1. Field of the Invention
The present invention relates to task chairs, and in particular, to a ride mechanism for a task chair, the ride mechanism including an adjustable tension assembly.
2. Description of the Related Art
Task chairs are commonly used by persons while working in a seated position in an office or other occupational environment. Typically, such chairs include a base assembly with caster wheels for rolling movement over a floor surface, a pneumatic cylinder connecting the base assembly to the seat assembly for vertical adjustment, as well as a number of manual adjustment features to allow the user to adjust the movement characteristics of the chair to a desired configuration.
Some known task chairs include a backrest and a seat which are coupled to one another for synchronized movement such that, upon recline of the backrest responsive to reclining movement of a seated user, the seat moves forwardly and a rear portion of the seat moves downwardly. A disadvantage of this arrangement is that, upon reclining movement of the seated user, the user is moved slightly downwardly and away from a desk or other work surface near which the user is seated, and the user's line of sight is also shifted downwardly, requiring the user to adjust their head position to maintain a line of sight to a computer monitor, for example.
Known task chairs additionally include tension assemblies for providing a restoring force to the backrest of the chair, which force tends to bias the backrest into an upright position and to provide a resistance force against reclining of the backrest. Such mechanisms typically include a box-shaped control housing mounted beneath the seat in which a coil spring is mounted. Typically, the coil spring must be large in size to provide adequate resistance, requiring the control housing to take up a large amount of space beneath the seat. Also, the adjustment mechanism for varying the tension of the coil spring typically requires a large number of mechanical components contained within the control housing, increasing the difficulty of manufacture of the chair, the overall cost of the chair, and the overall weight of the chair. Further, manual adjustment of existing tension mechanisms is often confusing and tedious for the user, often requiring a user to rotate an adjustment knob over a very large number of turns.
What is needed is a task chair which includes a ride mechanism with a tension assembly which is an improvement over the foregoing.
The present invention provides a task chair, including a backrest assembly and a seat assembly pivotally coupled both to one another and to side portions of a fixed yoke member for synchronized movement, in which the seat of the seat assembly moves upwardly and forwardly concurrently with recline of the backrest of the backrest assembly. The chair further includes a tension assembly including an elongate tension member, such as a leaf spring, secured at one end thereof to the yoke member, and a contact member, such as a contact roller, adjustably mounted to the seat assembly. The contact member engages the tension member such that the tension member resists recline of the backrest assembly and concurrent movement of the seat assembly from their initial positions, and also provides a restoring force which tends to move the backrest to its initial upright position and the seat to its initial rearward and lowered position. The contact member is adjustable with respect to the tension member in order to vary the effective moment arm acting upon the tension member, thereby varying the pre-load of the tension member and the resistance provided by the tension member.
In one form thereof, the present invention provides a chair, including a pedestal; a yoke member mounted to the pedestal, the yoke member having a pair of upwardly extending side portions; a backrest assembly and a seat assembly; the backrest assembly including a generally U-shaped backrest frame having a pair of end portions, the end portions respectively pivotally coupled to the side portions of the yoke member at first pivots for reclining movement of the backrest assembly, the end portions of the backrest assembly also respectively pivotally coupled to opposite sides of the seat assembly at second pivots; and the seat assembly movably coupled to the yoke member, and movable upon recline of the backrest from a first position to a second position in which the seat assembly is disposed upwardly of the first position.
In another form thereof, the present invention provides a chair, including a seat support structure; a seat assembly movably connected to the seat support structure and movable from a first position to a second position; and a tension assembly, including a tension member having a first end secured to one of the seat support structure and the seat assembly, and a second cantilevered end; and a contact member mounted to the other of the seat support structure and the seat assembly, the contact member engaging the second end of the tension member upon movement of the seat assembly from the first position to the second position, whereby the tension member provides a return force urging the seat assembly to the first position.
In another form thereof, the present invention provides a chair, including a pedestal; a yoke member mounted to the pedestal, the yoke member having a pair of upwardly extending side portions; a backrest assembly and a seat assembly; the backrest assembly including a backrest frame having a pair of end portions respectively pivotally coupled to the side portions of the yoke member at first pivots for reclining movement of the backrest assembly, the end portions of the backrest assembly respectively pivotally coupled to opposite sides of the seat assembly at second pivots; the seat assembly movably coupled to the yoke member and movable upon recline of the backrest from a first position to a second position in which the seat assembly is disposed upwardly of the first position; and a tension assembly, including an elongate tension member secured at an end thereof to one of the yoke member and the seat assembly; and a contact member mounted to the other of the yoke member and the seat assembly, the contact member engaging the tension member upon movement of the seat assembly from the first position to the second position, whereby the tension member provides a return force urging the seat assembly to the first position.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one preferred embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention any manner.
Referring to
Yoke member 14 generally includes transverse beam 30 and a pair of upwardly-extending side portions 32 at opposite ends of transverse beam 30. The upper end of pneumatic cylinder 28 is mounted to transverse beam 30 in a suitable manner, such as by welding or by a press-fit engagement, for example.
Balkers assembly 18 generally includes a substantially U-shaped backrest frame 34 having a pair of end portions 36 pivotally connected to the upper ends of side portions 32 of yoke member 14 and to seat assembly 16 as discussed below. Balkers assembly 18 additionally includes backrest 38 connected to back frame 34 to support the back of a seated user. Balkers 38 may include a flexible elastomeric structural material having one or more rigid members embedded therein, which provide connection points for securing backrest 38 to back frame 34 in a pivotal manner, as discussed in detail in U.S. patent application Ser. No. 10/315,838, entitled CHAIR WITH LUMBAR SUPPORT AND CONFORMING BACK, filed on Dec. 10, 2002, and U.S. patent application Ser. No. 10/887,362, entitled CHAIR WITH LUMBAR SUPPORT AND CONFORMING BACK, filed on Jul. 8, 2004, each assigned to the assignee of the present invention, the disclosures of which are expressly incorporated herein by reference. Balkers 38 may optionally include a cushion (not shown) attached thereto.
Seat assembly 16 generally includes a secondary frame or seat support cradle 40 having transverse beam 42 with a pair of side portions 44 extending therefrom, and front beam 46 extending forwardly from transverse beam 42. Side portions 44 of seat support cradle 40 are pivotally connected to yoke member 14 and to end portions 36 of backrest assembly 18 in the manner discussed below. Front beam 46 of seat support cradle 40 is attached to a central front portion of seat 50 by a resilient bushing 48 secured between front beam 46 and horn 49 of seat 50, as shown in
Referring additionally to
Referring to
Second pivot 58 is located in line with the hip joint of a seated user to facilitate comfortable reclining movement of backrest assembly 18 about the user's hip joint, to keep the lumbar area of backrest 38 fully in contact with the lumbar region of the user's back, and to eliminate the “shirt pull” effect observed in many existing chairs which include a backrest which pivots independently of the seat.
Referring to
Referring to
The forgoing movement of second pivot 58 with respect to first pivot 56 is also schematically illustrated in
Referring to
Tension member 72 is formed as an elongate bar having first end 78 mounted to yoke member 14 by capture plate 80 and a plurality of fasteners 82, with capture plate 80 including upturned lip 84 to support bending movement of tension member 72. Second end 86 of tension member 72 is disposed opposite first end 78 and is cantilevered therefrom. In one form, tension member 72 may be formed of a glass fiber/epoxy composite bar having a 17×6.3 mm cross section. This material is available from Glasforms, Inc. of San Jose, Calif., and has a flexural modulus of 5.5×106 p.s.i., a flexural strength of 100×103 p.s.i., and a tensile strength of 100×103 p.s.i. Tension member 72 includes a longitudinal axis L1-L1. Alternatively, tension member may be a bar of metal such as spring steel, or a bar made of a rigid, yet flexible, plastic material. Tension member 72 is resistant to forces applied generally transverse to longitudinal axis L1-L1 which forces tend to bend tension member 72 away from its longitudinal axis L1-L1.
Adjustment mechanism 76 is attached to transverse beam 42 of seat support cradle 40, and includes adjustment arm 88 pivotally mounted to transverse beam 42. Adjustment arm 88 includes contact roller 74 at a first end thereof, which is in engagement with tension member 72 adjacent second end 86 of tension member 72. The opposite end of adjustment arm 88 includes hub 90 pivotally mounted to transverse beam 42, with hub 90 including a plurality of gear teeth 92 around at least a portion of its outer periphery. Worm gear 94 is rotatably mounted to a clevis 96 of transverse beam 42, and includes worm 98 in meshing engagement with gear teeth 92 of hub 90 of adjustment arm 88. Shaft 100 extends from worm gear 94 and includes adjustment knob 102 mounted to an end thereof for actuation by the seated user.
Referring to
Adjustment mechanism 76 of tension assembly 70 is adjustable to vary the location of engagement between contact roller 74 and tension member 72 along the length of tension member 72, and to in turn vary both the “pre-load” force and the resistance force provided by tension member 72 to the movement of backrest assembly 18 and seat assembly 16 from the first position shown in
In
Further, contact roller 74 may be adjustably positioned in any position between those shown in
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 60/578,233, entitled CHAIR RIDE MECHANISM WITH TENSION ASSEMBLY, filed on Jun. 9, 2004.
| Number | Name | Date | Kind |
|---|---|---|---|
| 2471024 | Cramer | May 1949 | A |
| 2859799 | Moore | Nov 1958 | A |
| 3416839 | Flint | Dec 1968 | A |
| 3989297 | Kerstholt | Nov 1976 | A |
| 4429917 | Diffrient | Feb 1984 | A |
| 4840426 | Vogtherr et al. | Jun 1989 | A |
| 4861106 | Sondergeld | Aug 1989 | A |
| 4877291 | Taylor | Oct 1989 | A |
| 4984846 | Ekornes | Jan 1991 | A |
| 5005905 | Sondergedl | Apr 1991 | A |
| 5046780 | Decker et al. | Sep 1991 | A |
| 5251958 | Roericht et al. | Oct 1993 | A |
| 5308145 | Koepke et al. | May 1994 | A |
| 5577807 | Hodge et al. | Nov 1996 | A |
| 5725276 | Ginat | Mar 1998 | A |
| 5765804 | Stumpf et al. | Jun 1998 | A |
| 5909923 | DeKraker | Jun 1999 | A |
| 6109694 | Kurtz | Aug 2000 | A |
| 6250715 | Caruso et al. | Jun 2001 | B1 |
| 6382719 | Heidmann et al. | May 2002 | B1 |
| 6412869 | Pearce | Jul 2002 | B1 |
| 6439661 | Brauning | Aug 2002 | B1 |
| 6523898 | Ball et al. | Feb 2003 | B1 |
| 6969116 | Machael et al. | Nov 2005 | B2 |
| 20020190553 | Koepke et al. | Dec 2002 | A1 |
| 20030127896 | Deimen et al. | Jul 2003 | A1 |
| 20030137171 | Deimen et al. | Jul 2003 | A1 |
| 20030178882 | Schmitz et al. | Sep 2003 | A1 |
| 20060071522 | Bedford et al. | Apr 2006 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20050275265 A1 | Dec 2005 | US |
| Number | Date | Country | |
|---|---|---|---|
| 60578233 | Jun 2004 | US |