposable between a staging disposition and a down select disposition. The switch over element is operatively connected to the first adjustment system and the second adjustment system. Disposing the switch over element in its staging disposition effects a respective movement of the first adjustment system from its stop set disposition to its telescoping movement disposition and a respective movement of the second adjustment system from its stop set disposition to its telescoping movement disposition. Disposing the switch over element in its down select disposition effects a respective movement of the first adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition. The switch over element is configured such that a predetermined actuation of the switch over element disposes the switch over element in its staging disposition and this predetermined actuation of the switch over element is operable to effect both the respective movement of the first adjustment system from its stop set disposition to its telescoping movement disposition and the respective movement of the second adjustment system from its stop set disposition to its telescoping movement disposition.
According to a feature of the one aspect of the present invention, the chair includes a person support structure having a seating portion on which a person can assume a seated disposition. The first adjustment structure and the second adjustment structure contribute in supporting the seating portion at a spacing above a surface. The first telescoping post is movable relative to the first inter-stop element to vary a height at which the first adjustment structure supports the seating portion above a surface. The second telescoping post is movable relative to the second inter-stop element to vary a height at which the second adjustment structure supports the seating portion above a surface.
According to another feature of the one aspect of the present invention, after the switch over element in its down select disposition has effected a respective movement of the first adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition, the first adjustment system and the second adjustment system each automatically move into their respective stop set dispositions upon application of a downward force on the chair.
According to yet another feature of the one aspect of the present invention, in the stop set disposition of the first adjustment structure, the first inter-stop element is operable to engage the first telescoping post at a first set stop location that is at a fixed spacing from the object support portion such that the first inter-stop element and the first telescoping post are releasably secured to one another at the first stop set location. In the telescoping movement disposition, the first inter-stop element is operable to disengage from the first telescoping post to thereby permit movement of the first telescoping post relative to the first set stop location. In the stop set disposition of the second adjustment structure, the second inter-stop element is operable to engage the second telescoping post at a second set stop location that is at a fixed spacing from the object support portion such that the second inter-stop element and the second telescoping post are releasably secured to one another at the second stop set location. In the telescoping movement disposition, the second inter-stop element is operable to disengage from the second telescoping post to thereby permit movement of the second telescoping post relative to the second set stop location.
According to still yet another feature of the one aspect of the present invention, a result of a change of the switch over element between its down select disposition and its staging disposition, the switch over element sequentially shifts the first adjustment structure from its stop set disposition to its telescoping movement disposition and then shifts the second adjustment structure from its stop set disposition to its telescoping movement disposition.
According to another further feature of the one aspect of the present invention, the switch over element includes a cable that engages the first inter-stop element and the second inter-stop element.
According to yet another feature of the one aspect of the present invention, the first adjustment structure includes a first nesting portion. The first telescoping post and the first nesting portion are operatively interconnected to one another such that the first telescoping post can move relative to the first nesting portion. The first inter-stop element includes a first pin component that is movable supported by the first nesting portion and engaged by the cable of the switch over element. The switch over element is operable to effect movement of the first pin component between a pin engagement position in which the first pin component engages the first telescoping post and a pin disengage position in which the first pin component is disengaged from the first telescoping post. The second adjustment structure includes a second nesting portion. The second telescoping post and the second nesting portion are operatively interconnected to one another such that the second telescoping post can move relative to the second nesting portion. The second inter-stop element includes a second pin component that is movable supported by the second nesting portion and engaged by the cable of the switch over element. The switch over element is operable to effect movement of the second pin component between a pin engagement position in which the second pin component engages the second telescoping post and a pin disengage position in which the second pin component is disengaged from the second telescoping post
According to still yet another further feature of the one aspect of the present invention, the first pin component is biased towards its pin engagement position and the second pin component is biased towards its pin engagement position in which the first pin component is disengaged from the first telescoping post, and the cable of the switch over element is movable to effect movement of the first pin component and the second pin component in a direction from its respective pin engagement position towards its pin disengagement position against the bias towards its pin engagement position.
According to an additional feature of the one aspect of the present invention, the recipient structure includes a foldable framework that is foldable between an operating position and a non-operating position.
According to another aspect of the present invention, there is provided an article including a recipient structure, a first adjustment system having a first variable set member and a first inter-stop element, and a second adjustment system having a second variable set member and a second inter-stop element. Each of the first adjustment system and the second adjustment system is connected to the recipient structure. The first adjustment system is disposable between an adjusting movement disposition and a stop set disposition. The first variable set member and the first inter-stop element are movable relative to one another in the adjusting movement disposition. Relative movement between the first variable set member and the first inter-stop element is resisted when the first variable set member and the first inter-stop element are in the stop set disposition. The second adjustment system is disposable between an adjusting movement disposition and a stop set disposition. The second variable set member and the second inter-stop element are movable relative to one another in the adjusting movement disposition. Relative movement between the second variable set member and the second inter-stop element is resisted when the second variable set member and the second inter-stop element are in the stop set disposition. A switch over element is also provided. The switch over element is disposable between a staging disposition and a down select disposition. The switch over element is operatively connected to the first adjustment system and the second adjustment system such that disposing the switch over element in its staging disposition effects a respective movement of the first adjustment system from its stop set disposition to its adjusting movement disposition and a respective movement of the second adjustment system from its stop set disposition to its adjusting movement disposition. Disposing the switch over element in its down select disposition effects a respective movement of the first adjustment system out of its adjusting movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system out of its adjusting movement disposition into readiness to assume its stop set disposition.
According to a feature of the another aspect of the present invention, the article includes a recipient structure having an object support portion on which an object can be supported. The first adjustment structure and the second adjustment structure contribute in supporting the object support portion at a spacing above a surface. The first variable set member is movable relative to the first inter-stop element to vary a height at which the first adjustment structure supports the object support portion above a surface. The second variable set member is movable relative to the second inter-stop element to vary a height at which the second adjustment structure supports the object support portion above a surface.
According to another feature of the another aspect of the present invention, after the switch over element in its down select disposition has effected a respective movement of the first adjustment system out of its adjusting movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system out of its adjusting movement disposition into readiness to assume its stop set disposition, the first adjustment system and the second adjustment system each automatically move into their respective stop set dispositions upon application of a downward force on the article.
According to yet another feature of the another aspect of the present invention, in the stop set disposition of the first adjustment structure, the first inter-stop element is operable to engage the first variable set member at a first set stop location that is at a fixed spacing from the object support portion such that the first inter-stop element and the first variable set member are releasably secured to one another at the first stop set location. In the adjusting movement disposition, the first inter-stop element is operable to disengage from the first variable set member to thereby permit movement of the first variable set member relative to the first set stop location. In the stop set disposition of the second adjustment structure, the second inter-stop element is operable to engage the second variable set member at a second set stop location that is at a fixed spacing from the object support portion such that the second inter-stop element and the second variable set member are releasably secured to one another at the second stop set location. In the adjusting movement disposition, the second inter-stop element is operable to disengage from the second variable set member to thereby permit movement of the second variable set member relative to the second set stop location.
According to still yet another feature of the another aspect of the present invention, as a result of a change of the switch over element between its down select disposition and its staging disposition, the switch over element sequentially shifts the first adjustment structure from its stop set disposition to its adjusting movement disposition and then shifts the second adjustment structure from its stop set disposition to its adjusting movement disposition.
According to another further feature of the another aspect of the present invention, the switch over element includes a flexible strand that engages the first inter-stop element and the second inter-stop element.
According to yet another further feature of the another aspect of the present invention, the first adjustment structure includes a first nesting portion. The first variable set member and the first nesting portion are operatively interconnected to one another such that the first variable set member can move relative to the first nesting portion. The first inter-stop element includes a first pin component that is movable supported by the first nesting portion and engaged by the flexible strand of the switch over element. The switch over element is operable to effect movement of the first pin component between a pin engagement position in which the first pin component engages the first variable set member and a pin disengage position in which the first pin component is disengaged from the first variable set member. The second adjustment structure includes a second nesting portion. The second variable set member and the second nesting portion are operatively interconnected to one another such that the second variable set member can move relative to the second nesting portion. The second inter-stop element includes a second pin component that is movable supported by the second nesting portion and engaged by the flexible strand of the switch over element. The switch over element is operable to effect movement of the second pin component between a pin engagement position in which the second pin component engages the second variable set member and a pin disengage position in which the second pin component is disengaged from the second variable set member.
According to still yet another further feature of the another aspect of the present invention, the first pin component is biased toward its pin engagement position and the second pin component is biased toward its pin engagement position in which the first pin component is disengaged from the first variable set member. The flexible strand of the switch over element is movable to effect movement of the first pin component and the second pin component in a direction from its respective pin engagement position towards its pin disengagement position against the bias towards its pin engagement position.
According to an additional feature of the another aspect of the present invention, the recipient structure includes a foldable framework that is foldable between an operating position and a non-operating position.
According to yet another aspect of the present invention, there is provided a method of adjusting the height of a chair relative to a surface on which the chair is supported. The method includes disposing a switch over element in a staging disposition. The switch over element is disposable between the staging disposition and a down select disposition. The switch over element is operatively connected to a first adjustment system, including a first telescoping post and a first inter-stop element, and to a second adjustment system, including a second telescoping post and a second inter-stop element. Each of the first adjustment system and the second adjustment system is connected to a person support structure on which a person can be supported. The first adjustment system is disposable between a telescoping movement disposition and a stop set disposition with the first telescoping post and the first inter-stop element being movable relative to one another in the telescoping movement disposition. Relative movement between the first telescoping post and the first inter-stop element is resisted when the first telescoping post and the first inter-stop element are in the stop set disposition. The second adjustment system is disposable between a telescoping movement disposition and a stop set disposition with the second telescoping post and the second inter-stop element being movable relative to one another in the telescoping movement disposition. Relative movement between the second telescoping post and the second inter-stop element is resisted when the second telescoping post and the second inter-stop element are in the stop set disposition. Disposing the switch over element in its staging disposition effects a respective movement of the first adjustment system from its stop set disposition to its telescoping movement disposition and a respective movement of the second adjustment system from its stop set disposition to its telescoping movement disposition. Disposing the switch over element in its down select disposition effects a respective movement of the first adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition. The switch over element is configured such that a predetermined actuation of the switch over element disposes the switch over element in its staging disposition. This predetermined actuation of the switch over element is operable to effect both the respective movement of the first adjustment system from its stop set disposition to its telescoping movement disposition and the respective movement of the second adjustment system from its stop set disposition to its telescoping movement disposition. After disposing the switch over element in its staging disposition, at least one of the first telescoping post relative to the first inter-stop element or the second telescoping post relative to the second inter-stop element is moved. After moving at least one of the first telescoping post relative to the first inter-stop element or the second telescoping post relative to the second inter-stop element, the switch over element is disposed to its down select disposition, thereby effecting a respective movement of the first adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition and then disposing the first adjustment system in its stop set disposition and the second adjustment system in its stop set disposition.
An embodiment of the present invention is now described with reference to the following figures of the drawings:
With reference now to
The folding chair 112 includes a recipient structure 126 that includes the seating surface 122. The folding chair 122 also includes a first adjustment system 128 in the form of a first pin 130 and the first adjustment system 128 includes a first variable set member 132 in the form of a leg 134 having a nesting portion 136 and an adjustable portion in the form of telescoping post 138. The first variable set member also includes a foot base 140 formed at one end of the telescoping post 138. The first adjustment system 128 includes a first inter-stop element 132 in the form of an adjustment block 144 that houses a release pin 146.
Continuing further with the components of the article 110, the folding chair 112 includes a second adjustment system 148 that includes a second variable set member 150 and a second inter-stop element 152. The first adjustment structure 128 and the second adjustment structure 148 are each connected to the recipient structure 126, the first adjustment structure 128 being disposable between an adjusting movement disposition and a stop set disposition with the first variable set member 132 and the first inter-stop element 142 being movable relative to one another in the adjusting movement disposition and relative movement between the first variable set member 132 and the first inter-stop element 142 being resisted when the first variable set member 132 and the first inter-stop element 142 are in the stop set disposition. The second adjustment structure 148 is disposable between an adjusting movement disposition and a stop set disposition with the second variable set member 150 and the second inter-stop element 152 being moveable relative to one another in the adjusting movement disposition and relative movement between the second variable set member 150 and the second inter-stop element 152 being resisted when the second variable set member 150 and the second inter-stop element 152 are in the stop set disposition.
The article 110 also includes a switchover element 154 in the form of a pin assembly 156 and a cable sub-assembly 158 operable to selectively release the release pin 146 associated with each one of the first adjustment system 128 and the second adjustment system 148. The switchover element 154 is disposable between a staging disposition and a down select disposition. The switchover element 154 is operatively connected to the first adjustment structure 128 and the second adjustment structure 148 such that disposing the switchover element 154 in its staging disposition effects a respective movement of the first adjustment structure 128 from its stop set disposition to its adjusting movement disposition and a respective movement of the second adjustment structure 148 from its stop set disposition to its adjusting movement disposition. Disposing the switchover element 154 in its down select disposition effects a respective movement of the first adjustment system 128 out its adjusting movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment structure 148 out of its adjusting movement disposition into readiness to assume its stop set disposition. The switch over element 154 is configured such that a predetermined actuation of the switch over element disposes the switch over element in its staging disposition and this predetermined actuation of the switch over element is operable to effect both the respective movement of the first adjustment system from its stop set disposition to its adjusting movement disposition and the respective movement of the second adjustment system from its stop set disposition to its adjusting movement disposition.
Reference is now had to
With reference now to
The leg 134 is movably mounted in a vertical bore 176a formed in the adjustment block 144a in a manner that permits the leg 134a to move relative to the adjustment block 144a.
With reference now to
With reference to
With reference now to
Turning now to
With reference now to
With reference now to
It can be understood that the switch over element 154 is configured such that the switch over element permits the folding chair 112 to be folded and unfolded between an unfolded position in which the first adjustment system 128, the second adjustment system 148, the third adjustment system 160, and the fourth adjustment system 162 are at respective lateral spacings from one another, as viewed parallel to the seating plane 124, and an unfolded position in which the first adjustment system 128, the second adjustment system 148, the third adjustment system 160, and the fourth adjustment system 162 are at different respective lateral spacings from one another, as viewed parallel to the seating plane 124, that are less than the respective lateral spacings from one another of the first adjustment system 128, the second adjustment system 148, the third adjustment system 160, and the fourth adjustment system 162 in the unfolded position of the folding chair 112. This beneficial flexibility of the switch over element 154 is achieved via the deployment of the left hand cable extent 182L and the right hand cable extent 182R, each of which flexibly assumes a cooperative configuration during folding and unfolding of the folding chair 112.
It can be understood that the switch over element 154 is configured such that a predetermined actuation of the switch over element disposes the switch over element in its staging disposition and this predetermined actuation of the switch over element is operable to effect both the respective movement of the first adjustment system 128 from its stop set disposition to its telescoping movement disposition and the respective movement of the second adjustment system 148 from its stop set disposition to its telescoping movement disposition. In the context of the present invention, a “predetermined actuation of the switch over element” operable to effect both the respective movement of the first adjustment system 128 from its stop set disposition to its telescoping movement disposition and the respective movement of the second adjustment system 148 from its stop set disposition to its telescoping movement disposition is to be understood to comprise a range of actuation operations that are adapted for the respective configuration of the switch over element of the article. For example, the “predetermined actuation of the switch over element” may, in a given configuration of the switch over element, include a series of operations of a component of the chair initiated by a chair user at a single location on the chair while the “predetermined actuation of the switch over element” may, in another given configuration of the switch over element, include a single operation or multiple operations of one component of the chair as well as a single operation or multiple operations of a different component of the chair, with the respective operations of the one component of the chair and the different component of the chair being initiated in each instance by a single hand of a chair user or being initiated by two hands of a chair user. Additionally, a respective operation of a component of the chair initiated by a chair user may be conducted at the same time as a respective operation of another component of the chair or before or after a respective operation of another component of the chair at a randomly occurring time or at a predetermined time.
It has been shown and described herein that the switch over element 154 is configured such that a “down select” predetermined actuation of the switch over element that disposes the switch over element in its down select disposition is operable to effect both a respective movement of the first adjustment system 128 out of its telescoping movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system 148 out of its telescoping movement disposition into readiness to assume its stop set disposition. In the context of the present invention, a “‘down select’ predetermined actuation of the switch over element” operable to effect both a respective movement of the first adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system out of its telescoping movement disposition into readiness to assume its stop set disposition is to be understood to comprise a range of actuation operations that are adapted for the respective configuration of the switch over element of the article. For example, the “down select predetermined actuation of the switch over element” may, in a given configuration of the switch over element, include a series of operations of a component of the chair initiated by a chair user at a single location on the chair while the “down select predetermined actuation of the switch over element” may, in another given configuration of the switch over element, include a single operation or multiple operations of one component of the chair as well as a single operation or multiple operations of a different component of the chair, with the respective operations of the one component of the chair and the different component of the chair being initiated in each instance by a single hand of a chair user or being initiated by two hands of a chair user. Additionally, a respective operation of a component of the chair initiated by a chair user may be conducted at the same time as a respective operation of another component of the chair or before or after a respective operation of another component of the chair at a randomly occurring time or at a predetermined time. One subordinate category of the operations of a component of the chair initiated by a chair user in association with a “down select predetermined actuation of the switch over element” is a category of certain operations of a component of the chair initiated by a chair user that effect respective movements of two or more of the first adjustment system, the second adjustment system, the third adjustment system, or the fourth adjustment system out of its respective telescoping movement disposition into readiness to assume its respective stop set disposition, wherein the certain operation of a component of a chair initiated by a chair user in this connection could involve a single operation of the switch over element to effect all of the respective movements of two or more of the first adjustment system, the second adjustment system, the third adjustment system, or the fourth adjustment system out of its respective telescoping movement disposition into readiness to assume its respective stop set disposition, multiple operations of the switch over element at the same region of the chair to effect respective movements of two or more of the first adjustment system, the second adjustment system, the third adjustment system, or the fourth adjustment system out of its respective telescoping movement disposition into readiness to assume its respective stop set disposition, or an operation of one component of the switch over element at one region of the chair together with an operation of a different component of the switch over element at a different region of the chair to effect respective movements of two or more of the first adjustment system, the second adjustment system, the third adjustment system, or the fourth adjustment system out of its respective telescoping movement disposition into readiness to assume its respective stop set disposition.
A category of certain operations of a component of the chair initiated by a chair user includes an operation of one component of the switch over element at one region of the chair initiated by a chair user to effect respective movements of two or more of the first adjustment system, the second adjustment system, the third adjustment system, or the fourth adjustment system out of its respective telescoping movement disposition into readiness to assume its respective stop set disposition. Another category of certain operations of a component of the chair initiated by a chair user includes an operation of one component of the switch over element at one region of the chair initiated by one hand of a chair user and an operation of a different component of the switch over element at a different region of the chair initiated by another hand of a chair user, the two hand operations being performed at the same time or at different times, to effect respective movements of two or more of the first adjustment system, the second adjustment system, the third adjustment system, or the fourth adjustment system out of its respective telescoping movement disposition into readiness to assume its respective stop set disposition.
A variation of those categories of certain operations of a component of the chair initiated by a chair user, including both of the two categories of certain operations of a component of the chair initiated by a chair user noted immediately above herein, includes an operation of one component of the switch over element initiated by a chair user to effect respective movements of three or more of the first adjustment system, the second adjustment system, the third adjustment system, or the fourth adjustment system out of its respective telescoping movement disposition into readiness to assume its respective stop set disposition. For example, as shown and described herein with respect to the operation of the switch over element 154, an operation of one component of the switch over element 154—namely, an operation of raising the strap 180 relative to the top of the folding chair 112, operates to effect respective movements of all four of the first adjustment system 128, the second adjustment system 148, the third adjustment system 160, and the fourth adjustment system 162 out of their respective telescoping movement dispositions into readiness to assume their respective stop set dispositions.
It can be understood that the switch over element 154 is configured such that a predetermined actuation of the switch over element that disposes the switch over element in its staging disposition is operable to effect both the respective movement of the first adjustment system 128 from its stop set disposition to its telescoping movement disposition and the respective movement of the second adjustment system 148 from its stop set disposition to its telescoping movement disposition and, as well, the switch over element 154 is configured such that a “down select” predetermined actuation of the switch over element that disposes the switch over element in its down select disposition is operable to effect both a respective movement of the first adjustment system 128 out of its telescoping movement disposition into readiness to assume its stop set disposition and a respective movement of the second adjustment system 148 out of its telescoping movement disposition into readiness to assume its stop set disposition. Moreover, it can be understood that the switch over element 154 is configured such that a predetermined actuation of the switch over element that disposes the switch over element in its staging disposition is operable to effect both the respective movements of all four of the first adjustment system 128, the second adjustment system 148, the third adjustment system 160, and the fourth adjustment system 162 out of their respective stop set dispositions to their respective telescoping movement dispositions and, as well, the switch over element 154 is configured such that a “down select” predetermined actuation of the switch over element that disposes the switch over element in its down select disposition is operable to effect all four of the first adjustment system 128, the second adjustment system 148, the third adjustment system 160, and the fourth adjustment system 162 out of their respective telescoping movement dispositions into readiness to assume their respective stop set dispositions.
With reference now to
An adjustable leg 2 contains round but not limited to round holes into which the release pin 1 sits to maintain the chair 20 height. The leg 2 can be made of any type of plastic, aluminum or other steel, but is not limited to these materials. It is typically made of 6061 aluminum. The adjustable portion of leg 2 is preferably but not necessarily 11.3 inches long. The leg 2 can be two inches to, but not limited to, two feet long. The leg 2 contains but is not limited to 17 holes. The adjustable portion of leg 2 has a guide track or groove that is typically but not limited to 10.08 inches long making it easier to slide in and out of the nesting portion of leg 2.
The front right joint 3 is used to join three front right tubes together and provides support for the armrest. Typically the joint 3 is made of polypropylene, but can be made of, for example, any aluminum or steel. A typical size for the joint 3 is 2.3 inches by 2.125 inches, but it can be 1 inch by 3 inches or more.
The foot base 6a is used to provide secure traction on the ground while the chair is in use. The foot base 6a is typically made of 6061 aluminum but can be made of any other aluminum or steel or plastic. The foot base 6a is typically round but could be any other geometric shape. The foot base 6a is preferably but not necessarily about 1 inch to 6 inches in diameter but preferably 3 inches.
The front block 5 provides support for front chair posts when the chair is being used. The front block 5 is typically made of polypropylene but can be made of but not limited to any aluminum or steel. The front block 5 is typically but not necessarily about 4 inches long and 3 inches deep. It can be more squarely shaped.
The front left joint 4 is identical in purpose, size and function to the front right joint 3 except used on the left side.
The adjustment block 7, connected to bottom of upper portion of leg, houses the release pin 1 and adjustable portion of leg 2 and allows for the adjustable portion of leg 2 to be moved up and down inside the upper portion of leg and for the release pin 1 to be seated into one of several holes in the leg 2. The adjustment block 7 is typically round but can be any other geometric shape. The adjustment block 7 is typically made of 6061 aluminum but can be made of any aluminum, plastic or steel. The adjustment block 7 is typically but not necessarily 1 inch high by 1 inch in diameter but more preferably 1.7 inches high by approximately 3 inches in diameter.
The pin assembly 8 allows for the pull and release of the release pin 1 in and out of a leg hole in order to adjust the height of chair. The pin assembly 8 contains a pin 1, spring-coil 8a, spacer 8b and set-screw 8c. The pin assembly 8 is typically made of aluminum and steel but some can be made of plastic.
The chair legs 2 with holes pass through the adjustment block 7 and into or out of the nesting portion of the leg. The pin assembly 8 runs through one side of the adjustment block 7 and is held in place in a particular hole by use of a coil 8a and a C-ring. Both front joints 3 and 4 provide support and give the front legs 2 a nesting place when the chair is open. The front block 5 provides support to the tubing and allows the chair to fold up.
The adjustable leg assembly 9 comprises the pin assembly 8, the adjustment block 7, the adjustable portion of leg 2, and the foot base assembly 6 (
The cloth handle 11 is behind the chair. A cable 12 such as fishing line or any other suitable material is run from either end of the handle 11, down the rear legs, through both the rear adjustment blocks 7 on both the left and right side. The cable 12 is run through the rear adjustment blocks 7 toward the front two pin assemblies 8, through the pin assemblies 8 and back toward and through the two rear pin assemblies 8. When the handle 11 is pulled, the cable 12 tightens and pulls the pins 1 out and away from the leg hole they were previously seated in. The legs 2 are then adjusted to desired height and, when the handle 11 is released, the pins 1 reseat themselves into the appropriate leg hole.
To make an exemplary embodiment of the device, the adjustment blocks 7 are attached to a modified camping chair. Adjustable legs 2 are run through the adjustment block 7 and telescope into upper portion of chair leg. Pin assemblies 8 are held in place with C-rings in the adjustment block 7 to allow for the chair leg 2 to be moved up or down and then held in a given position. A cable 12 is then threaded through the pins 1 and connected to a handle located on the back of the chair.
To use the device, the person first grabs the handle 11 with four fingers and loops his thumb over the back strap loop 10. Using the other hand to grab the front arm of the chair to stabilize the chair, the person pulls up on the handle 11. The cable 12 is made taut and pulls out the pins 1 releasing the legs 2. The person holds the chair firmly as the legs 2 are loose, positions the chair to the desired height and then releases the handle 11.
The chair will typically have four legs 2, but designs with more or less legs 2 can be used.
These elements can be reconfigured to perform similar functions on a variety of camping equipment such as cots, coffee or end tables, kitchen tables, picnic tables, or grills. This approach can be used wherever an adjustable setting is required for a table, desk, workbench, chair or any other piece of furniture. The material used in this particular embodiment is aimed at the camping industry, but because of its ease of use wherever there is a need to quickly and easily adjust a table, chair, workbench or grill, the approach can be used assuming the appropriate materials are used to guarantee safety.
The article of the present invention has been exemplarily disclosed and illustrated with respect to a folding chair but it is to be understood that the article can as well be any structure in which it is desirable or advantageous to have the capability of simultaneous and independent adjustment of two or more limbs or extremities of the article. For example, the article could be of a structure comprising two or more limbs or extremities and deployed in a circumstance in which it is desirable to adjustably position the limbs or extremities at varying extents from a recipient portion of the article. For example, the limbs of the article could be extended horizontally to contact and engage vertical surfaces at respective different spacings from the recipient portion of the article. Additionally, the article has been described herein as comprising a switchover element operable between a staging disposition and a down select disposition, wherein the switchover element is configured with a cable sub-assembly. However, it is to be understood that the switchover element could as well comprise any electrical, mechanical, chemical, or other mechanism that is operable to be disposed between a staging disposition and a down select disposition.
From the foregoing description of one embodiment of the invention, it will be apparent that many modifications may be made therein. It will be understood that this embodiment of the invention is an exemplification of the invention only and that the invention is not limited thereto.
This is a U.S. non-provisional application relating to and claiming the benefit of U.S. Provisional Patent Application Ser. No. 61/186,078, filed Jun. 11, 2009.
Number | Date | Country | |
---|---|---|---|
61186078 | Jun 2009 | US |