1. Field of the Invention
The present invention relates generally to chairs with flexible backrests. More particularly, the present invention relates to a chair having a back support structure that is resiliently hingedly coupled to the seat and supporting structure.
2. Related Art
Reclining chairs are generally considered more comfortable than non-reclining chairs. Of the variety of reclining chairs, some comprise a chair with a fixed seat and a backrest that is configured to flex or recline backward relative to the seat. There are a variety of types of chairs with flexible or reclining backrests. Some of these involve very complicated reclining mechanisms. Some involve flexible members that bend along their length, while others include relatively rigid frame components that are hingedly coupled together in various locations.
Unfortunately, many of the reclining mechanisms that have been developed are not suitable to simple, relatively low-cost chairs, such as stackable banquet or meeting hall chairs. A bulky reclining mechanism is not suitable for stackable chairs, and an expensive mechanism is not desirable for locations such as hotels and the like, which require large numbers of chairs for banquets, conferences, etc.
Another problem with some simple reclining back chairs is the location where the chair reclines or bends. To be comfortable, a reclining chair should bend in a location that corresponds as closely as possible to the motion of the human body. Some flex-back chairs bend in places that actually make reclining less comfortable, and others merely tip back, without actually reclining. Both of these motions do not adequately address the structure and motion of the human body.
Additionally, some reclining mechanisms, particularly the more simple ones, present pinch points where a user's fingers or other items can get caught. While there are various methods that have been devised for reducing, or hiding pinch points, many prior solutions have not adequately addressed the problem in an effective and inexpensive manner.
The present invention advantageously provides a chair having a hollow tubular seat frame, a hollow tubular backrest frame pivotally connected to the seat frame at fixed pivot points, a limit stop, affixed to the backrest frame and the seat frame adjacent to the pivot points, and a substantially solid elongate spring element, extending from within the backrest frame into the seat frame. The limit stop is configured to limit a degree of rotation of the backrest frame relative to the seat frame between an upright position and a maximum backwardly rotated position, and the spring element is configured to bias the backrest frame in the upright position, and to resiliently resist backward rotation of the backrest frame.
In accordance with a more detailed aspect of the present invention, in one embodiment the spring element includes a curved lower surface, providing an effective fulcrum point which moves rearwardly as the backrest frame is rotated backwardly, thereby increasing the effective flexural resistance of the spring element during backward rotation.
Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Referring to
The present invention improves on the standard chair of this type by providing a resiliently reclining backrest. The backrest frame 14 is pivotally connected to the seat frame with hinges 20 on each side below the seat 22. Rather than the backrest and seat frame being formed of a continuous tubular member, the seat frame 12 and backrest frame 14 are discontinuous but aligned, and are joined by the hinge 20. The pivot point of the hinge is therefore external to the tubular frame, and allows the backrest to rotate about a pivoting axis (24 in
Advantageously, the hinged connection 20 is disposed below the chair seat 22, so that mating ends of the respective tubular frame members are mostly hidden from view and from access. It will be apparent that in the region of a hinge, there is the possibility of creating a pinch point wherein fingers and other objects could get squeezed in the hinge when it closes. By locating the hinge below the seat, the top and outer side of the hinge mechanism are completely covered. The only exposed portions of the hinge are the bottom, where the hinge pin 26 is located (thus not presenting a pinch point) and the inner side of it (i.e. the side toward the center of the chair). By virtue of its inner location, this side of the hinge presents a substantially limited chance of coming into contact with fingers and other objects. Additionally, the design of the limit stop and spring elements as described below also helps to reduce the likelihood and seriousness of any pinching.
The chair 10 includes limit stops to limit the degree of rotation α of the backrest frame 14, and a resilient spring member for (i) biasing the backrest in the upright position, and (ii) resiliently resisting reclining. The limit stops may be configured in a variety of ways, three embodiments of which are shown in
The limit stop depicted in
The lower surface 34 of the stop plate 30 is configured to abut the lower inside surface 46 of the tubular seat frame member 12 when the backrest 14 is in the upright position. Because the stop plate is attached to the backrest frame, it rotates with the backrest frame such that its sloped stop surface 32 abuts the upper inner surface 48 of the hollow seat frame member when the backrest is in the fully reclined position, as shown in dashed lines in
It will be apparent that the stop plates 30 could alternatively be affixed within the seat frame 12 (rather than the backrest frame) and extend into the backrest frame 14 (rather than the seat frame), and still perform in a similar manner. In such a situation, the upper and lower surfaces 32 and 34 of the limit stops would press against the upper and lower surfaces of the backrest frame when in the reclined and upright positions, respectively.
The limit stop can also be configured in other ways. Referring to
As yet another alternative, the limit stop may be external to the tubular frame. Referring to
One of the advantages of this configuration is that it essentially eliminates any external pinch points. The exposed bottom side of the stop member 74 is flush with the bottom surface of the female hinge member 72 when the backrest 14 is in the upright position, and pivots into the enclosed slot 76 as the backrest frame reclines. Thus there is no way a person can get their fingers disposed between the stop surface 78 and the upper inner surface 80 of the slot, or insert their fingers into a side or edge gap between the moving parts.
It will be apparent that the limit stop mechanism shown in
Referring to
As can be seen from the drawings, the spring element 36 is presumably slightly bent when the backrest 14 is in the upright position. The position and orientation of the spring element is designed such that it is under a certain amount of pre-applied bending stress or pre-load stress when the chair back is in the upright position. This pre-load stress biases the backrest frame in the upright position, and also helps compensate for slight gradual loss of flexural resistance over the life of the spring member.
The spring element 36 may be formed of a variety of materials, including metals and polymers. Suitable polymer materials may include fiber-reinforced composites, ABS plastic, synthetic or natural rubber. One material used by the inventors is extruded fiberglass resin. However, other At the point of contact Pc with the backrest frame 14, the rearward end 84 of the spring element includes a nylon wear button 86, which allows the end of the spring element to smoothly slide against the inside of the tube. Because fiberglass resin is a relatively rough, fibrous material, the inventor has found that where a fiberglass spring element is disposed in direct contact with the inside of the tube, the reclining action can be slightly jerky because of friction between the fiberglass spring element and the steel tube. Nylon provides far less friction, and allows a smoother reclining action. Additionally, the wear button provides an additional measure of pre-load force on the spring element.
Alternatively, an anti-friction end cap 88, shown in
The spring element 36 may be configured and installed in various ways, as shown in
The spring element 36a of
In another alternative embodiment, shown in
Any of the various configurations of the spring elements shown in
By placing the limit stop outside of the tubular frame, the embodiment of
It will be apparent that the spring element 36, rather than being fixed within the seat frame tube 12 and extending into the backrest frame tube 14, may instead be fixed within the backrest frame tube and extend into the seat frame tube. Likewise, there are a variety of suitable methods of fixing an end of the spring element within one of the chair frame tubes other than those described above. For example, where the forward end 82 is disposed near the upper inner surface 48 of the seat frame, and the rearward end 84 also abuts the upper inner surface of the backrest frame, a wedge (not shown) may be used to maintain the spring element in contact with the upper inner surface of the seat frame, rather than the spring retainer 106 shown in
Advantageously, because the backrest frame 14 is hingedly connected to the seat frame 12, failure of the spring element 36 in any of the embodiments disclosed herein will not cause the backrest frame to become detached from the seat frame. Rather, it will merely cause the backrest frame to flop backward and come to rest in the maximum backwardly reclined position. In this condition, the chair can be repaired by removing the backrest (i.e. disassembling the hinges 20), replacing the spring element, and reattaching the hinges.
Both the internal and external limit stop configurations disclosed above advantageously reduce and hide possible pinch points. With the external limit stop, fingers etc. cannot get between the stop surfaces because of the design of the stop member 74 and its corresponding slot 76 (See
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth in the claims.
This is a Division of application Ser. No. 10/213,602, filed on Aug. 6, 2002, now U.S. Pat. No. 6,779,846.
Number | Name | Date | Kind |
---|---|---|---|
3057660 | Schneider | Oct 1962 | A |
3712666 | Stoll | Jan 1973 | A |
4451085 | Franck et al. | May 1984 | A |
4498702 | Raftery | Feb 1985 | A |
4549764 | Haedo | Oct 1985 | A |
4557521 | Lange | Dec 1985 | A |
4580836 | Verney | Apr 1986 | A |
4585272 | Ballarini | Apr 1986 | A |
4603904 | Tolleson et al. | Aug 1986 | A |
4756575 | Dicks | Jul 1988 | A |
4790595 | Hensel et al. | Dec 1988 | A |
4869552 | Tolleson et al. | Sep 1989 | A |
4913493 | Heidmann | Apr 1990 | A |
5039163 | Tolleson | Aug 1991 | A |
5108149 | Ambasz | Apr 1992 | A |
5871258 | Battey et al. | Feb 1999 | A |
5887946 | Raftery | Mar 1999 | A |
5902012 | Han | May 1999 | A |
5904397 | Fismen | May 1999 | A |
5975634 | Knoblock et al. | Nov 1999 | A |
5988746 | Raftery | Nov 1999 | A |
6065803 | Li et al. | May 2000 | A |
6349992 | Knoblock et al. | Feb 2002 | B1 |
6406096 | Barile, Sr. | Jun 2002 | B1 |
6471293 | Ware et al. | Oct 2002 | B1 |
6533352 | Glass et al. | Mar 2003 | B1 |
6779846 | Spendlove et al. | Aug 2004 | B1 |
20020117883 | Gevaert | Aug 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050001462 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10213602 | Aug 2002 | US |
Child | 10870710 | US |