The present invention relates to a method of manufacturing a chalcogenide solar cell, and more particularly, to a method of forming a chalcogenide absorber layer on a transparent conducting oxide (TCO) back contact, and a solar cell including a cell structure manufactured using the method.
Solar cells are classified in various ways depending on a material used for an absorber layer. Although most solar cells use silicon (Si) for an absorber layer, chalcogenide solar cells, which use a high-efficiency chalcogenide material for an absorber layer, attract attention of people for research.
Chalcogenide is a compound including chalcogen elements, sulfur (S), selenium (Se), and tellurium (Te), and chalcogenide solar cells representatively use CuInSe2 (CIS), Cu(In1-x,Gax)(Sey,S1-y)2 (CIGS), CuGaSe2 (CGS), etc.
As a representative chalcogenide solar cell, a CIGS thin film solar cell is capable of achieving high photoelectric conversion efficiency due to a high absorption rate and excellent semiconductor characteristics, and thus is regarded as a next- generation low-cost high-efficiency solar cell. A CIGS thin film may grow on a metal substrate or a polymer substrate as well as a hard glass substrate, and thus may be developed to a flexible solar cell. Furthermore, the CIGS thin film solar cell may freely change a bandgap by changing a Ga(In+Ga) ratio or a Se/(Se+S) ratio, and thus is advantageous to select an absorber layer material corresponding to a light spectrum of sunlight or an external light source. In particular, a Se-based solar cell may change a bandgap from 1.0 eV to 1.7 eV based on an In/(In+Ga) ratio. The CIGS thin film solar cell currently achieves the highest photovoltaic conversion efficiency in a bandgap range of 1.1 eV to 1.2 eV, but may achieve higher performance in a composition corresponding to a bandgap range of 1.4 eV to 1.5 eV capable of achieving theoretically the highest photovoltaic conversion efficiency, and may be used for a tandem solar cell using a 1.7 eV bandgap material appropriate for an upper cell of a two-junction tandem solar cell.
A Cu(In1-x,Gax)(Sey,S1-y)2 light absorbing layer, which is a main element of the CIGS thin film solar cell, may be produced using various methods. A vacuum deposition method such as co-evaporation or sputter-selenization, or a non-vacuum process method including a precursor forming operation and a selenization operation based on powder sintering, electroplating, reaction solution, or the like may be used. A process capable of achieving the highest photovoltaic conversion performance is co-evaporation. Particularly, 3-stage co-evaporation (see
Since a CIGS light absorbing layer may easily change a bandgap by changing its composition as described above, a tandem cell including a CuGaSe2 solar cell having a bandgap of 1.7 eV, as an upper cell, and including a CIGS solar cell having a bandgap of 1.1 eV, as a lower cell may be manufactured, and research is being actively conducted on the tandem cell. As the photovoltaic conversion efficiency of crystalline Si (c-Si) solar cells currently reaches its limit, a hybrid tandem solar cell including a c-Si solar cell as a lower cell and including a CIGS solar cell as an upper cell attracts much attention of people. The c-Si solar cell employing a sandwich cell structure (bottom contact/Si/top contact) having excellent cost competitiveness has increased its photovoltaic conversion efficiency to about 23% to 24% by applying selective contact technology or front/back passivation technology. However, to exceed a milestone of 25%, complex and high-cost process technology such as interdigitated back contact (IBC) technology for providing both front and back contacts on a single surface or HIT technology using amorphous Si (a-Si) thin film passivation technology is necessary. The hybrid tandem solar cell manufactured by sequentially stacking a transparent contact and a high-bandgap CIGS thin film on an existing sandwich c-Si cell structure is a promising technology due to its high cost competitiveness, high efficiency equal to or greater than 30%, and good compatibility with the existing Si industry.
A major next-generation application field of the CIGS thin film solar cell is a see-through photovoltaic module. It is necessary to develop a high-efficiency and transparent solar cell applicable to regions receiving daylight and occupying large areas, e.g., windows of buildings, balconies, and sunroofs of vehicles. An a-Si solar cell, a dye-sensitized solar cell (DSSC), and an organic solar cell have been developed so far for the application of the see-through photovoltaic module, but are not broadly used due to very low efficiency or lack of stability. Due to its high efficiency of 22.6%, the CIGS thin film solar cell will have excellent competitiveness if the CIGS thin film solar cell is developed to a structure capable of transmitting light.
To make use of the CIGS thin film solar cell as an upper cell of a tandem solar cell or as a transparent solar cell as described above, all contacts should be transparent to incident light. In general, the CIGS thin film solar cell includes a glass substrate, a molybdenum (Mo) back contact, a CIGS light absorbing layer, a buffer layer (e.g., CdS, Zn(S,O), ZnSnO, or ZnMgO), and transparent conducting oxide (TCO) (e.g., aluminum-doped ZnO (AZO), bismuth-doped ZnO (BZO), or indium tin oxide (ITO)). Therefore, to use the CIGS thin film solar cell in the above applications, the Mo metal back contact incapable of transmitting light should be replaced by a TCO contact (see (a) of
However, when the TCO back contact is used, Ga in CIGS layer reacts with oxygen (O) in TCO while the CIGS is deposited at high temperature, and thus a gallium oxide (GaOx) secondary phase having various characteristics is formed at the TCO back contact/CIGS interface (see (b) of
A CIGS light absorbing layer having a low bandgap of about 1.1 eV to 1.2 eV due to a high content of Indium may achieve high photovoltaic conversion efficiency even at a process temperature equal to or lower than 450° C., and thus Ga—O reaction may be partially suppressed without efficiency loss using such a low-temperature process. However, since a GaOx secondary phase is also formed at such a low process temperature depending on TCO thin film characteristics, the low temperature process may not be a perfect solution. Furthermore, a low-temperature process may not be applied to a CIGS or CGS light absorbing layer having a very high content of Ga and having a bandgap of about 1.7 eV because defects are greatly increased when the process temperature is lowered. Therefore, development of a method capable of suppressing Ga—O reaction at an interface between a TCO back contact and a CIGS light absorbing layer at a high temperature equal to or higher than 550° C. is necessary. The above-described problem commonly occurs in chalcogenide solar cells including Ga as a main component, e.g., CIGS and CGS solar cells, and should be solved to manufacture a see-through photovoltaic module.
The present invention provides a manufacturing method capable of increasing photovoltaic conversion efficiency of a copper indium gallium selenide (CIGS) thin film solar cell having a transparent conducting oxide (TCO) back contact by suppressing formation of gallium oxide (GaOx) at an interface between the back contact and a chalcogenide light absorbing layer including copper (Cu) and gallium (Ga) when the light absorbing layer is formed.
According to an aspect of the present invention, a chalcogenide solar cell including a substrate, a transparent conducting oxide (TCO) back contact provided on the substrate, a chalcogenide light absorbing layer provided on the TCO back contact and including at least copper (Cu), gallium (Ga), and silver (Ag), and a TCO front contact provided on the chalcogenide light absorbing layer, wherein a Cu-rich region having a content of Cu higher than an average Cu content of the chalcogenide light absorbing layer is provided at an interface where the chalcogenide light absorbing layer is in contact with the TCO back contact.
Gallium oxide (GaOx) having a thickness equal to or less than 3 nm may be provided on the TCO back contact.
The chalcogenide light absorbing layer may include Cu(InxGa1-x)(Sey,S1-y) (0.2<x≤1, 0≤y≤1).
The Cu-rich region may have a thickness range of 2 nm to 10 nm.
A content of Ag in the chalcogenide light absorbing layer may be greater than 0 atomic percent (at %) and equal to or less than 2 at %.
The chalcogenide solar cell may further include a molybdenum (Mo) layer between the Cu-rich region and the TCO back contact, and the Mo layer may be provided as a pattern generated by coating only a part of the TCO back contact and including a window capable of transmitting light therethrough.
One or more of titanium oxide (TiOx), niobium-doped titanium oxide (TiNbOx), Mo(S, Se)2, and MoO3 layers may be provided between the Cu-rich region and the TCO back contact.
The content of Cu of the Cu-rich region may be higher than the average Cu content of the chalcogenide light absorbing layer by 10 at % to 20 at %.
The substrate may include a transparent substrate or a crystalline silicon (c-Si) substrate.
According to another aspect of the present invention, a method of manufacturing a chalcogenide solar cell includes forming a transparent conducting oxide (TCO) back contact on a first surface of a substrate, forming a silver (Ag) precursor layer on the TCO back contact, forming a chalcogenide light absorbing layer including copper (Cu) and gallium (Ga), on the TCO back contact, and forming a TCO front contact on the chalcogenide light absorbing layer.
In this case, the forming of the chalcogenide light absorbing layer may include diffusing the Ag precursor layer into the chalcogenide light absorbing layer, and forming a Cu-rich region having a content of Cu higher than an average Cu content of the chalcogenide light absorbing layer, at an interface where the chalcogenide light absorbing layer is in contact with the TCO back contact.
The chalcogenide light absorbing layer may include Cu(InxGa1-x)(Sey,S1-y) (0.2<x≤1, 0≤y≤1).
The forming of the chalcogenide light absorbing layer may include a first stage for forming a gallium selenide layer or a gallium sulfide layer by depositing Ga and selenium (Se), or Ga and sulfur (S) on the TCO back contact, and a second stage for coating and diffusing Cu and Se, or Cu and S on and into the gallium selenide layer or the gallium sulfide layer.
The forming of the chalcogenide light absorbing layer may include a first stage for forming an indium gallium selenide layer or an indium gallium sulfide layer by depositing Ga, indium (In) and Se, or Ga, In and S on the TCO back contact, and a second stage for coating and diffusing Cu and Se, or Cu and S on and into the indium gallium selenide layer or the indium gallium sulfide layer.
The diffusing of the Ag precursor layer into the chalcogenide light absorbing layer and the forming of the Cu-rich region may be performed in the second stage.
The first stage may be performed at a temperature range of 300° C. to 400° C.
The second stage may be performed at a temperature range of 430° C. to 600° C.
The method may further include forming a molybdenum (Mo) layer as a pattern generated by coating only a part of the TCO back contact and including a window capable of transmitting light therethrough, after the TCO back contact is formed.
The Ag precursor layer may include pure Ag.
The Ag precursor layer may include an alloy of Mo and Al, and may be formed as a pattern generated by coating only a part of the TCO back contact and including a window capable of transmitting light therethrough.
The method may further include forming one or more of TiOx, TiNbOx, Mo(S, Se)2, and MoO3 layers on the TCO back contact after the TCO back contact is formed.
The Ag precursor layer may have a thickness range of 1 nm to 20 nm.
The Ag precursor layer may have a thickness range of 10 nm to 20 nm.
When a solar cell is manufactured by depositing a silver (Ag) precursor on a transparent conducting oxide (TCO) back contact and then forming (In,Ga)2Se3 or Ga2Se3 and depositing copper (Cu) and selenium (Se) thereon to form a copper indium gallium selenide (CIGS) or copper gallium selenide (CGS) light absorbing layer, formation of gallium oxide (GaOx) at an interface between the TCO back contact and the CIGS or CGS light absorbing layer may be greatly suppressed. According to conventional technology, a high-resistivity n-doped semiconductor, GaOx is provided at the back of a p-doped semiconductor, CIGS or CGS and thus disturbs carrier transport. However, according to the present invention, since GaOx is completely removed and the interface between the transparent back contact and the CIGS or CGS light absorbing layer forms an ohmic junction, photovoltaic conversion efficiency may be increased.
In addition, according to the present invention, a TCO thin film such as indium tin oxide (ITO) may be provided as an intermediate contact which serves as a tunnel layer when a crystalline Si (c-Si) solar cell and a CGS thin film solar cell are integrated into a tandem cell.
When a molybdenum (Mo) layer having a preset or random nano-sized or micro-sized pattern is provided between the TCO back contact and Ag, light may be transmitted through an open part of the Mo layer and, at the same time, a mechanical interlocking effect may be improved and interface adhesion may be increased between the TCO back contact and CIGS or CGS.
When TiOx or TiNbOx is provided between the TCO back contact and Ag, chemical wetting may be improved and interface adhesion may be increased between the TCO back contact and the CIGS or CGS light absorbing layer.
When Mo(S,Se)2 or MoO3 is provided between the TCO back contact and Ag, electrical characteristics of the interface between the TCO back contact and the CIGS or CGS light absorbing layer may be improved to be more ohmic.
(a) and (b) of
(a) of
(a) to (c) of
(a) and (b) of
(a) and (b) of
(a) of
(a) of
(a) of
(a) of
(a) of
Hereinafter, the present invention will be described in detail by explaining embodiments of the invention with reference to the attached drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to one of ordinary skill in the art. In the drawings, the sizes of elements may be exaggerated or reduced for convenience of explanation.
Throughout the specification and the claims, it will be understood that when an element, such as a layer or a region, is referred to as being “on” another element, it may be directly on the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements or layers present.
In various embodiments of the present invention to be described below, a copper indium gallium selenide (CIGS) solar cell will be described as an example of a chalcogenide solar cell including copper (Cu) and gallium (Ga). However, the embodiments of the present invention may be equally applied to other chalcogenide solar cells including Cu and Ga, e.g., a copper gallium selenide (CGS) solar cell.
The substrate may be a transparent substrate or a silicon (Si) substrate. The transparent substrate may representatively include glass, and may also include a transparent polymer material.
The Ag precursor layer may be formed using physical vapor deposition such as sputtering, evaporation, or ion-plating. As another example, chemical vapor deposition (CVD) or atomic layer deposition (ALD) may also be used, and any method capable of forming an Ag layer of the above thickness range is usable.
The TCO back contact may representatively include indium tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), zinc oxide (ZnO), boron-doped zinc oxide (BZO), or the like, but is not limited thereto. Any transparent oxide having high electrical conductivity is usable.
Then, a copper indium gallium selenide (CIGS) light absorbing layer is deposited. In this case, the CIGS light absorbing layer is deposited in a gas or vapor atmosphere including selenium (Se) or sulfur (S).
As shown in (a) of
According to a modified embodiment, indium gallium sulfide (InGaS) may be formed in the first stage and then the second and third stages may be performed.
Then, a buffer layer and a TCO front contact are sequentially deposited. Optionally, a sodium (Na) compound may be deposited and doped after the third stage and before the buffer layer is formed.
The buffer layer may include CdS, Zn(O,S), ZnSnO, ZnMgO, ZnMgGaO, or the like.
The TCO front contact may include one selected among the above-mentioned materials used for the TCO back contact.
A high-resistivity window layer such as ZnO, ZnMgO, ZnMgGaO, or the like may be included between the buffer layer and the TCO front contact.
Thereafter, in the second stage, the substrate temperature is increased to a range of 430 to 600° C., and more particularly, of 530 to 580° C. and a CIGS crystal structure and composition is obtained using recrystallization based on deposition and diffusion of Cu on and into an (In,Ga)2Se3 precursor. In this case, Ag is uniformly diffused into the CIGS layer in a way that Ag atoms at the interface between the TCO back contact and (In,Ga)2Se3 are interchanged with Cu atoms diffused to the interface, but high-concentration Cu atoms are present in a thickness range of 2 nm to 10 nm at the interface between the TCO back contact and CIGS (see (c) of
Therefore, according to an embodiment of the present invention, when formation of the TCO front contact is lastly completed, as illustrated in (b) of
In this case, the average Cu content in the CIGS light absorbing layer refers to an average content value of Cu in a part of the whole CIGS light absorbing layer other than the Cu-rich region which is locally formed at the interface between the TCO front contact and the CIGS light absorbing layer.
Since formation of GaOx is greatly suppressed as described above, GaOx on the TCO front contact is formed to a thickness equal to or less than 3 nm.
Due to a high carrier concentration, the Cu-rich CIGS layer may contribute to an electrically more ohmic interface between the p-doped CIGS light absorbing layer and the n-doped TCO back contact. In addition, since formation of GaOx, which is an n-doped semiconductor, is greatly suppressed, a conventional problem of disturbance of carrier transport by GaOx may be solved.
According to a modified embodiment, Ag and Mo may be provided as an Ag—Mo alloy layer deposited by co-sputtering an Ag target and a Mo target. In this case, the Ag—Mo alloy layer is provided in a pattern structure having a window capable of transmitting light therethrough, as described above. The Ag—Mo alloy layer serves as the Ag precursor layer. Therefore, when the CIGS light absorbing layer is formed on the Ag—Mo alloy layer, Ag is diffused into the CIGS light absorbing layer and an interface structure in which Cu-rich CIGS is present in a three-dimensional network structure of Mo is formed.
Subsequent processes are the same as those of the afore-described first embodiment, and repeated descriptions will not be provided in all embodiments described below.
Due to excellent chemical and electrical coherence between the TiOx, TiNbOx, Mo(S, Se)2, or MoO3 layer and the CIGS light absorbing layer, interface adhesion may be increased and electrically superior interface characteristics may be achieved.
Test examples capable of supporting the technical features of the present invention will now be described. These test examples are only examples and the present invention is not limited to the test examples.
Ag precursors having thicknesses of 0 nm and 10 nm were deposited by evaporation on an ITO back contact deposited on a soda-lime glass substrate to a thickness of 600 nm. In, Ga, and Se were deposited at a substrate temperature of 400° C. (a first stage), Cu and Se were deposited by increasing the substrate temperature to 430° C. (a second stage), and In, Ga, and Se were deposited at the same temperature to deposit a Cu-poor CIGS light absorbing layer (a third stage). In this case, a Ga/(In+Ga) ratio was 0.35. A CdS buffer was formed using a chemical bath deposition (CBD) solution process, and then high-resistivity intrinsic ZnO (i-ZnO) and conducting aluminum-doped ZnO (AZO) were deposited to manufacture a cell.
(a) of
As shown in (a) of
As comparatively shown in (b) and (c) of
In addition, referring to (e) of
According to another experimental example, the same technology was applied to a CuGaSe2 (CGSe) thin film solar cell having a large bandgap. Ag precursors having thicknesses of 10 nm, 20 nm, and 40 nm were deposited by evaporation on an ITO back contact deposited on a soda-lime glass substrate to a thickness of 200 nm. Ga and Se were deposited at a substrate temperature of 400° C. (a first stage), Cu and Se were deposited by increasing the substrate temperature to 550° C. (a second stage), and Ga and Se were deposited at the same temperature to deposit a Cu-poor CGSe light absorbing layer (a third stage). A CdS buffer was formed using a CBD solution process, and then high-resistivity i-ZnO and conducting AZO were deposited to manufacture a cell.
As shown in (a) of
(b) of
Table 1 shows a result of measuring the composition of the CGSe light absorbing layer based on electron probe microanalysis (EPMA). The compositions of Ag in Experimental examples 2 and 3 showing excellent efficiency characteristics were only 0.78 at % and 1.39 at %, respectively. The above result of analyzing the composition of the CGSe light absorbing layer shows that performance of the CGSe thin film solar cell manufactured by doping Ag using the Ag precursor may be improved using only a very small amount of Ag of about 1 at % to 2 at %.
Table 1 shows a result of measuring the composition of the light absorbing layer of
Then, an Ag doping effect based on an Ag precursor method according to the technical features of the present invention is now compared to an Ag doping effect based on co-evaporation according to a comparative example. Ag is equally doped to a thickness of 20 nm.
Specifically, to analyze the effect of the Ag precursor method, a sample was prepared by forming an Ag precursor on ITO and then depositing Ga and Se at a substrate temperature of 400° C. To analyze the effect based on co-evaporation, a sample was prepared by co-evaporating Ag in the middle of the process of depositing Ga and Se at the substrate temperature of 400° C. In each of the two samples prepared as described above, a concentration profile of Ag in a thickness direction of the sample from the surface of a CGSe light absorbing layer was analyzed based on atomic emission spectrometry (AES), and is shown in (b) of
Based on the Ag precursor method, the Ag precursor is formed on the surface of ITO as shown in (a) of
The thickness of formed GaOx is large in the order of the method of not doping Ag ((a) of
Similarly to use of a CIGS light absorbing layer, when Ag is supplied in the form of a precursor, unlike the other cases, a Cu-rich region exceeding a CGSe stoichiometric ratio is present in a thickness of about 5 nm on the surface of ITO. As described above, Ag atoms at the ITO/CGSe interface and Cu atoms diffused to the interface are interdiffused in the second stage of deposition and thus the Cu-rich region having high-concentration Cu atoms are present at the ITO/CGSe interface. It may be concluded that the Cu-rich region results in more ohmic electrical characteristics between the CGSe light absorbing layer and the ITO back contact.
As another experimental example, samples were prepared by forming TiOx (1 nm), TiNbOx (TNO) (1 nm), and MoS2 (5 nm) on an ITO back contact and then depositing an Ag precursor on TiOx, TNO, and MoS2, and then current flow characteristics (j-V) of solar cells were compared.
As shown in
When the Ag precursor is deposited on the TiOx, TNO, and MoS2 layers, current flow characteristics almost equal to those of the ITO/Ag precursor structure are achieved.
Additionally, unlike conventional technology, the Ag precursor method according to the technical features of the present invention may increase adhesion of an ITO/CGSe light absorbing layer interface in a Si substrate. Since Si has a very small thermal expansion coefficient compared to soda-lime glass, a large difference in thermal expansion is present between Si and CGSe. Therefore, in general, when the CGSe light absorbing layer is deposited on the Si substrate, the CGSe light absorbing layer is peeled off as shown in (a) of
When a crystalline Si (c-Si)/ITO cell and a CGSe cell are monolithically integrated into a tandem cell, to define Si cell area, an emitter region other than the cell area is chemically or physically etched. A CGSe light absorbing layer grown on Si exposed outside the cell area is easily peeled off and thus upper-lower cell shunting easily occurs as shown in (a) of
Thereafter, ITO is deposited on the emitter, and then a region other than a solar cell area is wet- or dry-etched to remove ITO and the Si emitter therefrom. A TiOx layer and an Ag precursor layer are sequentially deposited thereon, and then a CGSe light absorbing layer, a CdS buffer layer, high-resistivity ZnO, and an AZO layer are formed. Lastly, a grid pattern is formed for current collection. After the TiOx layer is deposited, heat treatment may be performed in a hydrogen atmosphere at a substrate temperature of 400° C. for 30 minutes.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0118058 | Sep 2017 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/011586 | 10/19/2017 | WO | 00 |