Chalcone derivatives and their use to treat diseases

Information

  • Patent Application
  • 20060189549
  • Publication Number
    20060189549
  • Date Filed
    January 20, 2006
    19 years ago
  • Date Published
    August 24, 2006
    18 years ago
Abstract
The invention relates to compounds, pharmaceutical compositions and methods of using compounds of the general formula or its pharmaceutically acceptable salt or ester, wherein the substituents are defined in the application.
Description

The present invention is in the field of novel chalcone derivatives, pharmaceutical compositions and methods for treating a variety of diseases and disorders, including inflammation and cardiovascular disease.


BACKGROUND OF THE INVENTION

Adhesion of leukocytes to the endothelium represents a fundamental, early event in a wide variety of inflammatory conditions, autoimmune disorders and bacterial and viral infections. Leukocyte recruitment to endothelium is mediated in part by the inducible expression of adhesion molecules on the surface of endothelial cells that interact with counterreceptors on immune cells. Endothelial cells determine which types of leukocytes are recruited by selectively expressing specific adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin. VCAM-1 binds to the integrin VLA-4 expressed on lymphocytes, monocytes, macrophages, eosinophils, and basophils but not neutrophils. This interaction facilitates the firm adhesion of these leukocytes to the endothelium. VCAM-1 is an inducible gene that is not expressed, or expressed at very low levels, in normal tissues. VCAM-1 is upregulated in a number of inflammatory diseases, including arthritis (including rheumatoid arthritis), asthma, dermatitis, psoriasis, cystic fibrosis, post transplantation late and chronic solid organ rejection, multiple sclerosis, systemic lupus erythematosis, inflammatory bowel diseases, autoimmnune diabetes, diabetic retinopathy, rhinitis, ischemia-reperfusion injury, post-angioplasty restenosis, chronic obstructive pulmonary disease (COPD), glomerulonephritis, Graves disease, gastrointestinal allergies, conjunctivitis, atherosclerosis, coronary artery disease, angina and small artery disease.


Coronary heart disease (CHD), primarily as a result of atherosclerosis, remains the leading cause of death in industrialized countries. Atherosclerosis is a disease characterized by vascular inflammation, deposition of lipids in the arterial vessel wall and smooth muscle cell proliferation resulting in a narrowing of the vessel passages. In advanced stages of the disease atherosclerotic lesions can become unstable resulting in plaque rupture, thrombosis, myocardial infarction and ischemic heart disease. It is now well accepted that the initiating events in atherosclerosis are local injury to the arterial endothelium that results in the induction of VCAM-1 and recruitment of mononuclear leukocytes that express the integrin counterreceptor, VLA-4, (O'Brien, et al., J. Clin. Invest., 92: 945-951, 1993). Subsequent conversion of leukocytes to foamy macrophages results in the synthesis of a wide variety of inflammatory cytokines, growth factors, and chemoattractants that help propagate formation of the mature atheromatous plaque by further inducing endothelial activation, leukocyte recruitment, smooth muscle cell proliferation, and extracellular matrix deposition. Pharmacological inhibition of VCAM-1 expression has been shown to inhibit atherosclerosis in several animal models (Sundell et al., Circulation, 100: 42, 1999). A monoclonal antibody against VCAM-1 has also been shown to inhibit neointimal formation in a mouse model of arterial wall injury (Oguchi, S., et al., Arterioscler. Thromb. Vasc. Biol., 20: 1729-1736, 2000).


Asthma, which is increasing in prevalence and morbidity world-wide, is a chronic inflammatory disease characterized by lung eosinophilia and bronchial hyperreactivity. The interaction between VCAM-1 on lung endothelial cells and VLA-4, which is the integrin counterreceptor expressed on eosinophils, is thought to be important for selective eosinophil recruitment. Eosinophils have been considered an important effector cell in the pathogenesis of asthma and other allergic diseases. Activated eosinophils release proteins such as major basic protein (MBP) that have been demonstrated to induce bronchial hyperreactivity, one of the defining criteria of asthma (Bousquot, et al., N. Engl. J. Med., 323: 1033-1039, 1990). It has been demonstrated that VCAM-1 is markedly upregulated on human bronchial vascular endothelium of subjects with asthma who have air flow limitation, when compared with subjects without asthma (Pilewski, et al., Am. J. Respir. Cell Mol. Biol., 12, 1-3, 1995; Ohkawara, Y., et al., Am. J. Respir. Cell Mol. Biol., 12, 4-12, 1995; Gosset, P., et al., Int. Arch. Allergy Immunol. 106: 69-77, 1995; Hacken, N. H., et al., Clin. Exp. Allergy, 28 (12): 1518-1525, 1998). An elevation in serum soluble VCAM-1 levels has also been demonstrated in patients undergoing a bronchial asthma attack compared with levels under stable conditions (Montefort, S., Koizumi, A., Clin. Exp. Immunol., 101: 468-73, 1995). Several animal studies further demonstrate a spatial and temporal association between VCAM-1 and asthma. In a mouse model of allergic asthma, VCAM-1 expression was shown to be induced by allergen challenge, and administration of an anti-VCAM-1 antibody was effective in inhibiting eosinophil infiltration that occurred in this model (Metzger, W. J., et al., J. Allergy Clin. Immunol., 93: 183, 1994). Further evidence for the importance of VCAM-1 in allergic asthma comes from work in IL-12 knockout mice. IL-12 knockout mice had fewer eosinophils and VCAM-1 expression than wildtype mice; however, administration of recombinant IL-12 at the time of ova sensitization and challenge restored lung VCAM-1 expression and eosinophilia (Wang, S., et al., J. Immunol., 166:2741-2749, 2001). There are several examples where blocking the integrin receptors for VCAM-1 have had positive effects on animal models of asthma (Rabb et al., Am. J. Respir. Care Med. 149: 1186-1191, 1994; Abraham, W, et al., Am. J. Respir. Crit. Care Med. 156: 696-703. 1997) further demonstrating the importance of VCAM-1/VLA-4 interactions in allergic inflammation. Eosinophils are also important effector cells in allergic rhinitis. VCAM-1 has been demonstrated to be upregulated 24 hrs after nasal allergen provocation in patients with seasonal allergic rhinitis but not in normal subjects (Braunstahl, G. J., et al., J. Allergy Clin. Immunol., 107: 469-476, 2001).


Rheumatoid arthritis (RA) is a clinical syndrome of unknown cause characterized by symmetric, polyarticular inflammation of synovial-lined joints. The role of adhesion molecules in the pathogenesis of RA has also been well documented, and VCAM-1 expression on synovial fibroblasts is a clinical hallmark of RA (Li, P., et al., J. Immunol. 164: 5990-7, 2000). VLA-4/VCAM-1 interactions may be the predominant mechanism for recruitment of leukocytes to the synovium (Dinther-Janssen, et al., J. Immunol. 147: 4207-4210, 1991; Issekeutz and Issekeutz, Clin. Immunol. Immunopathol. 61:436-447, 1991; Morales-Ducret et al., J. Immunol. 149:1424-1431, 1992; Postigo et al., J. Clin. Invest. 89:1445-1452, 1992; Matsuyama, T., et al, Hum. Cell, 9: 187-192, 1996). In support of this, increased VCAM-1 expression has been found in RA synovial tissue compared with osteoarthritis and control tissue (Wilkinson et al., Lab. Invest. 69:82-88, 1993; Furuzawa-Carballeda, J., et al., Scand. J. Immunol. 50: 215-222; 1999). Soluble VCAM-1 is higher in RA patients than in control subjects (Kolopp-Sarda, M. N., et al., Clin. Exp. Rheumatol. 19: 165-70, 2001). Soluble VCAM-1 has been shown to be chemotactic for T cells (Kitani, A., et al., J. Immun. 161: 4931-8, 1998), and in addition to being a possible diagnostic marker for RA, may contribute to its pathogenesis by inducing migration and recruitment of T cells. VCAM-1 expressed on fibroblast-like synoviocytes has also been implicated in enhanced survival of activated synovial fluid B cells (Marinova, Mutafcheia, L., Arthritis Rheum. 43: 638-644, 2000) that may further contribute to RA pathogenesis.


Chronic inflammation and accompanying vascular complications and organ damage characterize systemic lupus erythematosis (SLE). Recent studies suggest that VCAM-1 plays a role in SLE. Expression of VCAM-1 is increased on dermal vessel endothelial cells in patients with active systematic lupus erythematosus (Jones, S. M., British J Dermatol. 135: 678-686, 1996) and correlates with increased disease severity (Belmont et al., Arthritis Rheum. 37:376-383, 1994). SLE muscle samples with perivascular infiltrate have greater endothelial cell expression of VCAM-1 compared with SLE patients without a perivascular infiltrate or with control samples (Pallis et al., Ann. Rheum. Dis. 52:667-671, 1993). Increased expression of VCAM-1 has also been demonstrated in kidneys of lupus-prone MRL/lpr mice compared to nonautoimmune strains and its expression increased with disease severity (McHale, J. F., et al., J. Immunol. 163: 3993-4000, 1999). VCAM-1 expression on mesangial cells in vitro can be stimulated by IL-1, TNF-α, and INFγ exposure as well as by anti-endothelial cell IgG fraction and anti-DNA autoantibodies from SLE patients (Wuthrich, Kidney Int. 42: 903-914, 1992; Papa, N. D., et al., Lupus, 8: 423-429, 1999; Lai, K. N., et al., Clin Immunol Immunopathol, 81: 229-238, 1996). Furthermore, soluble VCAM-1 is higher in SLE patients than in normal subjects (Mrowka, C., et al., Clin. Nephrol. 43: 288-296, 1995; Baraczka, K., et al., Acta. Neurol. Scand 99: 95-99, 1999; Kaplanski; G.; et al., Arthritis Rheumol. 43: 55-64, 2000; Ikeda, Y., Lupus, 7: 347-354, 1998) and correlates with disease activity (Scudla, V., Vnitr. Lek, 43: 307-311, 1997).


Increased VCAM-1 expression has also been demonstrated in solid organ transplant rejection. Acute transplant rejection occurs when the transplant recipient recognizes the grafted organ as “non-self” and mounts an immune response characterized by massive infiltration of immune cells, edema, and hemorrage that result in the death of the transplanted organ. Acute rejection occurs in a matter of hours or days and has been correlated with increased levels of VCAM-1 in tissues and in plasma (Tanio et al., Circulation, 89:1760-1768, 1994; Cosimi et al., J. Immunol. 144: 4604-4612, 1990; Pelletier, R., et al., Transplantation, 55: 315, 1992). A monoclonal antibody to VCAM-1 has been shown to inhibit cardiac allograft rejection in mice (Pelletier, R., J. Immunol., 149: 2473-2481, 1992; Pelletier, R., et al., Transplantation Proceedings, 25: 839-841, 1993; Orosz, C. G., et al., J. Heart and Lung Transplantation, 16: 889-904, 1997) and when given for 20 days can cause complete inhibition of rejection and long-term graft acceptance (Orosz C. G., et al., Transplantation, 56: 453-460, 1993). Chronic graft rejection also known as allograft vasculopathy is distinct from acute transplant rejection and is a leading cause of late graft loss after renal and heart transplantation. Histologically it is characterized by concentric neointimal growth within vessels that is largely due to smooth muscle migration and proliferation. It is thought to be the result of endothelial damage brought about by several factors including: ischemia-reperfusion injury, immune complexes, hypertension, hyperlipidemia and viruses. All of these factors have been associated with induction of VCAM-1 in endothelial cells. There is also a strong correlation of soluble and tissue VCAM-1 levels with chronic rejection (Boratynska, M., Pol. Arch. Med. Wewn, 100: 410-410, 1998; Zembala, M., et al., Ann. Transplant. 2: 16-9, 1998; Solez K., et al., Kidney International., 51: 1476-1480, 1997; Koskinen P. K., et al., Circulation, 95: 191-6, 1997).


Multiple sclerosis is a common demyelinating disorder of the central nervous system, causing patches of sclerosis (plaques) in the brain and spinal cord. It occurs in young adults and has protean clinical manifestations. It is well documented that VCAM-1 is expressed on brain microvascular endothelial cells in active lesions of multiple sclerosis (Lee S. J., et al., J. Neuroimmunol, 98: 77-88, 1998). Experimental therapy of experimental autoimmune encephalomyelitis, which is an animal model for multiple sclerosis, using antibodies against several adhesion molecules, including VCAM-1, clearly shows that adhesion molecules are critical for the pathogenesis of the disease (Benveniste et al., J. Neuroimmunol. 98:77-88, 1999). A time and dose dependent expression of VCAM-1 and release of soluble VCAM-1 were detected in cultures of human cerebral endothelial cells induced by TNFα, but not in peripheral blood mononuclear cells (Kallmann et al., Brain, 123:687-697, 2000). Clinical data also show that adhesion molecules in blood and cerebrospinal fluid are up-regulated throughout the clinical spectrum of multiple sclerosis (Baraczka, K., et al., Acta. Neurol. Scand. 99: 95-99, 1999; Reickmann, P., et al., Mult. Scler., 4: 178-182, 1998; Frigerio, S., et al., J. Neuroimmunol, 87: 88-93, 1998) supporting the notion that therapies which interfere with cell adhesion molecules such as VCAM-1 may be beneficial in modifying this disease (Elovaara et al., Arch. Neurol. 57:546-551, 2000).


Diabetes mellitus is a metabolic disease in which carbohydrate utilization is reduced and that of lipid and protein is enhanced. Evidence has accumulated that increased levels of adhesion molecules may play a functional pathophysiological role in diabetes (Wagner and Jilma, Hormone and Metabolic Research, 29: 627-630, 1997; Kado, S., Diabetes Res. Clin. Pract., 46: 143-8, 1999). It is caused by an absolute or relative deficiency of insulin and is characterized by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Elevated circulating adhesion molecules including VCAM-1 have been detected in patients with diabetes and in experimental models of diabetes in animals (Lorini et al., Hormone Research, 48: 153, 1997; Otsuki et al., Diabetologia, 40: A440, 1997; Hart et al., FASEB J. 11:A340, 1997; Albertini et al., Diabetologia, 39: A240, 1996; Wagner et al., Diabetologia, 39: A205, 1996; Enghofer et al., Diabetologia, 39: A97, 1996; Koga M., Diabet. Med., 15: 661-667, 1998). In addition, complications of diabetes often include peripheral vasculopathies such as diabetic retinopathy and diabetic nephropathy. It is believed that adhesion of leukocytes to the peripheral vasculature plays a central role in the vasculopathies often associated with diabetes.


Crohn's disease, also known as regional enteritis, is a subacute chronic inflammatory condition of unknown cause, involving the internal ileum and less frequently other parts of the gastrointestinal tract. It is characterized by patchy deep ulcers that may cause fistulas, and narrowing and thickening of the bowel by fibrosis and lymphocytic infiltration. Ulcerative colitis is a chronic disease of unknown cause characterized by ulceration of the colon and rectum, with rectal bleeding, mucosal crypt abscesses, inflammatory pseudopolyps, abdominal pain, and diarrhea. It has been reported that serum VCAM-1 reflects the grade of intestinal inflammation in patients with Crohn's disease or ulcerative colitis (Jones, et al., Gut, 36: 724-30, 1995; Goggins et al., Gastroenterology, 108: A825, 1995; Goeke and Manns, Gastroenterology, 106: A689, 1994; Goeke et al., J. Gasterokenterol. 32:480-486, 1997; Loftus et al., Gastroenterology, 108: A684, 1995; Tahami et al., Gastroenterology, 118: A344, 2000). Antibodies to VCAM-1 have been shown to ameliorate experimentally-induced colitis in mice (Soriano, A., Lab. Invest. 80: 1541-1551, 2000).


Psoriasis is a chronic skin disease characterized by erythematous scaling plaques as a result of keratinocyte hyperplasia, influx of immune cells and endothelial activation (Nickoloff, B. J., et al., J. Invest. Dermatol., 127: 871-884, 1991). VCAM-1 is upregulated in psoriatic skin as compared to normal skin (Groves, R. W., J. Am. Acad. Dermatol., 29: 67-72, 1993; Uyemura, K., et al., J. Invest. Dermatol. 101: 701-705, 1993) and levels of circulating VCAM-1 correlate with disease activity (Schopf, R. E., Br. J. Dermatol., 128: 34-7, 1993).


U.S. Pat. Nos. 5,750,351; 5,807,884; 5,811,449; 5,846,959; 5,773,231, and 5,773,209 to Medford, et al., as well as the corresponding WO 95/30415 to Emory University indicate that polyunsaturated fatty acids (“PUFAs”) and their hydroperoxides (“ox-PUFAs”), which are important components of oxidatively modified low density lipoprotein (LDL), induce the expression of VCAM-1, but not intracellular adhesion molecule-1 (ICAM-1) or E-selectin in human aortic endothelial cells, through a mechanism that is not mediated by cytokines or other noncytokine signals. This is a fundamental discovery of an important and previously unknown biological pathway in VCAM-1 mediated immune responses. As non-limiting examples, linoleic acid, linolenic acid, arachidonic acid, linoleyl hydroperoxide (13-HPODE) and arachidonic hydroperoxide (15-HPETE) induce cell-surface gene expression of VCAM-1 but not ICAM-1 or E-selectin. Saturated fatty acids (such as stearic acid) and monounsaturated fatty acids (such as oleic acid) do not induce the expression of VCAM-1, ICAM-1 or E-selectin.


WO 98/51662, filed by AtheroGenics, Inc. and listing as inventors Russell M. Medford Patricia K. Somers, Lee K. Hoong, and Charles Q. Meng, claims priority to provisional application U.S. Ser. No. 60/047,020, filed on May 14, 1997. This application discloses the use of a broad group of compounds as cardiovascular protectants that exhibit at least one, and sometimes a composite profile, of reducing cholesterol, lowering LDL, and inhibiting the expression of VCAM-1.


U.S. Pat. No. 5,155,250 to Parker, et al. discloses that 2,6-dialkyl-4-silylphenols are antiatherosclerotic agents. The same compounds are disclosed as serum cholesterol lowering agents in PCT Publication No. WO 95/15760, published on Jun. 15, 1995. U.S. Pat. No. 5,608,095 to Parker, et al. discloses that alkylated-4-silyl-phenols inhibit the peroxidation of LDL, lower plasma cholesterol, and inhibit the expression of VCAM-1, and thus are useful in the treatment of atherosclerosis.


WO 98/51289, which claims priority to provisional application U.S. Ser. No. 60/047,020, filed on May 14, 1997 by Emory University listing Patty Somers as sole inventor, discloses the use of a group of compounds as cardiovascular protectants and antiinflammatory agents which exhibit at least one, and sometimes a composite profile, of reducing cholesterol, lowering LDL, and inhibiting the expression of VCAM-1 and thus can be used as antiinflammatory and cardivascular treating agents.


U.S. Pat. Nos. 5,380,747; 5,792,787; 5,783,596; 5,750,351; 5,821,260; 5,807,884; 5,811,449; 5,846,959; 5,877,203; and 5,773,209 to Medford, et al., teach the use of dithiocarbamates of the general formula A-SC(S)-B for the treatment of cardiovascular and other inflammatory diseases. Examples include sodium pyrrolidine-N-carbodithioate, tri-sodium N,N-di(carboxymethyl)-N-carbodithioate, and sodium N,N-diethyl-N-carbodithioate. The patents teach that the compounds inhibit the expression of VCAM-1.


WO 98/23581 discloses the use of benzamidoaldehydes and their use as cysteine protease inhibitors.


WO 97/12613 of Comicelli et al. discloses compounds for the inhibition of 15-lipogenase to treat and prevent inflammation or atherosclerosis. Compounds disclosed include benzopyranoindole, benzimidazdle, catacholes, benzoxadiazines, benzo[a]phenothiazine, or related compounds thereof.


Japanese Patent No. 06092950 to Masahiko et al. discloses preparation of epoxy compounds wherein electron deficient olefins such as acylstyrene derivatives, styrene derivatives, and cyclohexenone derivatives are efficiently oxidized by a hydrogen peroxide derivative in the presence of a primary or secondary amine in an organic solvent to give said epoxides which are useful intermediates for pharmaceutical and flavoring materials.


U.S. Pat. No. 5,217,999 to Levitzki et al. discloses substituted styrene compound as a method of inhibiting cell proliferation.


Chalcone (1,3-bis-aromatic-prop-2-en-1-ones) compounds are natural products related to flavonoids. WO 99/00114 (PCT/DK98/00283) discloses the use of certain chalcones, 1,3-bis-aromatic-propan-1-ones (dihydrochalcones), and 1,3-bisaromatic-prop2-yn-1-ones for the preparation of pharmaceutical compositions for the treatment of prophylaxis of a number of serious diseases including i) conditions relating to harmful effects of inflammatory cytokines, ii) conditions involving infection by Helicobacter species, iii) conditions involving infections by viruses, iv) neoplastic disorders, and v) conditions caused by microorganisms or parasites.


WO 00/47554 filed by Cor Therapeutics describes a broad class of substituted unsaturated compounds for use as antithrombotic agents.


WO 96/20936 (PCT/KR95/00183) discloses thiazolidin-4-one derivatives of the formula:
embedded image

which act as PAF antagonists or 5-lipoxygenase inhibitors. The compounds are used in the prevention and treatment of inflammatory and allergic disorders mediated by platelet-activating factor and/or leukotrienes.


U.S. Pat. No. 4,085,135 discloses 2′-(carboxymethoxy)-chalcones with antigastric and antiduodenal ulcer activities.


U.S. Pat. No. 5,744,614 to Merkle et al. discloses a process for preparing 3,5-diarylpyrazoles and various derivatives thereof by reacting hydrazine hydrate with 1,3-diarylpropenone in the presence of sulfuric acid and an iodine compound.


U.S. Pat. No. 5,951,541 to Wehlage et al. discloses the use of salts of aromatic hydroxy compounds, such as (hydroxyaryl)alkenone salts, as brighteners in aqueous acidic electroplating baths. In addition the invention discloses that such compounds have a lower vapor pressure than the known brighteners, as a single substance and in the electroplating baths, in order to avoid losses of substance. They also have high water solubility properties.


Japanese Patent No. 07330814 to Shigeki et al. discloses benzylacetophenone compounds as photoinitiator compounds.


Japanese Patent No. 04217621 to Tomomi discloses siloxane chalcone derivatives in sunscreens.


U.S. Pat. No. 4,085,135 to Kyogoku et al. discloses a process for preparation of 2′-(carboxymethoxy)-chalcones having antigastric and anti duodenal activities with low toxicity and high absorptive ratio in the body. This patent suggests that the high absorptive ratio in the body is due to the 2′-carboxymethoxy group attached to the chalcone derivative.


U.S. Pat. No. 4,855,438 discloses the process for preparation of optically active 2-hydroxyethylazole derivatives which have fungicidal and plant growth-regulating action by reacting an α-β-unsaturated ketone which could include a chalcone or a chalcone derivative with an enantiomerically pure oxathiolane in the presence of a strongly basic organometallic compound and at temperatures ranging from −80 to 120° C.


European Patent No 307762 assigned to Hofmann-La Roche discloses substituted phenyl chalcones.


E. Bakhite et al. in J. Chem. Tech. Biotech. 1992, 55, 157-161, have disclosed a process for the preparation of some phenyloxazole derivatives of chalcone by condensing 5-(p-acetylphenyl)-2-phenyloxazole with aromatic aldehydes.


Herencia, et al., in Synthesis and Anti-inflammatory Activity of Chalcone Derivatives, Bioorganic & Medicinal Chemistry Letters 8 (1998) 1169-1174, discloses certain chalcone derivatives with anti-inflammatory activity.


Hsieh, et al., Synthesis and Antiinflammatory Effect of Chalcones, J. Pharm. Pharmacol. 2000, 52; 163-171 describes that certain chalcones have potent antiinflammatory activity.


Zwaagstra, et al., Synthesis and Structure-Activity Relationships of Carboxylated Chalcones: A Novel Series of CysLT1 (LT4) Receptor Antagonists; J. Med. Chem., 1997, 40, 1075-1089 discloses that in a series of 2-, 3-, and 4-(2-quinolinylmethoxy)- and 3- and 4-[2-(2-quinolinyl)ethenyl]-substituted, 2′, 3′, 4′, or 5′ carboxylated chalcones, certain compounds are CysLT1 receptor antagonists.


JP 63010720 to Nippon Kayaku Co., LTD discloses that chalcone derivatives of the following formula (wherein R1 and R2 are hydrogen or alkyl, and m and n are 0-3) are 5-lipoxygenase inhibitors and can be used in treating allergies.
embedded image


JP 06116206 to Morinaga Milk Industry Co. Ltd, Japan, discloses chalcones of the following structure as 5-lipoxygenase inhibitors, wherein R is acyl and R1-R5 are hydrogen, lower alkyl, lower alkoxy or halo, and specifically that in which R is acyl and R1-R5 are hydrogen.
embedded image


U.S. Pat. No. 6,046,212 to Kowa Co. Ltd. discloses heterocyclic ring-containing chalcones of the following formula as antiallergic agents, wherein A represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a group:
embedded image

in which X represents a hydrogen or halogen atom or a hydroxyl, lower alkyl or lower alkoxyl group and B represents —CH═CH—, —N(R6)—, R6 is a lower alkyl group or a lower alkoxyalkyl group, —O— or —S—; W represents —CH═CH— or —CH2O—, and R1-5 is the same or different and each independently represent a hydrogen or halogen atom, a hydroxyl, a lower alkyl, lower alkoxyl, carboxyl, cyano, alkyloxycarbonyl or tetrazolyl group, a group —CONHR7 in which R7 represents a hydrogen atom or a lower alkyl group, or a group —O(CH2)n R8 in which R8 represents a carboxyl, alkyloxycarbonyl or tetrazolyl group and n is from 1 to 4, with the proviso that at least one of the groups R1-5 represents a carboxyl, cyano, alkyloxycarbonyl or tetrazolyl group, the group —CONHR7 or the group —O(CH2)nR8; or a salt or solvate thereof.
embedded image


Reported bioactivies of chalcones have been reviewed by Dimmock, et al., in Bioactivities of Chalcones, Current Medicinal Chemistry 1999, 6, 1125-1149; Liu et al., Antimalarial Alkoxylated and Hydroxylated Chalones: Structure-Activity Relationship Analysis, J. Med. Chem. 2001, 44, 4443-4452; Herencia et al, Novel Anit-inflammatory Chalcone Derivatives Inhibit the Induction of Nitric Oxide Synthase and Cyclooxygenase-2 in Mouse Peritoneal Macrophages, FEBS Letters, 1999, 453, 129-134; and Hsieh et al., Synthesis and Anti-inflammatory Effect of Chalcones and Related Compounds, Pharmaceutical Research, 1998, Vol. 15, No. 1, 39-46.


Given that VCAM-1 is a mediator of chronic inflammatory disorders, it is a goal of the present work to identify new compounds, compositions and methods that can inhibit the expression of VCAM-1. A more general goal is to identify selective compounds and methods for suppressing the expression of redox sensitive genes or activating redox sensitive genes that are suppressed. An even more general goal is to identify selective compounds, pharmaceutical compositions and methods of using the compounds for the treatment of inflammatory diseases.


It is therefore an object of the present invention to provide new compounds for the treatment of disorders mediated by VCAM-1.


It is also an object to provide new pharmaceutical compositions for the treatment of diseases and disorders mediated by the expression of VCAM-1.


It is a further object of the invention to provide compounds, compositions, and methods of treating disorders and diseases mediated by VCAM-1, including cardiovascular and inflammatory diseases.


Another object of the invention is to provide compounds, compositions, and method of treating cardiovascular and inflammatory diseases.


It is another object of the invention to provide compounds, compositions and methods to treat arthritis.


Another object of the invention is to provide compounds, compositions and methods to treat rheumatoid arthritis. The inventions compounds, compositions and methods are also suitable as disease modifying anti-rheumatoid arthritis drugs (DMARDs).


It is yet another object of the invention to provide compounds, compositions and methods to treat asthma.


It is another object of the invention to provide compounds, methods and compositions to inhibit the progression of atherosclerosis.


It is still another object of the invention to provide compounds, compositions, and methods to treat or prevent transplant rejection.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of lupus.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of inflammatory bowel disease.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of autoimmune diabetes.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of multiple sclerosis.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of diabetic retinopathy.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of diabetic nephropathy.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of diabetic vasculopathy.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of rhinitis.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of ischemia-reperfusion injury.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of post-angioplasty restenosis.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of chronic obstructive pulmonary disease (COPD).


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of glomerulonephritis.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of Graves disease.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of gastrointestinal allergies.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of conjunctivitis.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of dermatitis.


It is a further object of the present invention to provide compounds, methods and compositions for the treatment of psoriasis.


SUMMARY OF THE INVENTION

It has been discovered that particular chalcone derivatives inhibit the expression of VCAM-1, and thus can be used to treat a patient with a disorder mediated by VCAM-1. Examples of inflammatory disorders that are mediated by VCAM-1 include, but are not limited to arthritis, asthma, dermatitis, cystic fibrosis, post transplantation late and chronic solid organ rejection, multiple sclerosis, systemic lupus erythematosis, inflammatory bowel diseases, autoimmune diabetes, diabetic retinopathy, diabetic nephropathy, diabetic vasculopathy, rhinitis, ischemia-reperfusion injury, post-angioplasty restenosis, chronic obstructive pulmonary disease (COPD), glomerulonephritis, Graves disease, gastrointestinal allergies, conjunctivitis, atherosclerosis, coronary artery disease, angina and small artery disease.


The compounds disclosed herein can also be used in the treatment of inflammatory skin diseases that are mediated by VCAM-1, as well as human endothelial disorders that are mediated by VCAM-1, which include, but are not limited to psoriasis, dermatitis, including eczematous dermatitis, Kaposi's sarcoma, multiple sclerosis, as well as proliferative disorders of smooth muscle cells.


In yet another embodiment, the compounds disclosed herein can be selected to treat anti-inflammatory conditions that are mediated by mononuclear leucocytes.


In one embodiment, the compounds of the present invention are selected for the prevention or treatment of tissue or organ transplant rejection. Treatment and prevention of organ or tissue transplant rejection includes, but is not limited to treatment of recipients of heart, lung, combined heart-lung, liver, kidney, pancreatic, skin, spleen, small bowel, or corneal transplants. The compounds can also be used in the prevention or treatment of graft-versus-host disease, such as sometimes occurs following bone marrow transplantation.


In an alternative embodiment, the compounds described herein are useful in both the primary and adjunctive medical treatment of cardiovascular disease. The compounds are used in primary treatment of, for example, coronary disease states including atherosclerosis, post-angioplasty restenosis, coronary artery diseases and angina The compounds can be administered to treat small vessel disease that is not treatable by surgery or angioplasty, or other vessel disease in which surgery is not an option. The compounds can also be used to stabilize patients prior to revascularization therapy.


Compounds of the present invention are of the formula
embedded image

or its pharmaceutically acceptable salt or ester, wherein the substituents are defined herein.







DETAILED DESCRIPTION OF THE INVENTION

It has been discovered that compounds of the invention inhibit the expression of VCAM-1, and thus can be used to treat a patient with a disorder mediated by VCAM-1. These compounds can be administered to a host as monotherapy, or if desired, in combination with another compound of the invention or another biologically active agent, as described in more detail below.


In a 1st embodiment, the invention is represented by Formula I
embedded image

or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R5α, R, R, R, R, R5β and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R, R, R or R, or one of R, R, R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl; and/or


wherein when one of R, R, R, R or R is a carbon-carbon linked heterocyclic or heteroaryl, only one of R, R, R, R05α or R can be —OCH3; and/or


wherein when one of R, R, R, R or R is a carbon-carbon linked heterocyclic or heteroaryl, only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and/or


at least one of R, R, R, R, R or one of R, R, R, R, R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7RR, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 2nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2), —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R, R, R or R, or one of R, R, R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl; and/or


wherein when one of R, R, R, R or R is a carbon-carbon linked heterocyclic or heteroaryl, only one of R, R, R, R or R can be —OCH3; and/or


wherein when one of R, R, R, R or R is a carbon-carbon linked heterocyclic or heteroaryl, only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and/or


at least one of R, R, R, or one of R, R, R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2,


SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 3rd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)NR2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R, R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, RB, R, R and R cannot be —OC(R1)2C(O)OH; and/or


at least one of R, R, R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 4th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NR2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2), —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group “consisting: of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and/or


at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 5th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle; cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2), —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R12);


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2—SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)C(O)OH, —NHC(R1)C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 6th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2) 2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)NH2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7RS, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, (CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, C(O)NR7R8, and —C(O)N(R2)2.


In a 7th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2), —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH13C(O)OH, and —CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;

  • R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, (CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —(O)N(R2)2.


In an 8th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R6β are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —N(R2)C(O)R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NHC(O)NR7R8, —NHC(O)N(R2)2, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, (CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2.


In a 9th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, heterocyclicamino lower alkyl, hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, dialkylamino, N(R2)2, —NR7R8, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)N(R2)2, —C(O)NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 8-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, (CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 10th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, lower alkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, heteroaryl lower alkoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, carboxy, —C(O)OR2, —C(O)N(R2)2, and —C(O)NR7R8, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, hydroxy, hydroxyalkyl, heterocyclic, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, and lower alkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R5, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 5- to 7-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from carboxy or —C(O)OR2;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In an 11th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic,


lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, and carboxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be carboxy.


In a 12th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 13th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2);


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heteroaryl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 14th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, fluorine, chlorine, methoxy, ethoxy, propoxy, 3-(1-morpholino) propoxy, 2-1-morpholino)ethoxy, CH3O(CH2)2O(CH2)2—,
embedded image


wherein one of R, R or R must be selected from the group consisting of thiophen-s-yl, thiophen-3-yl, benzo[b]thiophen-2-yl, benzo[b]thiophen-3-yl, indol-2-yl, indol-3-yl, pyrrol-2-yl, pyrrol-3-yl, 1-methyl-indol-2-yl, 1-methyl-indol-3-yl, N-Boc-indol-2-yl, N-Boc-indol-3-yl, N-Boc-pyrrol-2′yl, and N-Boc-pyrrol-3-yl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 15th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, methoxy, 3-(1-morpholino)propoxy, 2-(1-morpholino)ethoxy, and CH3O(CH2)2O(CH2)2;


wherein one of R, R or R must be selected from the group consisting of thiophen-s-yl, benzo[b]thiophen-2-yl, indol-2-yl, 1-methyl-indol-2-yl, N-Boc-indol-2-yl, N-Boc-pyrrol-2′yl, and N-Boc-pyrrol-3-yl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 16th embodiment, the invention is selected from a compound A compound selected from the group consisting of

  • 4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(4-Pyrimidin-5-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(4-Thiazol-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)acryloyl]-benzoic acid;
  • 2-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 2-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid, sodium salt;
  • 4-[3E-(4-Thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3-{4-(thien-2-yl)-phenyl}-3-oxo-E-propenyl]-benzoic acid, sodium salt;
  • 4-[3-{4-(thien-2-yl)-phenyl}-3-oxo-E-propenyl]-benzoic acid;
  • 4-[3-(2-Methoxy-4-thiophen-2-yl-phenyl)-3-oxo-E-propenyl]-benzoic acid;
  • 4-[3E-(4-Pyrrolidin-1-yl-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-{4-Fluoro-3-(thiophen-2-yl)-phenyl}-acryloyl]-benzoic acid;
  • 4-(3E-{4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic Acid;
  • 4-[3E-2-Fluoro-4-thiophen-2-yl-phenyl)acryloyl]-benzoic acid;
  • 4-[3E-(2,4-Dimethoxy-5-pyrimidin-5-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(2-Cyclopropylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-{3E-[5-(3,5-Dimethyl-isoxazol 4-y)-2,4dimethoxy-phenyl]-acryloyl}-benzoic acid;
  • 4-[3E-(4-Methoxy-2-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 2-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 2-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-indole-1-carboxylic acid tert-butyl ester;
  • 4-[3E-(2,6-Dimethoxy-4-thiophen-2-yl-phenyl)acryloyl]-benzoic acid;
  • 4-{3E-[5-(2,4-Dimethoxy-pyrimidin-5-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid;
  • 4-[3E-(2,4-Dimethoxy-6-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-{3E-[2,4-Dimethoxy-5-(5-methyl-thiophen-2-yl)-phenyl]-acryloyl}-benzoic acid;
  • 4-[3E-(4-Methoxy-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(3-Thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 3-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(3-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(2-Methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(2,4-Dimethoxy-5-pyrazin-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-{3E-[4-(1-Carboxy-1-methyl-ethoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid;
  • 2-[3E-(4-Methoxy-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-(3E-{2-Methoxy-4-[2-(2-methoxy-ethoxy)-ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic acid;
  • 4-{3E-[4-(3-Hydroxy-2-hydroxymethyl-propoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid;
  • 5-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl-thiophene-2-carboxylic acid methyl ester;
  • 5-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-thiophene-2-carboxylic acid;
  • 4-[3E-(4-Ethoxy-2-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(4-Hydroxy-2-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(2,4-Dimethoxy-5-thiazol-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid, sodium salt;
  • 2-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-pyrrole-1-carboxylic acid tert-butyl ester;
  • 4-[3E-(2-Hydroxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-{3E-[2-1-Carboxy-1-methyl-ethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid;
  • 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride;
  • 2 4-{3E-[5-(1H-Indol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid;
  • 4-{3E-[2-(3,5-Dimethyl-isoxazol-4-ylmethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid;
  • 4-[3E-(2-Pyrrolidin-1-yl-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-{3E-[2-(3-Hydroxy-2-hydroxymethyl-propoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid;
  • 4-{3E-[2-(3-Morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride;
  • 4-{3E-[4-Methoxy-2-3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride;
  • 4-[3E-(2-Dimethylcarbamoylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-[3E-4-Methoxy-2-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-{3E-[2,4-Dimethoxy-5-(2-methyl-thiazol-4-yl)-phenyl]-acryloyl}-benzoic acid;
  • 4-(3E-[5-(1H-Benzoimidazol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid;
  • 4-[3E-2-Carbamoylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-2-oxo-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl)}-benzoic acid;
  • 4-(3E-{4-Methoxy-2-[2-1-methyl-pyrrolidin-2-yl)-ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic acid, hydrochloride;
  • 4-{3E-[2,4-Dimethoxy-5-(1H-pyrazol-4-yl)-phenyl]-acryloyl}-benzoic acid;
  • 4-{3E-[2,4-Dimethoxy-5-(2H-tetrazol-5-yl)-phenyl]-acryloyl}-benzoic acid;
  • 4-{3E-[5-(3H-Imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid;
  • 2-{4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-2-methyl-propionic acid;
  • 4-{3E-[5-(2-Cyclopropyl-1H-imidazol-4-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid, hydrochloride;
  • 4-{3E-[5-(4-Isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid;
  • 4-{3E-[2,4-Dimethoxy-5-(1-methyl-1H-indol-2-yl)-phenyl]-acryloyl}-benzoic acid; and
  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)acryloyl]-benzoic acid ethyl ester, or its pharmaceutically acceptable salt or ester.


In a 17th embodiment, the invention is a compound selected from the group consisting of

  • 4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid;
  • 4-[3E-2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid;
  • 4-(3E-{4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic Acid; and
  • 4-{3E-[4-Methoxy-2-(2-morpholin-4-y-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride, or its pharmaceutically acceptable salt or ester.


In an 18th embodiment, the invention is

  • 4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid


    or its pharmaceutically acceptable salt or ester.


In a 19th embodiment, the invention is 4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid, or its pharmaceutically acceptable salt or ester.


In a 20th embodiment, the invention is 4-(3E-{4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic Acid; and, or its pharmaceutically acceptable salt or ester.


In a 21st embodiment, the invention is 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride, or its pharmaceutically acceptable salt or ester.


In a 22nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic;


with the proviso that at least one of R, R, or R must be carboxy.


In a 23rd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked tetrahydrofurn-2-yl or dihydrofuran-2-yl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 24th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2)2, —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 25th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, and —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 26th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —N(R2)C(O)R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NHC(O)NR7R8, —NHC(O)N(R2)2, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, and —C(CH3)2C(O)OH, —(CH2)C(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —(O)N(R2);


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2.


In a 27th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, dialkylamino, N(R2)2, —NR7R8, —N(R2)C(O)R2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, and —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 8-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 28th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, lower alkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, heteroaryl lower alkoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —N(R2)C(O)R2, —C(O)NH2, and —C(O)NHR2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, and lower alkyl which may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, heteroaryl, and heterocyclic, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 5- to 7-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, heterocyclic, amino, aminoalkyl, and —NR7R8.


In a 29th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, —N(R2)C(O)R2, —C(O)NH2, and —C(O)NHR2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R1 is hydrogen;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of heterocyclic, amino, aminoalkyl, and —NR7R8.


In a 30th embodiment, the invention is represented by the following compounds:

  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-(2-morpholin-4-yl-ethyl)-benzamide;
  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-(2,2,2-trifluoro-ethyl)-benzamide;
  • 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzamide;
  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzamide;
  • 4-{3E-[4-Methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzamide;
  • N-Acetyl-4-[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)acryloyl]-benzamide; and
  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-isobutyryl-benzamide.


In a 31st embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)C(O)NHR2, —OC(R1)2C(O)N(R1)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, C(O)NR7R8, and —C(O)N(R2)2.


In a 32nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R9 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R4 must be selected from the group consisting of thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 33rd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —N(R2)C(O)R2, —NHSO2NR7R8, —N(C(O)NHR2), —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH—SO2NH2, SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, arylarylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, —SO2NR7R8, —SO2NHC(O)R2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2) 2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and C(O)N(R2)2.


In a 34th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, dialkylamino, N(R2)2, —NR7R8, —N(R2)C(O)R2, —SCH2C(O)OH —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2N(R2)2, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2) 2, —SO2NHC(O)NR7R8, —C(O)N(R2)2, —C(O)NR7R8, and —C(O)NHSO2R2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R1)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 8-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 35th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, lower alkyl, alkenyl, alkynyl, carbocycle, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl,


hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, heteroaryl lower alkoxy, heterocyclicalkoxy, heterocyclic lower —N(R2)C(O)R2, —SCH2C(O)OH —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, and —C(O)NHSO2R2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen and lower alkyl, which may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl and lower alkyl, which may be substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 5- to 7-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, and —SO2NHC(O)R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 36th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkenyl, alkynyl, carbocycle, heteroaryl, heterocyclic, hydroxyl, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, —N(R2)C(O)R2, —SO2NH2, —SO2NHR2, SO2NHC(O)R2, —SR2, SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, and —C(O)NHSO2R2, all of which can be optionally substituted by one or more selected from the group consisting of alkenyl, acyl, hydroxy, hydroxyalkyl, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is hydrogen;


R2 is lower;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OR2, —SO2NH2, —SO2NR7R8, and —SO2NHC(O)R2.


In a 37th embodiment, the invention is represented by the following compound:

  • 4-[3E-(4-Thiophen-2-yl-phenyl)-acryloyl]-benzenesulfonamide;
  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4dimethoxy-phenyl)-acryloyl]-benzenesulfonamide;
  • 4-{3E-[4Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide;
  • 2-{5-Methoxy-2-[3-oxo-3-(4-sulfamoyl-phenyl)-E-propenyl]-4-thiophen-2-yl-phenoxy}-2-methyl-propionic acid;
  • 2-{2,4-Dimethoxy-5-[3-oxo-3-(4-sulfamoyl-phenyl)-E-propenyl]-phenyl}-indole-1-carboxylic acid tert-butyl ester;
  • 4-{3E-[5-(1H-Indol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[4-Methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-y-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[2-(3-Hydroxy-2-hydroxymethyl-propoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-isobutyryl-benzenesulfonamide;
  • 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide, hydrochloride;
  • 4-{3E-[4-Methoxy-2-(1H-tetrazol-5-ylmethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-[3E-(2,4-Dimethoxy-5-pyridin-3-yl-phenyl)-acryloyl]-benzenesulfonamide;
  • 4-{3E-[4-(3-Hydroxy-2-hydroxymethyl-propoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[5-(4-Isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[5-(2-Cyclopropyl-1H-imidazol-4-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[5-(3H-Imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[2-(1H-Benzoimidazol-2-ylmethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[4-Methoxy-2-(pyridin-2-ylmethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide;
  • 4-{3E-[2-(Benzotriazol-1-ylmethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide; and
  • 4-{3E-[2,4-Dimethoxy-5-(1-methyl-1H-indol-2-yl)-phenyl]-acryloyl}-benzenesulfonamide.


In a 38th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8,


amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2,


thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R3, and —C(O)N(R2);


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 39th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloakyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl optionally substituted by alkoxycarbonyl.


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of amino, —N(C(O)NHR2)2, NR2SO2R2 and —NR2SO2R2;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 40th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 41st embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is hydrogen or lower alkyl optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from —OC(R1)2C(O)OH;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 42nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and <C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2,


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R4 and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and/or


At least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino; aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 43nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, (O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently alkyl or lower alkyl;


R7 and R8 are independently selected from the group consisting of alkyl, linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together, or R and R taken together or R and R taken together form a heterocyclic ring optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, or hydroxyalkyl groups.


In a 44th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)N—HSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and/or


at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, S(2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)N7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2,


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 45th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, (O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy,


all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently alkyl or lower alkyl;


R7 and R8 are independently selected from the group consisting of alkyl, linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of alkyl, lower alkyl, cycloalkyl, hydroxyalkyl, aminoalkyl, carboxyalkyl, alkoxycarbonyl; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2COOH.


In a 46th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2k, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6; —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4 to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R, R, R or R, or one of R, R, R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl; and/or


wherein when one of R, R, R, R or R is a carbon-carbon linked heterocyclic or heteroaryl, only one of R, R, R, R or R can be —OCH3; and/or


wherein when one of R, R, R, R or R is a carbon-carbon linked heterocyclic or heteroaryl, only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and/or


at least one of R, R, R, or one of R, R, R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)C(O)N(R1)2, OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 47th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are inden selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2)2, —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R, R, R5α or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R3α′ and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and


with the proviso that at least one of R, R, R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2), SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 48th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2), —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 49th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH32C(O)OH, 4CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 50th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2), —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)N)C(O)N(R2), —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4 to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, (CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 51st embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy; lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, (CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In an 52nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, polyol-alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —N(R2)C(O)R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NHC(O)NR7R8, —NHC(O)N(R2)2, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R7R8, —SR2, —SO2NHC(O)NR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)N2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2), —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2.


In a 53rd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, heterocyclicamino lower alkyl, hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, dialkylamino, N(R2)2, —NR7R8, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)N(R2k, —C(O)NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 8-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 54th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, lower alkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, heteroaryl lower alkoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, carboxy, —C(O)OR2, —C(O)N(R2)2, and —C(O)NR7R8, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, hydroxy, hydroxyalkyl, heterocyclic, —NR7R8, —C(O)NR7R8, and C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, and lower alkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 5- to 7-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from carboxy or —C(O)OR2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 55th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic,


lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, and carboxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be carboxy.


In a 56th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 57th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, lower alkoxy, —O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heteroaryl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 58th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, fluorine, chlorine, methoxy, ethoxy, propoxy, 3-(1-morpholino) propoxy, 2-(1-morpholino) ethoxy, CH3O(CH2)2O(CH2)2—,
embedded image

and
embedded image


wherein one of R, R or R must be selected from the group consisting of thiophen-s-yl, thiophen-3-yl, benzo[b]thiophen-2-yl, benzo[b]thiophen-3-yl, indol-2-yl, indol-3-yl, pyrrol-2-yl, pyrrol-3-yl, 1-methyl-indol-2-yl, 1-methyl-indol-3-yl, N-Boc-indol-2-yl, N-Boc-indol-3-yl, N-Boc-pyrrol-2′yl, and N-Boc-pyrrol-3-yl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 59th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, methoxy, 3-(1-morpholino)propoxy, 2-(1-morpholino)ethoxy, and CH3O(CH2)2O(CH2)2;


wherein one of R, R or R must be selected from the group consisting of thiophen-s-yl, benzo[b]thiophen-2-yl, indol-2-yl, 1-methyl-indol-2-yl, N-Boc-indol-2-yl, N-Boc-pyrrol-2′yl, and N-Boc-pyrrol-3-yl;


with the proviso that at least one of R, R, or R must be carboxy.


In a 60th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic;


with the proviso that at least one of R, R, or R must be carboxy.


In a 23rd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, and R are independently selected from the group consisting of hydrogen and carboxy;


R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl; heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked tetrahydrofurn-2-yl or dihydrofuran-2-yl;


with the proviso that at least one of R, R, or R must be carboxy.


Embodiment 6c. Amide Branch


In a 61st embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —(O)N(R2)2.


In a 62nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino-NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, and —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 63rd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, polyol alkyl, alkoxy, lower alkoxy, —O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —N(R2)C(O)R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NHC(O)NR7R8, —NHC(O)N(R2)2, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R3, cyano, tetrazol-5-yl, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, and —C(CH3)2C(O)OH, —CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2.


In a 64th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, dialkylamino, N(R2)2, —NR7R8, —N(R2)C(O)R2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, and —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 8-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 65th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, lower alkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, heteroaryl lower alkoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —N(R2)C(O)R2, —C(O)NH2, and —C(O)NHR2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, and lower alkyl which may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, heteroaryl, and heterocyclic, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 5- to 7-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, heterocyclic, amino, aminoalkyl, and —NR7R8.


In a 66th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, —N(R2)C(O)R2, —C(O)NH2, and —C(O)NHR2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R22;


R1 is hydrogen;


R2 is lower alkyl;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R, or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)NHC(O)R2, and —C(O)NHSO2R2;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of heterocyclic, amino, aminoalkyl, and —NR7R8.


In a 67th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7 R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 68th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 69th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic-lower alkoxy, —OC(R1)C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —N(R2)C(O)R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, arylarylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2.


In a 70th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, heterocyclicamino lower alkyl, hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, dialkylamino, N(R2)2, —NR7R8, —N(R2)C(O)R2, —SCH2C(O)OH —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —C(O)N(R2)2, —C(O)NR7R8, and —C(O)NHSO2R2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 8-membered monocyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 71st embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, lower alkyl, alkenyl, alkynyl, carbocycle, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl,


hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, heteroaryl lower alkoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —N(R2)C(O)R2, —SCH2C(O)OH —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, and —C(O)NHSO2R2, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen and lower alkyl, which may be optionally substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl and lower alkyl, which may be substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 5- to 7-membered monocyclic ring;


wherein one of R, R or R l must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, and —SO2NHC(O)R2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.


In a 72nd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, alkenyl, alkynyl, carbocycle, heteroaryl, heterocyclic, hydroxyl, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, —NR2)C(O)R2, —SO2NH2, —SO2NHR2, SO2NHC(O)R2, —SR2, SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, and —C(O)NHSO2R2, all of which can be optionally substituted by one or more selected from the group consisting of alkenyl, acyl, hydroxy, hydroxyalkyl, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and C(O)N(R2)2;


R1 is hydrogen;


R2 is lower;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —SC(R1)2C(O)OR2, —SO2NH2, —SO2NR7R8, and —SO2NHC(O)R2.


In a 73rd embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)C(O)NR7R8,


amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroaryl amino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)C(O)OR2, —NHC(O)R2, N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2,


thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2), SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2,


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, C(O)NR7R8, and —C(O)N(R2)2.


In a 74th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl optionally substituted by alkoxycarbonyl.


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of amino, —N(C(O)NHR2)2, NR2SO2R2 and —NR2SO2R2;


wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 75th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl,


alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2k, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NR2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8 alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from the group consisting of —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)C(O)NH2, OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8; alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 76th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, RR, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl; —C(O)NR7R8, and —C(O)N(R2)2;


R1 is hydrogen or lower alkyl optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is lower alkyl optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic ring;


wherein one of R, R or must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3;


with the proviso that at least one of R, R, or R must be selected from —OC(R1)2C(O)OH;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 77th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2NR2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2);


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together, or R and R taken together or R and R taken together or R and R taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and/or


at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2), SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2;


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 78th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, (O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy,


all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently alkyl or lower alkyl;


R7 and R8 are independently selected from the group consisting of alkyl, linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together, or R and R taken together or R and R taken together form a heterocyclic ring optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, or hydroxyalkyl groups.


In a 79th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, aryl amino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl,


hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —C(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OR, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be —OCH3; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2C(O)OH; and/or


at least one of R, R, or R must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2,


wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.


In a 80th embodiment, the invention is represented by Formula I or its pharmaceutically acceptable salt or ester, wherein:


R, R, R, R, R, R, R, R, R and R are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy,


all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2;


R2 is independently alkyl or lower alkyl;


R7 and R8 are independently selected from the group consisting of alkyl, linked together forming a 6-membered monocyclic ring;


wherein one of R, R or R must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R, R, R, R or R can be OCH3; and/or


R and R taken together or R and R taken together or R and R taken together or R and R taken together form a 5-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of alkyl, lower alkyl, cycloalkyl, hydroxyalkyl, aminoalkyl, carboxyalkyl, alkoxycarbonyl; provided that R, R, R, R, R, R, R, R, R and R cannot be —OC(R1)2COOH.


As an 81st embodiment, the invention is a pharmaceutical composition coprising any of the above 80 embodiments or any of the specific Examples below together with one or more pharmaceutically acceptable carriers.


An 82nd embodiment includes embodiments 1-80 above or any of the Examples as a means to treat or prophylactically treat an inflammatory disorder including arthritis, rheumatoid arthritis, asthma, diabetic retinopathy, diabetic nephropathy, diabetic vasculopathy, multiple sclerosis, allergic rhinitis, chronic obstructive pulmonary disease, systemic lupus erthematosus, atherosclerosis, and restinosis.


A further embodiment includes the intermediates used to make the final compounds of the invention. Said intermediates are useful as starting materials for making the compounds of the invention as well as having pharmaceutical activity alone.


Another embodiment of the invention includes the process for making both the intermediates as well as the final compounds.


Definitions


A wavy line used as a bond “custom character”, denotes a bond which can be either the E- or Z-geometric isomer.


When not used as a bond, the wavy line indicates the point of attachment of the particular substituent.


The terms “alkyl” or “alk”, alone or in combination, unless otherwise specified, refers to a saturated straight or branched primary, secondary, or tertiary hydrocarbon from 1 to 10 carbon atoms, including, but not limited to methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t- butyl, and sec-butyl,. The term “lower alkyl” alone or in combination refers to an alkyl having from 1 to 4 carbon atoms. The alkyl group may, be optionally substituted with any moiety that does not otherwise interfere with the reaction or that provides an improvement in the process, including but not limited to but limited to halo, haloalkyl, hydroxyl, carboxyl, acyl, aryl, acyloxy, amino, amido, carboxyl derivatives, alkylamino, dialkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, thiol, imine, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, ester, carboxylic acid, amide, phosphonyl, phosphinyl, phosphoryl, phosphine, thioester, thioether, acid halide, anhydride, oxime, hydrozine, carbamate, phosphonic acid, phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene et al., Protective Groups in Organic Synthesis, John Wiley & Sons, Second Edition, 1991, hereby incorporated by reference. Specifically included are CF3 and CH2CF3.


The term “alkenyl”, alone or in combination, means a non-cyclic alkyl of 2 to 10 carbon atoms having one or more unsaturated carbon-carbon bonds. The alkenyl group may be optionally substituted with any moiety that does not otherwise interfere with the reaction or that provides an improvement in the process, including but not limited to but limited to halo, haloalkyl, hydroxyl, carboxyl, acyl, aryl, acyloxy, amino, amido, carboxyl derivatives, alkylamino, dialkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, thiol, imine, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, ester, carboxylic acid, amide, phosphonyl, phosphinyl, phosphoryl, phosphine, thioester, thioether, acid halide, anhydride, oxime, hydrozine, carbamate, phosphonic acid, phosphonate, either unprotected; or protected as necessary, as known to those skilled in the art, for example, as taught in Greene et al., Protective Groups in Organic Synthesis, John Wiley & Sons, Second Edition, 1991, hereby incorporated by reference. Specifically included are CF3 and CH2CF3.


The term “alkynyl”, alone or in combination, means a non-cyclic alkyl of 2 to 10 carbon atoms having one or more triple carbon-carbon bonds, including but not limited to ethynyl and propynyl. The alkynyl group may be optionally substituted with any moiety that does not otherwise interfere with the reaction or that provides an improvement in the process, including but not limited to but limited to halo, haloalkyl, hydroxyl, carboxyl, acyl, aryl, acyloxy, amino, amido, carboxyl derivatives, alkylamino, dialkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, thiol, imine, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, ester, carboxylic acid, amide, phosphonyl, phosphinyl, phosphoryl, phosphine, thioester, thioether, acid halide, anhydride, oxime, hydrozine, carbamate, phosphonic acid, phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene et al., Protective Groups in Organic Synthesis, John Wiley & Sons, Second Edition, 1991, hereby incorporated by reference. Specifically included are CF3 and CH2CF3.


The terms “carboxy”, “COOH” and “C(O)OH” are used interchangeably.


The terms “alkoxycarbonyl” and “carboalkoxy” are used interchangeably. Used alone or in combination, the terms mean refer to the radical —C(O)OR, wherein R is alkyl as defined herein.


The term “thio”, alone or in combination, means the radical —S—.


The term “thiol”, alone or in combination, means the radical —SH.


The term “hydroxy”, alone or in combination means the radical —H.


The term “sulfonyl”, alone or in combination means the radical —S(O)2—.


The term “oxo” refers to an oxygen attached by a double bond (═O).


The term “carbocycle”, alone or in combination, means any stable 3- to 7-membered monocyclic or bicyclic or 7- to 14-membered bicyclic or tricyclic or an up to 26membered polycyclic carbon ring, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocyles include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).


The term “cycloalkyl”, alone or in combination, means a saturated or partially unsaturated cyclic alkyl, having from 1 to 10 carbon atoms, including but not limited to mono- or bi-cyclic ring systems such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexenyl, and cyclohexyl.


The term “aryl”, alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The “aryl” group can be optionally substituted with one or more of the moieties selected from the group consisting of alkyl, alkenyl, alkynyl, heteroaryl, heterocyclic, carbocycle, alkoxy, oxo, aryloxy, arylalkoxy, cycloalkyl, tetrazolyl, heteroaryloxy; heteroarylalkoxy, carbohydrate, amino acid, amino acid esters, amino acid amides, alditol, halogen, haloalkylthi, haloalkoxy, haloalkyl, hydroxyl, carboxyl, acyl, acyloxy, amino, aminoalkyl, aminoacyl, amido, alkylamino, dialkylamino, arylamino, nitro, cyano, thiol, imide, sulfonic acid, sulfate, sulfonate, sulfonyl, alkylsulfonyl, aminosulfonyl, alkylsulfonylamino, haloalkylsulfonyl, sulfanyl, sulfinyl, sulfamoyl, carboxylic ester, carboxylic acid, amide, phosphonyl, phosphinyl, phosphoryl, thioester, thioether, oxime, hydrazine, carbamate, phosphonic acid, phosphate, phosphonate, phosphinate, sulfonamido, carboxamido, hydroxamic acid, sulfonylimide or any other desired functional group that does not inhibit the pharmacological activity of this compound, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., “Protective Groups in Organic Synthesis,” John Wiley and Sons, Second Edition, 1999. In addition, adjacent groups on an “aryl” ring may combine to form a 5- to 7-membered saturated or partially unsaturated carbocyclic, aryl, heteroaryl or heterocyclic ring, which in turn may be substituted as above.


The term “heterocyclic”, alone or in combination, refers to a nonaromatic cyclic group that may be partially (containing at least one double bond) or fully saturated and wherein the ring contains at least one heteroatom selected from oxygen, sulfur, nitrogen, or phosphorus. The terms “heteroaryl” or “heteroaromatic”, alone or in combination, refer to an aromatic ring containing at least one heteroatom selected from sulfur, oxygen, nitrogen or phosphorus. The heteroaryl or heterocyclic ring may optionally be substituted by one or more substituent listed as optional substituents for aryl. In addition, adjacent groups on the heteroaryl or heterocyclic ring may combine to form a 5- to 7-membered carbocyclic, aryl, heteroaryl or heterocyclic ring, which in turn may be substituted as above. Nonlimiting examples of heterocylics and heteroaromatics are pyrrolidinyl, tetrahydrofuryl, tetrahydrofuranyl, pyranyl, purinyl, tetrahydropyranyl, piperazinyl, piperidinyl, morpholino, thiomorpholino, tetrahydropyranyl, imidazolyl, pyrolinyl, pyrazolinyl, indolinyl, dioxolanyl, or 1,4-dioxanyl, aziridinyl, furyl, furanyl, pyridyl, pyridinyl, pyridazinyl, pyrimidinyl, benzoxazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazole, indazolyl, triazinayl, 1,3,5-triazinyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, benzofuranyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, isoindolyl, benzimidazolyl, purinyl, carbazolyl, oxazolyl, thiazolyl, benzothiazolyl, isothiazolyl, 1,2,4-thiadiazolyl, isooxazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, pyrrolyl, quinazolinyl, quinoxalinyl, benzoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, xanthinyl, hypoxanthinyl, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, 1,2,3-oxadiazole, thiazine, pyridazine, triazolopyridinyl or pteridinyl wherein said heteroaryl or heterocyclic group can be optionally substituted with one or more substituent selected from the same substituents as set out above for aryl groups. Functional oxygen and nitrogen groups on the heteroaryl group can be protected as necessary or desired. Suitable protecting groups can include trimethylsilyl, dimethylhexylsilyl, 1-butyidimethylsilyl, and t-butyidiphenylsilyl, trityl or substituted trityl, alkyl groups, acyl groups such as acetyl and propionyl, methanesulfonyl, and p-toluenesulfonyl.


The term “thienyl”, alone or in combination, refers to a five member cyclic group wherein the ring contains one sulfur atom and two double bonds.


The term “benzothienyl”, alone or in combination, refers to a five member cyclic group wherein the ring contains one sulfur atom and two double bonds fused to a phenyl ring.


The term “aryloxy”, alone or in combination, refers to an aryl group bound to the molecule through an oxygen atom.


The term “heteroaryloxy”, alone or in combination, refers to a heteroaryl group bound to the molecule through an oxygen atom.


The term “aralkoxy”, alone or in combination, refers to an aryl group attached to an alkyl group which is attached to the molecule through an oxygen atom.


The term “heterocyclearalkoxy” refers to a heterocyclic group attached to an aryl group attached to an alkyl-O— group. The heterocyclic, aryl and alkyl groups can be optionally substituted as described above.


The terms “halo” and “halogen”, alone or in combination, refer to chloro, bromo, iodo and fluoro.


The terms “alkoxy” or “alkylthio”, alone or in combination, refers to an alkyl group as defined above bonded through an oxygen linkage (—O—) or a sulfur linkage (—S—), respectively. The terms “lower alkoxy” or “lower alkylthio”, alone or in combination, refers to a lower alkyl group as defined above bonded through an oxygen linkage (—O—) or a sulfur linkage (—S—), respectively.


The term “acyl”, alone or in combination, refers to a group of the formula C(O)R′, wherein R′ is an alkyl, aryl, alkaryl or aralkyl group, or substituted alkyl, aryl, aralkyl or alkaryl, wherein these groups are as defined above.


The term “acetyl”, alone or in combination, refers to the radical —C(O)CH3.


The term “amino”, alone or in combination, denotes the radical —NH2 or —NH—.


The term “nitro”, alone or in combination, denotes the radical —NO2.


The term “substituted”, means that one or more hydrogen on the designated atom or substituent is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and the that the substitution results in a stable compound. When a subsitutent is “oxo” (keto) (i.e., ═O), then 2 hydrogens on the atom are replaced.


The term “alditol”, as referred to herein, and unless otherwise specified, refers to a carbohydrate in which the aldehyde or ketone group has been reduced to an alcohol moiety. The alditols of the present invention can also be optionally substituted or deoxygenated at one or more positions. Exemplary substituents include hydrogen, halo, haloalkyl, carboxyl, acyl, acyloxy, amino, amido, carboxyl derivatives, alkylamino, dialkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, thiol, imine, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, ester, carboxylic acid, amide, amino acid, amino acid esters and amides, phosphonyl, phosphinyl, phosphoryl, thioester, thioether, oxime, hydrazine, carbamate, phosphonic acid, and phosphonate,. Particular exemplary substituents include amine and halo, particularly fluorine. The substituent or alditol can be either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1999, hereby incorporated by reference. The alditol may have 3, 4, 5, 6 or 7 carbons. Examples of useful alditols are those derived from reduction of monosaccharides, including specifically those derived from the reduction of pyranose and furanose sugars.


The term “carbohydrate”, as referred to herein, and unless otherwise specified, refers to a compound of carbon, hydrogen and oxygen that contains an aldehyde or ketone group in combination with at least two hydroxyl groups. The carbohydrates of the present invention can also be optionally substituted or deoxygenated at one or more positions. Carbohydrates thus include substituted and unsubstituted monosaccharides, disaccharides, oligosaccharides, and polysaccharides. The saccharide can be an aldose or ketose, and may comprise 3, 4, 5, 6, or 7 carbons. In one embodiment the carbohydrates are monosaccharides. In another embodiment the carbohydrates are pyranose and furanose sugars.


As used herein, the term “patient” refers to warm-blooded animals or mammals, and in particular humans, who are in need of the therapy described herein. The term “host”, as used herein, refers to a unicellular or multicellular organism, including cell lines and animals, and preferably a human.


Synthesis of the Active Compounds


The compounds of the present invention can be readily prepared by those skilled in the art of organic synthesis using commonly known methods, many of which are described by J, March, in Advanced Organic Chemistry, 4th Edition (Wiley Interscience, New York, 1992) and D. N. Dnar in The Chemistry of Chalcones and Related Compounds (Wiley-Interscience, New York, 1981), incorporated herein by reference.


Compounds of the present invention are prepared either by reacting a heteroaryl- or heterocyclic-substituted aryl or heteroaryl ketone with a suitably substituted aryl aldehyde or by reacting a suitably substituted aryl ketone with a heteroaryl- or heterocyclic-substituted aryl or heteroaryl aldehyde. This reaction, which is a condensation reaction, is suitably carried out under base- or acid-catalyzed conditions. The reaction may be suitably carried out in water or protic organic solvents such as lower alcohols (e.g. methanol, ethanol, tert-butanol), lower carboxylic acid (e.g. formic acid, glacial acetic acid, propionic acid), or in aprotic organic solvents such as ethers (e.g. tetrahydrofuran, dioxane, diethyl ether), liquid amides (e.g. dimethylformamide, hexamethylphosphordiamide), dimethylsulfoxide, or hydrocarbons (e.g. toluene, benzene), or mixtures of such solvents. When carrying out the reaction under basic conditions, the base may be selected from sodium, lithium, potassium, barium, calcium, magnesium, aluminum, ammonium, or quarternary ammonium hydroxides, lower alkoxides (e.g. methoxides, ethoxides, tert-butoxides), carbonates, borates; oxides, hydrides, or amides of lower secondary amines (e.g. diisopropyl amides, methylphenyl amides). Primary aromatic amines such as aniline, free secondary amines such as dimethyl amine, diethyl amine, piperidine, or pyrrolidine, tertiary amines such as pyridine, as well as basic ion exchange resins may also be used. Alternatively, a phase-transfer catalyst such as cetyl trimethyl ammonium chloride can also be used to facilitate the reaction, particularly when water is the solvent.


Alternatively, the aldol condensation reaction can also be carried out in an aprotic solvent such as tetrahydrofuran (THF) with an organic base. The preferred solvent is THF and the preferred base is lithium diisopropylamide (LDA). In this manner an aldol reaction may take place first and the subsequent dehydration reaction may take place during an aqueous workup.


Acid catalysts may be selected from hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, sulfonic acids (such as paratoluenesulfonic or methansulfonic acid), lower carboxylic acid (such as formic, acetic, or propionic acid), lower halogenated carboxylic acid (such as trifluoroacetic acid), Lewis acids (such as BF3, POCl3, PCl5, FeCl3), or acid ion exchange resins.


The reaction may be carried out at temperatures in the range of −80° C. to +150° C., preferrably in the range of 0° C. to +100° C., and more preferably at room temperature. The time of reaction may be from 30 minutes to approximately 24 hours.


Compounds of the invention may be isolated as either mixtures of cis (Z) and trans (E) geometric isomers or either pure trans (E) isomers. If desired, either the mixtures or the pure trans isomers may be isomerized to the corresponding predominantly cis (Z) iomers using methods well known in the literature.


In the above reactions, it may be preferred or necessary to protect various sensitive or reactive groups present in the starting materials so as to prevent said groups from interfering with the reactions. Such protection may be carried out in a well-known manner as taught by Theodora W. Green and Peter G. M. Wuts, in Protective Groups in Organic Chemistry Third Edition (Wiley, 1999) or using methods from references cited therein or of the like. The protecting group may be removed after the reaction in a manner known per se.


The following schemes will prove useful to those skilled: in the art in manufacturing the compounds of the invention:


Legend for All Schemes:


1. R, R′, R″, R′″, and R″″ can be any substitution including H;


2. R, R′, R″, R′″, and R″″ can be suitabaly functionalized;


3. R, R′, R″, R′″, and R″″ can represent multiple substitutions;


4. Two adjacent R, R′, R″, R′″, or R″″ can form a ring;


5. Dashed double bond can be at any location of a ring;


6. Y, Y′, Y″, and Y′″ independently represent N(H), O, or S,


7. X and X′ independently represent Cl, Br, or I;


8. Each R, R′, R″, R′″, R″″, Y, Y′, Y″, Y′″, X or X′ is independent in each scheme;


9. HetAr represents suitably substituted heterocyclic aryl;


10. Cy represents cyclohexyl.
embedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded imageembedded image


EXAMPLES

The following examples are understood to be illustrative only and are not intended to limit the scope of the present invention in any way. All intermediates and final products have been completely characterized by conventional proton NMR, mass spectral analyses and standard analytical methods known to those skilled in the art.


Example 1



embedded image


1-(2,2-Bis-hydroxymethyl-benzo[1,3]dioxol-5-yl)-3E-3,4-dimethoxy-5-thiophen-2-yl-phenyl)propenone

Ex-1A: Catechol (2.2 g, 20 mmol) was dissolved in acetone. Diethyl dibromomalonate (7.0 g, 22 mmol) and potassium carbonate (2.76 g) were added, and the mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure, and water was added to the residue. The residue was extracted with dichloromethane, and the organic phase was washed with brine, dried over magnesium sulfate and evaporated. Chromatography (hexanes/ethyl acetate, 4:1) gave 3.9 g of benzo[1,3]dioxole-2,2-dicarboxylic acid diethyl ester. 1H-NMR (CDCl3) δ 6.90-6.97 (m, 4H), 4.37(q, J=7 Hz, 4H), 1.32(t, J=7 Hz, 6H).


Ex-1B: [Bis(ethoxycarbonyl)methyldenedioxy]benzene obtained from Ex-1A (3.9 g, 14.7 mmol) was dissolved in THF (100 mL) and cooled with ice-water. Lithium aluminum hydride (1 M solution in THF, 44 mL) was added dropwise, and the mixture was stirred overnight. The reaction was carefully quenched with saturated sodium sulfate until there was no further bubbling. The mixture was stirred overnight, then filtered, and the filtrate was dried over magnesium sulfate. Chromatography (dichloromethane/methanol, 10:1) gave 0.5 g of the desired (2-hydroxymethyl-benzo[1,3]dioxol-2-yl)-methanol. 1H-NMR (CDCl3) δ 6.82 (s, 4H), 3.94 (d, J=7 Hz, 4H), 1.98 (t, J=7 Hz, 2H).


Ex-1C: Aluminum chloride (1.3 g) was added to nitromethane followed by the addition of acetyl chloride (1.86 g). Then (2-hydroxymethyl-benzo[1,3]dioxol-2-yl)methanol obtained from Ex-1B (0.5 g) in nitromethane was added dropwise. The mixture was stirred overnight. Water was added to the reaction mixture, and it was extracted with dichloromethane. The organic phase was washed with brine, dried over magnesium sulfate and evaporated. Chromatography gave 0.28 g of 5-acetyl-benzo[1,3]dioxole-2,2-dicarboxylic acid diethyl ester. 1H-NMR (CDCl3) δ 7.56 (d, J=7 Hz, 1H), 7.43 (s, 1H), 6.85 (d, J=7 Hz, 1H), 4.42 (s, 4H), 2.53 (s, 3H), 2.05 (s, 6H).


Ex-1D: A solution of 5-bromo-3,4-dimethoxybenzaldehyde (10.23 g, 41.7 mmol) in 359 mL of ethylene glycol dimethyl ether was purged with nitrogen gas for 30 min. The solution was treated with tetrakis(triphenylphosphine)palladium(0) (5.0 g, 4.3 mmol), thiophene-2-boronic acid (8.01 g, 62.6 mmol), and a solution of 2 N sodium carbonate 72 mL, 3.45 mmol). The reaction was refluxed for 16 h. The reaction mixture was concentrated, diluted with an aqueous solution of saturated sodium bicarbonate (75 mL), and extracted with dichloromethane (2×100 mL). The organic layer was dried over sodium sulfate and concentrated to a brown solid. The crude material was purified by silica gel chromatography (1:1 ethyl acetate/hexanes) to give 9.42 g (90%) of the desired 3,4-dimethoxy-5-(thien-2-yl)benzaldehyde product. 1H-NMR (300 MHz, CDCl3) δ 9.94 (s, 1H), 7.79 (d, 1H), 7.57 (dd, 1H), 7.41 (d, 1H), 7.36 (d, 1H), 7.13 (dd, 1H), 3.97 (s, 3H), 3.93 (s, 3H).


5-Acetyl-benzo[1,3]dioxole-2,2-dicarboxylic acid diethyl ester obtained from Ex-1C (0.28 g, 1.11 mmol) and 3,4-dimethoxy-5-(thien-2-yl)benzaldehyde obtained from Ex-1D (0.275 g, 1.11 mmol) were dissolved in ethanol, and 50% sodium hydroxide solution (0.4 mL) was added. The mixture was stirred at room temperature overnight. Most of the solvent was removed under reduced pressure, and water was added to the remainder. The resulting product was extracted with dichloromethane. The organic phase was dried over magnesium sulfate and evaporated. Chromatography gave 0.19 g (38%) of the title compound as a yellow solid, m.p. 74-80° C. 1H-NMR (300 MHz, CDCl3) δ 7.74 (d, 1H), 7.63 (dd, 1H), 7.49-7.55 (m, 3H), 7.38 (d, 1H), 7.37 (d, 1H), 7.12 (dd, 1H), 7.07 (d, 1H), 6.88 (d, 1H), 3.99 (s, 4H), 3.98 (s, 3H), 3.88 (s, 3H). Anal. Calculated for C24H22O7S: C, 63.42; H, 4.88; S, 7.06; found: C, 63.46; H, 5.11; S. 6.55.


Example 2



embedded image


1-(2,2-Bis-hydroxymethyl-benzo[1,3]dioxol-5-yl)-3E-(4-thiophen-2-yl-phenyl)-propenone

Ex-2A: 4-(Thien-2-yl)benzaldehyde was obtained in a similar manner as described in Ex-1D from 4-bromobenzaldehyde. 1H-NMR (CDCl3) δ 10.00 (s, 1H), 7.88 (d, J=9 Hz, 2H), 7.77 (d, J=9 Hz, 2H), 7.46 (d, J=4 Hz, 1H), 7.39-7.41 (m, 1H), 7.12-7.15 (m, 1H).


The title compound was obtained when 5-acetyl-benzo[1,3]dioxole-2,2-dicarboxylic acid diethyl ester from Ex-1C was condensed with 4-(Thien-2-yl)benzaldehyde from Ex-2A in a similar manner as described in Ex-1. Yellow solid, mp 166-168° C., 23.6% yield. 1H-NMR (CDCl3) δ 7.77 (d, J=15 Hz, 1H), 7.60-7.65 (m, 5H), 7.51 (d, J=2 Hz, 1H), 7.45 (d, J=15 Hz, 1H), 7.37-7.38 (m, 1H), 7.32(d, J=5 Hz, 1H), 7.09 (dd, J=4, 5 Hz, 1H), 6.88 (d, J=8 Hz, 1H), 3.96 (d, J=7 Hz, 4H). MS m/z=394 ([M]+, 50%), 363 (100%). HRMS (EI) Calcd. for C22H18O5S: 394.0875. Found: 394.0869.


Example 3



embedded image


4-[3E-(5Benzo[b]thien-2-yl-2,4dimethoxyphenyl)-acryloyl]-benzoic acid

Ex-3A: A sample of 5-bromo-2,4-dimethoxybenzaldehyde (4.9 g, 20.0 mmol) was dissolved in ethylene glycol dimethyl ether (50 mL). Tetrakis(triphenylphosphine)palladium(0) (2.32 g, 2 mmol) was added, and the mixture was stirred at room temperature under nitrogen for 5 min. Benzo[b]thiophene-2-boronic acid (4.27 g, 24 mmol) and sodium carbonate solution (2 M, 20 mL) were added. The mixture was stirred at reflux under nitrogen for 24 hours. Upon cooling to room temperature, the mixture was poured into water and extracted with ethyl acetate. The organic phase was dried over sodium sulfate and evaporated. Silica gel chromatography (hexane/ethyl acetate 2:1 then 1:1) gave 4.75 g (83%) of the desired 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde. 1H NMR (CDCl3) δ 10.36 (s, 1H), 8.20 (s, 1H), 7.83-7.78 (m, 2H), 7.68 (s, 1H), 7.36-7.27 (m, 2H), 6.54 (s, 1H), 4.06 (s, 3H), 4.00 (s, 3H).


An alternative procedure: 5-bromo-2,4-dimethoxybenzaldehyde (20 g), benzo[b]thiophene-2-boronic acid (16 g) and THF (200 mL) were sequentially charged into a clean reaction vessel fitted with a reflux condenser, mechanical stirrer and nitrogen inlet adapter. Nitrogen was bubbled into the resulting solution for 20 min followed by the sequential addition of KF (10 g), and Pd(1Bu3P)2 (0.417 g). The solution was immediately heated to 60° C. and aged for 1.5 h. (Note: The HPLC assay at this point routinely indicated complete consumption of 5-bromo-2,4-dimethoxybenzaldehyde, <0.5 area % of benzo[b]thiophene-2-boronic acid along with 0.5 area % of an unknown (0.55 RRT). These impurities are removed during crystallization.) Upon completion, as determined by HPLC, the reaction was diluted with H2O (200 mL) and transferred to a separatory funnel containing EtOAc (200 mL) and H2O (200 mL). The layers were cut and the aqueous layer was extracted with EtOAc (100 mL). The combined organic cuts were filtered through a pre-washed pad of solka floe (5 g). The pad of solka floe and spent catalyst were washed with fresh EtOAc (200 mL) and this wash combined with the batch. The resultant filtrate was batch concentrated and solvent switched to 33 wt % 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde in THF in preparation for crystallization. (Note: The internal temperature during batch concentration should be kept above 45° C. to prevent premature crystallization.) The resulting THF solution of 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde was then charged with heptane (20 mL) and slowly cooled to ambient temperature. Crystallization was then completed with the slow addition of heptane (175 mL) and cooling to 4° C. After aging for 1 h, the batch was filtered and then dried on the filter funnel under a stream of N2. The semi-wet cake was then transferred to clean trays and dried to a constant weight in the vacuum oven (40° C., 20 in Hg) affording 23.74 g (97% yield) of desired 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde as a light orange crystalline solid, m.p. 134-136° C. HPLC assay of this solid indicated >99.9 LCAP. 1H-NMR identical as above.


To a solution of 4-acetylbenzoic acid (1.50 g, 9.1 mmol) and 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde from Ex-3A (3.27 g, 11.0 mmol) in N,N-dimethylformamide (76 mL) was added a solution of sodium hydroxide (5 M, 7.3 mL, 36.5 mmol). The reaction mixture was allowed to stir at room temperature for 2 h and was then diluted with water to a volume of 150 mL. The solution was washed with dichloromethane and acidified with concentrated sulfuric acid to pH=3. The resulting solution was then extracted with dichloromethane. The dichloromethane extract was washed with brine, dried over sodium sulfate and concentrated. The resulting oily product solidified in ethanol. The solid was further stirred in ethanol for one day and collected by filtration. The solid was washed with ethanol, then dried in vacuo to afford the title compound as a yellow solid (2.2 g, 54%). 1H NMR (300 MHz, DMSO-d6) δ 8.36 (s, 1H), 8.21 (d, 2H), 8.07 (m, 3H), 7.93 (m, 3H), 7.82 (d, 1H), 7.32 (m, 2H), 6.86 (s, 1H), 4.08 (s, 3H), 4.00 (s, 3H). Anal. Calculated for C26H20O5S.⅙H2O: C, 69.78; H, 4.58; S, 7.17; found: C, 69.95; H, 4.69; S, 7.15. HPLC purity: 97.9% (area percentage).


An alternative procedure: 5-(Benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde from Ex-3A (42.3 g), 4-acetylbenzoic acid (22.1 g), MeOH (250 mL) and DMF (600 mL) were sequentially charged into a clean reaction vessel fitted with a mechanical stirrer and nitrogen inlet adapter. After complete dissolution, LiOMe (10.5 g) was added in one portion and the resulting solution was aged at 40° C. for 2 h. Upon completion, as determined by HPLC, the reaction mixture was transferred to a separatory funnel containing cold H2O (800 mL, precooled to 10 deg C.). An additional 400 mL cold H2O was used to rinse the reaction vessel and this rinse was also added to the separatory funnel. The combined aqueous was washed with iPrOAc (500 mL) and then acidified to a pH of 3 with 6 N HCl (ca. 60 mL). The resulting heterogeneous solution was aged for 30 min and then the precipitate was filtered, washed with 70% EtOH (100 mL) and dried on the filter funnel under a stream of N2 affording desired acid 5 as a crude yellow solid. The crude dry product and THF (260 mL) were charged into a clean reaction vessel fitted with a mechanical stirrer and nitrogen inlet adapter. Heptane (30 mL) was slowly added to the resulting solution over 30 min and then aged resulting in crystallization. Additional heptane (270 mL) was added over 1 h, aged for an additional 1 h and then filtered. The reaction vessel was then rinsed with 70% EtOH (100 mL) and this rinse was added to the filter cake. The wet cake was then transferred to a clean reaction vessel containing 70% EtOH (750 mL) and the resulting heterogeneous mixture was stirred overnight. The product was then filtered, rinsed with fresh 70% EtOH (100 mL) and then dried on the filter funnel under a stream of N2. The semi-wet cake was then transferred to clean trays and dried to a constant weight in the vacuum oven (40° C., 20 in Hg) affording 52.05 g (87% yield) of desired 4-[3-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-E-acryloyl]-benzoic acid 5 as a yellow crystalline solid, m.p. 231-232° C. (dec.). HPLC assay of this solid indicated >99.9 LCAP. 1H-NM identical as above.


Example 4



embedded image


4-[3E-(4-Pyrimidin-5yl-phenyl)-acryloyl]-benzoic acid

Ex-4A: 4-Pyrimidin-5-yl-benzaldehyde was obtained pyrimidine-5-boronic acid and 4-bromobenzaldehyde in a similar manner as described in Ex-3A, 88.6% yield. 1H-NMR (CDCl3) δ 10.11 (s, 1H), 9.28 (s, 1H), 9.01(s, 2H), 8.05 (d, J=8 Hz, 2H), 7.77 (d, J=8 Hz, 2H).


The title compound was obtained in a similar manner as described in Ex-3 from 4-pyrimidin-5-yl-benzaldehyde (Ex-4A) and 4acetylbenzoic acid. Yellow solid, mp>260° C., 45% yield. 1H-NMR (DMSO-d6) δ 9.21 (s, 2H), 9.19 (s, 1H), 8.24 (d, J=9 Hz, 2H), 8.01-8.09 (m, 5H), 7.9 (d, J=6 Hz, 2H), 7.81 (d, J=15 Hz, H), MS m/z=330 ([M]+, 100%). HRMS (EI) Calcd. for C20H14N2O3: 330.1004. Found: 330.1000.


Example 5



embedded image


4-[3E-(4-Thiazol-2-yl-phenyl)acryloyl]-benzoic acid

Ex-5A: 4-Thiazol-2-yl-benzaldehyde was prepared from 4-bromobenzaldehyde and thiazole-2-boronic acid in a similar manner as described in Ex-3A, 82% yield. 1H-NMR (CDCl3) δ 10.07 (s, 1H), 8.15 (d, J=8 Hz, 2H), 7.95-7.98 (m, 3H), 7.45 (d, J=3 Hz, 1H). HMRS (EI) calcd. for C10H7NOS: 189.0248; found: 189.0242.


The title compound was obtained in a similar manner as described in Ex-3 from 4-thiazol-2-yl- benzaldehyde (Ex-5A) and 4-acetylbenzoic acid. Yellow solid, mp 232-235° C., 20% yield. 1H- NMR (CDCl3) δ 8.24 (d, J=9 Hz, 2H), 8.11 (d, J=9 Hz, 2H), 8.05 (d, J=9 Hz, 2H), 7.93 (d, J=3 Hz, 1H), 7.86 (d, J=15 Hz, 1H), 7.74(d, J=9 Hz, 2H), 7.57 (d, J=15 Hz, 1H), 7.41 (d, J=3 Hz, 1H), MS m/z=335 ([M]+, 100%). HRMS (EI) Calcd. for C19H13NO3S: 335.0616. Found: 335.0618.


Example 6



embedded image


4-[3E-2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-6A: 5-bromo-2,4-dimethoxybenzaldehyde (20.3 g), thiophene-2-boronic acid (11.6 g) and THF (200 mL) were sequentially charged into a clean reaction vessel fitted with a reflux condenser, mechanical stirrer and nitrogen inlet adapter. Nitrogen was bubbled into the resulting solution for 20 min followed by the sequential addition of KF (10.1 g), and Pd(1Bu3P)2 (0.424 g). The solution was immediately heated to 60° C. and aged for 1.5 h. The reaction was diluted with H2O (200 mL) and transferred to a separatory funnel containing EtOAc (200 mL) and H2O (200 mL). The layers were cut and the aqueous layer was extracted with EtOAc (100 mL). The combined organic cuts were filtered through a pre-washed pad of solka floc (5 g). The pad of solka floe and spent catalyst were washed with fresh EtOAc (200 mL) and this wash combined with the batch. The resultant filtrate was concentrated to dryness. The crude product was dissolved in THF (38 mL) and crystallized upon heptane (152 mL) addition. The product was filtered and then dried to a constant weight in the vacuum oven (38° C., 20 in Hg) affording 19.32 g (94% yield) of desired 2,4-dimethoxy-5-thiophen-2-yl-benzaldehyde as a light off- white solid, m.p. 125-126° C. 1H-NMR (300 MHz, CDCl3): 10.34 (s, 1H), 8.12 (s, 1H), 7.44 (dd, 1H, J=3.5 and 1.5 Hz), 7.31 (dd, 1H, J=5.2 and 1.5 Hz), 7.07 (dd, 1H, J=5.2 and 3.5 Hz), 6.51 (s, 1H), 4.02 (s, 3H), 3.99 (s, 3H).


2,4-Dimethoxy-5-thiophen-2-yl-benzaldehyde from Ex-6A (7.81 g), 4-acetylbenzoic acid (4.9 g), MeOH (60 mL) and DMF (150 mL) were sequentially charged into a clean reaction vessel fitted with a stir bar and nitrogen inlet adapter. After complete dissolution LiOMe (4.60 g) was added and the resulting solution was aged for 5 h. The reaction was diluted with H2O (200 mL) and transferred to a separatory funnel containing iPrOAc (100 mL). The layers were cut and the aqueous layer was acidified to a pH of 1 with 3 N HCl. The resulting precipitate was filtered and then dried on the filter funnel under a stream of N2. The crude product was then dissolved in THF (60 mL) and crystallized with the addition of heptane (60 mL). The product was filtered and then dried to a constant weight in the vacuum oven affording 8.9 g (75% yield) of the title compound as a yellow solid, m.p. 213-216° C. 1H-NMR (300 MHz, CDCl3): 8.20 (d, 2H, J=8.5 Hz), 8.09 (d, 1H, J=16.1 Hz), 8.06 (d, 2H, J=8.5 Hz), 7.85 (s, 1H), 7.52 (d, 1H, J=16.1 Hz), 7.40 (m, 1H), 7.30 (dd, 1H, J=5.2 and 1.7 Hz), 7.08 (dd, 1H. J=5.2 and 3.6 Hz), 6.53 (s, 1H), 3.98 (s, 3H), 3.97 (s, 3H); EIMS m/z=394 (M+). Anal. calc. for C22H18O5S: C, 66.99; H, 4.60; S, 8.13; found: C, 66.71; H, 4.59; S, 8.10.


Example 7



embedded image


2-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid

The title compound was obtained starting from 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde from Ex-3A and 2-acetylbenzoinc acid in a similar manner as described in Ex-3. Yellow solid, mp 220-223° C. (dec.). 1H-NMR (DMSO-d6) δ 8.01 (s, 1H), 7.88 (d, J=7.3 Hz, 1H), 7.80-7.75 (m, 2H), 7.45-7.24 (m, 7H), 7.11 (d, J=16.2 Hz, 1H), 6.79 (s, 1H), 4.00 (s, 3H), 3.88 (s, 3H). MS m/z=445 (M+, 100%).


Example 8



embedded image


4-[3E-(3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

The title compound was obtained in a similar manner as described in Ex-3 from 3,4-dimethoxy-5-(thien-2-yl)benzaldehyde (Ex-1D) and 4-acetylbenzoic acid. Yellow solid, mp 231° C. 1H-NMR (DMSO-d6) δ 8.23 (d, 2H), 8.08 (d, 2H), 7.96 (d, 1H), 7.90 (m, 1H), 7.77 (m, 2H), 7.59 (d, 1H), 7.54 (m, 1H), 7.13 (dd, J=4, 4 Hz, 1H). MS m/z=395 ([M+H]+, 100%).


Example 9



embedded image


2-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid, sodium salt

To a solution of 2-acetyl-benzoic acid (0.75 g, 4.6 mmol) and 5-benzo[b]thiophen-2-yl-2,4-dimethoxy-benzaldehyde (Ex-3A, 1.64 g, 5.5 mmol) in N,N-dimethylformamide (38 mL) was added sodium hydroxide (5M, 3.7 mL, 18.5 mmol). The reaction mixture was allowed to stir for 2 hours at ambient temperature and was diluted with water (50 mL) and sodium carbonate (2M, 20 mL). The aqueous solution was extracted with dichloromethane. A yellow precipitate formed in dichloromethane and was collected by filtration, washed with dichloromethane, dried in vacuo to give the title compound as a yellow solid (1.53 g, 67%), mp 214-217° C. (dec). 1H-NMR (DMSO-d6) δ 7.93-7.87 (m, 3H), 7.77(d, J=8.0 Hz, 2H), 7.33-7.26 (m, 4H), 7.09-7.06 (m, 2H), 7.01 (d, J=17.0 Hz, 1H), 6.78 (s, 1H), 3.99 (s, 3H), 3.88 (s, 3H). MS m/z=467([M+Na]+, 75%), 445 ([M+H]+, 100%). Anal. (C26H19O5SNa.1.3H2O) Calc. C, 63.55, H, 4.35, S, 6.52, found C, 63.74, H, 4.44, S, 6.55.


Example 10



embedded image


4-[3E-(4-Thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

The title compound was obtained by condensing 4-(thien-2-yl)benzaldehyde from Ex-2A and 4-acetylbezoic acid in a similar manner as described in Ex-3. Yellow solid, 56% yield, mp>260° C. 1H-NMR (DMSO-d6) δ 8.01-8.08 (m, 4H), 7.72 (d, J=8 Hz, 2H), 7.68 (s, 2H), 7.61 (d, J=8 Hz, 2H), 7.41 (d, J=4 Hz, 1H), 7.35 (d, J=4 Hz, 1H), 7.04 (dd, J=4, 8 Hz, 1H). MS m/z=334([M+Na]+, 100%). Anal. (C22H14O3S) Calc. C, 71.84; H, 4.22; S, 9.59; found C, 71.44; H, 4.32; S, 9.43.


Example 11



embedded image


1-(4-Amino-phenyl)-3E-(3,4-dimethoxy-5-thiophen-2-yl-phenyl)-propenone

A suspension of 3,4-dimethoxy-5-(thien-2-yl)benzaldehyde (1.8 g, 7.4 mmol) from Ex-1D in an aqueous solution of 5 N potassium hydroxide (37 mL) was treated with cetyltrimethyl ammonium chloride (39 mL, 29.6 mmol) and 4-aminoacetophenone (1.0 g, 7.4 mmol). The reaction was stirred for 16 h at room temperature. The reaction mixture was titrated with 6 M H2SO4 to a pH of 7. The mixture was extracted with dichloromethane (2×75 mL). The organic layer was washed with aqueous NaHCO3 (2×25 mL), brine, dried over sodium sulfate, and concentrated to a yellow foam. The crude material was purified by silica gel chromatography (1:1 ethyl acetate and hexanes) to give 720.0 mg (27%) of the title compound as a yellow solid, mp. 67-710C. 1H-NMR (300 MHz, CDCl3) δ 7.94 (d, 2H), 7.75 (d, 1H), 7.54 (s, 1H), 7.53 (s, 1H), 7.46 (d, 1H), 7.39 (d, 1H), 7.13 (d, 1H), 7.11 (m, 1H), 6.72 (d, 2H), 4.16 (s, 2H), 3.97 (s, 3H), 3.87 (s, 3H). Anal. calculated for C21H19NO3S.⅕H2O: C, 68.60; H, 5.28; S, 8.72; found C, 68.51; H, 5.40; S, 8.69. MS (Pos. Ion ES): calcd for C21H20NO3S: m/z=366 [M+H]+, found: m/z=366 [M+H]+.


Example 12



embedded image


1-(4-Amino-phenyl)-3E-(4-thiophen-2-yl-phenyl)-propenone

The title compound was prepared from 4-(thien-2-yl)benzaldehyde (Ex-2A) and 4-aminoacetophenone in a similar manner as described in Ex-11. Yellow solid, 45% yield, mp 185-187° C. 1H-NMR (CDCl3) δ 7.95 (d, 2H), 7.79 (d, 1H), 7.65 (m, 41), 7.55 (d, 1H), 7.39 (d, 1H), 7.33 (dd, J=5, 5 Hz, 1H), 7.11 (dd, J=5, 5 Hz, 1H), 6.71 (d, 2H), 4.16 (s, 2H). MS m/z=305 ([M]+, 100%). Anal. calculated for C19H15NOS: C, 74.72; H, 4.95; S, 10.50; found C, 74.60; H, 5.05; S, 10.42.


Example 13



embedded image


1-(4-Amino-phenyl)-3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-propenone

The title compound was prepared from 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde (Ex-3A) and 4-aminoacetophenone in a similar manner as described in Ex-11. Yellow solid, 24% yield, mp 98-104° C. 1H-NMR (CDCl3) δ 8.10 (d, 1H), 7.95 (m, 3H), 7.82 (m, 2H), 7.67 (s, 1H), 7.60 (d, 1H), 7.32 (dd, J=8.8 Hz, 2H), 6.71 (d, 2H), 6.57 (s, 1H), 4.11 (br s, 2H), 4.02 (s, 3H), 3.99 (s, 3H). MS m/z=415 ([M]+, 39%), 384 (100%). Anal. calculated for C25H21NO3S.⅓H2O: C, 71.24; H, 5.18; S, 7.61; found C, 71.63; H, 5.18; S: 7.55.


Example 14



embedded image


N-{4-[3E-(3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-methanesulfonamide

Ex-14A: A solution of 1-(4-amino-phenyl)-3E-(3,4-dimethoxy-5-thiophen-2-yl-phenyl)-propenone (Ex-11, 472.2 mg, 1.3 mmol) and triethylamine (398.63 μL, 2.86 mmol) was stirred in 20 mL of anhydrous dichloromethane. The mixture was treated with mesyl chloride (100 μL, 1.3 mmol). The reaction mixture was stirred for 16 hours and heated gently for another 4 hours. The crude material was purified by silica gel chromatography (1:3 ethyl acetate/hexane) to give 337.0 mg (quantitative) of 1-[4-bis-(methanesulfonyl)aminophenyl]-3E-[(3,4-dimethoxy-5-(thien-2-yl)phenyl]-propenone. 1H-NMR (300 MHz, CDCl3) δ 8.06 (d, 2H), 7.76 (d, 1H), 7.53 (m, 2H), 7.49 (d, 2H), 7.38 (m, 1H), 7.36 (d, 1H), 7.10 (m, 1H), 7.08 (m, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 3.42 (s, 6H).


A solution of 1-[4-bis-(methanesulfonyl)aminophenyl]-3E-[(3,4-dimethoxy-5-(thien-2-yl)phenyl]-propenone (378.86 mg, 0.73 mmol) from Ex-14A in tetrahydrofuran (6.6 mL) was treated with aqueous 1N NaOH (1.4 mL, 1.4 mmol). The reaction was stirred at room temperature for 1 h. The reaction was titrated with 1 N HCl to a pH of 6. The crude material was purified by silica gel chromatography (5% MeOH/CH2Cl2 with 1% acetic acid) to give 269.2 mg (83%) of the title compound as a solid, 83% yield, mp. 71-75° C. 1H-NMR (300 MHz, CDCl3) δ 8.04 (d, 2H), 7.76 (d, 1H), 7.52 (m, 2H), 7.40 (d, 1H), 7.37 (m, 1H), 7.29 (d, 2H), 7.10 (m, 1H), 7.08 (m, 1H), 3.95 (s, 3H), 3.86 (s, 3H), 3.12 (s, 1H), 3.09 (s, 3H). MS (Pos. Ion ES): calcd for C22H22NO5S2: m/z=444 [M+H]+, found: m/z=444 [M+H]+. HRMS m/z: calc. 444.0939, found 444.0953.


Example 15



embedded image


{3-[4-13E-4-Thiophen-2-yl-phenyl)-acryloyl]-phenyl}-ureido)-acetic acid ethyl ester

A solution of 1-(4-amino-phenyl)3-(4-thiophen-2-yl-phenyl)-propenone (Ex-12, 250 mg, 0.80 mmol) and isocyanato-acetic acid ethyl ester (105.7 mg, 0.80 mmol) in toluene (15 mL) was refluxed for 16 hours. The reaction mixture was cooled to room temperature and the crude product precipitated out of solution. The material was suctioned filtered and dried on hi-vac to give 280.2 mg (79%) of the title compound as a yellow solid, mp 209-212° C. 1H-NMR (DMSO-d6) δ 9.29 (br s, 1H), 8.08 (d, 2H), 7.90 (m, 3H), 7.71 (d, 3H), 7.60 (m, 4H), 7.14 (t, 1H), 6.61 (t, 1H), 4.09 (q, 2H), 3.86 (dd, J=2,6 Hz, 2H), 1.17 (t, 3H). MS m/z=435 ([M+H]+, 100%). HRMS m/z: calc. 435.1378, found 435.1375.


Example 16



embedded image


(3-[Ethoxycarbonylmethylaminocarbonyl]-3-{4-[3E-(3,4-dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-ureido)-acetic acid ethyl ester

A solution of 1-(4-aminophenyl)-3E-[(3,4-dimethoxy-5-(thien-2-yl)phenyl]-propenone (Ex-11, 500 mg, 1.37 mmol) and ethyl isocyanatoacetate (177 mg, 1.37 mmol) in anhydrous methylene chloride (20 mL) was stirred at room temperature for 5 hours. Due to no reaction, the reaction mixture was concentrated, diluted with toluene (20 mL), treated with ethyl isocyanatoacetate (177 mg, 1.37 mmol), and refluxed for 14 hours. The reaction was concentrated, diluted with methylene chloride (50 mL), and washed with water (3×50 mL). The organic portion was collected, dried over sodium sulfate, and concentrated over silica gel. The crude material was purified by silica gel chromatography (50-75% ethyl acetate/hexanes) to give 178.0 mg (210%) of the title compound as a yellow solid, mp 83-86° C. 1H-NMR (CDCl3) δ 8.09 (d, 2H), 7.76 (d, 1H), 7.55 (m, 2H), 7.65 (d, 2H), 7.40 (m, 2H), 7.30 (m, 2H), 7.11 (m, 2H), 4.17 (q, 4H), 4.01 (d, 4H), 3.97 (s, 3H), 3.88 (s, 3H). MS m/z=646 ([M+Na]+, 100%). Anal. calculated for C31H33N3O9S: C, 59.70; H, 5.33; S, 5.14; found C, 60.18; H, 5.38; S, 5.17.


Example 17



embedded image


4-[3-{4-(thien-2-yl)phenyl}-3-oxo-E-propenyl]-benzoic acid, sodium salt

Ex-17A: 4′-Bromoacetophenone (3.98 g, 20 mmol) was dissolved in ethylene glycol dimethyl ether and then the solution was degassed with nitrogen for 15 minutes. Tetrakis(triphenylphosphine)palladium(0) (2.31 g, 2 mmol) was added, and the solution was further degassed for 10 minutes. Thiophene-2-boronic acid (3.07 g, 24 mmol) was added followed by the addition of sodium carbonate solution (2 M, 45 mL). The mixture was stirred at reflux under nitrogen overnight. Most of the solvent was removed, and water was added to the remainder. The solid was filtered out and recrystallized from ethanol and water to give 3.85 g of the desired 4′-(thien-2-yl)acetophenone as a solid, 95% yield. 1H-NMR (CDCl3) δ 7.97: (d, J=9 Hz, 2H), 7.70 (d, J=9 Hz, 2H), 7.44 (d, J=4 Hz, 1H), 7.38 (d, J=5 Hz, 1H), 7.11-7.14 (m, 1H), 2.62 (s, 3H). HMRS (EI) calcd. for C12H10OS: 202.0452; found: 202.0454.


4′-(Thien-2-yl)acetophenone obtained from Ex-17A (0.81 g, 4 mmol) and 4-carboxybenzaldehyde (0.6 g, 4 mmol) were dissolved in dimethylformamide (20 mL). Sodium hydroxide solution (5 M, 3.2 mL) was added over 30 minutes at room temperature, and the mixture was stirred for another 30 minutes at room temperature. The precipitate was filtered off and recrystallized from hot water to give the title compound as a yellow solid, 29% yield, m.p.>260° C. 1H-NMR (300 MHz, DMSO-4) δ 8.17 (d, 2H), 7.89 (d, 1H), 7.87 (d, 2H), 7.81 (d, 2H), 7.76 (d, 2H), 7.72 (d, 1H), 7.69 (d, 1H), 7.64 (d, 1H), 7.17 (dd, 1H). Anal. calculated for C20H13O3NaS.½H2O: C, 65.74; H, 3.86; S, 8.78; found: C, 65.66; H, 4.04; S, 9.04.


Example 18



embedded image


4-[3-{4-(thien-2-yl)-phenyl}-3-oxo-E-propenyl]-benzoic acid

The title compound was prepared by acidifying its sodium salt from Ex-17. Yellow solid, mp 260-265° C., 67% yield. 1H-NMR (DMSO-d6) δ 8.18 (d, J=8 Hz, 2H), 8.00 (d, J=15 Hz, 1H), 7.91-7.94 (m, 4H), 7.82 (d, J=8 Hz, 2H), 7.77-7.79 (m, 1H), 7.71(d, J=3 Hz, 1H), 7.66 (d, J=5 Hz, 1H), 7.16-7.19 (m, 1H), MS m/z=334 ([M]+, 100%). HRMS (EI) Calcd. for C20H14O3S: 334.0664. Found: 334.0669.


Example 19



embedded image


4-[3-(2-Methoxy-4-thiophen-2-yl-phenyl)-3-oxo-E-propenyl]-benzoic acid

Ex-19A: 1-(2-Methoxy-4-thiophen-2-yl-phenyl)-ethanone was prepared from 4-iodo-2-methoxyacetophenone in a similar manner as described in Ex-17A. 1H-NMR (CDCl3) δ 7.53 (d, J=7 Hz, 1H), 7.37 (dd, J=2, 5 Hz, 1H), 7.06 (dd, J=4, 6 Hz, 1H), 6.98-7.00 (m, 1H), 6.88-6.95 (m, 2H), 3.84 (s, 3H), 2.10 (s, 3H).


The title compound was prepared by condensing 1-(2-methoxy-4-thiophen-2-yl-phenyl)-ethanone (Ex-19A) and 4-carboxybenzaldehyde in a similar manner as described in Ex-17 except an acidic workup. Yellow solid, mp 193-195° C. 1H-NMR (CDCl3) □ 7.70 (d, J=8 Hz, 2H), 7.38 (d, J=8 Hz, 1H), 7.07-7.16 (m, 4H), 6.75-6.80 (m, 4H), 6.42 (d, J=16 Hz, 1H), 3.67 (s, 3H), MS m/z=364 ([M]+, 100%). Anal. Calculated for C21H16O4S: C, 69.21; H, 4.43; S, 8.80; found: C, 69.02; H, 4.56; S, 8.75.


Example 20



embedded image


4-[3E-(4-Pyrrolidin-1-yl-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-20A: A solution of 3-bromo-4-flouro-benzaldehyde (5.0 g, 24.6 mmol) and thiophene-2-boronic acid (4.7 g, 37.0 mmol) in ethylene glycol dimethyl ether (100 mL) was stirred at room temperature under nitrogen for 15 min. Then tetrakis(triphenylphosphine)-palladium(0) (2.8 g, 2.42 mmol) and a sodium carbonate solution (2 M, 33 mL) were added, and the resulting mixture was refluxed under nitrogen overnight. Upon cooling to room temperature the reaction was poured into water (100 mL) and extracted with ethyl acetate (2×100 mL). The organic phase was dried over magnesium sulfate, and the solvent was removed under reduced pressure. Silica gel chromatography (hexane/ethyl acetate, 1:1) gave 4.8 g (95%) of the desired 4-fluoro-3-(thiophen-2-yl)-benzaldehyde product as a yellow oil. 1H-NMR (300 MHz, CDCl3) δ 10.0 (s, 1H), 8.18 (dd, 1H, J=7.3 and 2.4 Hz), 7.80 (m, 1H), 7.56 (dd, 1H, J=3.7 and 1.7 Hz), 7.44 (d, 1H, J=5.1 Hz), 7.36 (m, 1H), 7.16(dd, 1H, J=5.1 and 3.7 Hz).


Ex-20B: A solution of 4-fluoro-3-(thiophen-2-yl)-benzaldehyde (1.11 g, 5.38 mmol) from Ex-20A and pyrrolidine (13.0 g, 183.0 mmol) in dimethylformamide (30 mL) was treated with solid K2CO3 (1.7 g, 12.3 mmol), and the resulting mixture was stirred at reflux for 1 week. Upon cooling to room temperature, the reaction was poured into water (100 mL) and extracted with ethyl acetate (2×100 mL). The organic phase was dried over magnesium sulfate, and the solvent was removed under reduced pressure. Silica gel chromatography (hexane/ethyl acetate, 2:1) gave 400 mg (29%) of the desired 4-pyrrolidin-1-yl-3-(thiophen-2-yl)-benzaldehyde product as a yellow oil. 1H-NMR (300 MHz, CDCl3) δ 9.75 (s, 1H), 7.71-7.74 (m, 2H), 7.30 (dd, 1H, J=5.1 and 1.6 Hz), 7.02 (dd, 1H, J=5.1 and 3.7 Hz), 6.96 (m, 1H), 6.81 (d, 1H, J=10.1 Hz), 3.15 (m, 4H), 1.84 (m, 4H).


4-Pyrrolidin-1-yl-3-(thiophen-2-yl)-benzaldehyde (400 mg, 1.55 mmol) from Ex-20B and 4-acetylbenzoic acid (255 mg, 1.55 mmol) were dissolved in dimethylformamide (30 mL). Sodium hydroxide solution (5 N, 1.25 mL) was added in one portion, and the mixture was stirred at room temperature overnight. The reaction was diluted with water (100 mL) and washed with ethyl acetate (100 mL). The aqueous phase was acidified with conc. HCl and extracted with ethyl acetate (2×100 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. Silica gel chromatography (100% ethyl acetate) followed by recrystallization from ethanol provided 80 mg (13%) of the title compound as a solid, m.p. 212-214° C. with decomposition. 1H-NMR (300 MHz, CDCl3) δ 8.21 (d, 2H, J=8.4 Hz), 7.06 (d, 2H, J=8.4 Hz), 7.80 (d, 1H, J=15.3 Hz), 7.58 (d, 1H, J=1.9 Hz), 7.52 (dd, 1H, J=8.5 and 1.9 Hz), 7.33 (m, 1H), 7.32 (d, 1H, 15.3 Hz), 7.01-7.06 (m, 2H), 6.82 (d, 1H, 7.9 Hz), 3.12 (m, 4H), 1.84 (m, 4H). MS m/z=403 ([M]+, 100%). HRMS (EI) Calcd. for C24H21NO3S: 403.1242. Found: 403.1251.


Example 21



embedded image


4-[3E-{4-Fluoro-3-(thiophen-2-yl)-phenyl}-acryloyl]-benzoic acid

4-Fluoro-3-thiophen-2-yl-benzaldehyde (1.0 g, 4.85 mmol, from Ex-20A) and 4-acetylbenzoic acid (0.80 g, 4.87 mmol) were dissolved in dimethylformamide (55 mL). Sodium hydroxide solution (5 N, 3.88 mL) was added in one portion, and the mixture was stirred at room temperature for 3 h. The reaction was diluted with water (100 mL) and washed with ethyl acetate (100 mL). The aqueous phase was acidified with conc. HCl and extracted with ethyl acetate (2×100 mL). The organic phase was dried over magnesium sulfate and concentrated under reduced pressure. Recrystallization from ethanol provided 0.90 g (53%) of the title compound as a solid, m.p. 242-244° C. 1H-NMR (300 MHz, d6-DMSO) δ 13.31 (bs, 1H), 8.32 (dd, 1H, J=8.2 and 2.0 Hz), 8.24 (d, 2H, J=8.2 Hz), 8.07 (d, 2H, J=7.9 Hz), 7.98 (d, 1H, J=16.1 Hz), 7.92 (m, 1H), 7.80 (d, 1H, J=16.1 Hz), 7.69-7.73 (m, 2H), 7.41 (dd, 1H, 10.8 and 9.2 Hz), 7.20 (m, 1H). MS m/z=352 ([M]+, 50%), 343 (100%). HRMS (EI) Calcd. for C20H13FO3S: 352.0569. Found: 352.0571.


Example 22



embedded image


1-(4-Mercapto-phenyl)-3E-(4-thiophen-2-yl-phenyl)propenone

To a solution of 4-mercaptoacetophenone (prepared according to European Patent Application 0271307) (0.57 g, 3.74 mmol) and 4-(thien-2-yl)-benzaldehyde (0.70 g, 3.74 mmol, Ex. 2A) in N,N-dimethylformamide (20 mL) was added a solution of sodium hydroxide (5 M, 3 mL). The solution was allowed to stir at room temperature for 3 h. The reaction mixture was then acidified with hydrochloric acid (0.5 M) to pH 3. The precipitate was collected by filtration, washed with water, and stirred in ethanol overnight. The resulting yellow solid was collected by filtration, washed with ethanol, and dried in vacuo to afford 0.68 g (56%) of the title compound as a solid, m.p.>110° C. (dec). MS (direct probe) m/z=322 (M+). 1H-NMR (CDCl3) δ 7.98-8.01 (d, 1H), 7.90-7.93 (d, 1H), 7.797.84 (d, 2H), 7.61-7.66 (m, 3H), 7.33-7.53 (m, 4H), 7.10-7.25 (m, 2H).


Example 23



embedded image


{4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-phenylthio}-acetic acid

Ex-23A: To a solution of methyl bromoacetate (1.01 mL, 10.7 mmol) in potassium hydroxide (5M, 20 mL) was added benzenethiol (1.0 mL, 9.7 mmol). The reaction mixture was allowed to stir overnight at ambient temperature. The cloudy solution was then acidified to pH 3. The resulting solid was filtered, washed with water and dried in vacuo to obtain phenylthioacetic acid (0.55 g). The aqueous filtrate was extracted with dichloromethane. The solution of dichloromethane was washed with brine, dried over sodium sulfate and concentrated to obtain additional phenylthioacetic acid (1.49 g). 1H NMR (CDCl3) δ 743-7.40 (m, 2H), 7.34-7.23 (m, 3H), 3.67 (s, 2H).


Ex-23B: To a mixture of alumina chloride (5.5 g, 41.0 mmol) in carbon disulfide (100 mL) was added acetyl chloride (1.17 mL, 16.5 mmol) followed by addition of phenylthioacetic acid (Ex-23A, 1.38 g, 8.2 mmol) and nitromethane (15 mL). The reaction mixture was allowed to stir overnight at ambient temperature and then was poured into ice containing sulfuric acid (6M). The insoluble solid was filtered, washed with water. After dried in vacuo, the solid was washed with toluene (2×60 mL), filtered and dried under reduced pressure to obtain (4-acetylphenylthio)acetic acid (1.28 g, 74%), m.p. 151-153° C. (Lit. 156-158° C.). 1H NMR (DMSO-d6) δ 12.80 (bs, 1H), 7.84 (d, J=9 Hz, 2H), 7.36 (d, J=9 Hz, 2H), 3.92 (s, 2H), 2.49 (s, 3H).


The title compound was prepared by condensing (4-acetylphenylthio)acetic acid (Ex-23B) and 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde (Ex-3A) in a similar manner as described in Ex-22. Yellow solid, mp 136-138° C. (dec.). 1H-NMR (DMSO-d6) δ 8.35 (s, 1H), 8.08 (d, J=7.4 Hz, 2H), 8.03 (d, J=16.3 Hz, 1H), 7.93-7.87 (m, 3H), 7.82 (d, J=7.0 Hz, 1H), 7.42 (d, J=7.9 Hz, 2H), 7.37-7.27 (m, 2H), 6.85 (s, 1H), 4.02 (s, 3H), 3.99 (s, 3H), 3.93 (s, 2H). MS m/z=491 ([M+H]+, 100%).


Example 24



embedded image


1-(4-Methylthiophenyl)-3E-(4-thiophen-2-yl-phenyl)-propenone

To a mixture of 1-(4-mercapto-phenyl)-3E-(4-thien-2-yl-phenyl)-proenone (Ex-22, 0.33 g, 1.02 mmol) and potassium carbonate (0.54 g, 3.9 mmol) in N,N-dimethylformamide (15 mL) was added iodomethane (0.32 mL, 5.1 mmol). The reaction mixture was allowed to stir at ambient temperature for 2 hours. The insoluble material was filtered. The solution was diluted with ethyl acetate. The solution of ethyl acetate was washed with hydrochloric acid (0.5 M), sodium carbonate (2M) and brine, dried over sodium sulfate, and concentrated. The crude product was purified by flash chromatography. Elution with ethyl acetate (33%, v/v, in hexane) gave the title compound (20 mg, 6%) as a yellow solid, mp 138-140° C. 1H-NMR (CCDl3) δ 7.98 (d, J=7.8 Hz, 2H), 7.89-7.86 (m, 1H), 7.83 (d, J=15.3 Hz, 1H), 7.76 (s, 3H), 7.53 (d, J=15.1 Hz, 1H), 7.41 (d, J=3.7 Hz, 1H), 7.35-7.31 (m, 3H), 7.13-7.10 (s, 1H), 2.54 (m, 3H). MS m/z=336 (M+, 100%).


Example 25



embedded image


Difluoro-{4-[3E-(4-thiophen-2-yl-phenyl)acryloyl]-phenylthio}-acetic acid, sodium salt

Ex-25A: To a solution of 4-mercaptoacetophenone (prepared according to published procedure, European Patent Application 0271307) (1.16 g, 7.6 mmol) and ethyl bromodifluoroacetate (1.2 mL, 9.15 mmol) in N,N-dimethylformamide (20 mL) was added potassium carbonate (3.2 g, 22.9 mmol). The reaction mixture was allowed to stir overnight at ambient temperature and then was diluted with ethyl acetate. The combined solution of ethyl acetate was subsequently washed with water, hydrochloric acid (0.5M), brine, dried over sodium sulfate and concentrated. The residue was purified by flash chromatography. Elution with ethyl acetate (33%, v/v, in hexane) gave (4-acetyl-phenylthio)-difluoro-acetic acid ethyl ester (1.38 g, 66%). 1H NMR (CDCl3) δ 7.97 (d, J=8 Hz, 2H), 7.90 (d, J=8 Hz, 2H), 4.29 (q, J=7 Hz, 2H), 2.62 (s, 3H), 1.29 (t, J=7 Hz, 3H).


The title compound was prepared by condensing (4-acetyl-phenylthio)-difluoro-acetic acid ethyl ester (Ex-25A) and 4-(thien-2-yl)benzaldehyde (Ex-2A) in a similar manner as described in Ex-22. Yellow solid, 3% yield, mp 118-2200C. 1H-NMR (CCDl3) δ 8.11 (d, J=7.9 Hz, 2H), 7.95-7.90 (m, 3H), 7.75-7.70 (m, 3H), 7.66 (m, 3H), 7.59 (d, J=5.0 Hz, 1H), 7.16-7.13 (m, 1H). MS m/z=415 ([M−Na]+, 50%), 321 (100%).


Example 26



embedded image


4-[3E-(4-Thiophen-2-yl-phenyl)-acryloyl]-benzenesulfonamide

Ex-26A: To a solution of 4-acetyl-benzenesulfonyl chloride (Hoffman, R. V. Org. Syn. VII, 508; 4.18 g, 19.1 mmol) in acetone (30 mL) was added ammonia (28% in water, 8.2 mL, 57.3 mmol) dropwise at 0° C. The reaction mixture was allowed to stir at 0° C. for 30 min. The precipitate was filtered and the residue was washed with water and dried in vacuo to afford 4-acetyl-benzenesulfonamide as a white solid (3.54 g, 93%). 1H NMR (DMSO-d6) δ 8.10 (d, J=9 Hz, 2H), 8.03 (d, J=9 Hz, 2H), 4.86 (bs, 2H), 2.65 (s, 3H).


To a solution of 4-acetyl-benzsulfonamide (Ex-26A, 0.44 g, 2.2 mmol) and 4-thiophen-2-yl-benaldehde (Ex-2A, 0.50 g, 2.7 mmol) in DMF (18 mL) was added a solution of NaOH (5 M, 1.77 mL, 8.8 mmol) dropwise. The reaction mixture was allowed to stir at ambient temperature. The reaction was quenched after 2 hours with water. The precipitate was filtered, washed with water, dried in vacuo and purified by stirring in aqueous ethanol overnight. The title compound was collected as a yellow solid (0.45 g, 55%), mp>2450C. 1H-NMR (DMSO-d6) δ 8.22 (d, J=8.6 Hz, 2H), 7.96-7.89 (m, 6H), 7.77-7.72 (m, 5H), 7.64 (d, J=4.0 Hz, 1H), 7.60 (d, J=4.6, 1H), 7.15 (m, 1H), 6.65 (bs, 1H). MS m/z=369 ([M+H]+, 100%).


Example 27



embedded image


3E-3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-1-H-indol-5-yl)propenone

To a solution of 1-(1H-indol-5-yl)-ethanone (Yang, Y., et al., Heterocycles, 1992, 34(6), 1169-1175) (0.26 g, 1.63 mmol) and 3,4-dimethoxy-5-(thien-2-yl)-benzaldehyde (0.45 g, 1.80 mmol, Ex-1D) in ethanol (30 mL) was added a solution of sodium hydroxide (50%, 0.65 mL, 16 mmol). The reaction mixture was allowed to stir overnight at room temperature. The solution was concentrated. The residue was treated with sulfuric acid (1 M), and the cloudy solution was extracted with dichloromethane. The combined dichloromethane extracts were washed with saturated sodium bicarbonate, brine, dried over sodium sulfate, and concentrated. The residue was purified by column chromatography (silica gel, EtOAc/hexane: 1/3 then 1/1) to give 0.17 g (26%) of the title compound as a yellow solid, m.p. 184.5-186° C. MS (direct probe): m/z=389 (M+). 1H-NMR (300 MHz, CDCl3) δ 8.43 (s, 1H), 7.99 (d, 1H), 7.12-7.83 (m, 10H), 6.73 (s, 1H), 3.99 (s, 3H), 3.88 (s, 3H).


Example 28



embedded image


3E-(3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-1-(1-methyl-1H-indol-5-yl)-propenone

Ex-28A: To a solution of 1-(1H-indol-5-yl)-ethanone (Yang, Y. et al, Heterocycles, 1992, 34(6), 1169-1175; 0.45 g, 2.8 mmol) were added iodomethane (3 mL) and cesium carbonate (2.3 g, 7.1 mmol). The reaction mixture was allowed to stir at 55° C. for 1.5 day during which additional iodomethane (11 mL) was added. The reaction was quenched with water. The aqueous solution was extracted with ether. The solution of ether was washed with saturated solution sodium bicarbonate, brine, dried over sodium sulfate and concentrated. The crude product was purified by flash chromatography. Elution with ethyl acetate (33%, v/v, in hexane) gave 1-(1-methyl-1H-indol-5-yl)-ethanone (0.25 g, 51%). 1H NMR (CDCl3) δ 8.30 (s, 1H), 7.91 (dd, J=1.2, 8.1 Hz, 1H), 7.34 (d, J=8.6 Hz, 1H), 7.12 (d, J=3.2 Hz, I), 6.61 (d, J=3.0, 1H), 3.82 (s, 3H), 2.66 (s, 3H).


The title compound was prepared by condensing 1-(1-methyl-1 H-indol-5-yl)-ethanone (Ex-28A) and 3,4-dimethoxy-5-(thien-2-yl)benzaldehyde (Ex-1D) in a similar manner as described in Ex-27. Yellow solid, 43% yield, mp 70-71-C. 1H-NMR (CDCl3) δ 8.41(s, 1H), 8.00 (dd, J=1 Hz, 7 Hz, 1H), 7.80 (d, J=15 Hz, 1H), 7.63 (d, J=15.0 Hz, 1H), 7.58-7.55 (m, 2H), 7.43-7.40 (m, 2H), 7.15-7212 (m, 3H), 6.66 (d, J=3 Hz, 1H), 3.99 (s, 3H), 3.88 (s, 3H), 3.86 (s, 3H). Anal. (C24H21NOS.0.25H2O) Calc. C, 70.65; H, 5.31; N, 3.43; S, 7.86; found C, 70.64; H, 5.35; N, 3.43; S, 7.90.


Example 29



embedded image


4-3E-{4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic Acid

Ex-29A: 2-Hydroxy-4-methoxybenzaldehyde (6.0 g, 39 mmol) was dissolved in dichloromethane (50 mL) and cooled to 0° C. using an ice-water bath. Bromine (6.8 g, 43 mmol) in dichloromethane (2 mL) was added dropwise to the cooled solution and stirred for 2 h at 0° C. The mixture was warmed to room temperature and stirred for an additional 1 h and the resulting yellow precipitate was collected. Recrystallization (ethyl acetate/hexanes) yielded 7.1 g (80%) of 5-bromo-2-hydroxy-4-methoxybenzaldehyde as white needles, m.p. 63-640C. 1H- NMR (300 MHz, CDCl3) δ 11.43 (s, 1H), 9.69 (s, 1H), 7.68 (s, 1H), 6.48 (s, 1H), 3.95 (s, 3H). Anal. Calcd. for C8H7BrO3: C, 41.59; H, 3.05. Found: C, 41.86; H, 3.05.


Ex-29B: 5-Bromo-2-hydroxy-4-methoxybenzaldehyde obtained from Ex-29A (1.5 g, 6.5 mmol) and thiophene-2-boronic acid (0.91 g, 7.1 mmol) were dissolved in tetrahydrofuran (15 mL). Nitrogen was bubbled into the solution for 10 min followed by the sequential addition of potassium fluoride (0.80 g, 14 mmol, spray-dried) and bis(tri-t-butylphosphine)palladium (0) (0.033 g, 0.065 mmol). The solution was immediately heated to 60° C. and aged for 1.5 h. Upon completions as determined by HPLC, the reaction was diluted with water (25 mL) and extracted with ethyl acetate (3×30 mL). The combined organic extracts were dried over sodium sulfate and concentrated to a brown solid. Silica gel chromatography (ethyl acetate/hexanes, 1:3) gave 1.46 g (97%) of 2-hydroxy-4-methoxy-5-thiophen-2-yl-benzaldehyde as a yellow solid, m.p. 118-119-C. 1H-NMR (300 MHz, CDCl3) δ 11.48 (s, 1H), 9.79 (s, 1H), 7.72 (s, 1H), 7.37 (dd, 1H), 7.31 (dd, 1H), 7.08 (dd, 1H), 6.54 (s, 1H), 3.98 (s, 3H). Anal. Calcd. for C8H7O3S: C, 61.52; H, 4.30; S, 13.69. Found: C, 61.12; H, 4.34; S, 13.56.


Ex-29C: To a solution of 2-hydroxy-4-methoxy-5-thiophen-2-yl-benzaldehyde from Ex-29B (0.10 g, 0.43 mmol) in N,N-dimethylformamide (3 mL) was added potassium carbonate (0.18 g, 1.3 mmol) and the resulting yellow slurry was heated to 80° C. Once at 80° C., 1-bromo-2-(2-methoxyethoxy)ethane (0.24 g, 1.3 mmol) was added dropwise in three equal portions with stirring at 1 h intervals. After the last addition, the reaction was stirred for an additional 1 h at 80° C. and cooled to room temperature. The mixture was diluted with water (15 mL) and extracted with ethyl acetate (3×15 mL). The combined organic layers was sequentially washed with a saturated ammonium chloride solution (1×15 mL), water (1×15 mL), and brine (1×15 mL), dried over sodium sulfate, and concentrated to a brown oil. Silica gel chromatography (ethyl acetate/hexanes, 4:1) afforded 0.13 g (87%) of 4-methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-benzaldehyde as a pale yellow oil. 1H-NMR (300 MHz, CDCl3) δ 10.38 (s, 1H), 8.12 (s, 1H), 7.44 (dd, 1H), 7.30 (dd, 1H), 7.07 (dd, 1H), 6.57 (s, 1H), 4.33 (t, 2H), 4.00 (s, 3H), 3.94 (t, 2H), 3.74m, 2H), 3.59 (m, 2H), 3.40 (s, 3H). HRMS (EI) Calcd. for C17H20O5S: 336.1031. Found: 336.1027.


4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-benzaldehyde obtained from Ex-29C (0.13 g, 0.37 mmol) and 4-acetylbenzoic acid (0.061 g, 0.37 mmol) were dissolved in a tetrahydrofuran-methanol solution (2 mL, 7:3). After complete dissolution, lithium methoxide (0.057 g, 1.5 mmol) was added and the resulting bright orange slurry was stirred in the dark at room temperature for 4 h. Upon completion, as determined by HPLC, the mixture was diluted with water (10 mL), acidified with a 1 N hydrochloric acid solution, and extracted with ethyl acetate (3×15 mL). The combined organic extracts were dried over sodium sulfate and to dryness. The crude oil was taken up in ethyl alcohol (3 mL) a 60° C. to obtain complete dissolution and allowed to cool to room temperature. The resulting precipitate was collected and dried in vacuo to yield 0.14 g (85%) of the title compound as a yellow solid, m.p. 145-146-C. 1H-NMR (300 MHz, DMSO-d6) δ 8.22 (m, 3H), 8.09 (d, 2H), 8.01 (d, 2H), 7.66 (dd, 1H), 7.52 (d, 1H), 7.13 (dd, 1H), 6.88 (s, 1H), 4.36 (t, 2H), 4.00 (s, 3H), 3.88 (t, 2H), 3.65 (m, 2H), 3.46 (m, 2H), 3.22 (s, 3H). Anal. Calcd. for C26H26NO7S: C, 64.71; H, 5.43; S, 6.64. Found: C, 64.64; H, 5.44; S, 6.61.


Example 30



embedded image


4-[3E-(2-Fluoro-4-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-30A: 2-Fluoro-4-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-3A from thiophene-2-boronic acid and 4-bromo-2-fluorobenzaldehide (93% yield). 1H-NMR (300 MHz, d6-DMSO): 10.13 (s, 1H), 7.81 (d, 1H, J=8.0 Hz), 7.76 (m, 1H), 7.67 (m, 2H), 7.59 (dd, 1H J=8.0 and 2.1 Hz), 7.17 (dd, 1H J=5.2 and 3.7 Hz).


The title compound was prepared by condensing 2-fluoro-4-thiophen-2-yl-benzaldehyde (Ex-30A) and 4-acetylbezoic acid in a similar manner as described in Ex-3. Yellow solid, 71% yield, m.p.>260° C. 1H-NMR (300 MHz, d6-DMSO): 8.19 (d, 2H, J=8.4 Hz), 8.12 (d, 1H, J=8 Hz), 8.06 (d, 2H, J=8 Hz), 7.95 (d, 1H, J=16 Hz), 7.80 (d, 1H, J=16 Hz), 7.71 (d, 1H, J=3.5 Hz), 7.62 (m, 2H), 7.56 (d, 1H, J=8 Hz), 7.15 (m, 1H). MS m/z=352 ([M]+, 100%). HRMS (EI) Calcd. for C20H13NO3S: 352.0569. Found: 352.0560.


Example 31



embedded image


4-[3E-2,4-Dimethoxy-5-pyrimidin-5-yl-phenyl)-acryloyl]-benzoic acid

Ex-31A: 2,4-Dimethoxy-5-pyrimidin-5-yl-benzaldehyde was prepared from 5-bromo-2,4-dimethoxybenzaldehyde and pyrimidine-5-boronic acid in a similar manner as described in Ex-3A, 98% yield. 1H-NMR (CDCl3) δ 10.37 (s, 1H), 9.15 (s, 1H), 8.87 (s, 2H) 7.86(s, 1H), 6.57 (s, 1H), 4.03 (s, 3H), 3.96 (s, 3H).


The title compound was prepared by condensing 2,4dimethoxy-5-pyrimidin-5-yl-benzaldehyde (Ex-31A) and 4-acetylbezoic acid in a similar manner as described in Ex-3. Yellow solid, mp>260° C., 26% yield. 1H-NMR (DMSO-d6) & 9.11 (s, 1H), 8.96 (s, 2H), 8.13-8.16 (m, 3H), 8.01-8.09 (m, 3H), 7.90 (d, J=15 Hz, 1H), 6.85(s, 1H), 3.99 (s, 3H), 3.91(s, 3H), MS m/z=391 ([M+H]+, 100%). HRMS (ES+) Calcd. for C22H18N2O5: 391.1294. Found: 391.1295.


Example 32



embedded image


4-[3E-(2-Cyclopropylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-32A: 2-Cyclopropylmethoxy-4-methoxy-5-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-29C from 2-hydroxy-4-methoxy-5-thiophen-2-yl- benzaldehyde (Ex. 29B) and chloromethyl-cyclopropane, 18% yield. 1H-NMR (CDCl3) & 10.41 (s, 1H), 8.24 (s, 1H), 7.43 (d, 1H), 7.29 (d, 1H), 7.06 (t, 1H), 6.45 (s, 1H), 3.95 (m, 5H), 1.31 (m, 1H), 0.68 (m, 2H), 0.40 (q, 2H).


The title compound was prepared by condensing 2-cyclopropylmethoxy-4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-32B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 187-191° C. 1H-NMR (DMSO-d6) & 8.22 (d, 2H), 8.19 (s, 1H), 7.01 (m, 4H), 7.62 (d, 1H), 7.47 (d, 1H), 7.09 (t, 1H), 6.76 (s, 1H), 4.06 (d, 2H), 3.94(s, 3H), 1.34 (m, 1H), 0.62 (q, 2H), 0.38 (q, 2H). MS m/z=434 ([M]+, 82%), 363 (100%). 10%. Anal. for C25H22O5S. HRMS m/z: calc. 435.1266, found 435.1266.


Example 33



embedded image


4-{3E-[5-(3,5Dimethyl-isoxazol-4-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid

Ex-33A: 5-(3,5-Dimethyl-isoxazol-4-yl)2,4-dimethoxy-benzaldehyde was prepared from 5-bromo-2,4-dimethoxybenzaldehyde and 3,5-dimethyl-isoxazole-4-boronic acid in a similar manner as described in Ex-3A, 75% yield. 1H-NMR (CDCl3) δ 10.34 (s, 1H), 7.63 (s, 1H), 6.52 (s, 1H), 4.00 (s, 3H), 3.90 (s, 3H), 2.12(s, 6H).


The title compound was prepared by condensing 5-(3,5-dimethyl-isoxazol-4-yl)-2,4-dimethoxy-benzaldehyde (Ex-33A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp>260° C., 7% yield. 1H-NMR (DMSO-4) δ 8.15 (d, J=8 Hz, 2H), 8.04 (d, J=16 Hz, 1H), 8.02 (d, J=8 Hz, 2H), 7.89 (s, 114), 7.81(d, J=16 Hz, 1H), 6.79(s, 1H), 4.00 (s, 3H), 3.97(s, 3H), 2.23 (s, 3H) 2.05 (s, 3H) MS m/z=407 ([M]+, 60%), 376 (100%). HMRS (EI) calcd. for C23H21NO6: 407.1369; found: 407.1375.


Example 34



embedded image


4-[3E-(4-Methoxy-2-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-34A: A solution of 2-hydroxy-4-methoxy-benzaldehyde (5.0 g, 32.86 mmol) in dichloromethane (65 mL) was cooled to 0° C. and then pyridine (13.3 mL, 164.4 mmol) was added in 1 portion. Triflic anhydride (14.8 mL, 87.97 mmol) was then added over 2 h while maintaining an internal temperature below 5° C. The resulting solution was allowed to warm to room temperature overnight and then was slowly poured into ice water (100 mL). After diluting further with 1 N HCl (100 mL) the solution was extracted with dichloromethane (2×100 mL). The organic phase was washed with sat NaHCO3 (100 mL) and dried over magnesium sulfate. The solvent was then removed under reduced pressure. Silica gel chromatography (hexane/ethyl acetate, 1:1) gave 1.65 g (18%) of the desired trifluoro- methanesulfonic acid 2-formyl-5-methoxy-phenyl ester. 1H-NMR (300 MHz, CDCl3): 10.12 (s, 1H), 7.94 (dd, 1H, J=8.7 Hz), 7.03 (dd, 1H, J=8.7 and 2.4 Hz), 6.87 (d, 1H, J=2.4 Hz), 3.92 (s, 3H).


Ex-34B: A solution of trifluoro-methanesulfonic acid 2-formyl-5-methoxy-phenyl ester (Ex-34A, 1.6 g, 5.63 mmol) in 1,4-dioxane (15 mL) was stirred at room temperature under nitrogen for 5 min. Thiophene-2-boronic acid (1.08 g, 8.44 mmol), tetrakis(triphenylphosphine)- palladium(0) (0.65 g, 0.56 mmol) and a potassium phosphate (2.2 g, 10.36 mmol) were then added and the resulting mixture was heated to 95° C. under nitrogen overnight. Upon cooling to room temperature the reaction was diluted with EtOAc (25 mL) and water (25 mL) and the layers were cut. The organic phase was concentrated under reduced pressure. Silica gel chromatography (hexane/ethyl acetate, 4:1) gave 1.1 g (90%) of the desired 4-methoxy-2-thiophen-2-yl-benzaldehyde product. 1H-NMR (300 MHz, CDCl3): 10.06 (s, 1H), 8.03 (m, 1H), 7.45 (m, 1H), 7.14 (m, 1H), 7.09 (m, 1H), 7.00 (m, 2H), 3.91 (s, 3H).


The title compound was prepared by condensing 4-methoxy-2-thiophen-2-yl-benzaldehyde (Ex-34A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 61% yield, m.p. 209-211° C. 1H-NMR (300 MHz, d6-DMSO): 8.14 (m, 3H), 8.04 (d, 2H, J=9.2 Hz), 7.89 (d, 1H, J=15.5 Hz), 7.76 (d, 1H, J=15.5 Hz), 7.70 (d, 1H, J=5.0 Hz), 7.18 (dd, 1H, J=5.6 and 3.6 Hz), 7.11 (d, 1H, J=2.1 Hz), 7.05 (dd, 1H, J=8.8 and 1.8 Hz), 6.98 (d, 1H, J=1.8 Hz), 3.83 (s, 3H). MS m/z=364 ([M]+, 100%). HRMS (EI) Calcd. for C21H16O4S: 364.0769. Found: 364.0761.


Example 35



embedded image


2-[3E-2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

The title compound was prepared by condensing 2,4-dimethoxy-5-(thiophen-2-yl) benzaldehyde (Ex-6A) and 2-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 47% yield, mp 196-198° C. 1H-NMR (DMSO-d6) δ 8.00 (s, 1H), 7.84 (d, 1H), 7.61 (m, 3H), 7.45 (m, 3H), 7.21 (d, 1H), 7.08 (t, 1H), 6.75 (s, 1H), 3.95 (s, 3H), 3.86 (s, 3H). MS m/z=394 ([M]+, 100%). Anal. calculated for C22H1805S: C, 66.99, H, 4.60, S, 8.13; found C, 67.08; H, 4.17, S: 7.97.


Example 36



embedded image


2-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-indole-1-carboxylic acid tert-butyl ester

Ex-36A: 2-(5-Formyl-2,4-dimethoxy-phenyl)indole-1-carboxylic acid tert-butyl ester was prepared from 5-bromo-2,4-dimethoxybenzaldehyde and N-Boc-indole-2-boronic acid in a similar manner as described in Ex-3A. Yellow oil, 79% yield. 1H-NMR (CDCl3) δ 10.36 (s, 1H), 8.15 (d, J=8 Hz, 1H), 7.88 (s, 1H), 7.45 (d, J=8 Hz, 3H), 7.27-7.35 (m, 1H), 7.19-7.27 (m, 1H), 6.52 (s, 1H), 6.47 (s, 1H), 4.00 (s, 3H), 3.86 (s, 3H), 1.42 (s, 9H).


The title compound was prepared by condensing 2-(5-formyl-2,4-dimethoxy-phenyl)-indole-1-carboxylic acid tert-butyl ester (Ex-36A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 8% yield, mp 182-183° C. 1H-NMR (CDCl3) δ 8.21 (d, J=8 Hz, 2H), 8.19 (d, J=13 Hz, 1H), 8.16 (d, J=7 Hz, 1H), 8.07 (d, J=8 Hz, 2H), 7.69 (s, 1H), 7.54 (d, J=7 Hz, 1H), 7.52 (d, J=13 Hz, 1H), 7.29-7.35 (m, 1H), 7.23 (d, J=7 Hz, 1H), 6.55 (s, 1H), 6.50 (s, 1H), 4.00 (s, 3H), 3.85 (s, 3H), 3.81 (s, 3H). MS m/z=528 ([M+H]+, 100%). Anal. calc. for C31H29NO7—H2O: C, 68.25; H, 5.73; N, 2.56; found: C, 68.63; H, 5.62; N, 2.45.


Example 37



embedded image


4-[3E-(2,6-Dimethoxy-4-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-37A: 2,6-Dimethoxy-4-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-34A and Ex-34B. 75% yield, m.p. 168-170° C. 1H-NMR (300 MHz, CDCl3): 10.48 (s, 1H), 7.43 (dd, 1H, J=3.6 and 1.3 Hz), 7.41 (d, 1H, J=5.3 Hz), 7.13 (dd, 1H, J=5.3 and 3.6 Hz), 6.79 (s, 2H), 3.96 (s, 6H).


The title compound was prepared by condensing 2,6-dimethoxy-4-thiophen-2-yl-benzaldehyde (Ex-37A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 79% yield, m.p. 256-258° C. 1H-NM, (300 MHz, d6-DMSO): 8.11 (d, 1H, J=15.9 Hz), 8.10 (m, 4H), 8.05 (d, 1H, J=15.9 Hz), 7.73 (d, 1H, J=3.6 Hz), 7.61 (d, 1H, J=5.3 Hz), 7.16 (dd, 1H, J=5.3 and 3.6 Hz), 6.95 (s, 2H), 3.98 (s, 6H). MS m/z=394 ([M]+, 100%). HRMS (EI) Calcd. for C22H18O5S: 394.0875. Found: 394.0877.


Example 38



embedded image


4-{3E-[5-(2,4-Dimethoxy-pyrimidin-5-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid

Ex-38A: 5-2,4-Dimethoxy-pyrimidin-5-yl)-2,4-dimethoxy-benzaldehyde was prepared from 5-bromo-2,4-dimethoxybenzaldehyde and 2,4-Dimethoxy-pyrimidin-5-boronic acid in a similar manner as described in Ex-3A, 75% yield. 1H-NMR (CDCl3) δ 10.34 (s, 1H), 8.13 (s, 1H), 7.74(s, 1H), 6.51 (s, 1H), 4.03 (s, 3H), 3.99 (s, 3H), 3.95(s, 3H), 3.88 (s, 3H).


The title compound was prepared by condensing 5-(2,4-dimethoxy-pyrimidin-5-yl)-2,4-dimethoxy-benzaldehyde (Ex-38A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 203-205° C., 22% yield. 1H-NMR (DMSO-d6) δ 8.11-9.15 (m, 3H), 7.99-8.06 (m, 3H), 7.88 (s, 1H), 7.76 (d, J=17 Hz, 1H), 6.76(s, 1H), 3.96(s, 3H), 3.90(s, 3H), 3.83 (s, 3H) 3.81 (s, 3H). MS m/z=451 ([M+H]+). HRMS (ES+) Calcd. for C24H22N2O7: 451.1505. Found: 451.1524.


Example 39



embedded image


4-[3E-(2,4-Dimethoxy-6-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-39A: 2,4-Dimethoxy-6-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-34A, 40% yield. 1H-NMR (CDCl3) δ 10.02 (s, 1H), 7.40 (d, 1H), 7.07 (m, 2H), 6.58 (d, 1H), 6.50 (d, 1H), 3.93 (s, 3H), 3.89 (s, 3H).


The title compound was prepared by condensing 2,4-dimethoxy-6-thiophen-2-yl-benzaldehyde (Ex-39A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 61% yield, mp 231° C. (dec.). 1H-NMR (DMSO-d6) δ 8.02 (d, 2H), 7.93 (d, 2H), 7.73 (m, 3H), 7.15 (t, 1H), 7.07 (d, 1H), 6.72 (d, 1H), 6.62 (d, 1H). MS m/z=394 ([M]+, 6%), 245 (100%). HRMS m/z: calc. 395.0953, found 395.0949.


Example 40



embedded image


4-{3E-[2,4-Dimethoxy-S-(5-methyl-thiophen-2-yl)-phenyl]-acryloyl}-benzoic acid

Ex-40A: 2,4-Dimethoxy-5-(5-methyl-thiophen-2-yl)-benzaldehyde was prepared from 5-bromo-2,4-dimethoxybenzaldehyde and 5-methyl-thiophene-2-boronic acid in a similar manner as described in Ex-3A, 100% yield. 1H-NMR (CDCl3) δ 10.33 (s, 1H), 8.05 (s, 1H), 7.22 (d, J=4 Hz, 1H), 6.72 (d, J=4 Hz, 1H), 6.49 (s, 1H), 4.00 (s, 3H), 3.97 (s, 3H), 2.50 (s, 3H). HMRS (EI) calcd. for C14H14O3S: 262.0664; found: 262.0665.


The title compound was prepared by condensing 2,4-dimethoxy-5-(5-methyl-thiophen-2-yl)-benzaldehyde (Ex-40A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 213-215° C., 27% yield. 1H-NMR (DMSO-d6) δ 8.18 (d, J=7 Hz, 2H), 8.17 (s, 1H), 8.00-8.06 (m, 3H), 7.85 (d, J=15 Hz, 1H), 7.42(d, J=4 Hz, 1H), 6.78(m, 2H), 3.96 (s, 3H), 3.95(s, 3H), 2.42 (s, 3H). MS m/z=408 ([M]+, 100%). HMRS (EI) calcd. for C23H20O5S: 408.1031; found: 408.1023.


Example 41



embedded image


4-[3E-(4-Methoxy-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-41A: 4-Methoxy-3-(thiophen-2-yl)-benzaldehyde was prepared from 3-bromo-4-methoxybenzaldehyde and thiophene-2-boronic acid in a similar manner as described in Ex-3A. Orange oil, 96% yield. 1H-NMR (CDCl3) δ 9.94 (s, 1H), 8.16 (d, J=1.8 Hz, 1H), 7.80 (dd, J=2.4, 8.4 Hz, 1H), 7.57 (dd, J=1.8, 3.6 Hz, 1H), 7.38 (d, J=5.1 Hz, 1H), 7.12 (dd, J=3.6, 5.1 Hz, 1H), 7.09 (d, J=8.4 Hz, 1H), 4.02 (s, 3H). HRMS m/z: calc. 218.0402, found 218.0406.


The title compound was prepared by condensing 4-methoxy-3-(thiophen-2-yl)-benzaldehyde (Ex-41A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 219-220° C., 71% yield. 1H-NMR (DMSO-D6) δ 13.36 (br s, 1H), 8.25-8.31 (m, 3H), 8.11 (d, J=8 Hz, 2H), 7.85-7.98 (m, 3H), 7.78-7.80 (m, 1H), 7.61 (d, J=5 Hz, 1H), 7.25 (d, J=9 Hz, 1H), 7.17 (dd, J=4, 6 Hz, 1H), 3.99 (s, 3H). HRMS m/z=calc. 365.0848, found 365.0833.


Example 42



embedded image


4-[3E-(3-Thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-42A: 3-(Thiophen-2-yl)-benzaldehyde was prepared from 3-bromobenzaldehyde and thiophene-2-boronic acid in a similar manner as described in Ex-3A. Orange oil, 93% yield. 1H-NMR (CDCl3) δ 10.06 (s, 1H), 8.10 (s, 1H), 7.86 (d, J=8.4 Hz, 1H), 7.78 (d, J=7.2 Hz, 1H), 7.55 (dd, J=7.2, 8.4 Hz, 1H), 7.40 (dd, J=1.5, 3.6 Hz, 1H), 7.34 (dd, J=1.5, 5.3 Hz, 1H), 7.11 (dd, J=3.6, 5.3 Hz, 1H). HRMS m/z: calc. 188.0296, found 188.0293.


The title compound was prepared by condensing 3-(thiophen-2-yl)-benzaldehyde (Ex-42A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 238° C. (dec), 71% yield. 1H-NMR (DMSO-D6) δ 13.40 (bs, 1H), 8.29 (d, J=8 Hz, 2H), 8.22 (s, 1H), 8.13 (d, J=8 Hz, 2H), 8.04 (s, 1H), 7.87 (s, 1H), 7.83 (d, J=8 Hz, 1H), 7.73 (d, J=9 Hz, 1H), 7.69 (d, J=4 Hz, 1H), 7.63 (d, J=5 Hz, 1H), 7.52 (t, J=8 Hz, 1H), 7,20 (dd, J=4, 5 Hz, 1H). HRMS m/z=calc. 335.0742, found 335.0749.


Example 43



embedded image


3-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

The title compound was prepared by condensing 2,4-dimethoxy-5-(thiophen-2-yl) benzaldehyde (Ex-6A) and 3-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 65% yield, mp 179-182° C. 1H-NMR (DMSO-d6) δ 8.54 (s, 1H), 8.39 (d, 1H), 8.25 (s, 1H), 8.15 (d, 1H), 8.04 (d, 1H), 7.90 (d, 1H), 7.67 (m, 2H), 7.48 (d, 1H), 7.09(t, 1H), 6.81 (s, 1H), 3.98 (s, 3H), 3.97 (s, 3H). MS m/z=394 ([M]+, 72%), 363-(100%). Anal. calculated for C22H1805S: C, 66.99, H, 4.60, S, 8.13; found C, 66.80; H, 4.60, S: 8.07.


Example 44



embedded image


4-[3E-(3-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid

Ex-44A: 3-Benzo[b]thiophen-2-yl-2-hydroxy-4-methoxy-benzaldehyde was prepared through Suzuki coupling as described in Ex-3A using 3-bromo-2-hydroxy-4-methoxybenzaldehyde (obtained as a minor product from Ex-29A). 1H-NMR (CDCl3) δ 12.08 (s, 1H), 9.80 (s, 1H), 7.80-7.87 (m, 2H), 7.70 (s, 1H), 7.56 (d, J=9 Hz, 1H), 7.31-7.35 (m, 2H), 6.71 (d, J=9 Hz, 1H), 3.97 (s, 3H). HRMS m/z: calc. 284.0507, found 284.0502.


Ex-44B: 3-Benzo[b]thiophen-2-yl-2-hydroxy-4-methoxy-benzaldehyde (Ex-44A, 57.4 mg, 0.202 mmol) was dissolved in acetone (5 mL) and potassium carbonate (31 mg, 0.22 mmol) was added. Methyl iodide (25 uL, 0.40 mmol) was added and the solution was heated to reflux for 3.5 h. After cooling, the crude reaction mix was concentrated on the rotavap. The resulting residue was taken up in 10 mL of a 1:9 mix of saturated, aqueous NH4Cl to water and extracted with EtOAc (2×15 mL). The organic phase was dried over sodium sulfate, filtered, and concentrated to provide 58.5 mg of 3-benzo[b]thiophen-2-yl-2,4-dimethoxy-benzaldehyde as an orange, oily residue which was used without further purification, 97% yield. 1H-NMR (CDCl3) δ 10.31 (s, 1H), 7.92 (d, J=9 Hz, 1H), 7.81-7.88 (m, 2H), 7.56 (d, 1H), 7.33-7.39 (m, 2H), 6.88 (d, J=9 Hz, 1H), 3.91 (s, 3H), 3.64 (s, 3H).


The title compound was prepared by condensing 3-benzo[b]thiophen-2-yl-2,4-dimethoxy- benzaldehyde (Ex-44B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 237° C. (dec.), 64% yield. 1H-NMR (DMSO-d6) δ 13.37 (bs, 1H), 8.20-8.25 (m, 3H), 8.11 (d, J=8 Hz, 2H), 8.02 (d, J=8 Hz, 1H), 7.96 (d, J=9.;Hz, 2H), 7.88-7.91 (m, 1H), 7.65 (s, 1H), 7.35-7.43 (m, 2H), 7.14 (d, J=9 Hz, 1H), 3.90 (s, 3H), 3.53 (s, 3H). HRMS m/z=calc. 445.1110, found 445.1112.


Example 45



embedded image


4-[3E-2-Methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-45A: 2-Methoxy-5-(thiophen-2-yl)benzaldehyde was prepared from 5-bromo-2-methoxybenzaldehyde and thiophene-2-boronic acid in a similar manner as described in Ex-3A. 1H NMR (CDCl3) δ 10.49 (s, 1H), 8.07 (d, J=3 Hz, 1H), 7.79 (dd, J=3, 9.0 Hz, 1H), 7.28-7.26 (m, 2H), 7.09-7.06 (m, 1H), 7.02 (d, J=9 Hz, 1H), 3.97 (s, 3H).


The title compound was prepared by condensing 2-methoxy-5-(thiophen-2-yl)-benzaldehyde (Ex-45A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 195-196° C. 1H-NMR (DMSO-d6) δ 8.23-8.20 (m, 3H), 8.08-7.96 (m, 4H), 7.67 (dd, J=2.1, 6.8 Hz, 1H), 7.55 (d, J=3.8 Hz, 1H), 7.49 (d, J=5.1 Hz, 1H), 7.16-7.11 (m, 2H), 3.90 (s, 3H). MS m/z=364 (M+, 100%).


Example 46



embedded image


4-[3E-(2,4-Dimethoxy-5-pyrazin-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-46A: 5-Bromo-2,4-dimethoxybenzaldehyde (4.92 g, 20.1 mmol) was dissolved in benzene (41 mL). Ethylene glycol (3 mL, 54 mmol) and p-toluenesulfonic acid (25 mg, 0.13 mmol) were added and the solution was refluxed with a Dean-Stark trap attached. After 6 h, the reaction was cooled and washed with water (1×20 mL), saturated, aqueous NaHCO3 (1×20 mL), and water (1×20 mL). The organic phase was dried over sodium sulfate, filtered, concentrated, and dried to provide 5.32 g of 2-5-bromo-2,4dimethoxy-phenyl)-[1,3]dioxolane as a faint yellow oil which solidified upon standing (92% yield). 1H-NMR (CDCl3) δ 7.67 (s, 1H), 6.47 (s, 1H), 6.06 (s, 1H), 4.114.13 (m, 2H), 3.984.03 (m, 2H), 3.91 (s, 3H), 3.87 (s, 3H). HRMS (ES+) Calcd. for C11H13BrO4: 289.0075. Found: 289.0077.


Ex-46B: 2-(5-Bromo-2,4-dimethoxy-phenyl)-[1,3]dioxolane (Ex-46A, 4.78 g, 10.5 mmol) was dissolved in dioxane (75 mL) and the solution was purged with nitrogen for 15 min. Pd(OAc)2 (188 mg, 0.84 mmol), Et3N (6.91 mL, 49.6 mmol), and 2-dicyclohexylphosphino)biphenyl (1.16 g, 3.31 mmol) were added. 4,4,5,5-Tetramethyl-[1,3,2]dioxaborolane (3.6 mL, 24.8 mmol) was added slowly, accompanied by gas evolution and the darkening of the reaction solution. The solution was heated at reflux for 2.5 h and then cooled. Saturated, aqueous NH4Cl (60 mL) and water (20 mL) were added and the solution extracted with EtOAc (1×100 mL). The organic phase was dried over sodium sulfate, filtered, and concentrated to a dark oil. The oil was purified via silica gel chromatography (1:1 EtOAc/hexanes after a column pre-wash of 5% Et3N in 1:1 EtOAc/hexanes) to provide 3.27 g of 2-5-[1,3]dioxolan-2-yl-2,4-dimethoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane as a yellow solid (with some starting borolane present), 59% yield. 1H-NMR (CDCl3) δ 7.85 (s, 1H), 6.39 (s, 1H), 6.07 (s, 1H), 4.134.18 (m, 2H), 3.98-4.02 (m, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 1.33 (s, 9H).


Ex-46C: 2-(5-[1,3]Dioxolan-2-yl-2,4-dimethoxy-phenyl)4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (Ex-46B, 2.22 g, 6.60 mmol, containing borolane impurity) was dissolved in DME (60 mL) and 2-iodopyrazine (0.59 mL, 6.0 mmol) was added. 2M aqueous Na2CO3 (17.8 mL, 35.6 mmol) was added and the mixture was purged with nitrogen for 20 min. Tetrakis(triphenylphosphine)palladium(0) (0.69 g, 0.60 mmol) was added and the mixture was heated at reflux for 2.5 h. After cooling, water (50 mL) was added and the mixture was extracted with CH2Cl2(2×30 mL). The organic phase was washed with brine (1×20 mL), dried over sodium sulfate, filtered, and concentrated. Purification of the resulting yellow-orange solids via silica chromatography (50-80% EtOAc/hexanes) provided 1.02 g of 2-5-[1,3]dioxolan-2-yl-2,4-dimethoxy-phenyl)-pyrazine as a yellow solid (59% yield). 1H-NMR (CDCl3) δ9.10 (d, J=2 Hz, 1H), 8.61 (m, 1H), 8.39 (d, J=3 Hz, 1H), 8.07 (s, 1H), 6.57 (s, 1H), 6.14 (s, 1H), 4.134.18 (m, 2H), 4.01-4.05 (m, 2), 3.95 (s, 3H), 3.93 (s, 3H).


Ex-46D: 2-(5-[1,3]Dioxolan-2-yl-2,4-dimethoxy-phenyl)-pyrazine (1.02 g, 3.54 mmol) was dissolved in acetone and p-toluenesulfonic acid (100 mg, 0.53 mmol) and water (5 mL) were added. The solution was stirred for 3 h at room temperature, then concentrated on the rotavap. The resulting mixture was diluted with water (50 mL) and extracted with EtOAc (3×100 mL). The organic phase was washed with 25% saturated aqueous NaHCO3, dried over sodium sulfate, filtered, and concentrated. Drying gave 0.30 g of 2,4-dimethoxy-5-pyrazin-2-yl-benzaldehyde as a yellow solid (18% yield). 1H-NMR (CDCl3) δ 10.35 (s, 1H), 9.06 (d, J=2 Hz, 1H), 8.63-8.65 (m, 1H), 8.45 (d, J=2 Hz, 1H), 8.39 (s, 1H), 6.56 (s, 1H), 4.03 (s, 3H), 4.01 (s, 3H). HRMS m/z: calc. 244.0848, found 244.0853.


The title compound was prepared by condensing 2,4-dimethoxy-5-pyrazin-2-yl-benzaldehyde (Ex-46D) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 238° C. (dec.), 4% yield. 1H-NMR (DMSO-D6) δ 9.04 (d, J=2 Hz, 1H), 8.75-8.76 (m, 1H), 8.56 (d, J=2 Hz, 1H), 8.32 (s, 1H), 8.19 (d, J=9 Hz, 2H), 8.05-8.11 (m, 3H), 7.83 (d, J=16 Hz, 1H), 6.90 (s, 1H), 4.05 (s, 3H), 4.00 (s,. 3H). HRMS m/z=calc. 391.1294, found 391.1313.


Example 47



embedded image


4-{3E-[4-(1-Carboxy-1-methyl-ethoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid

Ex-47A: 5-Bromo-4-hydroxy-2-methoxy-benzaldehyde was prepared in an analogous fashion as described in Ex-29A using 4-hydroxy-2-methoxybenzaldehyde. The crude solid was slurried in water to remove residual HBr and dried in vacuo to give the bromide as an off-white solid (98%), mp 199-201° C. 1H-NMR (300 MHz, DMSO-d6) δ 11.58 (s, 1H), 10.07 (s, 1H), 7.75 (s, 1H), 6.69 (s, 1H), 3.87 (s, 3H). MS (EI) m/z=230 ([M]+, 100%). Anal. Calcd. for C8H7BrO3.¼H2O: C, 40.79; H, 3.21. Found: C, 40.66; H, 3.01.


Ex-47B: 4-Hydroxy-2-methoxy-5-thiophen-2-yl-benzaldehyde was prepared in an analogous fashion as described in Ex-29B. Silica gel chromatography (ethyl acetate/hexanes, 2:1) gave the expected product as a solid (85%), mp 200° C. (dec.). 1H-NMR (300 MHz, CDCl3) δ 10.31 (s, 1H), 7.89 (s, 1H), 7.42 (dd, 1H, J=4.8, 1.2 Hz), 7.14-7.19 (m, 2H), 6.59 (s, 1H), 6.14 (brs, 1H), 3.94 (s, 3H). MS (EI) m/z: 234 ([M]+, 100%). Anal. Calcd. for C12H10O3S.H2O: C, 57.13; H, 4.79; S, 12.71. Found: C, 57.16; H, 4.47; S, 12.48.


Ex-47C: 2-(4-Formyl-5-methoxy-2-thiophen-2-yl-phenoxy)-2-methyl-propionic acid ethyl ester was prepared in an analogous fashion as described in Ex-29C using ethyl 2-bromoisobutyrate. Silica gel chromatography (ethyl acetate/hexanes, 1:1) gave the expected product as a solid (82%), mp 111-113° C. 1H-NMR (300 MHz, CDCl3) δ 10.32 (s, 1H), 8.14 (s, 1H), 7.45 (dd, 1H, J=3.7, 1.3 Hz), 7.30 (dd, 1H, J=5.2, 1.3 Hz), 7.07 (dd, 1H, J=5.2, 3.7 Hz), 6.35 (s, 1H), 4.25 (q, 2H, J=7.2 Hz), 3.85 (s, 3H), 1.76 (s, 6H), 1.23 (t, 3H, J=7.2 Hz). MS (EI) m/z=348 ([M]+, 100%). Anal. Calcd. for C18H20O5S: C, 62.05; H, 5.79; S, 9.20. Found: C, 61.81; H, 5.81; S, 9.12.


Ex-47D: To a solution of 2-(4-formyl-5-methoxy-2-thiophen-2-yl-phenoxy)-2-methyl-propionic acid ethyl ester (0.29 g, 0.83mmol) in a mixture of tetrahydrofuran, water and methanol (9 mL, 4:1:1) was added lithium hydroxide (0.10 g, 2.49 mmol) and the resulting yellow slurry was stirred at rt for 5 h. The mixture was diluted with water (5 mL) and extracted with ethyl acetate (1×5 mL). The aqueous layer was acidified with a 1 N HCl solution and extracted with ethyl acetate (3×15 mL). The combined organic layers was dried over sodium sulfate and concentrated to afford 0.13 g (87%) of 2-(4-formyl-5-methoxy-2-thiophen-2-yl-phenoxy)-2-methyl-propionic acid as a pale green solid, mp 183-184° C. 1H-NMR (300 MHz, CDCl3) δ 10.32 (s, 1H), 8.12 (s, 1H), 7.40 (d, 1H, J=3.6 Hz), 7.32 (d, 1H, J=4.8 Hz), 7.08 (dd, 1H, J=4.8, 3.6 Hz), 6.47 (s, 1H), 3.86 (s, 3H), 1.78 (s, 6H). MS (EI) m/z=320 ([M]+, 100%). Anal. Calcd. for C16H16O5S: C, 59.99; H, 5.03; S, 10.01. Found: C, 60.04; H, 5.26; S, 9.70.


2-(4-Formyl-5-methoxy-2-thiophen-2-yl-phenoxy)-2-methyl-propionic acid (Ex-47D, 0.23 g, 0.72 mmol) and 4-acetylbenzoic acid (0.12 g, 0.72 mmol) were dissolved in a dimethylformamide-methanol solution (5 mL, 7:3). After complete dissolution, lithium methoxide (0.11 g, 2.9 mmol) was added and the resulting orange slurry was stirred in the dark at room temperature for 4 h. Upon completion, as determined by HPLC, the mixture was diluted with water (15 mL), acidified with a 1 N hydrochloric acid solution, and extracted with ethyl acetate (4×25 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude oil was taken up in a tetrahydrofuran-heptane solution (5 mL, 10:1) and warmed to 60° C. to obtain complete dissolution and allowed to cool to room temperature. The resulting precipitate was collected on filter paper and dried in vacuo to yield 0.30 g (90%) of the title compound as a dark yellow solid, mp 135-137° C. 1H-NMR (300 MHz, DMSO-d6) δ 8.32 (s, 1H), 8.23 (d, 2H, J=8.4 Hz), 8.10 (d, 2H, J=8.4 Hz), 7.99 (d, 2H, J=15.6 Hz), 7.71 (d, 1H, J=3.0 Hz), 7.54 (d, 1H, J=5.1 Hz), 7.14 (dd, 1H, J=5.1, 3.0 Hz), 6.49 (s, 1H), 3.85 (s, 3H), 1.69 (s, 6H). MS (ESI) m/z=467 ([M+H]+, 100%). Anal. Calcd. for C25H28O8S.EtOH: C, 63.27; H, 5.51; S, 6.26. Found: C, 63.40; H, 5.19; S, 6.38.


Example 48



embedded image


2-[3E-(4-Methoxy-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

The title compound was prepared by condensing 4-methoxy-3-(thiophen-2-yl)-benzaldehyde (Ex-41A) and 2-acetylbenzoic acid in a similar manner as described in Ex-3. Beige solid with green tint, mp 79-81° C., 44% yield. 1H-NMR (DMSO-D6) δ 8.07 (d, J=2 Hz, 1H), 7.91 (d, J=8 Hz, 1H), 7.73 (dd, J=2, 4 Hz, 1H), 7.67-7.70 (m, 2H), 7.63 (dd, J=2, 7 Hz, 1H), 7.57 (dd, J=2, 5 Hz, 1H),7.50 (d, J=8 Hz, 1H), 7.22 (d, J=2 Hz, 2H), 7.19 (d, J=8 Hz, 1H), 7.12 (dd, J=4, 5 Hz, 1H), 3.96 (s, 3H). HRMS m/z=calc. 365.0848, found 365.0853.


Example 49



embedded image


4-(3E-{2-Methoxy-4-[2-(2-methoxy-ethoxy)-ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic acid

Ex-49A: To a solution of 4-hydroxy-2-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-47B, 0.50 g, 2.14 mmol) and tri(ethylene glycol) monomethyl ether (0.38 g, 3.2 mmol) in tetrahydrofuran (20 mL) was added triphenylphosphine (0.84 g, 3.2 mmol) and the resulting mixture was cooled to 0° C. Diethyl azodicarboxylate (0.55 g, 3.2 mmol) was then added drop wise, stirred at 0° C. for 30 min, and allowed to warm to rt. The solution was stirred for an additional 24 and concentrated under reduced pressure to a brown oil. Silica gel chromatography (ethyl acetate/hexanes, 8:1) afforded 0.31 g (45%) of the expected 2-methoxy-4-[2-(2-methoxy-ethoxy)-ethoxy]-5-thiophen-2-yl-benzaldehyde as a viscous clear oil. 1H-NMR (300 MHz, CDCl3) δ 10.34 (s, 1H), 8.13 (s, 1H), 7.48 (d, 1H, J=3.6 Hz), 7.30 (t, 1H, J=5.1 Hz), 7.06 (dd, 1H, J=5.1, 3.6 Hz), 6.56 (s, 1H), 4.34 (t, 2H, J=5.1 Hz), 3.94 (t, 2H, J=5.1 Hz), 3.96 (s, 3H), 3.72-3.75 (m, 2H), 3.56-3.59 (m, 2H), 3.39 (s, 3H). MS (ESI) m/z=337 ([M+H]+, 100%). HRMS (EI) Calcd. for C17H20O5S: 336.1031. Found: 336.1028.


The title compound was prepared by condensing 2-methoxy-4-[2-(2-methoxy-ethoxy)-ethoxy]-5-thiophen-2-yl-benzaldehyde (Ex-49A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 174-175° C., 61% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.28 (s, 1H), 8.23 (d, 2H, J=8.1 Hz), 8.05-8.11 (m, 3H), 7.91 (d, 1H, J=15.3 Hz), 7.72 (d, 1H, J=2.7 Hz), 7.52 (d, 1H, J=4.2 Hz), 7.11-7.15 (m, 1H), 6.86 (s, 1H), 4.39 (t, 2H, J=3.9 Hz), 3.99 (s, 3H), 3.89 (t, 2H, J=3.9 Hz), 3.64 (t, 2H, J=3.9 Hz), 3.48 (t, 2H, J=3.9 Hz), 3.25 (s, 3H). MS (ESI) m/z=483 ([M+H]+, 100%). Anal. Calcd. for C26H26O7S: C, 64.71; H, 5.43; S, 6.64. Found: C, 64.43; H, 5.34; S, 6.54.


Example 50



embedded image


4-{3E-[4-(3-Hydroxy-2-hydroxymethyl-propoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid

Ex-50A: To a solution of 3-(tert-butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethyl- silanyloxymethyl)-propan-1-ol (25.0 g, 74.3 mmol) and triethylamine (22.6 g, 223 mmol) in dichloromethane (150 mL) at 0° C. was added mesyl chloride (12.8 g, 111 mmol) and the resulting slurry was stirred at 0° C. for 15 min and allowed to warm to rt. The solution was stirred for an additional 3 h at rt and diluted with water (130 mL) and ethyl acetate (350 mL). The layers were separated and the aqueous was extracted with ethyl acetate (1×150 mL). The combined organic extracts were washed with a saturated sodium bicarbonate (1×200 mL), a 50% sodium chloride solution (2×200 mL), dried over sodium sulfate and concentrated to afford 29.5 g (97%) of the expected methanesulfonic acid 3-tert-butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethyl-silanyloxymethyl)-propyl ester as a yellow oil, 97% yield. 1H-NMR (300 MHz, CDCl3), 4.29 (d, 2H, J=5.7 Hz), 3.61-3.68 (m, 4H), 2.99 (s, 3H), 2.04-2.11 (m, 1H), 0.88 (s, 18H), 0.049 (s, 12H). HRMS (ESI) Calcd. for C17H40O5SSi2: 413.2213. Found: 413.2226.


Ex-50B: 4-[3-(tert-Butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethyl-silanyloxymethyl)- propoxy]-2-methoxy-5-thiophen-2-yl-benzaldehyde was prepared in an analogous fashion as described in EX-29C using methanesulfonic acid 3-(tert-butyl-dimethyl-silanyloxy)-2-tert- butyl-dimethyl-silanyloxymethyl)-propyl ester (Ex-50A). Silica gel chromatography (ethyl acetate/hexanes, 1:6) gave the expected product as a pale green solid, 90% yield. 1H-NMR (300 MHz, CDCl3) δ 10.34 (s, 1H), 8.13 (s, 1H), 7.41 (dd, 1H, J=3.6, 1.2 Hz), 7.28 (dd, 1H, J=5.1, 1.2 Hz), 7.05 (dd, 1H, J=5.1, 3.6 Hz), 6.54 (s, 1H), 4.22 (d, 2H, J=5.7 Hz), 3.96 (s, 3H), 3.80 (d, 4H, J=5.7 Hz), 2.33 (pentet, 1H, J=5.7 Hz), 0.88 (s, 18H), 0.012 (s, 12H). MS (ESI) m/z=551 ([M+H]+, 100%). HRMS (EI) Calcd. for C28H46O5SSi2: 550.2604. Found: 550.2593.


Ex-50C: To a solution of 4-[3-(tert-butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethyl- silanyloxymethyl)-propoxy]-2-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-50B, 0.78 g, 1.41 mmol) in tetrahydrofuran (5 mL) was added tetrabutylammonium fluoride (1 M in tetrahydrofuran, 3.0 mL, 2.9 mmol) and the mixture was stirred at rt for 30 min. The reaction was diluted with ethyl acetate (50 mL) and washed with a 50% ammonium chloride solution (1×30 mL), water (2×30 mL), brine (1×30 mL), dried over sodium sulfate and concentrated to a crude yellow solid. Silica gel chromatography afforded 0.37 g (99%) of the expected 4-3-hydroxy-2-hydroxymethyl-propoxy)-2-methoxy-5-thiophen-2-yl-benzaldehyde as a pale yellow solid, 90% yield, mp 144-145° C. 1H-NMR (300 MHz, CDCl3) δ 10.33 (s, 1H), 8.10 (s, 1H), 7.38 (dd, 1H, J=3.6, 1.5 Hz), 7.30(dd, 1H, J=5.1, 1.5 Hz), 7.07 (dd, 1H, J=5.1, 3.6 Hz), 6.59 (s, 1H), 4.35 (d, 2H, J=6.0 Hz), 4.02 (t, 4H, J=4.8 Hz), 3.96 (s, 3H), 2.33 (pentet, 1H, J=6.0 Hz), 1.89 (t, 2H, J=4.8 Hz). MS (ESI) m/z=323 ([M+H]+, 100%). Anal. Calcd. for C16H18O5S: C, 59.61; H, 5.63; S, 9.95. Found: C, 59.34; H, 5.75; S, 9.82.


The title compound was prepared by condensing 4-(3-hydroxy-2-hydroxymethyl-propoxy)-2-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-50C) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 199-201° C., 60% yield. 1H-NMR (300 MHz, DMSO- d6) δ 8.31s, 1H, 8.23 (d, 2H, J=8.7 Hz), 8.06-8.11 (m, 3H), 7.93 (d, 1H, J=15.0 Hz); 7.71 (d, 1H, J=3.3 Hz), 7.54 (d, 1H, J=5.1 Hz), 7.13-7.16 (m, 1H), 6.87 (s, 1H), 4.62 (brs, 2H), 4.27 (d, 2H, J=5.1 Hz), 4.00 (s, 3H), 3.62 (brs, 4H), 2.11-2.15 (m, 1H). MS (ESI) m/z=469 ([M+H]+, 100%). Anal. Calcd. for C25H24O7S”/4H2O: C, 63.48; H, 5.22; S, 6.78. Found: C, 63.45; H, 5.29; S, 6.61.


Example 51



embedded image


5-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-thiophene-2-carboxylic acid methyl ester

Ex-51A: 5-(5-Formyl-2,4-dimethoxy-phenyl)thiophene-2-carboxylic acid methyl ester was prepared starting from 5-bromo-thiophene-2-carboxylic acid methyl ester in a similar manner as described in Ex-46A through 46D. Yellow solid, 18% yield. 1H-NMR (CDCl3) δ 10.32 (s, 1H), 8.16 (s, 1H), 7.74 (d, J=4.4 Hz, 1H), 7.42 (d, J=4.4 Hz, 1H), 6.51 (s, 1H), 4.05 (s, 3H), 3.98 (s, 3H), 3.90 (s, 3H). HRMS (ES+) Calcd. for C15H14O5S: 307.0640. Found: 307.0630.


4-Acetylbenzoic acid (24 mg, 0.15 mmol) and 5-(5-formyl-2,4-dimethoxy-phenyl)-thiophene-2-carboxylic acid methyl ester (Ex-51A, 46 mg, 0.15 mmol) were dissolved in DMF (4 mL). Lithium methoxide, 1M in methanol (0.29 mL) was added and the solution stirred at room temperature overnight. The reaction solution was poured into cold 1N HCl (3 mL) and extracted with EtOAc (3×20 mL); the organic phase was washed with brine 1×10 mL), dried over sodium sulfate, filtered, and concentrated. The resulting orange residue was purified via silica gel chromatography (0-10% MeOH/CH2Cl2) to provide 89 mg of yellow solid which still contained DMF. The solid was slurried in EtOH for several hours, filtered, and dried to provide 31 mg of final product as a yellow solid (47% yield). 1H-NMR (DMSO-d6) δ 8.47 (s, 1H), 8.23 (d, J=9 Hz, 2H), 8.01-8.11 (m, 4H), 7.89 (d, J=4 Hz, 1H), 7.82 (d, J=4 Hz, 1H), 6.90 (s, 1H), 4.09 (s, 3H), 4.03 (s, 3H), 3.84 (s, 3H). HRMS (ES+) Calcd. for C24H20O7S: 453.1008. Found: 453.1020.


Example 52



embedded image


5-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-thiophene-2-carboxylic acid

The title compound was prepared through routine hydrolysis of 5-{5-[3-(4-Carboxy-phenyl)-3-oxo-propenyl]-2,4-dimethoxy-phenyl}-thiophene-2-carboxylic acid methyl ester (Ex-51). Orange solid, mp>260° C., 43% yield. 1H-NMR (DMSO-d6) δ 8.43 (s, 1H), 8.26 (d, J=8 Hz, 2H), 8.01-8.12 (m, 4H), 7.82 (d, J=4 Hz, 1H), 7.71 (d, J=4 Hz, 1H), 6.89 (s, 1H), 4.08 (s, 3H), 4.03 (s, 3H).


Example 53



embedded image


4-[3E-(4-Ethoxy-2-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-53A: Reaction of 4-hydroxy-2-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-47B) and (2-ethoxymethyl-5-hydroxymethyl-[1,3]dioxolan-4-yl)methanol was preformed under the Mitsunobu condition using triphenylphosphine and diethyl azodicarboxylate in THF. However, the expected product, 4-(2-ethoxymethyl-5-hydroxymethyl-[1,3]dioxolan-4-ylmethoxy)-2-methoxy-5-thiophen-2-yl-benzaldehyde, was not obtained. Instead, 4-ethoxy-2-methoxy-5-thiophen-2-yl-benzaldehyde was formed via cleavage of the cyclic ethyl orthoformate group under the reaction conditions. Silica gel chromatography (ethyl acetate/hexanes, 1:2) gave 0.16 g (90%) of 4-ethoxy-2-methoxy-5-thiophen-2-yl-benzaldehyde, mp 101-1030C. 1H-NMR (300 MHz, CDCl3) δ 10.33 (s, 1H), 8.15 (s, 1H), 7.48 (d, 1H, J=3.6 Hz), 7.29 (d, 1H, J=5.2 Hz), 7.07 (dd, 1H, J=5.2, 3.6 Hz), 6.50 (s, 1H), 4.25 (q, 2H, J=7.2 Hz), 3.97 (s, 3H), 1.59 (t, 3H, J=7.2 Hz). MS (EI) m/z=262 ([M]+, 100%). HMRS (EI) Calcd. for C14H14O3S: 262.0664. Found: 262.0667.


The title compound was prepared by condensing 4-ethoxy-2-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-53A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 210-212° C., 76% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.31 (s, 1H), 8.23 (d, 2H, J=9.0 Hz), 8.06-8.11 (m, 3H), 7.92 (d, 1H, J=16.2 Hz), 7.71 (d, 1H, J=3.9 Hz), 7.52 (d, 1H, J=5.1 Hz), 7.13 (dd, 1H, J=5.1,3.9 Hz), 6.82 (s, 1H), 4.33 (q, 2H, J=6.1 Hz), 3.99 (s, 3H), 1.48 (t, 3H, J=6.1 Hz). MS (ESI) m/z=409 ([M+H]+, 100%). Anal. Calcd. for C23H20O5S.½H2O: C, 66.17; H, 5.07; S, 7.68. Found: C, 65.88; H, 5.24; S, 7.36.


Example 54



embedded image


4-[3E-(4-Hydroxy-2-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

4-Hydroxy-2-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-47B, 0.30 g; 0.86 mmol) and 4-acetylbenzoic acid (0.13 g, 0.86 mmol) were dissolved in a dimethylformamide-methanol solution (6 mL, 7:3). After complete dissolution, lithium methoxide (0.12 g, 3.3 mmol) was added and the resulting red slurry was stirred in the dark at room temperature for 18 h. The mixture was diluted with water (15 mL), acidified with a 1 N hydrochloric acid solution, and extracted with ethyl acetate (4×25 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude oil was subjected to silica gel chromatography (CH2Cl2:MeOH, 20:1) to yield an orange solid containing residual amounts of starting acid. The solid was taken up in ethyl alcohol (5 mL) to remove acid impurity and the resulting precipitate was collected on filter paper and dried in vacuo to yield 0.010 g (5%) of the title compound as an orange solid, mp 243° C. (dec). 1H-NMR (300 MHz, DMSO-d6) δ 8.18-8.23 (m, 3H), 8.06-8.09 (m, 2H), 8.02 (s, 1H), 7.85 (d, 1H, J=15.6 Hz), 7.68 (d, 1H, J=3.6 Hz), 7.47 (d, 1H, J=5.1 Hz), 7.11 (dd, 1H, J=5.1,3.6 Hz), 6.67 (s, 1H), 4.13 (s, 1H), 3.89 (s, 3H). MS (ESI) m/z=381 ([M+H]+, 100%). HRMS (ESI) Calcd. for C21H16O5S: 381.0796. Found: 381.0800.


Example 55



embedded image


4-[3E-2,4-Dimethoxy-5-thiazol-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-55A: 2,4-Dimethoxy-5-thiazol-2-yl-benzaldehyde was prepared from 2-bromothiazole in a similar manner as described in Ex-46A through 46D. Off-white solid, 83% yield. 1H-NMR (CDCl3) δ 10.34 (s, 1H), 8.86 (s, 1H), 7.89 (d, J=3.6 Hz, 1H), 7.36 (d, J=3.6 Hz, 1H), 6.56 (s, 1H), 4.12 (s, 3H), 4.02 (s, 3H). HRMS m/z: calc. 249.0460, found 249.0461.


The title compound was prepared by condensing 2,4-dimethoxy-5-thiazol-2-yl-benzaldehyde (Ex-55A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp>260° C., 65% yield. 1H-NMR (DMSO-d6) δ 13.33 (bs, 1H), 8.74 (s, 1H), 8.22 (d, J=8 Hz, 2H), 8.04-8.12 (m, 3H), 7.95 (d, J=2 Hz, 1H), 7.82 (d, J=16 Hz, 1H), 7.76 (d, J=3 Hz, 1H), 6.94 (s, 1H), 4.14 (s, 3H), 4.05 (s, 1H). HRMS m/z=calc. 396.0906, found 396.0903.


Example 56



embedded image


4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)acryloyl]-benzoic acid, sodium salt

To a solution of 4-[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid (5.77 g, 13.0 mmol) in tetrahydrofuran (50 mL) was added sodium methoxide (0.70 g, 12.3 mmol). The reaction mixture was allowed to stir for 2 hours at ambient temperature. The precipitate was then filtered, washed with tetrahydrofuran and dried in vacuo to give the title compound (5.13 g, 85%) as a yellow solid, mp>235° C. 1H-NMR (DMSO-d6) δ 8.35 (s, 1H), 8.08 (d, J=8.4 Hz, 2H), 8.00-7.89 (m, 4H), 7.82 (d, J=7.6 Hz, 1H), 7.35-7.29 (m, 4H), 6.85 (s, 1H), 4.02 (s, 3H), 3.99 (s, 3H). MS m/z=443 (M+, 100%).


Example 57



embedded image


2-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-pyrrole-1-carboxylic acid tert-butyl ester

Ex-57A: 2-5-Formyl-2,4-dimethoxy-phenyl)-pyrrole-1-carboxylic acid tert-butyl ester was prepared from pyrrole-1-carboxylic acid tert-butyl ester-2-boronic acid in a similar manner as described in Ex-3A, 81% yield. 1H-NMR (CDCl3) δ 10.32 (s, 1H), 7.76 (s, 1H), 7.31-7.33 (m, 1H), 6.43 (s, 1H), 6.22-6.24 (m, 1H), 6.14-6.16 (m, 1H), 3.98(s, 3H), 3.85 (s, 3H), 1.40 (s, 9H). HRMS (EI) Calcd. for C18H21NO5: 331.1420. Found: 331.1421.


The title compound was prepared by condensing 2-(5-formyl-2,4-dimethoxy-phenyl)-pyrrole-1-carboxylic acid tert-butyl ester (Ex-57A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 205-207° C., 6% yield. 1H-NMR (DMSO-d6) δ 8.19 (d, J=5 Hz, 2H), 8.00-8.10 (m, 3H), 7.87 (s, 1H), 7.80 (d, J=16 Hz, 1H), 7.27-7.28(m, 1H), 6.71(s, 1H), 6.22-6.23 (m, 1H), 6.14-6.16 (m, 1H), 3.96 (s, 3H), 3.79(s, 3H), 1.29 (s, 9H). MS m/z=476 ([M−H]+). HMRS (EI) calcd. for C27H27NO7: 477.1788; found: 477.1793.


Example 58



embedded image


4-[3E-(2-Hydroxy-4-methoxy-5-thiophen-2-yl-phenyl)acryloyl]-benzoic acid

2-Hydroxy-4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-29B, 0.10 g, 0.43 mmol) and 4-acetylbenzoic acid (0.070 g, 0.43 mmol) were dissolved in a dimethylformamide-methanol solution (2.8 mL, 7:3). After complete dissolution, lithium methoxide (0.065 g, 1.7 mmol) was added and the resulting red slurry was stirred in the dark at room temperature for 18 h. The mixture was diluted with water (10 mL), acidified with a 1 N hydrochloric acid solution, and extracted with ethyl acetate (3×20 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude oil was taken up in ethyl alcohol (5 mL) and warmed to 60° C. to obtain complete dissolution and allowed to cool to room temperature. Note: the compound appears to decompose with heating. The resulting precipitate was collected on filter paper and dried in vacuo to yield 0.025 g (15%) of the title compound as a dark yellow solid, mp 125° C. (dec). 1H-NMR (300 MHz, DMSO-d6) δ 10.73 (s, 1H), 8.18-8.22 (m, 3H), 8.09 (d, 2H, J=8.1 Hz), 8.05 (s, 1H), 7.87 (d, 1H, J=14.7 Hz), 7.60 (d, 1H, J=3.0 Hz), 7.49 (d, 1H, J=4.2 Hz), 7.11 (dd, 1H, J=4.2, 3.0 Hz), 6.67 (s, 1H), 3.90 (s, 3H). MS (ESI) m/z=381 ([M+H]+, 100%). Anal. Calcd. for C21H16O5S.EtOH: C, 64.77; H, 5.20; S, 7.52. Found: C, 64.68; H, 5.00; S, 7.77.


Example 59



embedded image


4-{3E-[2-(1-Carboxy-1-methyl-ethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid

Ex-59A: 2-(2-Formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-2-methyl-propionic acid ethyl ester was prepared in an analogous fashion as described in Ex-29C using ethyl 2-bromoisobutyrate. Silica gel chromatography (ethyl acetate/hexanes, 1:2) gave the expected product as a dark yellow solid (97%), mp 87-88° C. 1H-NMR (300 MHz, CDCl3) δ 10.37 (s, 1H), 8.14 (s, 1H), 7.45 (dd, 1H, J=3.6, 1.2 Hz), 7.30 (d, 1H, J=5.4 Hz), 7.07 (dd, 1H, J=5.1, 3.6 Hz), 6.42 (s, 1H), 4.25 (q, 2H, J=6.9 Hz), 3.90 (s, 3H), 1.72 (s, 6H), 1.26 (t, 3H, J=6.9 Hz). MS (ESI) m/z=349 ([M+H]+, 100%). Anal. Calcd. for C18H20O5S: C, 62.05; H, 5.79; S, 9.20. Found: C, 62.15; H, 5.82; S, 9.06.


Ex-59B: 2-2-Formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-2-methyl-propionic acid was prepared in an analogous fashion as described in Ex-47D. The crude solid was dried in vacuo to afford the product as a pale yellow solid (98%), mp 187-188° C. 1H-NMR (300 MHz, CDCl3) δ 9.33 (s, 1H), 7.99 (s, 1H), 7.47 (dd, 1H, J=3.6, 1.5 Hz), 7.37 (d, 1H, J=4.8 Hz), 7.11 (dd, 1H, J=4.8, 3.6 Hz), 6.67 (s, 1H), 4.00 (s, 3H), 1.75 (s, 6H). MS (ESI) m/z=321 ([M+H]+, 100%). Anal. Calcd. for C16H16O5S: C, 59.99; H, 5.03; S, 10.01. Found: C, 59.80; H, 5.12; S, 9.87.


2-(2-Formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-2-methyl-propionic acid (Ex-59B, 0.12 g, 0.39 mmol) and 4-acetylbenzoic acid (0.064 g, 0.39 mmol) were dissolved in a dimethylformamide-methanol solution (2.7 mL, 7:3). After complete dissolution, lithium methoxide (0.060 g, 1.6 mmol) was added and the resulting bright orange slurry was stirred in the dark at room temperature for 2 h. Upon completion, as determined by HPLC, the mixture was diluted with water (15 mL), acidified with a 1 N hydrochloric acid solution, and extracted with ethyl acetate (3×15 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude oil was taken up in ethyl alcohol (5 mL) and warmed to 60° C. to obtain complete dissolution and allowed to cool to room temperature. The resulting precipitate was collected on filter paper and dried in vacuo to yield 0.15 g (85%) of the title compound as a dark yellow solid, mp 223-2250C. 1H-NMR (300 MHz, DMSO-d6) δ 8.31 (s, 1H), 8.23 (d, 2H, J=8.1 Hz), 8.10 (d, 2K, J=8.1 Hz), 8.06 (s, 1H), 7.95 (d, 1H, J=16.2 Hz), 7.69 (d, 1H, J=3.0 Hz), 7.55 (d, 1H, J=5.1 Hz), 7.14 (dd, 1H, J=5.1, 3.0 Hz), 6.58 (s, 1H), 3.88 (s, 3H), 1.66 (s, 6H). MS (ESI) m/z=467 ([M+H]+, 100%). Anal. Calcd. for C25H22O7S.⅓H2O: C, 63.55; H, 4.84; S, 6.79. Found: C, 63.39; H, 5.02; S, 6.53.


Example 60



embedded image


4-{3E-[4-Methoxy-2-(2-morpholin 4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride

Ex-60A: 4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-benzaldehyde was prepared in an analogous fashion as described in Ex-29C using 4-(2-chloroethyl)morpholine. Silica gel chromatography (80 to 100% ethyl acetate/hexanes then 5% methanol/methylene chloride) gave of the expected product as a off-white solid (81%). 1H-NMR (300 MHz, CDCl3) δ 10.36 (s, 1H), 8.12 (s, 1H), 7.44 (dd, 1H, J=3.6, 1.5 Hz), 7.30 (dd, 1H, J=5.1, 1.5 Hz), 7.07 (dd, 1H, J=5.1, 3.6 Hz), 6.53 (s, 1H), 4.27 (t, 2H, J=6.3 Hz), 4.00 (s, 3H), 3.72-3.76 (m, 4H), 2.89 (t, 2H, J=6.3 Hz), 2.60-2.63 (m, 4H). MS (ESI) m/z=348 ([M+H]+, 100%). HRMS (EI) Calcd. for C18H21NO4S: 347.1191. Found: 347.1188.


4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-benzaldehyde (Ex-60A, 0.15 g, 0.43 mmol) and 4-acetylbenzoic acid (0.071 g, 0.43 mmol) were dissolved in a dimethylformamide- methanol solution (3.0 mL, 7:3). After complete dissolution, lithium methoxide (0.065 g, 1.7 mmol) was added and the resulting bright orange slurry was stirred in the dark at room temperature for 2 h. Upon completion, as determined by HPLC, the mixture was diluted with water (10 mL), acidified with a 1 N hydrochloric acid solution, and extracted with an ethyl acetate:tetrahydrofuran mixture (1:1, 6×20 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude solid was slurried in ethyl alcohol (5 mL) to remove residual impurities and the resulting solid was collected on filter paper and dried in vacuo to yield 0.21 g (98%) of the title compound as a dark yellow solid, mp: 255° C. (dec). 1H-NMR (300 MHz, DMSO-d6) δ 8.34 (s, 1H), 8.26 (d, 2H, J=8.7 Hz), 8.11 (d, 2H, J=8.7 Hz), 8.08 (s, 1H), 7.95 (d, 1H, J=15.9 Hz), 7.71 (d, 1H, J=3.3 Hz), 7.55 (d, 1H, J=4.5 Hz), 7.15 (dd, 1H, J=4.5, 3.3 Hz), 6.94 (s, 1H), 4.68 (brs, 2H), 4.04 (s, 3H), 3.98 (brs, 2H), 3.81-3.88 (brm, 2H), 3.70 (brs, 2H), 3.54-3.58 (brm, 2H), 3.29 (brs, 2H). MS (ESI) m/z=494 ([M+H]+, 100%). Anal. Calcd. for C27H28ClNO6S: C, 61.18; H, 5.32; Cl, 6.69; N, 2.64; S, 6.05. Found: C, 61.18; H, 5.41; Cl, 6.16; N, 2.73; S, 5.87.


Example 61



embedded image


2 4-{3E-[5-(1H-Indol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid

Ex-61A: 2-(5-Formyl-2,4-dimethoxy-phenyl)-indole-1-carboxylic acid tert-butyl ester (Ex-36A, 2.0 g, 5.2 mmol) was dissolved in 100 ml of THF, and Bu4NF (6.86 g, 26 mmol) was added. The reaction mixture was stirred at room temperature overnight. No reaction occured at this condition. Then, Bu4NF (6.86 g, 26 mmol) was added to the mixture, and the mixture was stirred at reflux for 4 days. The reaction was about 50% completion (HPLC). The reaction mixture was poured into CH2Cl2, and washed with water and brine. The organic phase was dried over MgSO4, and concentrated. The residue was purified by column chromatography (EtOAc: Hex, 2:1) to give 0.45 g (30%) of 5-(1H-indol-2-yl)-2,4-dimethoxy-benzaldehyde. 1H-NMR (CDCl3) δ 10.37 (s, 1H), 9.25 (br, 1H), 8.28 (s, 1H), 7.63(d, J=8 Hz, 1H), 7.39 (d, J=8 Hz, 1H), 7.08-7.20 (m, 2H), 6.92(d, J=2 Hz, 1H), 6.56 (s, 1H) 4.11(s, 3H), 4.00 (s, 3H). HMRS (EI) calcd. for C17H15NO3: 281.1052; found: 281.1049.


The title compound was prepared by condensing 5-(1H-indol-2-yl)-2,4dimethoxy-benzaldehyde (Ex-61A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Red solid, mp 210-212° C., 66% yield. 1H-NMR (Aceton-d6) δ 10.53 (br, s, 1H), 8.32 (s, 1H), 8.14-8.21 (m, 5H), 7.89 (d, J=15 Hz, 1H), 7.52 (d, J=8 Hz, 1H), 7.38 (d, J=7 Hz, 1H), 6.97-7.07(m, 3H), 6.87(s, 1H), 4.07 (s, 3H), 4.02(s, 3H), MS m/z=427 ([M]+). HMRS (EI) calcd. for C26H21NO5: 427.1420; found: 427.1435.


Example 62



embedded image


4-{3E-[2-(3,5-Dimethyl-isoxazol-4-ylmethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid

Ex-62A: 2-(3,5-Dimethyl-isoxazol-4-ylmethoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-29C using 4-chloromethyl-3,5-dimethyl-isoxazole. 1H-NMR (CDCl3) δ 10.26 (s, 1H), 8.14 (s, 1H), 7.45 (d, J=6 Hz, 1H), 7.32 (d, J=5 Hz, 1H), 7.07-710 (m, 1H), 6.58 (s, 1H), 4.96 (s, 2H), 4.04 (s, 3H), 2.46 (s, 3H), 2.32 (s, 3H).


The title compound was prepared by condensing 2-(3,5-dimethyl-isoxazol-4-ylmethoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-62A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 213-215° C. 1H-NMR (CDCl3) δ 8.20 (d, J=9 Hz, 2H), 7.88-8.03 (m, 4H), 7.58 (d, J=16 Hz, 114), 7.44 (d, J=4 Hz, 1H), 7.34(d, J=5 Hz, 1H), 7.12(dd, J=4, 5 Hz, 1H), 6.63 (s, 1H), 4.97(s, 2H), 4.01 (s, 31), 2.46(s, 3H), 2.34 (s, 3H). MS m/z=490 ([M+H]+). HRMS (ES+) Calcd. for C27H22NO6S: 490.1324. Found: 490.1321.


Example 63



embedded image


4-[3E-2-Pyrrolidin-1-yl-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-43A: A solution of 2-fluoro-5-thiophen-2-yl-benzaldehyde (1.42 g, 6.89 mmol) in pyrrolidine was refluxed (10 mL). After 4.5 days the reaction mixture was cooled and diluted with ethyl acetate. The solution of ethyl acetate was washed with hydrochloric acid (0.5M) sodium carbonate (2M) and saturated solution of sodium bicarbonate, dried over sodium sulfate, and concentrated. The crude product was purified by flash chromatography. Elution with ethyl acetate (20%, v/v, in hexane) afforded 2-pyrrolidin-1-yl-5-thiophen-2-yl-benzaldehyde (0.5 g, 32%). 1H NMR (CDCl3) δ 10.14 (s, 1H), 7.94 (d, J=2 Hz, 1H), 7.62 (dd, J=2.7, 9-Hz, 1H), 7.22-7.20 (m, 2H), 7.07-7.04 (m, 1H), 6.86 (d, J=9 Hz, 1H), 3.41 (m, 4H), 2.01 (m, 4H).


The title compound was prepared by condensing 2-pyrrolidin-1-yl-5-thiophen-2-yl-benzaldehyde (Ex-63A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Red solid, mp 208-209-C. 1H-NMR (DMSO-d,) δ 12.50 (bs, 1H), 8.22 (d, J=8.5 Hz, 2H), 8.09-7.99 (m, 4H), 7.73 (d, J=15.5 Hz, 1H), 7.52-7.41 (m, 3H), 7.10-7.07 (m, 1H), 6.93 (d, J=9.0 Hz, 1H), 3.28 (m, 4H), 1.87 (m, 4H).


Example 64



embedded image


4-{3E-[2-(3-Hydroxy-2-hydroxymethyl-propoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid

Ex-64A: To a solution of 2-hydroxy-4-methoxy-5-thiophen-2-yl-benzaldehyde (10.0 g, 42.7 mmol) in N,N-dimethylformamide (100 mL) was added potassium carbonate (11.8 g, 85.4 mmol) and the resulting yellow slurry was heated to 80° C. Once at 80° C., methanesulfonic acid 3-tert-butyl-dimethyl-silanyloxy)2-tert-butyl-dimethyl-silanyloxymethyl)-propyl ester (Ex-50A, 19.5 g, 46.9 mmol) was added dropwise and the reaction was stirred for an additional 24 h at 80° C. and cooled to room temperature. The mixture was diluted with water (500 mL) and extracted with ethyl acetate (3×150 mL). The combined organic layers was sequentially washed with a saturated sodium bicarbonate solution (1×150 mL), water (1×150 mL), and brine (1×150 ml), dried over sodium sulfate, and concentrated to a brown oil. Silica gel chromatography (100% ethyl acetate to 10% ethyl acetate/hexanes) gave 19.0 g (81%) of 2-[3-(tert-butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethyl-silanyloxymethyl)-propoxy]4-methoxy-5-thiophen-2-yl-benzaldehyde as an off-white solid, mp 91-92° C. 1H-NMR (300 MHz, CDCl3) δ 10.37 (s, 1H), 8.12 (s, 114), 7.44 (dd, 1H, J=3.6, 1.2 Hz), 7.29 (d, 1H, J=5.1 Hz), 7.07 (dd, 1H, J=5.1, 3.6 Hz), 6.54 (s, 1H), 4.19 (d, 2H, J=6.0 Hz), 3.99 (s, 3H), 3.72-3.82 (m, 4H), 2.28 (pentet, 1H, J=6.0 Hz), 0.88 (s, 18H), 0.048 (s, 12H). MS (EI) m/z=550 ([M]+, 100%). Anal. Calcd. for C28H46O5SSi2: C, 61.05; H, 8.42; S, 5.82. Found: C, 61.20; H, 8.74; S, 5.69.


Ex-64B: 2-(3-Hydroxy-2-hydroxymethyl-propoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde was prepared in an analogous fashion as described in Ex-50C. Silica gel chromatography (ethyl acetate/hexanes, 1:9) gave the expected product as an off-white solid. 1H-NMR (300 MHz, CDCl3)δ 10.17 (s, 1H), 8.03 (s, 1H), 7.43 (dd, 1H, J=3.6, 1.2 Hz), 7.31 (d, 1H, J=5.1 Hz), 7.08 (dd, 1H, J=5.1, 3.6 Hz), 6.58 (s, 1H), 4.32 (d, 2H, J=6.0 Hz), 4.01 (s, 3H), 3.95-3.99 (m, 4H), 2.51 (t, 2H, J=5.1 Hz), 2.33 (pentet, 1H, J=5.4 Hz). MS (EI) m/z=322 ([M]+, 100%). HRMS (EI) Calcd. for C16H18O5S: 322.0875. Found: 322.0873.


The title compound was prepared by condensing 2-(3-hydroxy-2-hydroxymethyl-propoxy)4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-64B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Light orange solid, mp 219-220° C., 61% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.36 (s, 1H), 8.20 (d, 2H, J=7.5 Hz), 8.05-8.11 (m, 3H), 7.93 (d, 1H, J=16.2 Hz), 7.67(d, 1H, J=3.0 Hz), 7.52 (d, 1H, J=5.1 Hz), 7.13 (dd, 1H, J=5.1, 3.0 Hz), 6.88 (s, 1H), 4.66 (brs, 2H), 4.23 (d, 2H, J=6.3 Hz), 4.01 (s, 3H), 3.55-3.66 (m, 4H), 2.09-2.14 (m, 1H). MS (ESI) m/z=469 ([M+H]+, 100%). Anal. Calcd. for C25H24O7S.H2O: C, 61.72; H, 5.39; S, 6.59. Found: C, 61.93; H, 5.30; S, 7.06.


Example 65



embedded image


4-{3E-[2-(3-Morpholin-4-yl-propoxy)-5-thiophen-2yl-phenyl]-acryloyl}-benzoic acid, hydrochloride

Ex-65A: 2-3-Morpholin-4-yl-propoxy)-5-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-60A, 80% yield. 1H-NMR (DMSO-D6) δ 10.36 (s, 1H), 7.90 (dd, J=3, 5 Hz, 1H), 7.82 (d, 1H), 7.48 (d, 1H), 7.44 (d, 1H), 7.25 (d, 1H), 7.09 (t, 1H), 4.18 (t, 2H), 3.53 (m, 4H), 3.28 (br s, 2H), 2.43 (m, 4H), 1.89 (q, 2H).


The title compound was prepared by condensing 2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-benzaldehyde (Ex-65A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 67% yield, mp 234-236° C. 1H-NMR (DMSO-d6) δ 13.32 (br s, 1H), 11.10 (br s, 1H), 8.21 (m, 3H), 8.02 (m, 3H), 7.67 (dd, J=2, 2 Hz, 1H), 7.56 (d, 1H), 7.50 (d, 1H), 7.14 (m, 2H), 4.21(t, 2H), 3.86 (m, 4H), 3.23 (m, 6H), 2.29 (q, 2H). MS m/z=478 ([M+H]+, 100%). Anal. calculated for C27H28ClNO5S. 3/2H2O: C, 59.94; H, 5.78; S, 5.93; found C, 60.20; H, 5.65; S, 5.94


Example 66



embedded image


4-{3E-[4-Methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride

Ex-66A: 4-Methoxy-2-3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-60A, 78% yield. 1H-NMR (DMSO-D6) δ 10.21 (s, 1H), 7.88 (s, 1H), 7.46 (m, 2H), 7.06 (t, 1H), 6.82 (s, 1H), 4.24 (t, 2H), 4.00 (s, 3H), 3.53 (m, 4H), 3.28 (m, 2H), 2.34 (m, 4H), 1.93 (q, 2H).


The title compound was prepared by condensing 4-methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-benzaldehyde (Ex-66A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 72% yield, mp 188-191° C. (dec). 1UH-NMR (DMSO-d6) δ 12.63 (br s, 1H), 11.08 (br s, 1H), 8.33 (s, 1H), 8.22 (d, 2H), 8.05 (m, 3H), 7.89 (d, 1H), 7.65 (d, 1H), 7.49 (d, 1H), 7.10 (t, 1H), 6.84 (s, 1H), 4.30 (t, 2H), 3.98 (s, 3H), 3.84 (m, 4H), 3.21 (m, 6H), 2.28 (q, 2H). MS m/z=508 ([M+H]+, 100%). Anal. calculated for C28H32ClNO7S.H2O: C, 59.83; H, 5.74; S, 5.70; found C, 59.69; H, 5.80; S, 5.55.


Example 67



embedded image


4-[3E-(2-Dimethylcarbamoylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-67A: 2-2-Formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-N,N-dimethyl-acetamide was prepared in an analogous fashion as described in Ex-29C using 2-chloro-N,N-dimethylacetamide. Methylene chloride was used in place of ethyl acetate for the work up procedure. The crude solid was slurried in ethyl acetate (25 mL) to remove residual impurities. The resulting solid was collected on filter paper and dried in vacuo to give the expected product as a pale yellow solid (85%), mp 197-198° C. 1H-NMR (300 MHz, CDCl3) δ 10.38 (s, 1H), 8.13 (s, 1H), 7.44 (d, 1H, J=3.6 Hz), 7.30 (dd, 1H, J=5.1, 1.8 Hz), 7.07 (dd, 1H, J=5.1, 3.6 Hz), 6.73 (s, 1H), 4.89 (s, 2H), 3.99 (s, 3H), 3.15 (s, 3H), 2.99 (s, 3H). MS (EI) m/z=319 ([M]+, 100%). Anal. Calcd. for C16H17NO4S.⅕H2O: C, 59.50; H, 5.43; N, 4.34; S, 9.93. Found: C, 59.65; H, 5.42; N, 4.40; S, 9.69.


The title compound was prepared by condensing 2-(2-formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-N,N-dimethyl-acetamide (Ex-47A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 228-229° C., 75% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.31 (d, 2H, J=9.3 Hz), 8.22 (d, 2H, J=13.3 Hz), 8.08 (d, 2H, J=9.3 Hz), 7.95 (s, 1H), 7.65 (d, 1H, J=2.7 Hz), 7.52 (d, 1H, J=5.1 Hz), 7.13 (dd, 1H, J=5.1,2.7 Hz), 6.85 (s, 1H), 5.11 (s, 2H), 3.99 (s, 3H), 3.06 (s, 3H), 2.93 (s, 3H). MS (EI) m/z=465 ([M]+, 100%). HRMS (EI) Calcd. for C25H23NO6S: 465.1246. Found: 465.1246.


Example 68



embedded image


4-[3E-(4-Methoxy-2-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-68A: Methanesulfonic acid 2-[2-2-methoxy-ethoxy)-ethoxy]-ethyl ester was prepared in an analogous fashion as described in Ex-50A using di(ethylene glycol) methyl ether. The crude orange oil was dried in vacuo to give the expected product (oil) and was used without any further purification (99%). 1H-NMR (300 MHz, CDCl3) δ 4.374.40 (m, 2H), 3.76-3.78 (m, 2H), 3.61-3.70 (m, 6H), 3.53-3.57 (d, 2H), 3.38 (s, 3H), 3.08 (s, 3H). MS (ESI) m/z=243 ([M+H]+, 100%). HRMS (ESI) Calcd. for C8H18O6S: 243.0902. Found: 243.0914.


Ex-68B: 4-Methoxy-2-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-5-thiophen-2-yl- benzaldehyde was prepared in an analogous fashion as as described in Ex-29C using methanesulfonic acid 2-[2-(2-methoxy-ethoxy)-ethoxy]-ethyl ester (Ex-68A). Silica gel chromatography (ethyl acetate/hexanes, 8:1) gave the expected product as a pale yellow oil (70%). 1H-NMR (300 MHz, CDCl3) δ 10.38 (s, 1H); 8.12 (s, 1H), 7.44 (d, 1H, J=3.6 Hz), 7.30 (d, 1H, J=5.4 Hz), 7.07 (dd, 1H, J=5.4, 3.6 Hz), 6.57 (s, 1H), 4.31 (t, 2H, J=4.8 Hz), 3.99 (s, 3H), 3.94 (t, 2H, J=4.8 Hz), 3.74-3.78 (m, 2H), 3.62-3.69 (m, 4H), 3.53-3.56 (m, 2H), 3.37 (s, 3H). MS (EI) m/z=380 ([M]+, 100%): HRMS (ESI) Calcd. for C8H18O6S: 243.0902. Found: 243.0914.


The title compound was prepared by condensing 4-methoxy-2-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-5-thiophen-2-yl-benzaldehyde (Ex-48B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 137-138° C., 82% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.20-8.23 (m, 3H), 8.09 (d, 2H, J=8.3 Hz), 8.01 (m, 2H), 7.66 (d, 1H, J=3.6 Hz), 7.52 (d, 1H, J=5.1 Hz), 7.13 (dd, 1H, J=5.1,3.6 Hz), 6.88 (s, 1H), 4.37 (t, 2H, J=3.6 Hz), 4.01 (s, 3H), 3.89 (t, 2H, J=3.6 Hz), 3.64-3.67 (m, 2H), 3.53-3.56 (m, 2H), 3.47-3.50 (m, 2H), 3.363.95 (m, 2H), 3.19 (s, 3H). MS (ESI) m/z=527 ([M+H]+, 100%). Anal. Calcd. for C28H30O8S: C, 63.86; H, 5.74; S, 6.09. Found: C, 64.08; H, 5.77; S, 6.09.


Example 69



embedded image


4-{3E-[2,4-Dimethoxy-5-(2-methyl-thiazol-4-yl)-phenyl]-acryloyl)-benzoic acid

Ex-69A: A solution of 2-bromo-1-(3,4-dimethoxy-phenyl)-ethanone (0.62 g, 2.39 mmol) and thioacetamide (0.18 g, 2.39 mmol) in ethanol (30 mL) was refluxed for 2 hours and the solvent was removed under reduced pressure. The product, 4-(3,4-dimethoxy-phenyl)-2-methyl-thiazole (0.56 g, 100%) was obtained as a white solid and used without further purification. To a suspension of 4-3,4-dimethoxy-phenyl)-2-methyl-thiazole obtained above (0.70 g, 2.97 mmol) in dichloromethane (60 mL) at 0° C. was added dichloromethyl methyl ether (0.40 mL, 4.46 mmol) followed by addition of titanium tetrachloride (1.0 M solution in dichloromethane, 8.9 mL, 8.9 mmol) dropwise. The reaction mixture was allowed to stir overnight at ambient temperature and then poured into ice. The aqueous solution was extracted with dichloromethane. The solution of dichloromethane was washed with hydrochloric acid (0.5M), saturated solution of sodium bicarbonate and brine, dried over sodium sulfate and concentrated. The product, 2,4-dimethoxy-5-(2-methyl-thiazol-4-yl)-benzaldehyde, was obtained as a white solid. 1H NMR (CDCl3) δ 10.33 (s, 1H), 8.67 (s, 1H), 7.56 (s, 1H), 6.52 (s, 1H), 4.03 (s, 3H), 3.99 (s, 3H), 2.75 (s, 3H).


The title compound was prepared by condensing 2,4-dimethoxy-5-(2-methyl-thiazol-4-yl)-benzaldehyde (Ex-69A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 201-202° C. (dec.). 1H-NMR (DMSO-d6) δ 8.47 (s, 1H), 8.14-7.97 (m, 5H), 7.76 (s, 1H), 7.65 (d, J=15.8 Hz, 1H), 6.81 (s, 1H), 4.00 (s, 3H), 3.98 (s, 3H), 2.69 (s, 3H). MS m/z=409 (M+, 70%), 378 ([M−OCH3]+, 100%).


Example 70



embedded image


4-{3E-[5-(1H-Benzoimidazol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid

Ex-70A: A solution of benzene-1,2-diamine (2.60 g, 24.1 mmol) and 2,4-dimethoxy-benzaldehyde (4.0 g, 24.1 mmol) in ethanol (60 mL) containing catalytic amount of acetic acid was refluxed overnight. Solvent was then evaporated under reduced pressure. The residue oil was triturated in ethyl acetate to obtain 2-2,4-dimethoxy-phenyl)-1H-benzoimidazole (0.76 g, 12%). The crude product was used without further purification. To a solution of 2-(2,4-dimethoxy-phenyl)-1H-benzoimidazole obtained above (0.76 g, 2.99 mmol) in dichloromethane (20 mL) was added dichloromethyl methyl ether (0.41 mL, 4.48 mmol) followed by addition of titanium tetrachloride (11.0M in dichloromethane, 9.0 mL, 9.0 mmol) at 0° C. The reaction mixture was allowed to stir overnight at ambient temperature and then poured into ice. A solution of sodium hydroxide (5M) was added dropwise until the pH of the solution was about 12. The basic solution was extracted with dichloromethane. The combined solution of dichloromethane was subsequently washed with brine, dried over sodium carbonate and concentrated. The product, 5-(1H-benzoimidazol-2-yl)-2,4-dimethoxy-benzaldehyde (0.40 g, 47%), was obtain and used without further purification. 1H NMR (CDCl3) δ 10.32 (s, 1H), 10.27 (bs, 1H), 9.03 (s, 1H), 7.83 (d, J=9 Hz, 1H), 7.48-7.45 (m, 1H), 7.31-7.22 (m, 1H), 6.58 (s, 1H), 4.18 (s, 3H), 4.01 (s, 3H). MS m/z=282 (M+, 100%).


The title compound was prepared by condensing 5-(1H-benzoimidazol-2-yl)-2,4-dimethoxy-benzaldehyde (Ex-70A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp>240° C. (dec.). 1H-NMR (DMSO-d6) 88.72 (s, 1H), 12.10 (s, 1H), 8.18 (d, J=8.4 Hz, 2H), 8.08-8.02 (m, 3H), 7.80 (d, J=15.4 Hz, 1H), 7.59 (s, 2H), 7.17-7.13 (m, 2H), 6.89 (s, 1H), 4.10 (s, 3H), 4.03 (s, 3H). MS m/z=429 ([M+H]+, 100%).


Example 71



embedded image


4-[3E-(2-Carbamoylmethoxy 4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid

Ex-71A: 2-2-Formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-acetamide was prepared in an analogous fashion as described in Ex-29C using 2-bromoacetamide. Silica gel chromatography (ethyl acetate/hexanes, 8:1) gave the expected product as a pale yellow solid (75%), mp: 178-179° C. 1H-NMR (300 MHz, CDCl3) δ 10.05 (s, 1H), 7.99 (s, 1H), 7.67 (brs, 1H), 7.44 (d, 1H, J=3.6 Hz), 7.34 (d, 1H, J=5.4 Hz), 7.10 (dd, 1H, J=5.4, 3.6 Hz), 6.48 (s, 1H), 5.67 (brs, 1H), 4.64 (s, 2H), 4.02 (s, 3H). MS (EI) m/z=291 ([M]+, 100%). Anal. Calcd. for C14H13NO4S: C, 57.72; H, 4.50; N, 4.81; S, 11.01. Found: C, 57.63; H, 4.50; N, 4.87; S, 11.03.


The title compound was prepared by condensing 2-(2-formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-acetamide (Ex-71A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 70% yield, mp 235° C. (dec.). 1H-NMR (300 MHz, DMSO-d6) δ 8.26-8.30 (m, 3H), 8.08-8.11 (m, 4H) 7.67 (d, 1H, J=2.7 Hz), 7.65 (brs, 1H), 7.53 (d, 1H, J=4.0 Hz), 7.49 (brs, 1H), 7.13 (m, 1H), 6.77 (s, 1H), 4.75 (s, 2H), 3.97 (s, 3H). MS (EI) m/z=437 ([M]+, 100%). HRMS (EI) Calcd. for C23H19NO6S: 437.0933. Found: 437.0924.


Example 72



embedded image


4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-2-oxo-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid

Ex-72A: 4-Methoxy-2-(2-morpholin-4-yl-2-oxo-ethoxy)-5-thiophen-2-yl-benzaldehyde was prepared in an analogous fashion as described in Ex-29C using 4-(2-chloroacetyl)morpholine. Silica gel chromatography (80% ethyl acetate/hexanes to 100% ethyl acetate) gave the expected product as a pale yellow solid, mp 200-201° C. 1H-NMR (300 MHz, CDCl3) δ 10.33 (s, 1H), 8.12 (s, 1H), 7.44 (d, 1H, J=3.6 Hz), 7.31 (d, 1H, J=5.1 Hz), 7.08 (dd, 1H, J=5.1, 3.6 Hz), 6.74 (s, 1H), 4.89 (s, 2H), 4.00 (s, 3H), 3.67 (brs, 8H). MS (ESI) m/z=362 ([M+H]+, 100%). Anal. Calcd. for C18H19NO5S: C, 59.82; H. 5.30; N, 3.88; S, 8.87. Found: C, 59.88; H, 5.36; N, 3.90; S, 8.75.


The title compound was prepared by condensing 4-methoxy-2-(2-morpholin-4-yl-2-oxo-ethoxy)-5-thiophen-2-yl-benzaldehyde (Ex-72A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Orange solid, mp 231-233° C., 70% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.28-8.35 (m, 3H), 8.21 (s, 1H), 8.07-8.11 (m, 3H), 7.66 (d, 1H, J=3.3 Hz), 7.52 (d, 1H, J=5.1 Hz), 7.13 (dd 1H, J=5.1, 3.3 Hz), 6.87 (s, 1H), 5.13 (s, 2H), 4.00 (s, 3H), 3.65 (brm, 4H), 3.54-3.55 (m, 4H). MS (EI) m/z=507 ([M]+, 1100%). Anal. Calcd. for C27H25NO7S.½EtOH: C, 63.55; H, 5.61; N, 2.60; S, 5.95. Found: C, 63.13; H. 5.55; N, 2.53; S, 5.84.


Example 73



embedded image


4-(3E-{4-Methoxy-2-[2-(1-methyl-pyrrolidin-2-yl)-ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic acid, hydrochloride

Ex-73A: Methanesulfonic acid 2-(1-methyl-pyrrolidin-2-yl)-ethyl ester was prepared in an analogous fashion as described in Ex-50A using (S)-(−)-1-methyl-2-pyrrolidinemethanol. The crude orange oil was dried in vacuo to give the expected product and was used without any further purification (40%). 1H-NMR, (300 MHz, CDCl3) δ 4.99-5.04 (m, 1H), 4.41-4.51 (m, 1H), 4.19-4.29 (m, 1H), 3.88-3.94 (m, 1H), 3.49 (s, 3H), 3.17-3.29 (m, 1H), 2.95-3.05 (m, 1H), 2.74 (s, 3H), 2.41-2.58 (m, 3H), 1.98-2.08 (m, 2H). MS (EI) m/z.=207 ([M]+, 100%). HRMS (EI) Calcd. for C18H19NO5S: 207.0929. Found: 207.0922.


Ex-73B: 4-Methoxy-2-[2-(1-methyl-pyrrolidin-2-yl)-ethoxy]-5-thiophen-2-yl-benzaldehyde was prepared in an analogous fashion as described in Ex-29C using Methanesulfonic acid 2-(1-methyl-pyrrolidin-2-yl)-ethyl ester (Ex-73A). Silica gel chromatography (10% methanol/methylene chloride to 15% methanol/methylene chloride) gave 0.50 g (70. %) of the expected product as a pale yellow oil. 1H-NMR (300 MHz, CDCl3, major isomer) δ 10.35 (s, 1H), 8.09 (s, 1H), 7.42-7.44 (m, 1H), 7.30 (d, 1H, J=5.1 Hz), 7.06-7.09 (m, 1H), 6.49 (s, 1H), 4.80 (m, 1H), 4.20-4.26 (m, 1H), 3.98 (s, 3H), 2.64-2.84 (m, 2H), 2.47 (s, 3H), 1.80-2.33 (m, 7H). MS (EI) m/z=345 ([M]+, 100%). HRMS (EI) Calcd. for C18H19NO5S: 345.1399. Found: 345.1401.


The title compound was prepared by condensing 4-methoxy-2-[2-(1-methyl-pyrrolidin-2-yl)-ethoxy]-5-thiophen-2-yl-benzaldehyde (Ex-73B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Dark Yellow solid, 52%, mp 206-208° C. 1H-NMR (300 MHz, DMSO-d6, major isomer) δ 8.30 (s, 1H), 8.25 (d, 2H, J=7.8 Hz), 8.07-8.12 (m, 3H), 7.94 (d, 1H, J=15.6 Hz), 7.68 (d, 1H, J=3.3 Hz), 7.52 (d, 1H, J=5.1 Hz), 7.14 (dd, 1H, J=5.1, 3.3 Hz), 6.86 (s, 1H), 5.05 (m, 1H), 4.34 (m, 1H), 4.00 (s, 3H), 3.40-3.46 (m, 2H), 2.81 (s, 3H), 2.40-2.44 (m, 1H), 2.16-2.27 (m, 2H), 1.81-2.00 (m, 4H). MS (ESI) m/z=492 ([M+H]+, 100%). Anal. Calcd. for C28H30ClNO5S.½H2O: C, 60.59; H, 5.99; N, 2.52; S, 5.78. Found: C, 60.70; H, 5.85; N, 2.64; S, 6.15.


Example 74



embedded image


4-{3E-[2,4-Dimethoxy-5-(1H-pyrazol-4-yl)-phenyl]-acryloyl}-benzoic acid

Ex-74A: A solution of 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrazole (0.33 g, 1.70 mmol) and di-tert-butyl dicarbonate (0.51 g, 2.34 mmol) in dichloromethane (10 mL) was allowed to stir overnight at ambient temperature. The solution was then washed with saturated solution of sodium bicarbonate and brine, dried over sodium sulfate, and concentrated. The crude product of 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrazole-1-carboxylic acid tert-butyl ester (0.61 g) was used in next step without further purification.


Ex-74B: To a mixture of 2,4-dimethoxy-5-bromo-benzaldehye (0.28 g, 1.13 mmol), 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrazole-1-carboxylic acid tert-butyl ester (Ex-76A, 0.61 g, 1.70 mmol), bis(tri-tert-butylphosphine)palladium (43 mg, 0.085 mmol) and potassium fluoride (0.24 g, 4.08 mmol) was added degassed tetrahydrofuran (15 mL). The reaction mixture was heated at 60° C. for one day. Additional potassium fluoride (0.24 g, 4.08 mmol) and water (20 μL) were added. The reaction mixture continued to stir at 60° C. for another 8 hours. The reaction was then quenched by water. The aqueous solution was extracted with ethyl acetate. The solution of ethyl acetate was washed with saturated solution of sodium bicarbonate, brine, dried over sodium sulfate and concentrated. The crude product was purified by flash chromatography. Elution with ethyl acetate (50%, v/v, in hexane) afforded 4-5-formyl-2,4-dimethoxy-phenyl)-pyrazole-1-carboxylic acid tert-butyl ester (0.15 g, 40%) as white solid. 1H NMR (CDCl3) δ 10.35 (s, 1H), 8.43 (s, 1H), 8.09 (s, 1H), 8.02 (s, 1H), 6.52 (s, 1H), 4.02 (s, 3H), 3.99 (s, 3H), 1.68 (s, 9H). MS m/z=333 ([M+H]+, 100%).


The title compound was prepared by condensing 2,4dimethoxy-5-(1H-pyrazol-4-yl)-benzaldehyde (Ex-74B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3 including an acid work-up. Yellow solid, mp>250° C. 1H-NMR (DMSO-d6) δ 12.42 (bs, 1H), 8.20-8.03 (m, 8H), 7.85 (d, J=16.1 Hz), 6.74 (s, 1H), 3.95 (s, 3H), 3.94 (s, 3H). MS m/z 379 ([M+H]+, 100%).


Example 75



embedded image


4-{3E-[2,4-Dimethoxy-5-(2H-tetrazol-5-yl)-phenyl]-acryloyl}-benzoic acid

Ex-75A: A solution of 2-(5-bromo-2,4-dimethoxy-phenyl)-[1,3]dioxolane (Ex-46A, 1.16 g, 4.9 mmol), sodium azide (641.3 mg, 9.86), and zinc bromide (552.2 mg, 2.46 mmol) in water (14 mL) and isopropanol (17 mL) were mixed and refluxed for 18 hours. The reaction mixture was quenched with 3N HCl (60 mL) and extracted with ethyl acetate (2×75 mL). The organic ws concentrated to a white solid. The solid was stirred in 0.25N NaOH (100 mL) for one hour. The suspension was filtered and the filtrate was collected and acidified with 1N HCl to a pH of 2. The aqueous solution was extracted with ethyl acetate:THF (40%). The organics were collected and concentrated to a crude brown solid of 2,4-dimethoxy-5-(2H-tetrazol-5-yl)-benzaldehyde (77.8 mg, 7%). 1H-NMR (DMSO-d6) δ 10.09 (s, 1H), 7.97 (s, 1H), 6.89 (s, 1H), 4.04 (s, 3H), 4.02 (s, 3H). MS m/z=234 ([M]+, 94%), 191 (100%).


The title compound was prepared by condensing 2,4-dimethoxy-5-(2H-tetrazol-5-yl)-benzaldehyde (Ex-75A) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, 19% yield, mp 218° C. (dec). 1H-NMR (DMSO-d6) 8.58 (s, 1H), 8.20 (d, 2H), 8.03 (m, 3H), 7.85 (d, 1H), 6.90 (s, 1H), 4.04 (s, 3H), 4.02 (s, 3H). MS m/z=422 ([M+CH3CN+H]+, 100%). HRMS m/z: calc. 381.1199, found 381.1184.


Example 76



embedded image


4-{3E-[5-(3H-Imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid

Ex-76A: To a suspension of 2,4-dimethoxybenzoic acid (0.36 g, 2 mmol) and 8 ml of POCl3 in a 50 ml of a round-bottom flask, 2,3-diaminopyridine (0.22 g, 2 mmol) was added. The mixture was heated to reflux for 4 hours and then cooled to room temperature. The reaction mixture was then concentrated to remove most of the POCl3. The residue was carefully treated with 1N HCl at 0° C. using a water-ice bath, then neutralized with NaOH (50%). The off-white solid was filtered to give 2-(2,4-dimethoxy-phenyl)-3H-imidazo[4,5-b]pyridine (0.44 g, 88%). 1H-NMR (DMSO-d6) δ 8.28-8.36 (m, 2H), 7.97 (d, J=8 Hz, 1H), 7.21-7.25(m, 1H), 6.80 (s, 1H), 6.78 (d, J=9 Hz, 1H), 4.05(s, 3H), 3.91 (s, 3H). HRMS (ES+) Calcd. for C24H19N3O5: 430.1403. Found: 430.1414.


Ex-76B: To a suspension of 2-2,4-dimethoxy-phenyl)-3H-imidazo[4,5-b]pyridine (0.44 g, 1.7 mmol) in 20 ml of CH2Cl2, 1,1-dichlorodimethyl ether (0.55 g, 4.8 mmol) was added. The mixture was cooled to 0° C. with a water-ice bath, and 7 ml (7 mmol) of TiCl4 (1.0 m in CH2Cl2) was added dropwise. The mixture was stirred at 0° C. for 2 hrs, then room temperature for overnight. The reaction mixture was poured into ice-water and the precipitate was filtered to give 0.31 g (63%) of 5-(3H-imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-benzaldehyde as a white solid. 1H-NMR (DMSO-d6) δ 10.22 (s, 1H), 8.67(s, 1H), 8.56 (d, J=5 Hz, 1H), 8.44 (d, J=8 Hz, 1H), 7.57-7.61 (m, 1H), 6.97 (s, 1H), 4.19(s, 3H), 4.06 (s, 3H). HMRS (EI) calcd. for C15H3N3O3: 283.0957; found: 283.0952.


The title compound was prepared by condensing 5-(3H-imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-benzaldehyde (Ex-76B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, mp 222-224° C., 60% yield. 1H-NMR (DMSO-4) δ 8.75 (s, 1H), 8.38-8.40 (m, 1H), 8.18 (d, J=9 Hz, 2H), 7.99-8.08(m, 4H), 7.83(d, J=15 Hz, 1H), 7.28-7.33(m, 1H), 6.91 (s, 1H), 4.11(s, 3H), 4.04 (s, 3H). MS m/z=430 ([M+H]+).


Example 77



embedded image


2-{4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-2-methyl-propionic acid

Ex-77A: To a mixture of aluminum chloride (2.8 g, 20.8 mmol) in carbon disulfide (50 mL) was added acetyl chloride (0.74 mL, 10.4 mmol) followed by addition of 2-methyl-2-phenyl- propionic acid ethyl ester (1.0 g, 5.2 mmol). The reaction mixture was refluxed for 2 hours and then poured into ice containing sulfuric acid (6M, The mixture was partitioned. The aqueous layer was extracted with ethyl acetate. The solution of ethyl acetate was washed with hydrochloric acid (0.5M), saturated solution of sodium bicarbonate and brine, dried over sodium sulfate and concentrated. The crude product was purified by flash chromatography. Elution with ethyl acetate (33%, v/v, in hexane) gave 2-(4-acetyl-phenyl)-2-methyl-propionic acid ethyl ester (0.57 g, 470 %). 1H NMR (CDCl3) δ 7.92 (d, J=7.6 Hz, 2H), 7.42 (d, J=7.6 Hz, 2H), 4.13 (q, J=7.2 Hz, 2H), 2.59 (s, 3H), 1.61 (s, 3H), 1.59 (s, 3H), 1.18 (t, J=7.2 Hz, 3H).


The title compound was prepared by condensing 2-4-acetyl-phenyl)-2-methyl-propionic acid (Ex-77A) and 2,4-dimethoxy-5-thiophen-2-yl-benzaldehyde (Ex-6A) in a similar manner as described in Ex-3. White foam. 1H-NMR (CCDl3) δ 8.11-7.86 (m, 5H), 7.62-7.46 (m, 3H), 7.42 (d, J=3.2 Hz, 1H), 7.31 (d, J=5.3, 1H), 7.10-7.08 (m, 1H), 6.54 (s, 1H), 3.99 (s, 3H), 3.97 (s, 3H), 1.67 (s, 3H), 1.65 (s, 3H). MS m/z=436 (M+, 55%), 405 ([M−OCH3]+, 100%).


Example 78



embedded image


3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl-1-[4-(2H-tetrazol-5-yl)-phenyl]-propenone

Ex-78A: A suspension of 4-acetylbenznitrile (2.9 g, 20.0 mmol), sodium azide (1.43 g, 22.0 mmol) and zinc bromide (4.5 g, 20.0 mmol) in water (50 mL) was refluxed for one day. Additional water (40 mL), HCl (3M, 30 mL) and EtOAc (200 mL) were added subsequently. The mixture was stirred until no solid in the aqueous layer. The mixture was then portioned. The aqueous solution was further extracted with EtOAc (3×60 mL). The combined EtOAc was concentrated. The residue was treated with NaOH (0.25 M, 200 mL). After stirred for 50 min, insoluble material was filtered, washed with NaOH (1M). The filtrate was then acidified with HCl (conc.) to pH 3. The resulting white precipitate was filtered, washed with water and dried in vacuo to obtain 1-[4-(2H-tetrazol-5-yl)-phenyl]-ethanone as white solid. 1H NMR (DMSO-d6) δ 8.17-8.10 (m, 4H), 2.6-[(s, 3H). MS m/z=188 (M+).


The title compound was prepared by condensing 1-[4-(2H-tetrazol-5-yl)-phenyl]-ethanone (Ex-78A) and 2,4-dimethoxy-5-thiophen-2-yl-benzaldehyde (Ex-6A) in a similar manner as described in Ex-3. Yellow solid, mp 2350C (dec.). 1H-NMR (DMSO-d6) δ 8.33 (d, J=8.4 Hz, 2H), 8.26 (s, 1H), 8.20 (d, J=8.9 Hz, 2H), 8.08 (d, J=16.0 Hz, 1H), 7.93 (d, J=15.0 Hz, 1H), 7.66-7.64 (m, 1H), 7.50-7.48 (m, 1H), 7.12-7.09 (m, 1H), 6.81 (s, 1H), 3.983 (s, 3H), 3.976 (s, 3H). MS m/z=418 (M+, 100%).


Example 79



embedded image


4-[3Z-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid

A solution of 4-[3E-(5-benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid (Ex-3, 101.4 mg, 0.23 mmol) in ethyl acetate (889 ml) was stirred in a well lighted-area at room temperature for 36 hours. The solution was concentrated to a yellow solid. The crude material was purified on reversed-phase preprative plates (20×20 cm, RP-18 F254, 1 mm) eluted with MEOH/ACN/H2O (45:45:10) to give 22.2 mg of the title compound, which was 86% the cis isomer by NMR analysis. 1H-NMR (DMSO-D6, major isomer) δ 7.98 (s, 4H), 7.86 (m, 2H), 7.76 (d, J=9 Hz 1H), 7.56 (s, 1H), 7.28 (m, 2H), 7.17 (d, J=12 Hz, 1H), 6.78 (d, J=12 Hz, 2H), 6.71 (s, 1H), 3.94 (s, 3H), 3.77 (s, 3H).


Example 80



embedded image


4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzenesulfonamide

To a solution of 4-acetyl-benzsulfonamide (Ex-26A, 0.20 g, 1.0 mmol) and 5-benzo[b]thiophene-2-yl-2,4-dimethoxyphenylbenzaldehyde (Ex-3A, 0.31 g, 1.05 mmol) in DMF (5 mL) and methanol (2 mL) was added lithium methoxide (0.15 g, 4.0 mmol). The reaction mixture was allowed to stir at ambient temperature. The reaction was quenched with water (30 mL) after 2 hours. The aqueous solution was acidified to pH 4 with HCl (3 M) and extracted with ethyl acetate. The combined solution of ethyl acetate was subsequently washed with brine, dried (Na2SO4) and concentrated. The solid residue was stirred in ethanol (10 mL) for 1.5 hours, filtered, washed with aqueous ethanol (50%) and dried in vacuo. The title compound was obtained as a yellow solid (0.3 g, 63%), mp 204-205° C. (dec.). 1H-NMR (DMSO-d6) δ 8.35 (s, 1H), 8.27 (d, J=7.7 Hz, 2H), 8.06 (d, J=16.0 Hz, 1H), 7.97-7.92 (m, 4H), 7.88 (d, J=6.6 Hz, 1H), 7.81 (d, J=7.4 Hz, 1H), 7.53 (s, 2H), 7.37-7.27 (m, 2H), 6.85 (s, 1H), 4.09 (s, 3H), 4.03 (s, 3H).


Example 81



embedded image


4-(3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

4-Acetyl-benzenesulfonamide (Ex-26A) (0.10 g, 0.29 mmol) and 4-acetylbenzenesulfonamide (0.057 g, 0.29 mmol) were dissolved in a dimethylformamide-methanol solution (2.0 mL, 7:3). After complete dissolution, lithium methoxide (0.044 g, 1.2 mmol) was added and the resulting orange slurry was stirred in the dark at room temperature for 4 h. Upon completion, as determined by HPLC, the mixture was diluted with water (15 mL) and extracted with ethyl acetate (3×25 mL). The combined organic extracts were dried over sodium sulfate and 1-evaporated to dryness. The crude oil was taken up in ethanol (2 mL) and warmed to 60° C. to obtain complete dissolution and allowed to cool to room temperature. The resulting precipitate was collected on filter paper and dried in vacuo to yield 0.13 g (82%) of the title compound as a yellow solid, mp 186-188° C. 1H-NMR (300 MHz, DMSO-d6) δ 8.23-8.28 (m, 3H), 7.93-8.09 (m, 4H), 7.66 (d, 1H, J=3.0 Hz), 7.56 (brs, 1H), 7.52 (d, 1H, J=5.1 Hz), 7.13 (dd, 1H, J=5.1, 3.0 Hz), 6.89 (s, 1H), 4.34 (t, 2H, J=6 Hz), 4.01 (s, 3H), 3.543.58 (m, 4H), 2.83 (t, 2H, J=6 Hz), 2.51-2.53 (m, 4H). MS (ESI) m/z=529 ([M+H]+, 100%). Anal. Calcd. for C26H28N2O6S2: C, 59.07; H, 5.34; N, 5.30; S, 12.13. Found: C, 58.90; H, 5.38; N, 5.37; S, 12.01.


Example 82



embedded image


2-{5Methoxy-2-[3-oxo-3-(4-aminosulfonyl-phenyl)-E-propenyl]-thiophen-2-yl-phenoxy}-2-methyl-propionic acid

The title compound was prepared by condensing 4-acetyl-benzenesulfonamide (Ex-26A) and 2-(2-formyl-5-methoxy-4-thiophen-2-yl-phenoxy)-2-methyl-propionic acid (Ex-59B) in a similar manner as described in Ex-22. Yellow solid, mp 164-165° C., 85% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.21-8.28 (m, 3H), 7.96-8.12 (m, 4H), 7.67 (d, 1H, J=3.0 Hz), 7.56 (brs, 3.0H), 7.14 (dd, 1H, J=5.7, 3.0 Hz), 6.57 (s, 1H), 3.88 (s, 3H), 1.66 (s, 6H). MS (ESI) m/z=502 ([M+H]+, 100%). Anal. Calcd. for C24H23NO7S2: C, 57.47; H, 4.62; N, 2.79; S, 12.79. Found: C, 57.70; H, 4.74; N, 2.85; S, 12.51.


Example 83



embedded image


2-{2,4-Dimethoxy-5-[3-oxo-3-(4-aminosulfonyl-phenyl)-E-propenyl]-phenyl}-indole-1-carboxylic acid tert-butyl ester

The title compound was prepared by condensing 4-acetyl-benzenesulfonamide (Ex-26A) and 2-(5-formyl-2,4-dimethoxy-phenyl)-indole-1-carboxylic acid tert-butyl ester (Ex-36A) in a similar manner as described in Ex-22. Yellow solid, 40% yield, mp 120-122° C. 1H-NMR (CDCl3) δ 8.01-8.19 (m, 6H), 7.68 (s, 1H), 7.56 (d, J=8 Hz, 1H), 7.46(d, J=16 Hz, 1H), 7.21-7.35(m, 2H), 6.53 (d, J=14 Hz, 2H), 5.01(s, 2H), 4.00 (s, 3H), 3.85(s, 3H), 1.42 (s, 9H). MS m/z=563 ([M+H]+). HRMS (ES+) Calcd. for C30H30N2O7S: 563.1852. Found: 563.1862.


Example 84



embedded image


4-{3E-[5-(1H-Indol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide

The title compound was prepared by condensing 4-acetyl-benzenesulfonamide (Ex-26A) and 5-(1H-indol-2-yl)-2,4-dimethoxy-benzaldehyde (Ex-61A) in a similar manner as described in Ex-22. Red solid, 70% yield, mp 185-187° C. 1H-NMR (DMSO-0.4) δ 11.15 (br, s, 1H), 8.33(s, 1H), 8.24 (d, J=8 Hz, 2H), 8.07 (d, J=15 Hz, 1H), 7.98 (d, J=8 Hz, 2H), 7.80(d, J=15 Hz, 1H), 7.41-7.55(m, 4H), 7.03-7.08 (m, 1H), 6.936.99 (m, 2H), 6.83 (s, 1H), 4.04(s, 3H), 3.99(s, 3H). MS m/z=463 ([M+H]+). HRMS (ES+) Calcd. for C25H22N2O5S: 463.1327. Found: 463.1316.


Example 85



embedded image


4-{3E-[4-Methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

The title compound was prepared by condensing 4-acetyl-benzenesulfonamide (Ex-26A) and 4-methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-benzaldehyde (Ex-46A) in a similar manner as described in Ex-22. Yellow solid, 48% yield, mp 193-196° C. 1H-NMR (DMSO-d6) δ 8.24 (m, 3H), 8.06 (s, 1H), 7.96 (d, 2H), 7.89 (d, 1H), 7.63 (d, 1H), 7.51 (m, 1H), 7.10 (dd, J=3, 4 Hz, 1H), 6.81 (s, 1H), 4.23 (t, 2H), 3.98(s, 3H), 3.55 (t, 4H), 2.47 (m, 2H), 2.35(t, 4H), 1.98(q, 2H). MS m/z=542 ([M]+, 38%), 100 (100%). Anal. calculated for C27H30N2O6S2.⅗H2O: C, 58.59; H, 5.68; S, 11.59; found C, 58.59; H, 5.55; S, 11.40.


Example 86



embedded image


4-{3E-[2-(3-Hydroxy-2-hydroxymethyl-propoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

2-(3-Hydroxy-2-hydroxymethyl-propoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-64B) (8.0 g, 24.8 mmol) and 4-acetylbenzenesulfonamide (4.9 g, 24.8 mmol) were dissolved in a dimethylformamide-methanol solution (170 mL, 7:3). After complete dissolution, lithium methoxide (3.8 g, 99.2 mmol) was added and the resulting red-orange slurry was stirred in the dark at room temperature for 3 h. Upon completion, as determined by HPLC, the mixture was diluted with water (500 mL) and extracted with ethyl acetate (6×200 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude oil was taken up in ethanol (150 mL) and warmed to 60° C. to obtain complete dissolution and allowed to cool to room temperature. The resulting precipitate was collected on filter paper and dried in vacuo to yield 7.0 g (60%) of the title compound as a light orange solid, mp 123-124° C. 1H-NMR (300 MHz, DMSO-d6) δ 8.25-8.29 (m, 3H), 7.90-8.11 (m, 4H), 7.66 (d, 1H, J=3.0 Hz), 7.56 (brs, 1H), 7.52 (d, 1H, J=5.1 Hz), 7.13 (dd, 1H, J=5.1, 3.0 Hz), 6.88 (s, 1H), 4.67 (t, 2H, J=10.8 Hz), 4.24 (d, 2H, J=6.0 Hz), 4.00 (s, 3H), 3.54-3.65 (m, 4H), 2.09-2.13 (m, 1H). MS (ESI) m/z=504 ([M+H]+, 100%). Anal. Calcd. C24H25NO7S2H2O: C, 57.24; H, 5.00; N, 2.78; S, 12.73. Found: C, 56.72; H, 5.27; N, 2.71; S, 12.11.


Example 87



embedded image


4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-isobutryl-benzenesulfonamide

A solution of 4-[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzenesulfonamide (Ex-80, 0:15 g, 0.31 mmol) in tetrahydrofuran (3 mL) was cooled to −78° C. and a solution of lithium bis(trimethylsilyl)amide (1.0 M in tetrahydrofuran, 0.63 mL, 0.63 mmol) was added dropwise. The solution was allowed to stir at this temperature for 1 hour and warm up to 0° C. Isobutyric acid anhydride (0.31 mL, 1.88 mmol) was added at this temperature. The solution was allowed to stir at 0° C. for 10 min and ambient temperature for 2 hours. The reaction then was quenched with water. The aqueous solution was extracted with ethyl acetate. The combined solution of ethyl acetate was washed with brine, dried over sodium sulfate and concentrated. The residual material was stirred in ethanol for 3 hours, filtered and dried in vacuo to give the title compound as a yellow solid (0.15 g, 87%), mp>240° C. (dec.). 1H-NMR (CDCl3) δ 8.21 (d, J=8.6 Hz, 2H), 8.13 (d, J=8.7 Hz, 2H), 8.09 (s, 1H), 8.02 (bs, 1H), 7.94 (s, 1H), 7.85-7.78 (m, 2H), 7.68 (s, 1H), 7.55 (d, J=16.9 Hz, 1H), 7.38-7.30 (m, 2H), 6.58 (s, 1H), 4.04 (s, 3H), 4.01 (s, 3H), 2.47-2.38 (m, 1H), 1.14 (d, J=7.1 Hz, 6H). MS m/z=549 (M+, 100%).


Example 88



embedded image


4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide, hydrochloride

Th 4{3-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide (Ex-81, 0.065 g, 0.12 mmol) was dissolved in tetrahydrofuran (5 mL) and 3 N HCl (1 mL) was added drop wise to the solution. The resulting yellow slurry was stirred in the dark at room temperature for 30 min. The precipitate was collected and dried in vacuo to yield 0.054 g (78%) of the title compound as a yellow solid, mp 235° C. (dec). 1H-NMR (300 MHz, DMSO-d6): δ 8.31-8.34 (m, 3H), 8.13 (d, 1H, J=15.0 Hz), 7.92-8.01 (m, 3H), 7.70 (d, 1H, J=4.0 Hz), 7.54 (m, 3H), 7.15-7.17 (m, 1H), 6.92 (s, 1H), 4.64 (brs, 2H), 4.03 (s, 5H), 3.72-3.79 (m, 4H), 3.56-3.60 (m, 4H). MS (ESI) m/z=529 ([M+H]+, 100%). Anal. Calcd. for C26H29ClN2O6S2: C, 55.26; H, 5.17; Cl, 6.27; N, 4.96; S, 11.35. Found: C, 55.31; H, 5.17; Cl, 6.32; N, 4.98; S, 11.20.


Example 89



embedded image


4-{3E-[4-Methoxy-2-(1H-tetrazol-5-ylmethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

Ex-89A: (2-Acetyl-5-methoxy-4-thiophen-2-yl-phenoxy)-acetonitrile was prepared in an analogous fashion as described in Ex-29C using iodoacetonitrile. The crude solid was slurried in ethyl acetate (50 mL) to remove residual impurities. The resulting solid was collected on filter paper and dried in vacuo to give the expected product as an orange solid (70%), mp 175-176° C. 1H-NMR (300 MHz, CDCl3) δ 10.29 (s, 1H), 8.17 (s, 1H), 7.48 (d, 1H, J=3.6 Hz), 7.35 (d, 1H, J=5.1 Hz), 7.10 (dd, 1H, J=5.1, 3.6 Hz), 6.64 (s, 1H), 4.96 (s, 2H), 4.06 (s, 3H). MS (EI) m/z=273 ([M]+, 99%), 233 (100%). Anal. Calcd. for C14H11NO3S: C, 61.52; H, 4.06; N, 5.12; S, 11.73. Found: C, 61.65; H, 4.20; N, 5.16; S, 11.59.


Ex-89B: (2-Acetyl-5-methoxy-4-thiophen-2-yl-phenoxy)acetonitrile (Ex-89A, 0.30 g, 1.1 mmol) was slurried in a mixture of water:isopropanol (3 mL, 2:1) to obtain a well-dispersed solution. Sodium azide (0.079 g, 1.2 mmol) followed by zinc bromide (0.25 g, 1.1 mmol) were added and the reaction was heated to reflux and vigorously stirred for 24 h. Additional solvent (1 mL, 1:1 water:isopropanol) was added after 10 h at reflux due to evaporation. The reaction was diluted with an ethyl acetate:tetrahydrofuran mixture (25 mL, 2:1) and a 3 N HCl solution (10 mL) and vigorously stirred until a homogenous solution was obtained (1 h). The layers were separated and the aqueous was extracted with ethyl acetate (3×50 mL). The combined organic extracts were dried over sodium sulfate and concentrated to a dark green solid. Silica gel chromatography (15% methanol/methylene chloride containing 1% acetic acid) gave 0.22 g (65%) of 4-methoxy-2-(1H-tetrazol-5-ylmethoxy)5-thiophen-2-yl-benzaldehyde as a pale green solid. 1H-NMR (300 MHz, DMSO-d6). 10.33 (s, 114), 7.97 (s, 1H), 7.52-7.56 (m, 2H), 7.10-7.12 (m, 2H), 5.81 (s, 2H), 4.05 (s, 3H). MS (ESI) m/z=317 ([M+H]+, 100%). HRMS (ESI) Calcd. for C27H25NO7S: 317.0708. Found: 317.0712.


The title compound was prepared by condensing 4-acetyl-benzenesulfonamide (Ex-26A) and 4-methoxy-2-(1H-tetrazol-5-ylmethoxy)-5-thiophen-2-yl-benzaldehyde (Ex-89A) in a similar manner as described in Ex-22. Yellow solid, mp 163-164° C. (dec), 60% yield. 1H-NMR (300 MHz, DMSO-d6) δ 8.31-8.34 (m, 3H), 7.92-8.15 (m, 4H), 7.70 (d, 1H, J=4.0 Hz), 7.54 (m, 3H), 7.15-7.17 (m, 1H), 6.92 (s, 1H), 4.64 (brs, 2H), 4.03 (s, 5H). MS (ESI) m/z=498 ([M+H]+, 100%). Anal. Calcd. for C22H19N5O5S2-11/2H2O: C, 50.37; H, 4.23; N, 13.35; S, 12.23. Found: C, 50.48; H. 4.24; N, 12.95; S, 12.35.


Example 90



embedded image


4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-(2-morpholin-4-yl-ethyl)-benzamide

To a solution of 4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid (Ex-3, 0.44 mg, 1 mmol) and 2-morpholin-4-ylethylamine (0.18 mL) in dichloromethane (20 mL) was added 13-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.38 g, 2 mmol) and the mixture was stirred at room temperature for four hours. It was poured into brine (100 mL) and extracted with dichloromethane (2×50 mL). The organic phase was dried and evaporated. Chromatography (dichloromethane/methanol 50:1) gave the title compound as a yellow solid (0.43 g, 77%). 1H-NMR (300 MHz, CDCl3) δ 8.12 (d, J=16 Hz, 1H), 8.09 (d, J=8 Hz, 2H), 7.95 (s, 1H), 7.90 (d, J=8 Hz, 2H), 7.77-7.85 (m, 2H), 7.68 (s, 1H), 7.56 (d, J=16 Hz, 1H), 7.29-7.40 (m, 2H), 6.80-6.85 (br s, 1H), 6.58 (s, 1H), 4.04 (s, 3H), 4.01 (s, 3H), 3.75 (t, J=5 Hz, 4H), 3.59 (quad, J=5 Hz, 2H), 2.64 (t, J=5 Hz, 2H), 2.53 (t, J=5 Hz, 4H). Anal. calc. for C32H32N2O5S.H2O: C, 67.94; H, 5.88; N, 4.95; found: C, 68.12; H, 5.92; N, 4.96.


Example 91



embedded image


4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-(2,2,2-trifluoro-ethyl)-benzamide

The title compound was prepared in a similar manner as described in Ex-90. Yellow solid, 53% yield, mp 215-217° C. 1H-NMR (Aceton-d6) δ 8.46 (br, s, H), 8.12-8.24 (m, 4H), 8.06 (d, J=8 Hz, 2H), 7.78-7.91 (m, 4H), 7.28-7.36(m, 2H), 6.92(s, 1H), 4.08 (s, 3H), 4.06(s, 3H), 2.79 (s, 2H). MS m/z=526 ([M+H]+). HRMS (ES+) Calcd. for C28H22F3NO4S: 526.1300. Found: 526.1324.


Example 92



embedded image


4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzamide

Ex-92A: To a solution of 4-acetyl-benzoic acid (0.5 g, 3.05 mmol) in tetrahydrofuran (10 mL) was added carbonyldiimidazole (0.74 g, 4.75 mmol). The solution was allowed to stir at ambient temperature for one hour and cooled to 0° C. followed by addition of ammonia (28% in water, 3 mL, 21 mmol). The solution was continued to stir at 0° C. for another one hour. The solvent was removed under reduced pressure. The residue was treated with water, filtered, washed with water, dried in vacuo to give 4-acetyl-benzamide (0.25 g, 50%) as a white solid. 1H NMR (DMSO-d6) δ 8.11 (bs, 1H), 8.00 (d, J=9 Hz, 2H), 7.95 (d, J=9 Hz, 2H), 7.53 (bs, 1H), 2.59 (s, 3H).


To a solution of 4-acetyl-benzamide (Ex-92A, 0.25 g, 1.53 mmol) and 2-(2-morpholin-4-yl-ethoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-60A, 0.53 g, 1.53 mmol) in DMF (7 mL) and methanol (3 mL) was added lithium methoxide. The solution was allowed to stir at ambient temperature. The reaction was quenched with water after 2 hours. The aqueous solution was extracted with ethyl acetate. The combined extract was washed with NaHCO3, NH4Cl, brine, dried (Na2SO4) and concentrated. The residue was stirred in ethanol overnight to afford the title compound as a yellow solid (0.43 g, 57%), mp 183-1840C. 1H-NMR (CDCl3) δ 8.09-8.04 (m, 3H), 7.93 (d, J=8.3 Hz, 2H), 7.87 (s, 1H), 7.57 (d, J=15.7 Hz, 1H), 7.42 (d, J=3.9 Hz, 1H), 7.32 (d, 4.4 Hz, 1H), 7.11-7.08 (m, 1H), 6.55 (s, 1H), 6.25 (bs, 1H), 5.75 (bs, 1H), 4.25 (t, J=5.9 Hz, 2H), 3.98 (s, 3H), 3.71 (t, J=4.2 Hz, 4H), 2.92 (t, J=5.7 Hz, 2H), 2.59 (t, J=4.6 Hz, 4H). MS m/z=493 ([M+H]+, 100%).


Example 93



embedded image


4-[3E-(5-Benzo[b]thiophen-2-yl-2,4dimethoxy-phenyl)-acryloyl]-benzamide

To a solution of 4-acetyl-benzamide (0.3 g, 1.84 mmol) and 5-(benzo[b]thein-2yl)-2,4-dimethoxybenzaldehyde (0.55 g, 1.84 mmol) in a mixture of N,N-dimethylformamide (7 mL) and methanol (3 mL) was added lithium methoxide (0.14 g, 3.68 mmol). The reaction mixture was allowed to stir at ambient temperature for 9 hours. The resulting precipitate was collected by filtration, washed with methanol, dried in vacuo to obtain the title compound as a yellow solid (5.56 g, 68%). Alternatively, to mixture of 4-[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid (Ex-3, 3.0 g, 6.75 mmol), 1-(3-dimethylaminopropyl)3-ethylcarbodiimide hydrochloride (1.81 g, 9.45 mmol), 1-hydroxybenzotriazole hydrate (1.09 g, 8.10 mmol) and ammonium chloride (1.81 g, 33.7 mmol) in N,N-dimethylformamide (60 mL) was added triethylamine (2.4 mL, 16.9 mmol). The reaction mixture was allowed to stir overnight at ambient temperature. Any insoluble material was removed by filtration. The filtrate was diluted with ethyl acetate to 180 mL. The solution of ethyl acetate was washed with a saturated solution of sodium bicarbonate, brine, dried over sodium sulfate and concentrated to give the title compound as a yellow solid (2.82 g, 94%), mp 240-241-C. 1H-NMR (DMSO-d6) δ 8.37 (s, 1H), 8.19 (d, J=7.8 Hz, 2H), 8.12 (d, J=15.3 Hz, 1H), 8.04-7.91 (m, 6H), 7.83 (d, J=7.5 Hz, 1H), 7.55 (s, 1H), 7.36-7.30 (m, 2H), 6.87 (s, 1H), 4.04 (s, 3H), 4.01 (s, 3H). MS m/z=444 ([M+H]+, 100%).


Example 94



embedded image


4-{3E-[4-Methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzamide

The title compound was prepared by condensing 4-Acetyl-benzamide (Ex-92A) and 4-methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-benzaldehyde (Ex-66A) in a similar manner as described in Ex-92. Orange solid, mp 81-83° C. 1H-NMR (CDCl3) δ 8.08 (m, 3H), 7.94 (d, 2H), 7.86 (s, 1H), 7.56 (d, 1H), 7.41 (d, 1H), 7.32 (d, 1H), 7.10 (m, 1H), 6.55 (s, 1H), 4.19 (t, 2H), 3.99(s, 3H), 3.72 (t, 4H), 2.59 (t, 2H), 2.12 (t, 4H), 1.98(quintet, 2H). MS m/z=506 ([M]+, 34%), 100 (100%). 28%. Anal. calculated for C29H30N2O5S.⅖H2O: C, 65.45; H, 6.04; S, 6.24; found C, 65.30; H, 6.16; S, 6.17.


Example 95



embedded image


N-Acetyl-4-[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzamide


A suspension of 4-[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzamide (Ex-93, 0.5 g, 1.13 mmol) in THF (15 mL) was cooled to −78° C. followed by addition of lithium bis(trimethylsilyl)amide (1.0 M in THF, 2.3 mL, 2.3 mmol). The mixture was stirred at this temperature for 1 hour and warmed up to 0° C. Acetic anhydride (0.48 mL, 6.8 mmol) was then added dropwise. After the addition was complete the reaction mixture was warmed up to ambient temperature and stirred for 2 hours. The reaction was quenched with water. The aqueous solution was extracted with ethyl acetate. The combined extract was washed with NH4Cl, brine, dried and concentrated. The residue was purified by flash chromatography. Elution with 50% EtOAc/hexane gave the title compound as yellow solid (0.16 g, 29%), mp 228-229° C. 1H-NMR (CCDl3) δ 8.52 (s, 1H), 8.15-8.10 (m, 3H), 7.96 (d, J=7.6 Hz, 2H), 7.85-7.77 (m, 2H), 7.67 (s, 1H), 7.55 (d, J=16.7 Hz, 1H), 7.34-7.29 (m, 3H), 6.58 (s, 1H), 4.05 (s, 3H), 4.01 (s, 3H), 2.65 (s, 3H). MS m/z=485 (M+, 100%).


Example 96



embedded image


4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-N-isobutyryl-benzamide

The title compound was prepared in a similar manner as described in Ex-95 from -[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)acryloyl]-benzamide (Ex-93) and isobutyric anhydride. Yellow solid, mp 208-209° C. 1H-NMR (CCDl3) δ 8.14 (s, 1H), 8.15-8.10 (m, 3H), 7.96 (d, J=7.2 Hz, 2H), 7.85-7.77 (m, 2H), 7.67 (s, 1H), 7.56 (d, J=16.2 Hz, 1H), 7.38-7.29 (m, 3H); 6.59 (s, 1H), 4.05 (s, 3H), 4.01 (s, 3H), 3.68-3.59 (m, 1H), 1.28 (d, J=6.2 Hz, 6H).: MS m/z=513 (M+, 93%), 425 (100%).


Example 97



embedded image


4(3E-{4-[3-(4-Thiophen-2-yl-phenyl)acryloyl]-phenyl}-ureido)-acetic acid

A solution of (3-{4-[3-(4-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-ureido)-acetic acid ethyl ester (Ex-15, 151.3 mg, 0.35 mmol) in THF:MeOH:H2O (2:1:1, 6 mL) was treated with lithium monohydrate (73.2 mg, 1.74 mmol) and stirred for 4 hours. The reaction mixture was titrated with 5N HCl to a pH2. The mixture was extracted with ethyl acetate (30 mL). The organic phase was collected, dried over Na2SO4, and concentrated to a pure yellow solid (131.7 mg, 93%), mp 222-225° C. 1H-NMR (DMSO-d6) δ 9.27 (br s, 1H), 8.14 (d, 2H), 7.87 (m, 3H), 7.71 (d, 3H), 7.56 (m, 4H), 7.14 (t, 1H), 6.54 (t, 1H), 3.78 (d, 2H). MS m/z=407 ([M+H]+, 88%), 306 (100%). Anal. calculated for C22H18N2O4S.½H2O: C, 63.60; H, 4.61; S, 7.72; found C, 63.23; H, 4.70; S, 7.66.


Example 98



embedded image


N-{4-[3E-(3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-N-methyl-methanesulfonamide


A solution of N-{4-[3E-(3,4-dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-methanesulfonamide (Ex-14, 90 mg, 0.20 mmol) in anhydrous DMF was treated with potassium carbonate (56.1 mg, 0.41). Methyl iodide (126.32 uL, 2.03 mmol) was added to the reaction mixture which was then refluxed for 1.5 hours under inert conditions. The reaction was diluted with water (25 mL) and extracted with diethyl ether (2×50 mL). The organic portion was dried over sodium sulfate, filtered, and concentrated to a yellow oil. The crude material was purified by silica gel chromatography (30-50% ethyl acetate/hexanes) to give 42 mg (45%) of the title compound as a yellow solid. 1H-NMR (CDCl3) δ 8.06 (d, 2H), 7.59 (d, 1H), 7.54 (m, 4H), 7.42 (m, 2H), 7.12 (m, 2H), 3.97 (s, 3H), 3.88 (s, 3H), 3.40 (s, 3H), 2.89 (s, 3H). MS m/z=457 ([M]+, 100%).


Example 99



embedded image


3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-1-1-[4-(D-glucopyranosylamino)-phenyl]-propenone

Ex-99A: D-Glucose (1.8 g, 10 mmol) and 4-aminoacetophenone (1.35 g, 10 mmol) were mixed in ethanol (50 ml), acetic acid (5 drops) was added, and the mixture was stirred at reflux for 2 hours. Water (2 ml) was added and the mixture became a homogeneous solution and was then stirred at reflux for 4 hours. Upon cooling to room temperature the precipitate was filtered out, rinsed with ethanol, and dried to give 4-(D-glucopyranosylamino)acetophenone as a white solid (1.21 g, 41%), mp 209-210C (dec). 1H-NMR (DMSO-D6) δ 7.71 (d, J=8 Hz, 2H), 7.06 (d, J=8 Hz, 1H), 6.69 (d, J=8 Hz, 2H), 4.98 (d, J=4 Hz, 1H), 4.89 (d, J=7 Hz, 2H), 4.384.45 (m, 2H), 3.55-3.64 (m, 1H), 3.30-3.46 (m, 1H), 3.00-3.30 (m, 4H), 2.38 (s, 3H). MS m/z=297 ([M]+, 15%), 148 (100%).


4-(D-Glucopyranosylamino)acetophenone (Ex-99A, 326 mg, 0.6 mmol) and (benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde (Ex-3A, 150 mg, 0.5 mmol) were mixed in DMF (10 ml) and methanol (5 ml). Lithium methoxide (120 mg) was added, and the mixture was stirred at room temperature for 18 hours. Lithium methoxide (120 mg) was added again and the mixture was stirred overnight. Saturated sodium chloride solution (50 ml) was added and the mixture was extracted with dichloromethane. Chromatography (dichloromethane/methanol 10:1) gave an oily yellow residue as the title compound (20 mg, 6%). 1H-NMR (DMSO-D6) δ 8.29 (s, 1H), 7.78-8.02 (m, 7H), 7.25-7.38 (m, 2H), 7.15 (d, 1H), 6.84 (s, 1H), 6.77 (d, 2H), 4.99 (d, 1H), 4.86-4.95 (m, 2H), 4.41-4.49 (m, 2H), 4.02 (s, 3H), 3.98 (s, 3H), 3.00-3.45 (m 6H). MS m/z=578 ([M+H]+, 100%).


Example 100



embedded image


2-{4-[3-(4-Methanesulfonylamino-phenyl)-3-oxo-E-propenyl]-5-methoxy-2-thiophen-2-yl-phenoxy})-2-methyl-propionic acid

Ex-100A: A solution of 4-aminoacetophenone (5.0 g, 37.0 mmol) and pyridine (3.0 mL) in anhydrous dichloromethane (300 mL) was treated with mesyl chloride (2.86 mL, 37.0 mmol). The reaction was stirred for 84 hours at room temperature under nitrogen, and then quenched with saturated NH4Cl solution (100 mL). The organic phase was collected, washed with water (100 mL) and brine, dried over sodium sulfate, and concentrated over silica. The material was purified by silica gel chromatography (50% ethyl acetate/hexanes) to give 4.72 g (60%) of N-(4-acetyl-phenyl)methanesulfonamide as a yellowish oil. 1H-NMR (DMSO-d6) δ 10.28 (s, 1H), 7.90 (d, 1H), 7.24 (d, 1H), 3.06 (s, 3H), 2.48 (s, 3H).


A solution of N-(4-acetyl-phenyl)-methanesulfonamide (Ex-100A, 279.6 mg, 1.31 mmol) and 2-(4-formyl-5-methoxy-2-thiophen-2-yl-phenoxy)-2-methyl-propionic acid (Ex-47D, 400 mg, 1.20 mmol) in DMF (5.25 mL) and MeOH (2.25 mL) was treated with lithium methoxide (182.2 mg, 4.8 mmol) and stirred for 5 hours at room temp. under nitrogen atmosphere. The reaction mixture was diluted with water (25 mL) which was then extracted with isopropyl acetate (2×50 mL). The aqueous portion was collected and acidified to a pH of 3 with 3N HCl. The aqueous solution was then extracted with isopropyl acetate (2×50 mL). The organic was collected, dried over sodium sulfate, and concentrated to a green solid. Attempted to recrystallize crude material from ethanol/hexanes; however, this mixture was concentrated and stirred with ethyl acetate (3 mL) to give 95.6 mg (14%) of the title compound as a yellow solid, mp 181-183° C. 1H-NMR (DMSO-d6) δ 10.31 (br s, 1H), 8.24 (s, 1H), 8.12 (d, 2H), 7.95 (d, 1H), 7.87 (d, 1H), 7.67 (d, 1H), 7.50 (d, 1H), 7.30 (d, 2H), 7.09 (t, 1H), 6.45 (s, 1H), 3.81 (s, 3H), 3.08 (s, 3H), 1.65 (s, 6H). MS m/z=516 ([M+H]+, 100%). HRMS m/z: calc. 516.1150, found 516.1165.


Example 101



embedded image


2-(4-{3-[4-(Methanesulfonyl-methyl-amino)-phenyl]-3-oxo-E-propenyl}-5 methoxy-2-thiophen-2-yl-phenoxy)-2-methyl-propionic acid

Ex-101A: A solution of N-(4-acetyl-phenyl)-methanesulfonamide (Ex-100A, 2.0 g, 9.4 mmol) in anhydrous DMF (300 mL) was treated with potassium carbonate (2.59 g, 18.8 mmol), followed by the addition of methyl iodide (5.85 mL, 94 mmol). The reaction mixture refluxed for two hours and was then treated with more methyl iodide (5.85 mL, 94 mmol). The reaction refluxed for another two hours, and reaction completeness was confirmed by HPLC analysis. The reaction was quenched with water (100 mL) and extracted with ethyl acetate (2×100 mL). The organic phase was collected, dried over sodium sulfate, and concentrated to a clear oil with residual DMF. Water (25 mL) was added to precipitate a white solid. The white solid was then filtered and dried by vacuum oven at 20° C. (−20 mm Hg) to give 1.37 g (64%) of N-(4-acetyl-phenyl)-N-methyl-methanesulfonamide. 1H-NMR (CDCl3) δ 7.88 (d, 2H), 7.48 (d, 2H), 3.38 (s, 3H), 2.86 (s, 3), 2.60 (s, 3H). HRMS m/z; calc. 530.1307, found 530.1313.


A solution of N-(4-acetyl-phenyl)-N-methyl-methanesulfonamide (Ex-101A, 298 mg, 1.31 mmol) and 2-(4-formyl-5-methoxy-2-thiophen-2-yl-phenoxy)-2-methyl-propionic acid (Ex-47D, 400 mg, 1.20 mmol) in DMF (5.25 mL) and MeOH (2.25 mL) was treated with lithium methoxide (182 mg, 4.8 mmol) and stirred for 6 hours at room temperature under nitrogen atmosphere. The reaction mixture was diluted with water (25 mL) which was then extracted with isopropyl acetate (2×50 mL). The aqueous portion was collected and acidified to a pH of 3 with 3N HCl. The aqueous solution was then extracted with isopropyl acetate (2×50 mL).


The organic was collected, dried over sodium sulfate, and concentrated to a yellow foam. The crude material was purified by silica gel chromatography (50% ethyl acetate/hexanes; 10% MeOH/CH2CL2) to give 293 mg (42%) of the title compound as a yellow solid, mp 197-200° C. 1H-NMR (DMSO-d6) δ 8.20 (s, 1H), 8.12 (d, 2H), 8.00 (d, 1H), 7.83 (d, 1H), 7.66 (dd, J=2,2 Hz, 1H), 7.53 (d, 2H), 7.44 (d, 1H), 7.06 (dd, J=2,4 Hz, 1H), 6.78 (s, 1H), 3.82 (s, 3H), 3.28 (s, 3H), 2.98 (s, 3H), 1.56 (s, 3H). MS m/z 530 ([M+H]+, 100%).


Example 102



embedded image


3-Amino-4-{4-[3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)acryloyl]-phenylamino}-cyclobut-3-ene-1,2-dione

Ex-102A: To a solution of 2.7 g (20 mmol) of 4′-aminoacetophenone in 90 mL of ethanol, 4.5 g (20 mmol) of 3,4-dibutoxy-3-cyclobutene-1,2-dione (Aldrich) was added. The mixture was then heated to reflux overnight. A light yellow precipitate formed. To the reaction mixture, 20 mL (40 mmol) of ammonia (2.0 M in ethanol) was added, and the resultant mixture was stirred at room temperature for 2 hr. The light yellow solid was filtered and washed with ethanol to give 2.4 g (52%) of 3-(4-acetyl-phenylamino)-4-amino-cyclobut-3-ene-1,2-dione. 1H-NMR (DMSO-d6) δ 9.99 (br, 1H), 7.90 (d, J=8 Hz, 2H), 7.50 (d, J=8 Hz, 2H), 4.31 (br, 2H), 2.48 (s, 3H). HMRS (EI) calcd. for C12H10N2O3: 230.0691; found: 230.0691.


3-(4-Acetyl-phenylamino)-4-amino-cyclobut-3-ene-1,2-dione (Ex-102A, 0.46 g, 2 mmol), and 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde (Ex-3A, 0.596 g, 2 mmol) were dissolved in DMF (10 mL) under nitrogen, and 4.0 ml (4 mmol) of LiOMe (1.0 M in MeOH) was added.


The mixture was stirred under nitrogen at room temperature over night. The reaction mixture was poured into ice-water, acidified to pH1 with 3N HCl, extracted with dichloromethane. The combined organic phase was then washed with brine and water, dried over MgSO4, column chromatography (5% MeOH in CH2Cl2) to give 57 mg (5.4%) title compound as a yellow solid, mp>260° C. 1H-NMR (DMSO-d6) δ 10.08 (s, 1H), 8.36 (s, 1H), 8.18 (d, J=8 Hz, 2H), 8.03 (d, J=15 Hz, 1H), 7.82-7.95 (m, 4H), 7.57 (d, J=8 Hz, 2H), 7.27-7.37 (m, 2H), 6.85 (s, 1H), 4.02 (s, 3H), 3.99 (s, 3H), 3.26 (s, 2H). MS m/z=511[M+H]+, (20%), 416 (100%). HRMS (ES+) Calcd. for C29H22N2O5S: 511.1327. Found: 511.1326.


Example 103



embedded image


5-[3E-(3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzo[1,3]dioxole-2,2-dicarboxylic acid, diethyl ester

Ex-103A: To a solution of KOH (1.25 M, 200 mL) were added 3,4-dihydroxy-acetophenone (2.0 g, 13.1 mmol) and cetyltrimethylamonium chloride (25% in water, 17 mL, 13.1 mmol). The suspension was stirred at ambient temperature for 10 min followed by the addition of a suspension of 3,4-dimethoxy-5-thiophen-2yl-benzaldehyde (Ex-4A, 3.9 g, 15.8 mmol) in ethanol (10 mL). The reaction mixture was allowed to stir at ambient temperature overnight and was acidified with concentrated HCl to pH 3, saturated with NaCl, extracted with CH2Cl2. The combined solution of CH2Cl2 was washed with brine, dried (Na2SO4) and concentrated under reduced pressure. The crude product was purified by flash chromatography. Elution with 50% EtOAc/hexane gave 1-3,4-dihydroxy-phenyl)-3E-(3,4-dimethoxy-5-thiophen-2-yl- phenyl)-propenone as a yellow oil. 1H NMR (DMSO-d6) δ 7.88 (s, 1H), 7.83-7.81 (m, 2H), 7.76 (d, J=2.4 Hz, 1H), 7.68-7.74 (m, 2H), 7.61-7.57 (m, 1H), 7.51 (s, 1H), 7.50 (d, J=5.2 Hz, 1H), 7.13 (t, J=4.5 Hz, 114), 6.85 (d, J=8.7 Hz, 1H), 3.92 (s, 3H), 3.77 (s, 3H). MS m/z=382 (M+, 100%).


1-(3,4-Dihydroxy-phenyl)-3E-(3,4-dimethoxy-5-thiophen-2-yl-phenyl)-propenone (106 mg), diethyl dibromomalonate (380 mg) and potassium carbonate (500 mg) was mixed in acetone (15 ml) and the mixture was stirred at room temperature over a weekend. It was poured into ethyl acetate (100 ml) and washed with water (100 ml). The organic layer was dried and evaporated. Chromatography (hexanes/ethyl acetate 4:1) gave an oily residue. Crystallization from hexanes and dichloromethane gave the title compound as a slightly yellow solid (70 mg), mp 125-126° C. 1H-NMR (DMSO-d6) δ 7.76 (d, J=15 Hz, 1H), 7.73 (dd, J=2, 7 Hz, 1H), 7.64 (d, J=2 Hz, 1H), 7.54 (d, J=1 Hz, 1H), 7.53 (d, J=2 Hz, 1H), 7.39 (d, J=5 Hz, 1H), 7.38 (d, J=15 Hz, 1H), 7.11 (dd, J=2, 5 Hz, 1H), 7.08 (d, J=1 Hz, 1H), 7.05 (d, J=7 Hz, 1H), 3.97 (s, 3H), 3.87 (s, 3H), 4.41 (quad, J=7 Hz, 4H), 1.30 (t, J=7 Hz, 6H).


Example 104



embedded image


4-[3E-(2,4-Dimethoxy-5-pyridin-3-yl-phenyl)-acryloyl]-benzenesulfonamide

Ex-104A: 2,4-Dimethoxy-5-pyridin-3-yl-benzaldehyde was prepared in a similar manner as described in Ex-3A from pyridine-3-boronic acid and 5-bromo-2,4-dimethoxybenzaldehyde, 68% yield. 1H-NMR (CDCl3) δ 10.33 (s, 1H), 8.71 (d, J=1 Hz, 1H), 8.51-8.53(m, 1H), 7.81 (s, 1H), 7.74-7.78 (m, 1H), 7.27-7.31 i (m, 1H), 6.52 (s, 1H), 3.99 (s, 3H), 3.91 (s, 3H). HMRS (EI) calcd. for C14H13NO3: 243.0895; found: 243.0888.


The title compound was prepared by condensing 2,4-dimethoxy-5-pyridin-3-yl-benzaldehyde (Ex-104A) and 4-acetyl-benzenesulfonamide (Ex-26A) in a similar manner as described in Ex-22. Yellow solid, 51% yield, mp 253-255° C. 1H-NMR (DMSO-d6) δ 8.69 (d, J=1 Hz, 1H), 8.50 (d, J=4 Hz, 1H), 8.25 (d, J=9 Hz, 2H), 8.08 (d, J=15 Hz, 1H), 8.02 (s, 1H), 7.84-7.94(m, 41-1), 7.51 (s, 2H), 7.40-7.44 (m, 1H), 6.82(s, 1H), 3.98 (s, 3H), 3.88 (s, 3H). MS m/z=424([M]+, 45%), 393 (100%). HMRS (EI) calcd. for C22H20N2O5S: 424.1093; found: 424.1100.


Example 105



embedded image


4-{3E-[5-(2-Cyclopropyl-1H-imidazol-4-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid, hydrochloride

Ex-105A: A solution of 2-bromo-1-(3,4-dimethoxy-phenyl)-ethanone (0.3 g, 1.16 mmol), cyclopropanecarboxamidine (0.14 g, 1.16 mmol) and sodium hydroxide (0.18 g, 4.5 mmol) in ethanol was refluxed overnight. The solvent was removed under reduced pressure, the residue taken up to water. The aqueous solution was then extracted with dichloromethane which was subsequently washed with brine, dried over sodium bicarbonate and concentrated. The crude product was purified by flash chromatography. Elution with ethyl acetate (50%, v/v, in hexane) then methanol (10%, v/v in dichloromethane) afforded 2-cyclopropyl-4-(2,4-dimethoxy-phenyl)-1H-imidazole as white solid (0.15 g, 53%): 1HNMR (CDCl3) δ 9.50 (bs, 1H), 7.63 (s, 1H), 7.20 (s, 1H), 6.57-6.53 (m, 2H), 3.93 (s, 3H), 3.03 (s, 3H), 1.97-1.93 (m, 1H), 1.00-0.94 (m, 4H). MS m/z=245 ([M+H]+, 100%).


Ex-105B: To a solution of 2-cyclopropyl-4-(2,4-dimethoxy-phenyl)-1H-imidazole (0.51 g, 2.09 mmol) was added dichloromethyl methyl ether (0.28 mL, 3.13 mmol) followed by addition of titanium tetrachloride (11.0M in dichloromethane, 8.4 mL, 8.4 mmol) dropwise at 0° C. The solution was allowed to warm up to ambient temperature and stir for 4.5 hours. The reaction mixture was then poured into ice. The aqueous layer was adjusted to pH 12 and extracted with dichloromethane. The combined solution of dichloromethane was washed with saturated solution of sodium bicarbonate, brine, dried over sodium sulfate and concentrated to afford 5-(2-cyclopropyl-1H-imidazol-4-yl)-2,4-dimethoxy-benzaldehyde which was used without further purification. 1H NMR (DMSO-d6) δ 13.95 (bs, 1H), 10.22 (s, 1H), 8.09 (s, 1H), 7.70 (s, 1H), 6.88 (s, 1H), 4.04 (s, 3H), 4.00 (s, 3H), 2.25 (m, 1H), 1.20 (m, 4H). MS m/z=245 ([M+H]+, 100%).


The title compound was prepared by condensing 5-(2-cyclopropyl-1 H-imidazol-4-yl)-2,4-dimethoxy-benzaldehyde (Ex-105B) and 4-acetylbenzoic acid in a similar manner as described in Ex-3. Yellow solid, m.p.>240° C. 1H NMR (DMSO-d6) δ 13.31 (bs, 1H), 8.29 (d, J=8.9 Hz, 2H), 8.06-8.01 (m, 3H), 7.91 (s, 1H), 7.67 (s, 1H), 6.83 (s, 1H), 4.02 (s, 3H), 3.98 (s, 3H), 1.29-1.22 (m, 4H). MS m/z=419 ([M+H]+, 100%).


Example 106



embedded image


4-{3E-[4-(3-Hydroxy-2-hydroxy methyl-propoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

The title compound was prepared by condensing 4-3-hydroxy-2-hydroxymethyl-propoxy)-2-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-50C) and 4-acetyl-benzenesulfonamide (Ex-26A) in a similar manner as described in Ex-22. Yellow solid, 72% yield, mp 191-192° C. 1H-NMR (300 MHz, DMSO-d6) δ 8.29-8.32 (m, 3H), 8.09 (d, 1H, J=16.0 Hz), 7.99 (d, 2H, J=8.1 Hz),; 7.92 (d, 1H, J=16.0 Hz), 7.70 (d, 1H, J=3.3 Hz), 7.53-7.56 (m, 3H), 7.14 (dd, 1H, J=5.4, 3.3 Hz), 6.87 (s, 1H), 4.61 (t, 2H, J=5.1 Hz), 4.28 (d, 2H, J=5.1 Hz), 4.00 (s, 3H), 3.60-3.67 (m, 4H), 2.11-2.15 (m, 1H). MS (ESI) m/z=504 ([M+H]+, 100%). Anal. Calcd. for C24H25NO7S2.½H2O: C, 56.23; H. 5.11; N, 2.73; S, 12.51. Found: C, 56.32; H, 5.06; N, 2.83; S, 12.55.


Example 107



embedded image


1-(4-Benzenesulfonyl-phenyl)-3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-propenone

The title compound was prepared by condensing 1-(4-benzenesulfonyl-phenyl)-ethanone with 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde (Ex-3A) in a similar manner as described in Ex-3, 5% yield. The product was purified using column chromatography. Yellow solid, mp 127-128° C. 1H-NMR (CDCl3) δ 8.05-8.11 (m, 5H), 7.97 (d, J=7 Hz, 2H), 7.91 (s, 1H), 7.76-7.84 (m, 2H), 7.66 (s, 1H), 7.46-7.60(m, 4H), 7.26-7.37(m, 2H), 6.56(s, 1H), 4.03 (s, 3H), 3.99 (s, 3H). MS m/z=540 ([M]+, 100%). HRMS (EI) Calcd. for C13H24O5S2: 540.1605. Found: 540.1074.


Example 108



embedded image


1-(4-Acetyl-phenyl)-3E-(5-benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-propenone

The title compound was prepared by condensing 1-(4-acetyl-phenyl)-ethanone with 5-(benzo[b]thien-2-yl)-2,4-dimethoxybenzaldehyde (Ex-3A) in a similar manner as described in Ex-3. The product was purified using column chromatography. Yellow solid, 2% yield, mp 165-167° C. 1H-NMR (CDCl3) δ 8.06-8.12 (m, 5H), 7.92 (s, 1H), 7.75-7.82 (m, 2H), 7.65 (s, H), 7.55 (d, J=15 Hz, 1H), 7.28-7.33(m, 2H), 6.56(s, 1H), 4.01 (s, 3H), 3.98 (s, 3H). MS m/z=442 ([M]+, 100%). HMRS (EI) calcd. for C27H22O4S: 442.1239; found: 442.1229.


Example 109



embedded image


4-{3E-[5-(4-isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide

Ex-109A: A solution of 2,4-dimethoxy-benzoic acid methyl ester (4.24 g, 21.6 mmol) and hydrazine (3.4 mL, 108.1 mmol) in methanol (50 mL) was refluxed overnight. Solvent was removed under reduced pressure. The residue was re-dissolved in ethyl acetate. The solution of ethyl acetate was washed with saturated solution of sodium bicarbonate and brine, dried over sodium carbonate and concentrated to afford 2,4-dimethoxy-benzoic acid hydrazide (3.31 g, 78%) as a white solid: 1H NMR (CDCl3) δ 8.77 (bs, 1H), 8.15 (d, J=8.8 Hz, 1H), 6.58 (dd, J=8.8, 2.2 Hz, 1H), 6.46 (d, J=2.2 Hz, 1H), 4.10 (bs, 2H), 3.91 (s, 3H), 3.83 (s, 3H).


Ex-109B: A solution of 2,4-dimethoxy-benzoic acid hydrazide (Ex-109A, 1.0 g, 5.1 mmol) and isobutyl-isothiocyanate (0.70 g, 6.1 mmol) in ethanol (30 mL) was refluxed for 8 hours. The precipitate was filtered, washed with ethanol, dried in vacuo to afford 1-(2,4-dimethoxy-benzoyl)amino-3-isobutyl-thiourea (1.43 g). Additional product (0.1 g, 96% overall) was obtained by concentrating the mother liquid. 1H NMR (CDCl3) δ 10.71 (bs, 1H), 9.23 (bs, 1H), 8.03 (d, J=8.6 Hz, 1H), 6.98 (bs, 1H), 6.59 (dd, J=8.6, 2.6 Hz, 1H), 6.51 (d, J=2.6 Hz, 1H), 4.02 (s, 3H), 3.86 (s, 3H), 3.41 (dd, J=6.4, 6.6 Hz, 2H), 1.96-1.87 (m, 1H), 0.91 (d, J=6.5 Hz, 6H).


Ex-109C: A solution of 1-(2,4-dimethoxy-benzoyl)amino-3-isobutyl-thiourea (Ex-109B, 0.5 g, 1.61 mmol) and sodium hydroxide (0.999M, 4.8 mL, 4.8 mmol) in ethanol (30 mL) was refluxed for one day. The solvent was removed under reduced pressure and the residue re-dissolved in ethyl acetate. The solution of ethyl acetate was washed with water and brine, dried over sodium sulfate, and concentrated to give 5-(2,4-dimethoxy-phenyl) isobutyl-4H-[1,2,4]triazole-3-thiol (0.1 g). Additional product (0.36 g, 98% overall) was obtained by extracting the water wash with dichloromethane and a mixture of isopropyl alcohol (33%, v/v, in dichloromethane). 1H NMR (CDCl3) δ 10.82 (bs, 1H), 7.24 (d, J=. 8.1 Hz, 1H), 6.56 (dd, J=8.1, 2.4 Hz, 1H), 6.51 (d, J=2.4 Hz, 1H), 3.85 (s, 3H), 3.77 (s, 3H), 3.72 (d, J=6.7 Hz, 2H), 2.17-2.08 (m, 1H), 0.70 (d, J=6.7 Hz, 6H).


Ex-109D: To a solution of 5-2,4-dimethoxy-phenyl)-4-isobutyl-4H-[1,2,4]triazole-3-thiol (Ex-109C, 0.1 g, 0.34 mmol) in ethanol (10 mL) was added wet Raney Ni (0.27 g, 4.6 mmol). The suspension of ethanol was refluxed overnight and then passed through a bed of Hyflo Super Gel and diatomaceous earth. The filtrate was concentrated to afford 3-(2,4-dimethoxy-phenyl) 4-isobutyl-4H-[1,2,4]triazole (0.09 g, 100%) as a white solid: 1H NMR (CDCl3) δ 8.15 (s, 1H), 7.34 (d, J=7.8 Hz, 1H), 6.57 (dd, J=7.8, 2.3 Hz, 1H), 6.51 (d, J=2.3 Hz, 1H), 3.85 (s, 3H), 3.75 (s, 3H), 3.62 (d, J=7.5 Hz, 2H), 1.89-1.80 (m, 1H), 0.76 (d, J=6.6 Hz, 6H).


Ex-109E: To a solution of 3-(2,4-dimethoxy-phenyl)-4-isobutyl-4H-[1,2,4]triazole (Ex-109D, 0.78 g, 2.98 mmol) was added dichloromethyl methyl ether (0.4 mL, 4.48 mmol) followed by addition of titanium tetrachloride (11.0M in dichloromethane, 9.0 mL, 9.0 mmol) over 10 min at 0° C. The reaction mixture was allowed to stir at 0° C. for 30 min and ambient temperature overnight. The reaction mixture was poured into ice. The aqueous solution was extracted with dichloromethane and isopropyl alcohol (33%, v/v, in dichloromethane). The combined dichloromethane and isopropyl alcohol were washed with brine, dried over sodium sulfate and concentrated. The aqueous solution was treated with sodium hydroxide to pH 12 and extracted again with isopropyl alcohol (33%, v/v, in dichloromethane) to give additional product. The crude product was purified by flash chromatography. Elution with methanol (10%, v/v, in dichloromethane) afford 5-(4-isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-benzaldehyde (0.24 g, 28%): 1HNMR (CDCl3) δ 10.30 (s, 1H), 8.17 (s, 1H), 7.90 (s, 1H), 6.51 (s, 1H), 4.00 (s, 3H), 3.87 (s, 3H), 3.58 (d, J=7.2 Hz, 2H), 1.91-1.80 (m, 1H), 0.77 (d, J=6.5 Hz, 6H).


To a solution of 4-acetyl-benzenesulfonamide (Ex-26A, 0.12 g, 0.62 mmol) and 5-4-isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-benzaldehyde (Ex-109E, 0.18 g, 0.62 mmol) in N,N-dimethylformamide (9 mL) was added lithium methoxide (11.0M in methanol, 2.4 mL, 2.4 mmol). The solution was allowed to stir overnight. The reaction was quenched with water. The aqueous solution was washed ethyl acetate, acidified to pH 5, extracted with dichloromethane, isopropyl alcohol (33%, v/v, in dichloromethane). The combined dichloromethane and isopropyl alcohol was washed with brine, dried over sodium sulfate and concentrated. The crude product was then stirred in ethanol (50%, v/v, in acetone) to give the title compound as a light yellow solid: m.p.>240° C. 1H NMR (DMSO-d6) δ 8.60 (s, 1H), 8.26 (d, J=8.1 Hz, 2H), 8.06 (d, J=15.3 Hz, 1H), 8.07 (s, 1H), 7.91 (d, J=8.1 Hz, 2H), 7.84 (d, J=15.3 Hz, 1H), 7.50 (s, 1H), 6.84 (s, 1H), 4.01 (s, 3H), 3.87 (s, 3H), 3.61 (d, J=7.3 Hz, 2H), 1.81-1.74 (m, 1H), 0.67 (d, J=16.7 Hz, 6H). MS m/z=471 ([M+H]+, 100%).


Example 110



embedded image


4-{3E-[5-(4-Isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid

To a solution of 4-acetyl-benzoic acid (0.12 g, 0.75 mmol) and 5-(4-isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-benzaldehyde (Ex-109E, 0.24 g, 0.83 mmol) in N,N-dimethylformamide (6 mL) was added lithium methoxide (11.0M in methanol, 3.0mL, 3.0 mmol). The solution was allowed to stir overnight and additional lithium methoxide (0.11 g, 2.8 mmol). The reaction was quenched with water after 20 hours. The aqueous solution was washed ethyl acetate, acidified to pH 4. The precipitate was filtered, washed with ethanol and dried in vacuo to afford the title compound as a light yellow solid: m.p.>240° C. (dec.). 1H NMR (DMSO-d6) δ 8.59 (s, 1H), 8.18 (d, J=7.9 Hz, 2H), 8.07 (s, 1H), 8.04-8.01 (m, 3H), 7.85 (d, J=15.7 Hz, 1H), 6.84 (s, 1H), 4.06 (s, 3H), 3.92 (s, 3H), 3.66 (d, J=7.2 Hz, 2H), 1.87-1.74 (m, 1H), 0.72 (d, J=6.7 Hz, 6H). MS m/z=436 ([M+H]+, 100%).


Example 111



embedded image


4-{3E-[5-(2-Cyclopropyl-1H-imidazol-4-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide

To a solution of 4-acetyl-benzenesulfonamide (Ex-26A, 0.12 g, 0.59 mmol) and 5-(2-cyclopropyl-1H-imidazol-4-yl)-2,4-dimethoxy-benzaldehyde (Ex-105B, 0.16 g, 0.59 mmol) in N,N-dimethylformamide (16 mL) was added lithium methoxide (11.0M in methanol, 2.4 mL, 2.4 mmol). The reaction mixture was allowed to stir for 18 hours at ambient temperature. The reaction was quenched with water. The aqueous solution was extracted with dichloromethane. The combined dichloromethane was concentrated. The crude product was purified by flash chromatography. Elution with methanol (10%, v/v, in dichloromethane) gave the title compound as red solid: m.p. 156-160° C. 1H NMR (DMSO-d6) δ 11.65 (bs, 1H), 8.32 (s, 1H), 8.19 (d, J=9.0 Hz, 2H), 8.00 (d, J=15.7 Hz, 1H), 7.95 (d, J=9.0 Hz, 2H), 7.62-7.52 (m, 2H), 7.24 (bs, 1H), 6.73 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 1.98-1.94 (m, 1H), 0.88-0.85 (m, 4H). MS m/z=454 ([M+H]+, 100%).


Example 112



embedded image


4-(3E-[5-(3H-Imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-phenyl]-acryloyl)-benzenesulfonamide

The title compound was prepared by condensing 5-(3H-imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-benzaldehyde (Ex-76A) with 4-acetyl-benzenesulfonamide (Ex-26A) in a similar manner as described in Ex-22. Yellow solid, 26% yield, mp>260° C. 1H-NMR (DMSO-d6) δ 8.73 (s, 1H), 8.31 (dd, J=1, 4 Hz, 1H), 8.26 (d, J=8 Hz, 2H), 8.05(d, J=16 Hz, 1H), 7.89-7.97 (m, 3H), 7.82(d, J=16 Hz, 1H), 7.17-7.21(m, 1H), 6.89(s, 1H), 4.09 (s, 3H), 4.03 (s, 3H). MS m/z=465([M+H]+, 65%), 256 (100%). HRMS (ES+) Calcd. for C23H20N4O5S: 465.1232. Found: 465.1240.


Example 113



embedded image


4-{3E-[2-(1H-Benzoimidazol-2-ylmethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

Ex-113A: 2-(1H-Benzoimidazol-2-ylmethoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-29C. Off-white solid, 67% yield, mp 230° C. (dec). 1H-NMR (300 MHz, DMSO-d6) □ 10.44 (s, 1H), 8.00 (s, 1H), 7.79-7.84 (m, 2H), 7.49-7.57 (m, 4H), 7.16 (s, 1H), 7.12 (dd, 1H, J=5.4, 3.6 Hz), 5.91 (s, 2H), 4.07 (s, 3H). MS (ESI) m/z=365 ([M+H]+, 100%). Anal. Calcd. for C20H17ClN2O3S.⅓H2O: C, 59.04; H, 4.38; N, 6.88; S, 7.88. Found: C, 59.07; H, 4.25; N,. 0.77.


The title compound was prepared by condensing 2-(1H-benzoimidazol-2-ylmethoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-113A) and 4-acetyl-benzenesulfonamide (Ex-26A) in a similar manner as described in Ex-22. Light orange solid, 56% yield, mp 235-237° C. (dec). 1H-NMR (300 MHz, DMSO-d6) δ 8.27 (s, 1H), 8.19 (d, 2H, J=8.4 Hz), 8.11 (d, 1H, J=15.4 Hz), 7.98 (d, 1H, J=15.4 Hz), 7.89 (d, 2H, J=8.4 Hz), 7.66-7.70 (m, 3H), 7.53-7.55 (m, 3H), 7.22-7.27 (m, 2H), 7.12-7.15 (m, 2H), 5.59 (s, 2H), 4.01 (s, 3H). MS (ESI) m/z=546 ([M+H]+, 100%). Anal. Calcd. for C28H23N3O5S2: C, 61.64; H, 4.25; N, 7.70; S, 11.75. Found: C, 61.49; H, 4.47; N, 7.74; S, 11.58.


Example 114



embedded image


4-{3E-[4-Methoxy-2-(pyridin-2-ylmethoxy)-5-thiophen-2-yl-phenyl]-acryloyl)-benzenesulfonamide

Ex-114A: 4-Methoxy-2-(pyridin-2-ylmethoxy)-5-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-29C. Yellow solid, 93% yield, mp 93-94° C. 1H-NMR (300 MHz, CDCl3) δ 10.49 (s, 1H), 8.62 (d, 1H, J=5.1 Hz), 8.13 (s, 1H), 7.77 (dt, 1H, J=7.5, 1.5 Hz), 7.58 (d, 1H, J=7.5 Hz), 7.44 (dd, 1H, J=3.6, 1.5 Hz), 7.28-7.31 (m, 2H), 7.07 (dd, 1H, J=5.4, 3.6 Hz), 6.64 (s, 1H), 5.39 (s, 2H), 3.94 (s, 3H). MS (ESI) m/z=326 ([M+H]+, 100%). Anal. Calcd. for C18H15NO3S: C, 66.44; H, 4.65; N, 4.30; S, 9.85. Found: C, 66.43; H, 4.72; N, 4.37; S, 9.81.


The title compound was prepared by condensing 4-methoxy-2-(pyridin-2-ylmethoxy)-5-thiophen-2-yl-benzaldehyde (Ex-114A) and 4-acetyl-benzenesulfonamide (Ex-26A) in a similar manner as described in Ex-22. Yellow solid, 90% yield, mp 188-189° C. 1H-NMR (300 MHz, DMSO-d6)δ 8.66 (d, 1H, J=3.6 Hz), 8.28(s, 1H), 8.21 (d, 2H, J=7.8 Hz), 8.11 (d, 1H, J=15.4 Hz), 7.89-7.99 (m, 4H), 7.57-7.68 (m, 4H), 7.53 (dd, 1H, J=5.4, 1.5 Hz), 7.41-7.45 (m, 1H), 7.13 (dd, 1H, J=5.4, 3.6 Hz), 7.02 (s, 1H), 5.45 (s, 2H), 3.99 (s, 3H). MS (ESI) m/z=507 ([M+H]+, 100%). Anal. Calcd. for C26H22N2O5S2.½H2O: C, 60.57; H, 4.50; N, 5.43; S, 12.44. Found: C, 60.92; H, 4.54; N, 5.48; S, 12.32.


Example 115



embedded image


4-{3E-[2-(Benzotriazol-1-ylmethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

Ex-115A: 2-Benzotriazol-1-ylmethoxy)4-methoxy-5-thiophen-2-yl-benzaldehyde was prepared in a similar manner as described in Ex-29C. Off-white solid, 92% yield, mp 137-138° C. 1H-NMR (300 MHz, CDCl3) δ 10.30 (s, 1H), 8.10 (d, 1H, J=8.1 Hz), 8.06 (s, 1H), 7.75 (d, 1H, J=8.1 Hz), 7.57-7.62 (m, 1H), 7.40-7.48 (m, 21), 7.30 (d, 1H, J=5.1 Hz), 7.08 (s, 1H), 7.05 (dd, 1H, J=5.1, 3.6 Hz), 6.74 (s, 2H), 4.01 (s, 3H). MS (ESI) m/z=366 ([M+H]+, 100%). Anal. Calcd. for C19H15N3O3S: C, 62.45; H, 4.14; N, 11.50; S, 8.78. Found: C, 62.69; H, 4.30; N, 11.52; S, 8.62.


The title compound was prepared by condensing 2-(benzotriazol-1-ylmethoxy)-4-methoxy-5-thiophen-2-yl-benzaldehyde (Ex-115A) and 4-acetyl-benzenesulfonamide (Ex-26A) in a similar manner as described in Ex-22. Light yellow solid, 56% yield, mp 255° C. (dec). 1H- NMR (300 MHz, DMSO-d6) δ 8.21 (s, 1H), 8.09 (d, 3H, J=9.4 Hz), 8.01 (d, 1H, J=7.8 Hz), 7.93 (d, 2H, J=7.8 Hz), 7.75 (d, 2H, J=9.4 Hz), 7.56-7.69 (m, 4H), 7.42-7.47 (m, 1H), 7.38 (s, 1H), 7.13 (dd, 1H, J=5.4, 3:6 Hz), 7.05 (s, 2H), 4.05 (s, 3H). MS (ESI) m/z=547 ([M+H]+, 100%). Anal. Calcd. C27H22N4O5S2: C, 59.33; H, 4.06; N, 10.25; S, 11.73. Found: C, 59.45; H, 4.27; N, 9.92; S, 11.27.


Example 116



embedded image


4-{3E-[2,4-Dimethoxy-5-(1-methyl-1H-indol-2-yl)-phenyl]-acryloyl}-benzoic acid

Ex-116A: To a solution of N-methyl indole (1.3 g, 10 mmol) in 50 ml THF, t-BuLi (1.7m in THF, 7.1 ml, 12 mmol) was slowly added at 0° C. under nitrogen. The mixture was stirred at room temperature for 1 hr, BEt3 (1.0 M in THF, 12 ml, 12 mmol) was added, and the mixture stirred for another 1 hr at room temperature. Then, PdCl2(PPh3)2 (0.35 g, 0.5 mmol) and 5-bromo-2,4-dimethoxybenzaldehyde (3.7 g, 15 mmol) were added, and the mixture was heated to about 60° C. for 30 minutes. The reaction mixture was poured into 50 ml 10% NaOH and treated with 30% H2O2 and then stirred for 10 minutes. The mixture was extracted with EtOAc and combined organic phase was washed with H2O and brine, dried over MgSO4, and absorbed to small amount of silica gel. Column chromatography (EtOAc:Hexane, 1:2) gave 0.72 g (25%) 2,4-dimethoxy-5-(1-methyl-1H-indol-2-yl)-benzaldehyde. 1H-NMR (CDCl3) δ 10.33 (s, 1H), 7.84 (s, 1H), 7.60 (d, J=8 Hz, 1H), 7.31 (d, J=8 Hz, 1H), 7.18-7.24 (m, 1H), 7.07-7.12(m, 1H), 6.53 (s, 1H), 6.46(s, 1H), 4.00 (s, 3}1), 3.89 (s, 3H), 3.53 (s, 3H). HRMS (EI) Calcd. for C18H17NO3: 295.1208. Found: 295.1202.


The title compound was prepared by condensing 4-acetylbenzoic acid and 2,4-dimethoxy-5-(1-methyl-1H-indol-2-yl)-benzaldehyde (Ex-116A) in a similar manner as described in Ex-3. Yellow solid, 87% yield, mp 157-160° C. 1H-NMR (DMSO-d6) δ 8.17 (d, J=8 Hz, 2H), 8.08 (d, J=15 Hz, 1H), 7.99-9.02 (m 3H), 7.83 (d, J=15 Hz, 1H), 7.52 (d, J=8 Hz, 1H), 7.42 (d, J=8 Hz, 1H), 7.10-7.15 (m, 1H), 6.99-7.04(m, 1H), 6.85 (s, 1H), 6.42(s, 1H), 4.01 (s, 3H), 3.88 (s, 3H), 3.50 (s, 3H). MS m/z=442 ([M+H]+, 100%). HRMS (ES+) Calcd. for C27H23NO5: 442.1654. Found: 442.1633.


Example 117



embedded image


4-{3E-[2,4-Dimethoxy-5-(1-methyl-1H-indol-2-yl)-phenyl]-acryloyl}-benzenesulfonamide

The title compound was prepared by condensing 4-acetyl-benzenesulfonamide (Ex-26A) and 2,4-dimethoxy-5-(1-methyl-1H-indol-2-yl)-benzaldehyde (Ex-116A) in a similar manner as described in Ex-3. Yellow solid, 90% yield, mp 148-150° C. 1H-NMR (CDCl3) δ 8.17 (d, J=16 Hz, 1H), 8.09 (d, J=9 Hz, 2H), 8.01 (d, J=9 Hz, 2H), 7.68 (s, 1H), 7.64 (d, J=8 Hz, 1H), 7.47 (d, J=16 Hz, 1H), 7.35 (d, J=8 Hz, 1H), 7.22-7.26 (m, 1H), 7.11-7.16(m, 1H), 6.58 (s, 1H), 6.50(s, 1H), 4.92 (br, 2H), 4.02 (s, 3H), 3.90 (s, 3H), 3.58 (s, 3H). MS m/z=477 ([M+H]+, 100%). HRMS (ES+) Calcd. for C26H24NO5S: 477.1484. Found: 477.1487.


Example 118



embedded image


4-13E-5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid methyl ester

The title compound was prpared by esterification of 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid (Ex-3) with methanol in the presence of EDCI and DMAP. Yellow solid, 34% yield, m.p. 149-151° C. 1H-NMR (300 MHz, CDCl3): 8.17 (d, 2H, J=6.7 Hz), 8.10 (d, 1H, J=15.8 Hz), 8.05 (d, 2H, J=6.7 Hz), 7.95 (s, 1H), 7.82 (m, 2H), 7.67 (s, 1H), 7.57 (d, 1H, J=15.8 Hz), 7.33 (m, 2H), 6.58 (s, 1H), 4.04 (s, 3H), 4.00 (s, 3H), 3.97 (s, 3H). MS m/z=458 ([M]+, 100%). HRMS (EI) Calcd. for C27H22O5S: 458.1188. Found: 458.1196.


Example 119



embedded image


4-{3-[3E-(2,3-Dihydro-furan-2-yl)-phenyl]-acryloyl}-benzenesulfonamide

Ex-119A: 5-Bromobenzaldehyde (0.5 g, 2.7 mmol) and 2,3-dihydrofuran (0.56 g, 8.1 mmol) were dissolved in dioxane (5.0 mL). Nitrogen was bubbled into the solution for 15 min followed by the sequential addition of cesium carbonate (0.96 g, 2.9 mmol) and bis(tri-t- butylphosphine)palladium(0) (0.014 g, 0.027 mmol). The solution was immediately heated to 45° C. and aged for 24 h. Upon completion, as determined by HPLC, the reaction was diluted with water (20 mL) and extracted with ethyl acetate (3×20 mL). The combined organic extracts were dried over sodium sulfate and concentrated to a brown oil. Silica gel chromatography (ethyl acetate/hexanes, 1:9) gave 0.18 g (40%) of 3-(2,3-dihydro-furan-2-yl)- benzaldehyde as a clear, colorless oil. 1H-NMR (300 MHz, CDCl3) δ 10.03 (s, 1H), 7.88 (s, 1H), 7.82 (d, 1H, J=7.2 Hz), 7.62-7.64 (m, 1H), 7.53 (t, 1H, J=7.2 Hz), 6.48 (q, 1H, J=Hz), 5.60(dd, 1H, J=8.1, 10.8 Hz), 4.98 (q, 1H, J=3.3 Hz), 3.15 (ddt, 1H, J=15.0, 8.1, 2.5 Hz), 2.59 (ddt, 1H, J=15.0, 8.1, 2.5 Hz). MS (EI) m/z=174 ([M]+, 100%). HRMS (EI) Calcd. for C11H10O2: 174.0681. Found: 174.0677.


The title compound was prepared by condensing 4-acetyl-benzenesulfonamide (Ex-26A) and 3-(2,3-dihydro-furan-2-yl)-benzaldehyde (Ex-119A) in a similar manner as described in Ex-3.


Tan solid, 40% yield, mp 152-153° C. 1H-NMR (300 MHz, DMSO-6)δ 8.31 (d, 2H, J=7.5 Hz), 7.99 (d, 2H, J=7.5 Hz), 7.95 (d, 1H, J=15.8 Hz), 7.85 (brs, 3H), 7.78 (d, 1H, J=15.8 Hz), 7.57 (brs, 1H), 7.44-7.52 (m, 2H), 6.62 (q, 1H, J=2.4 Hz), 5.58 (dd, 1H, J=8.7, 10.8 Hz), 5.59(q, 1H, J=2.4 Hz), 3.10 (ddt, 1H, J=15.0, 8.1, 2.5 Hz), 2.54 (ddt, 1H, J=15.0, 8.1, 2.5 Hz). MS (ESI) m/z=356 ([M+H]+, 100%). Anal. Calcd. for C19H17NO4S.⅕H2O: C, 63.56; H, 4.89; N, 3.90; S, 8.93. Found: C, 63.64; H. 4.88; N, 4.00; S, 8.71.


Example 120



embedded image


4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid, N-methyl-D-glucamine salt

4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid of Ex. 3 was then made into a meglumine salt by suspending the 4-[3E-5-benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid (4.45 g, 10 mmol) and N-methyl-D-glucamine (1.95 g, 10 mmol) in THF (100 mL). The mixture was stirred at room temperature for 5 minutes. Then, ethanol (100 mL) was added. This mixture was stirred at room temperature for 30 minutes. THF (20 mL) and ethanol (20 mL) were added and the mixture was heated slightly until it became a solution. This solution was stirred for 30 minutes and evaporated to a yellow foam. Crystallization from methanol gave the desired 4-[3E-(5-benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid N-methyl-D-glucamine salt as a yellow solid (4 g, 63%), mp 75-80° C. (changing forms). 1H NMR (300 MHz, DMSO-d6) δ 8.39 (s, 1H), 8.14 (d, 2H), 8.02-8.10 (m, 3H), 7.94-7.98 (m, 3H), 7.86 (d, 1H), 7.36 (m, 2H), 6.89 (s, 1H), 4.06 (s, 3H), 4.04 (s, 3H), 3.94 (m, 1H), 3.71 (d, 1H), 3.61 (m, 1H), 3.39-3.55 (m, 3H), 3.04 (m, 1H), 2.95 (m, 1H), 2.54 (s, 3H). Anal. Calculated for C33H37NO10S.1.3H2O: C, 59.77; H, 6.02; N, 2.11; S, 4.84; found: C, 59.84; H, 5.75; N, 2.05; S, 4.70; Parent EIMS m/z=443 (M+).


Using the above procedure for producing the meglumine salt or procedures well known in the art, any of the compounds of the invention can be likewise made into a hydroxylamine salt and in particular the meglumine salt.


Example 121



embedded image


4-{3E-[5-(2,5-Dihydro-furan-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzenesulfonamide

Ex-121A: 5-Bromo-2,4-dimethoxybenzaldehyde (1.0 g, 4.0 mmol) and 2,3-dihydrofuran (0.85 g, 12.2 mmol) were dissolved in dioxane (10.0 mL). Nitrogen was bubbled into the solution for 15 min followed by the sequential addition of cesium carbonate (1.4 g, 4.5 mmol) and bis(tri-t-butylphosphine)palladium (0) (0.021 g, 0.041 mmol). The solution was immediately heated to 45° C. and aged for 72 h. Additional equivalents of cesium carbonate (0.70 g, 2.1 mmol), 2,3-dihydrofuran (0.85 g, 12.2 mmol), and Pd catalyst (0.0021 g, 0.0041 mmol) were added after 24 h and 48 h to drive the reaction to completion. Upon completion, as determined by HPLC, the reaction was diluted with water (30 mL) and extracted with ethyl acetate (3×30 mL). The combined organic extracts were dried over sodium sulfate and concentrated to an orange oil. Silica gel chromatography (ethyl acetate/hexanes, 1:2) afforded 0.32 g (50%) of 5-(2,5-dihydro-furan-2-yl)-2,4-dimethoxy-benzaldehyde as a pale yellow solid, mp 84-85° C. 1H-NMR (300 MHz, CDCl3) δ 10.29 (s, 1H), 7.79 (s, 1H), 6.42 (s, 1H), 5.99-6.06 (m, 2H), 5.89-5.92 (m, 1H), 4.804.87 (m, 1H), 4.71-4.77 (m, 1H), 3.95 (s, 3H), 3.92 (s, 3H). MS (EI) m/z=234 ([M]+, 100%). Anal. Calcd. C13H14O4: C, 66.66; H, 6.02. Found: C, 66.49; H, 6.08.


5-(2,5-Dihydro-furan-2-yl)2,4-dimethoxy-benzaldehyde (Ex-121A, 0.10 g, 0.43 mmol) and 4-acetylbenzenesulfonamide (Ex-26A, 0.085 g, 0.43 mmol) were dissolved in a dimethylformamide-methanol solution (2.9 mL, 7:3). After complete dissolution, lithium methoxide (0.065 g, 1.7 mmol) was added and the resulting orange slurry was stirred in the dark at room temperature for 4 h. Upon completion, as determined by HPLC, the mixture was diluted with water (15 mL) and extracted with ethyl acetate (3×20 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude oil was taken up in ethanol (2 mL) and warmed to 60° C. to obtain complete dissolution and allowed to cool to room temperature. The resulting precipitate was collected on filter paper and dried in vacuo to yield 0.13 g (70%) of the title compound as a yellow solid, mp 194-195° C. 1H-NMR (300 MHz, DMSO-d6) δ 8.23 (d, 2H, J=8.2 Hz), 8.03 (d, 1H, J=15.3 Hz), 7.97 (d, 2H, J=8.2 Hz), 7.69 (s, 1H), 7.65 (d, 1H, J=15.3 Hz), 7.55 (brs, 2H), 6.73 (s, 1H), 6.06-6.09 (m, 1H), 5.90-5.98 (m, 2H), 4.86-4.92 (m, 1H), 4.634.68 (m, 1H), 3.96 (s, 3H), 3.92 (s, 3H). MS (ESI) m/z=416 ([M+H]+, 100%).-Anal. Calcd. C21H21NO6S: C, 60.71; H, 5.09; N, 3.37; S, 7.72. Found: C, 60.95; H, 5.24; N, 3.46; S, 7.72.


Example 122



embedded image


4-{3E-[4-Methoxy-2-(6-methyl-pyridin-2-yloxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzenesulfonamide

Ex-122A: To a solution of 2-hydroxy-4-methoxy-5-thiophen-2-yl-benzaldehyde (0.68 g, 2.9 mmol) and 2-bromo-6-methylpyridine (0.25 g, 1.4 mmol) in toluene (1.0 mL) was added ethyl acetate (0.0063 g, 0.072 mmol, 1-naphthoic acid (0.50 g, 2.9 mmol), 5A molecular sieves (0.36 g), cesium carbonate (0.94 g, 2.9 mmol), and copper(I) triflate-benzene complex (0.020 g, 0.036 mmol). The phenoxide crashed out of solution upon addition of cesium carbonate and additional toluene (1 mL) was added to facilitate stirring. The heterogeneous solution was immediately heated to 110° C. and aged for 24 h. Upon completion, as determined by HPLC, the reaction was diluted with a 5% sodium hydroxide solution (10 mL) and ethyl acetate (10 mL) and stirred for 30 min. The layers were separated and the aqueous layer was extracted with ethyl acetate (5×20 mL). The combined organic extracts were washed with a 50% brine solution (1×25 mL), brine (1×25 mL), dried over sodium sulfate and concentrated to an dark brown semi-solid. Silica gel chromatography (ethyl acetate/hexanes, 1:4) afforded 0.30 g (65%) of 4-methoxy-2-(6-methyl-pyridin-2-yloxy)-5-thiophen-2-yl-benzaldehydeas a light orange solid, mp 140-141° C. 1H-NMR (300 MHz, CDCl3) δ 10.21 (s, 1H), 8.23 (s, 1H), 7.64 (dd, 1H, J=7.8, 7.2 Hz), 7.52 (d, 1H, J=3.3 Hz), 7.35 (d, 1H, J=5.1 Hz), 7.10 (dd, 1H, J=5.1, 3.3 Hz), 6.94 (d, 1H, J=7.2 Hz), 6.78 (d, 1H, J=7.8 Hz), 6.75 (s, 1H), 3.92 (s, 3H), 2.44 (s, 3H). HRMS (EI) Calcd. for C18H15NO3S: 325.0773. Found: 325.0775. Anal. Calcd. C18H15NO3S: C, 66.44; H, 4.65; N, 4.30; S, 9.85. Found: C, 60.00; H, 4.58; N, 4.05; S, 9.84.


4-Methoxy-2-(6-methyl-pyridin-2-yloxy)-5-thiophen-2-yl-benzaldehyde (Ex-122A, 0.20 g, 0.62 mmol) and 4-acetylbenzenesulfonamide (Ex-26A, 0.12 g, 0.62 mmol) were dissolved in a dimethylformamide-methanol solution (4.2 mL, 7:3). After complete dissolution, lithium methoxide (0.093 g, 2.5 mmol) was added and the resulting orange slurry was stirred in the dark at room temperature for 3 h. Upon completion, as determined by HPLC, the mixture was diluted with water (10 mL) and extracted with ethyl acetate (3×20 mL). The combined organic extracts were dried over sodium sulfate and evaporated to dryness. The crude oil was taken up in ethanol (2 mL) and warmed to 60° C. to obtain complete dissolution and allowed to cool to room temperature. The resulting precipitate was collected on filter paper and dried in vacuo to yield 0.25 g (82%) of the title compound as a yellow solid, mp 164-165° C. 1H-NMR (300 MHz, DMSO-d6) δ 8.47 (s, 1H), 8.24 (d, 2H, J=8.1 Hz), 7.98 (d, 1H, J=15.3 Hz), 7.96 (d, 2H, J=8.1 Hz), 7.78-7.85 (m, 2H), 7.77 (d, 1H, J=15.3 Hz), 7.62 (d, 1H, J=5.1 Hz), 7.57 (s, 2H), 7.19 (dd, 1H, J=5.1, 3.6 Hz), 7.04 (d, 1H, J=7.5 Hz), 6.99 (s, 1H), 6.91 (d, 1H, J=8.4 Hz), 3.90 (s, 3H), 2.33 (s, 3H). Anal. Calcd. C26H22N2O5S2: C, 61.64; H, 4.38; N, 5.53; S, 12.66. Found: C, 61.88; H, 4.47; N, 5.59; S, 12.62.


Example 123



embedded image


5-Iodo-2,4-dimethoxy-benzaldehyde

To a solution of 2,4-dimethoxy-benzaldehyde (20.0 g, 120.4 mmol) in methanol (550 mL) was added a solution of iodine monochloride (23.52 g, 144.9 mmol) in methanol (60 mL) dropwise over 20 min. The solution was allowed to stir at ambient temperature for 3 hours and then poured into a solution of hydrochloric acid (0.5 M, 600 mL). The resulting precipitate was collected by filtration, washed with water, and dried in vacuo. The crude product was further recrystallized from a mixture of tetrahydrofuran and heptane (1:1, v/v) to give the tiltle compound as a white solid (30.62 g, 87.5%), m.p. 170-172° C. 1H NMR (CDCl3) δ 10.19 (s, 1H), 8.22 (s, 1H), 6.39 (s, 1H), 3.97 (s, 3H), 3.95 (s, 3H).


Example 124



embedded image


5Benzo[b]thiophen-2-yl-2,4-dimethoxy-benzaldehyde

Ex-123A: Potassium fluoride (0.42 g, 7.2 mmol), 5-iodo-2,4-dimethoxy-benzaldehyde (Ex-123, 11.0 g, 3.42 mmol), 2-benzo[b]thiophene boronic acid (0.67 g, 3.77 mmol), degased tetrahydrofuran (10 mL), tris(dibenzylideneacetone)dipalladium (19 mg, 0.02 mmol), and tri-tert-butylphosphine (100 mg, 0.05 mmol) were sequentially charged into a flask equipped with a condenser and nitrogen inlet adapter. The reaction mixture was heated at 60° C. for one hour under nitrogen. HPLC analysis indicated of 100% conversion of 5-iodo-2,4-dimethoxy- benzaldehyde (Ex-123) to the title compound prepared through another route (Ex-3A).


Using one or more of the preceding methods, additional substituted 1-[2,2-bis(hydroxymethyl)-benzo[1,3]dioxol-5-yl]-3-[(heteroaryl or heterocyclic)phenyl]-2-propen-1-ones, 4-[3-{(heteroaryl or heterocyclic)phenyl}acryloyl]-benzoic acids, 1-[(amino)phenyl]-3-[(heteroaryl or heterocyclic)phenyl]-2-propen-1-ones, 4-[3-{(heteroaryl or heterocyclic)phenyl}-3-oxo-propenyl]-benzoic acids, 1-(1H-indol-5-yl)-3-{(heteroaryl or heterocyclic)phenyl}-propen-2-ones, 1-[(heteroaryl or heterocyclic)phenyl]-3-phenyl-2-propen-1-ones, and substituted 3-[(heteroaryl or heterocyclic)phenyl]-1-phenyl-2-propen-1-ones can be prepared by one skilled in the art using similar methods, as shown in Example Tables 1 through 33.

EXAMPLE TABLE 1Substituted 4-[3-{2-Isopropoxy-4-methoxy-(5-heteroaryl or 5-heterocyclic)phenyl}-acryloyl]-benzoic Acids.embedded imageembedded imageEx. No.R200A 200Bembedded image201A 201Bembedded image202A 202Bembedded image203A 203Bembedded image204A 204Bembedded image205A 205Bembedded image206A 206Bembedded image207A 207Bembedded image208A 208Bembedded image209A 209Bembedded image210A 210Bembedded image211A 211Bembedded image212A 212Bembedded image213A 213Bembedded image214A 214Bembedded image215A 215Bembedded image216A 216Bembedded image217A 217Bembedded image218A 218Bembedded image219A 219Bembedded image220A 220Bembedded image221A 221Bembedded image222A 222Bembedded image223A 223Bembedded image224A 224Bembedded image225A 225Bembedded image226A 226Bembedded image227A 227Bembedded image228A 228Bembedded image229A 229Bembedded image230A 230Bembedded image231A 231Bembedded image232A 232Bembedded image233A 233Bembedded image234A 234Bembedded image235A 235Bembedded image236A 236Bembedded image237A 237Bembedded image238A 238Bembedded image239A 239Bembedded image240A 240Bembedded image241A 241Bembedded image242A 242Bembedded image243A 243Bembedded image244A 244Bembedded image245A 245Bembedded image246A 246Bembedded image247A 247Bembedded image248A 248Bembedded image249A 249Bembedded image250A 250Bembedded image251A 251Bembedded image252A 252Bembedded image253A 253Bembedded image254A 254Bembedded image255A 255Bembedded image256A 256Bembedded image257A 257Bembedded image258A 258Bembedded image259A 259Bembedded image260A 260Bembedded image261A 261Bembedded image262A 262Bembedded image









EXAMPLE TABLE 12










Substituted4-[3-{2-Cyclopropylmethoxy-4-methoxy-(5-heteroaryl or 5-


heterocyclic)phenyl}-acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












263A 263B


embedded image









264A 264B


embedded image









265A 265B


embedded image









266A 266B


embedded image









267A 267B


embedded image









268A 268B


embedded image









269A 269B


embedded image









270A 270B


embedded image









271A 271B


embedded image









272A 272B


embedded image









273A 273B


embedded image









274A 274B


embedded image









275A 275B


embedded image









276A 276B


embedded image









277A 277B


embedded image









278A 278B


embedded image









279A 279B


embedded image









280A 280B


embedded image









281A 281B


embedded image









282A 282B


embedded image









283A 283B


embedded image









284A 284B


embedded image









285A 285B


embedded image









286A 286B


embedded image









287A 287B


embedded image









288A 288B


embedded image









289A 289B


embedded image









290A 290B


embedded image









291A 291B


embedded image









292A 292B


embedded image









293A 293B


embedded image









294A 294B


embedded image









295A 295B


embedded image









296A 296B


embedded image









297A 297B


embedded image









298A 298B


embedded image









299A 299B


embedded image









300A 300B


embedded image









301A 301B


embedded image









302A 302B


embedded image









303A 303B


embedded image









304A 304B


embedded image









305A 305B


embedded image









306A 306B


embedded image









307A 307B


embedded image









308A 308B


embedded image









309A 309B


embedded image









310A 310B


embedded image









311A 311B


embedded image









312A 312B


embedded image









313A 313B


embedded image









314A 314B


embedded image









315A 315B


embedded image









316A 316B


embedded image









317A 317B


embedded image









318A 318B


embedded image









319A 319B


embedded image









320A 320B


embedded image









321A 321B


embedded image









322A 322B


embedded image









323A 323B


embedded image









324A 324B


embedded image









325A 325B


embedded image









326A 326B


embedded image









327A 327B


embedded image









328A 328B


embedded image









329A 329B


embedded image









330A 330B


embedded image









331A 331B


embedded image









332A 332B


embedded image









333A 333B


embedded image









334A 334B


embedded image



















EXAMPLE TABLE 3










Substituted 4-[3-{2,4-dimethoxy-(6-Heteroaryl or 6-heterocyclic)phenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












335A 335B


embedded image









336A 336B


embedded image









337A 337B


embedded image









338A 338B


embedded image









339A 339B


embedded image









340A 340B


embedded image









341A 341B


embedded image









342A 342B


embedded image









343A 343B


embedded image









344A 344B


embedded image









345A 345B


embedded image









346A 346B


embedded image









347A 347B


embedded image









348A 348B


embedded image









349A 349B


embedded image









350A 350B


embedded image









351A 351B


embedded image









352A 352B


embedded image









353A 353B


embedded image









354A 354B


embedded image









355A 355B


embedded image









356A 356B


embedded image









357A 357B


embedded image









358A 358B


embedded image









359A 359B


embedded image









360A 360B


embedded image









361A 361B


embedded image









362A 362B


embedded image









363A 363B


embedded image









364A 364B


embedded image









365A 365B


embedded image









366A 366B


embedded image









367A 367B


embedded image









368A 368B


embedded image









369A 369B


embedded image









370A 370B


embedded image









371A 371B


embedded image









372A 372B


embedded image









373A 373B


embedded image









374A 374B


embedded image









375A 375B


embedded image









376A 376B


embedded image









377A 377B


embedded image









378A 378B


embedded image









379A 379B


embedded image









380A 380B


embedded image









381A 381B


embedded image









382A 382B


embedded image









383A 383B


embedded image









384A 384B


embedded image









385A 385B


embedded image









386A 386B


embedded image









387A 387B


embedded image









388A 388B


embedded image









389A 389B


embedded image









390A 390B


embedded image









391A 391B


embedded image









392A 392B


embedded image









393A 393B


embedded image









394A 394B


embedded image









395A 395B


embedded image









396A 396B


embedded image









397A 397B


embedded image



















EXAMPLE TABLE 4










Substituted 1-(2,2-Bis-hydroxymethyl-benzo[1,3]dioxol-5-yl)-3-[2,4-


dimethoxy-(5-heteroaryl or 5-heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












398A 398B


embedded image









399A 399B


embedded image









400A 400B


embedded image









401A 401B


embedded image









402A 402B


embedded image









403A 403B


embedded image









404A 404B


embedded image









405A 405B


embedded image









406A 406B


embedded image









407A 407B


embedded image









408A 408B


embedded image









409A 409B


embedded image









410A 410B


embedded image









411A 411B


embedded image









412A 412B


embedded image









413A 413B


embedded image









414A 414B


embedded image









415A 415B


embedded image









416A 416B


embedded image









417A 417B


embedded image









418A 418B


embedded image









419A 419B


embedded image









420A 420B


embedded image









421A 421B


embedded image









422A 422B


embedded image









423A 423B


embedded image









424A 424B


embedded image









425A 425B


embedded image









426A 426B


embedded image









427A 427B


embedded image









428A 428B


embedded image









429A 429B


embedded image









430A 430B


embedded image









431A 431B


embedded image









432A 432B


embedded image









433A 433B


embedded image









434A 434B


embedded image









435A 435B


embedded image









436A 436B


embedded image









437A 437B


embedded image









438A 438B


embedded image









439A 439B


embedded image









440A 440B


embedded image









441A 441B


embedded image









442A 442B


embedded image









443A 443B


embedded image









444A 444B


embedded image









445A 445B


embedded image









446A 446B


embedded image









447A 447B


embedded image









448A 448B


embedded image









449A 449B


embedded image









450A 450B


embedded image









451A 451B


embedded image









452A 452B


embedded image









453A 453B


embedded image









454A 454B


embedded image









455A 455B


embedded image









456A 456B


embedded image









457A 457B


embedded image









458A 458B


embedded image









459A 459B


embedded image









460A 460B


embedded image









461A 461B


embedded image









462A 462B


embedded image









463A 463B


embedded image









464A 464B


embedded image









465A 465B


embedded image









466A 466B


embedded image









467A 467B


embedded image









468A 468B


embedded image









469A 469B


embedded image



















EXAMPLE TABLE 5










Substituted 1-(3-Aminophenyl)-3-[2,4-dimethoxy-(5-heteroaryl or 5-


heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












470A 470B


embedded image









471A 471B


embedded image









472A 472B


embedded image









473A 473B


embedded image









474A 474B


embedded image









475A 475B


embedded image









476A 476B


embedded image









477A 477B


embedded image









478A 478B


embedded image









479A 479B


embedded image









480A 480B


embedded image









481A 481B


embedded image









482A 482B


embedded image









483A 483B


embedded image









484A 484B


embedded image









485A 485B


embedded image









486A 486B


embedded image









487A 487B


embedded image









488A 488B


embedded image









489A 489B


embedded image









490A 490B


embedded image









491A 491B


embedded image









492A 492B


embedded image









493A 493B


embedded image









494A 494B


embedded image









495A 495B


embedded image









496A 496B


embedded image









497A 497B


embedded image









498A 498B


embedded image









499A 499B


embedded image









500A 500B


embedded image









501A 501B


embedded image









502A 502B


embedded image









503A 503B


embedded image









504A 504B


embedded image









505A 505B


embedded image









506A 506B


embedded image









507A 507B


embedded image









508A 508B


embedded image









509A 509B


embedded image









510A 510B


embedded image









511A 511B


embedded image









512A 512B


embedded image









513A 513B


embedded image









514A 514B


embedded image









515A 515B


embedded image









516A 516B


embedded image









517A 517B


embedded image









518A 518B


embedded image









519A 519B


embedded image









520A 520B


embedded image









521A 521B


embedded image









522A 522B


embedded image









523A 523B


embedded image









524A 524B


embedded image









525A 525B


embedded image









526A 526B


embedded image









527A 527B


embedded image









528A 528B


embedded image









529A 529B


embedded image









530A 530B


embedded image









531A 531B


embedded image









532A 532B


embedded image



















EXAMPLE TABLE 6










Substituted 1-(4-Aminophenyl)-3-[2,4-dimethoxy-(5-heteroaryl or 5-


heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












533A 533B


embedded image









534A 534B


embedded image









535A 535B


embedded image









536A 536B


embedded image









537A 537B


embedded image









538A 538B


embedded image









539A 539B


embedded image









540A 540B


embedded image









541A 541B


embedded image









542A 542B


embedded image









543A 543B


embedded image









544A 544B


embedded image









545A 545B


embedded image









546A 546B


embedded image









547A 547B


embedded image









548A 548B


embedded image









549A 549B


embedded image









550A 550B


embedded image









551A 551B


embedded image









552A 552B


embedded image









553A 553B


embedded image









554A 554B


embedded image









555A 555B


embedded image









556A 556B


embedded image









557A 557B


embedded image









558A 558B


embedded image









559A 559B


embedded image









560A 560B


embedded image









561A 561B


embedded image









562A 562B


embedded image









563A 563B


embedded image









564A 564B


embedded image









565A 565B


embedded image









566A 566B


embedded image









567A 567B


embedded image









568A 568B


embedded image









569A 569B


embedded image









570A 570B


embedded image









571A 571B


embedded image









572A 572B


embedded image









573A 573B


embedded image









574A 574B


embedded image









575A 575B


embedded image









576A 576B


embedded image









577A 577B


embedded image









578A 578B


embedded image









579A 579B


embedded image









580A 580B


embedded image









581A 581B


embedded image









582A 582B


embedded image









583A 583B


embedded image









584A 584B


embedded image









585A 585B


embedded image









586A 586B


embedded image









587A 587B


embedded image









588A 588B


embedded image









589A 589B


embedded image









590A 590B


embedded image









591A 591B


embedded image









592A 592B


embedded image









593A 593B


embedded image









594A 594B


embedded image









595A 595B


embedded image









596A 596B


embedded image









597A 597B


embedded image









598A 598B


embedded image









599A 599B


embedded image









600A 600B


embedded image









601A 601B


embedded image









602A 602B


embedded image









603A 603B


embedded image









604A 604B


embedded image



















EXAMPLE TABLE 7










Substituted 1-{4-(Pyrrolidin-1-yl)phenyl}-3-[2,4-dimethoxy-(5-heteroaryl


or 5-heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












605A 605B


embedded image









606A 606B


embedded image









607A 607B


embedded image









608A 608B


embedded image









609A 609B


embedded image









610A 610B


embedded image









611A 611B


embedded image









612A 612B


embedded image









613A 613B


embedded image









614A 614B


embedded image









615A 615B


embedded image









616A 616B


embedded image









617A 617B


embedded image









618A 618B


embedded image









619A 619B


embedded image









620A 620B


embedded image









621A 621B


embedded image









622A 622B


embedded image









623A 623B


embedded image









624A 624B


embedded image









625A 625B


embedded image









626A 626B


embedded image









627A 627B


embedded image









628A 628B


embedded image









629A 629B


embedded image









630A 630B


embedded image









631A 631B


embedded image









632A 632B


embedded image









633A 633B


embedded image









634A 634B


embedded image









635A 635B


embedded image









636A 636B


embedded image









637A 637B


embedded image









638A 638B


embedded image









639A 639B


embedded image









640A 640B


embedded image









641A 641B


embedded image









642A 642B


embedded image









643A 643B


embedded image









644A 644B


embedded image









645A 645B


embedded image









646A 646B


embedded image









647A 647B


embedded image









648A 648B


embedded image









649A 649B


embedded image









650A 650B


embedded image









651A 651B


embedded image









652A 652B


embedded image









653A 653B


embedded image









654A 654B


embedded image









655A 655B


embedded image









656A 656B


embedded image









657A 657B


embedded image









658A 658B


embedded image









659A 659B


embedded image









660A 660B


embedded image









661A 661B


embedded image









662A 662B


embedded image









663A 663B


embedded image









664A 664B


embedded image









665A 665B


embedded image









666A 666B


embedded image









667A 667B


embedded image



















EXAMPLE TABLE 8










Substituted 1-{4-(Methanesulfonylamino)phenyl}-3-[2,4-dimethoxy-(5-


heteroaryl or 5-heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












668A 668B


embedded image









669A 669B


embedded image









670A 670B


embedded image









671A 671B


embedded image









672A 672B


embedded image









673A 673B


embedded image









674A 674B


embedded image









675A 675B


embedded image









676A 676B


embedded image









677A 677B


embedded image









678A 678B


embedded image









679A 679B


embedded image









680A 680B


embedded image









681A 681B


embedded image









682A 682B


embedded image









683A 683B


embedded image









684A 684B


embedded image









685A 685B


embedded image









686A 686B


embedded image









687A 687B


embedded image









688A 688B


embedded image









689A 689B


embedded image









690A 690B


embedded image









691A 691B


embedded image









692A 692B


embedded image









693A 693B


embedded image









694A 694B


embedded image









695A 695B


embedded image









696A 696B


embedded image









697A 697B


embedded image









698A 698B


embedded image









699A 699B


embedded image









700A 700B


embedded image









701A 701B


embedded image









702A 702B


embedded image









703A 703B


embedded image









704A 704B


embedded image









705A 705B


embedded image









706A 706B


embedded image









707A 707B


embedded image









708A 708B


embedded image









709A 709B


embedded image









710A 710B


embedded image









711A 711B


embedded image









712A 712B


embedded image









713A 713B


embedded image









714A 714B


embedded image









715A 715B


embedded image









716A 716B


embedded image









717A 717B


embedded image









718A 718B


embedded image









719A 719B


embedded image









720A 720B


embedded image









721A 721B


embedded image









722A 722B


embedded image









723A 723B


embedded image









724A 724B


embedded image









725A 725B


embedded image









726A 726B


embedded image









727A 727B


embedded image









728A 728B


embedded image









729A 729B


embedded image









730A 730B


embedded image









731A 731B


embedded image









732A 732B


embedded image









733A 733B


embedded image









734A 734B


embedded image









735A 735B


embedded image









736A 736B


embedded image









737A 737B


embedded image









738A 738B


embedded image









739A 739B


embedded image



















EXAMPLE TABLE 9










Substituted 1-{4-(Methanesulfonylamino)phenyl}-3-[3,4-dimethoxy-(5-


heteroaryl or 5-heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












740A 740B


embedded image









741A 741B


embedded image









742A 742B


embedded image









743A 743B


embedded image









744A 744B


embedded image









745A 745B


embedded image









746A 746B


embedded image









747A 747B


embedded image









748A 748B


embedded image









749A 749B


embedded image









750A 750B


embedded image









751A 751B


embedded image









752A 752B


embedded image









753A 753B


embedded image









754A 754B


embedded image









755A 755B


embedded image









756A 756B


embedded image









757A 757B


embedded image









758A 758B


embedded image









759A 759B


embedded image









760A 760B


embedded image









761A 761B


embedded image









762A 762B


embedded image









763A 763B


embedded image









764A 764B


embedded image









765A 765B


embedded image









766A 766B


embedded image









767A 767B


embedded image









768A 768B


embedded image









769A 769B


embedded image









770A 770B


embedded image









771A 771B


embedded image









772A 772B


embedded image









773A 773B


embedded image









774A 774B


embedded image









775A 775B


embedded image









776A 776B


embedded image









777A 777B


embedded image









778A 778B


embedded image









779A 779B


embedded image









780A 780B


embedded image









781A 781B


embedded image









782A 782B


embedded image









783A 783B


embedded image









784A 784B


embedded image









785A 785B


embedded image









786A 786B


embedded image









787A 787B


embedded image









788A 788B


embedded image









789A 789B


embedded image









790A 790B


embedded image









791A 791B


embedded image









792A 792B


embedded image









793A 793B


embedded image









794A 794B


embedded image









795A 795B


embedded image









796A 796B


embedded image









797A 797B


embedded image









798A 798B


embedded image









799A 799B


embedded image









800A 800B


embedded image









801A 801B


embedded image









802A 802B


embedded image



















EXAMPLE TABLE 10










Substituted 1-{4-(Amino)phenyl}-3-[3,4-dimethoxy-(5-heteroaryl or 5-


heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












803A 803B


embedded image









804A 804B


embedded image









805A 805B


embedded image









806A 806B


embedded image









807A 807B


embedded image









808A 808B


embedded image









809A 809B


embedded image









810A 810B


embedded image









811A 811B


embedded image









812A 812B


embedded image









813A 813B


embedded image









814A 814B


embedded image









815A 815B


embedded image









816A 816B


embedded image









817A 817B


embedded image









818A 818B


embedded image









819A 819B


embedded image









820A 820B


embedded image









821A 821B


embedded image









822A 822B


embedded image









823A 823B


embedded image









824A 824B


embedded image









825A 825B


embedded image









826A 826B


embedded image









827A 827B


embedded image









828A 828B


embedded image









829A 829B


embedded image









830A 830B


embedded image









831A 831B


embedded image









832A 832B


embedded image









833A 833B


embedded image









834A 834B


embedded image









835A 835B


embedded image









836A 836B


embedded image









837A 837B


embedded image









838A 838B


embedded image









839A 839B


embedded image









840A 840B


embedded image









841A 841B


embedded image









842A 842B


embedded image









843A 843B


embedded image









844A 844B


embedded image









845A 845B


embedded image









846A 846B


embedded image









847A 847B


embedded image









848A 848B


embedded image









849A 849B


embedded image









850A 850B


embedded image









851A 851B


embedded image









852A 852B


embedded image









853A 853B


embedded image









854A 854B


embedded image









855A 855B


embedded image









856A 856B


embedded image









857A 857B


embedded image









858A 858B


embedded image









859A 859B


embedded image









860A 860B


embedded image









861A 861B


embedded image









862A 862B


embedded image









863A 863B


embedded image









864A 864B


embedded image









865A 865B


embedded image









866A 866B


embedded image









867A 867B


embedded image









868A 868B


embedded image









869A 869B


embedded image









870A 870B


embedded image









871A 871B


embedded image









872A 872B


embedded image









873A 873B


embedded image









874A 874B


embedded image



















EXAMPLE TABLE 11










Substituted 1-{4-(Amino)phenyl}-3-[2,6-dimethoxy-(4-heteroaryl or 4-


heterocylic)-phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












875A 875B


embedded image









876A 876B


embedded image









877A 877B


embedded image









878A 878B


embedded image









879A 879B


embedded image









880A 880B


embedded image









881A 881B


embedded image









882A 882B


embedded image









883A 883B


embedded image









884A 884B


embedded image









885A 885B


embedded image









886A 886B


embedded image









887A 887B


embedded image









888A 888B


embedded image









889A 889B


embedded image









890A 890B


embedded image









891A 891B


embedded image









892A 892B


embedded image









893A 893B


embedded image









894A 894B


embedded image









895A 895B


embedded image









896A 896B


embedded image









897A 897B


embedded image









898A 898B


embedded image









899A 899B


embedded image









900A 900B


embedded image









901A 901B


embedded image









902A 902B


embedded image









903A 903B


embedded image









904A 904B


embedded image









905A 905B


embedded image









906A 906B


embedded image









907A 907B


embedded image









908A 908B


embedded image









909A 909B


embedded image









910A 910B


embedded image









911A 911B


embedded image









912A 912B


embedded image









913A 913B


embedded image









914A 914B


embedded image









915A 915B


embedded image









916A 916B


embedded image









917A 917B


embedded image









918A 918B


embedded image









919A 919B


embedded image









920A 920B


embedded image









921A 921B


embedded image









922A 922B


embedded image









923A 923B


embedded image









924A 924B


embedded image









925A 925B


embedded image









926A 926B


embedded image









927A 927B


embedded image









928A 928B


embedded image









929A 929B


embedded image









930A 930B


embedded image









931A 931B


embedded image









932A 932B


embedded image









933A 933B


embedded image









934A 934B


embedded image









935A 935B


embedded image









936A 936B


embedded image









937A 937B


embedded image



















EXAMPLE TABLE 12










Substituted 1-{4-(Methanesulfonylamino)phenyl}-3-[2,6-dimethoxy-(4-


heteroaryl or 4-heterocylic)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












938A 938B


embedded image









939A 939B


embedded image









940A 940B


embedded image









941A 941B


embedded image









942A 942B


embedded image









943A 943B


embedded image









944A 944B


embedded image









945A 945B


embedded image









946A 946B


embedded image









947A 947B


embedded image









948A 948B


embedded image









949A 949B


embedded image









950A 950B


embedded image









951A 951B


embedded image









952A 952B


embedded image









953A 953B


embedded image









954A 954B


embedded image









955A 955B


embedded image









956A 956B


embedded image









957A 957B


embedded image









958A 958B


embedded image









959A 959B


embedded image









960A 960B


embedded image









961A 961B


embedded image









962A 962B


embedded image









963A 963B


embedded image









964A 964B


embedded image









965A 965B


embedded image









966A 966B


embedded image









967A 967B


embedded image









968A 968B


embedded image









969A 969B


embedded image









970A 970B


embedded image









971A 971B


embedded image









972A 972B


embedded image









973A 973B


embedded image









974A 974B


embedded image









975A 975B


embedded image









976A 976B


embedded image









977A 977B


embedded image









978A 978B


embedded image









979A 979B


embedded image









980A 980B


embedded image









981A 981B


embedded image









982A 982B


embedded image









983A 983B


embedded image









984A 984B


embedded image









985A 985B


embedded image









986A 986B


embedded image









987A 987B


embedded image









988A 988B


embedded image









989A 989B


embedded image









990A 990B


embedded image









991A 991B


embedded image









992A 992B


embedded image









993A 993B


embedded image









994A 994B


embedded image









995A 995B


embedded image









996A 996B


embedded image









997A 997B


embedded image









998A 998B


embedded image









999A 999B


embedded image









1000A 1000B


embedded image









1001A 1001B


embedded image









1002A 1002B


embedded image









1003A 1003B


embedded image









1004A 1004B


embedded image









1005A 1005B


embedded image









1006A 1006B


embedded image









1007A 1007B


embedded image









1008A 1008B


embedded image









1009A 1009B


embedded image



















EXAMPLE TABLE 13










Substituted 1-(1H-Indol-5-yl)-3-{2,4-dimethoxy-5-(heteroaryl or


heterocyclic)phenyl}-propen-2-ones.




embedded image









embedded image















Ex. No.
R












1010A 1010B


embedded image









1011A 1011B


embedded image









1012A 1012B


embedded image









1013A 1013B


embedded image









1014A 1014B


embedded image









1015A 1015B


embedded image









1016A 1016B


embedded image









1017A 1017B


embedded image









1018A 1018B


embedded image









1019A 1019B


embedded image









1020A 1020B


embedded image









1021A 1021B


embedded image









1022A 1022B


embedded image









1023A 1023B


embedded image









1024A 1024B


embedded image









1025A 1025B


embedded image









1026A 1026B


embedded image









1027A 1027B


embedded image









1028A 1028B


embedded image









1029A 1029B


embedded image









1030A 1030B


embedded image









1031A 1031B


embedded image









1032A 1032B


embedded image









1033A 1033B


embedded image









1034A 1034B


embedded image









1035A 1035B


embedded image









1036A 1036B


embedded image









1037A 1037B


embedded image









1038A 1038B


embedded image









1039A 1039B


embedded image









1040A 1040B


embedded image









1041A 1041B


embedded image









1042A 1042B


embedded image









1043A 1043B


embedded image









1044A 1044B


embedded image









1045A 1045B


embedded image









1046A 1046B


embedded image









1047A 1047B


embedded image









1048A 1048B


embedded image









1049A 1049B


embedded image









1050A 1050B


embedded image









1051A 1051B


embedded image









1052A 1052B


embedded image









1053A 1053B


embedded image









1054A 1054B


embedded image









1055A 1055B


embedded image









1056A 1056B


embedded image









1057A 1057B


embedded image









1058A 1058B


embedded image









1059A 1059B


embedded image









1060A 1060B


embedded image









1061A 1061B


embedded image









1062A 1062B


embedded image









1063A 1063B


embedded image









1064A 1064B


embedded image









1065A 1065B


embedded image









1066A 1066B


embedded image









1067A 1067B


embedded image









1068A 1068B


embedded image









1069A 1069B


embedded image









1070A 1070B


embedded image









1071A 1071B


embedded image









1072A 1072B


embedded image



















EXAMPLE TABLE 14










Substituted 1-(1H-Indol-5-yl)-3-{3,4-dimethoxy-5-(heteroaryl or


heterocyclic)phenyl}-propen-2-ones.




embedded image









embedded image















Ex. No.
R












1073A 1073B


embedded image









1074A 1074B


embedded image









1075A 1075B


embedded image









1076A 1076B


embedded image









1077A 1077B


embedded image









1078A 1078B


embedded image









1079A 1079B


embedded image









1080A 1080B


embedded image









1081A 1081B


embedded image









1082A 1082B


embedded image









1083A 1083B


embedded image









1084A 1084B


embedded image









1085A 1085B


embedded image









1086A 1086B


embedded image









1087A 1087B


embedded image









1088A 1088B


embedded image









1089A 1089B


embedded image









1090A 1090B


embedded image









1091A 1091B


embedded image









1092A 1092B


embedded image









1093A 1093B


embedded image









1094A 1094B


embedded image









1095A 1095B


embedded image









1096A 1096B


embedded image









1097A 1097B


embedded image









1098A 1098B


embedded image









1099A 1099B


embedded image









1100A 1100B


embedded image









1101A 1101B


embedded image









1102A 1102B


embedded image









1103A 1103B


embedded image









1104A 1104B


embedded image









1105A 1105B


embedded image









1106A 1106B


embedded image









1107A 1107B


embedded image









1108A 1108B


embedded image









1109A 1109B


embedded image









1110A 1110B


embedded image









1111A 1111B


embedded image









1112A 1112B


embedded image









1113A 1113B


embedded image









1114A 1114B


embedded image









1115A 1115B


embedded image









1116A 1116B


embedded image









1117A 1117B


embedded image









1118A 1118B


embedded image









1119A 1119B


embedded image









1120A 1120B


embedded image









1121A 1121B


embedded image









1122A 1122B


embedded image









1123A 1123B


embedded image









1124A 1124B


embedded image









1125A 1125B


embedded image









1126A 1126B


embedded image









1127A 1127B


embedded image









1128A 1128B


embedded image









1129A 1129B


embedded image









1130A 1130B


embedded image









1131A 1131B


embedded image









1132A 1132B


embedded image









1133A 1133B


embedded image









1134A 1134B


embedded image









1135A 1135B


embedded image









1136A 1136B


embedded image









1137A 1137B


embedded image









1138A 1138B


embedded image









1139A 1139B


embedded image









1140A 1140B


embedded image









1141A 1141B


embedded image









1142A 1142B


embedded image









1143A 1143B


embedded image









1144A 1144B


embedded image



















EXAMPLE TABLE 15










Substituted 1-(1H-1-Methyl-indol-5-yl)-3-{2,4-dimethoxy-5-(heteroaryl or


heterocyclic)phenyl}-propen-2-ones.




embedded image









embedded image















Ex. No.
R












1145A 1145B


embedded image









1146A 1146B


embedded image









1147A 1147B


embedded image









1148A 1148B


embedded image









1149A 1149B


embedded image









1150A 1150B


embedded image









1151A 1151B


embedded image









1152A 1152B


embedded image









1153A 1153B


embedded image









1154A 1154B


embedded image









1155A 1155B


embedded image









1156A 1156B


embedded image









1157A 1157B


embedded image









1158A 1158B


embedded image









1159A 1159B


embedded image









1160A 1160B


embedded image









1161A 1161B


embedded image









1162A 1162B


embedded image









1163A 1163B


embedded image









1164A 1164B


embedded image









1165A 1165B


embedded image









1166A 1166B


embedded image









1167A 1167B


embedded image









1168A 1168B


embedded image









1169A 1169B


embedded image









1170A 1170B


embedded image









1171A 1171B


embedded image









1172A 1172B


embedded image









1173A 1173B


embedded image









1174A 1174B


embedded image









1175A 1175B


embedded image









1176A 1176B


embedded image









1177A 1177B


embedded image









1178A 1178B


embedded image









1179A 1179B


embedded image









1180A 1180B


embedded image









1181A 1181B


embedded image









1182A 1182B


embedded image









1183A 1183B


embedded image









1184A 1184B


embedded image









1185A 1185B


embedded image









1186A 1186B


embedded image









1187A 1187B


embedded image









1188A 1188B


embedded image









1189A 1189B


embedded image









1190A 1190B


embedded image









1191A 1191B


embedded image









1192A 1192B


embedded image









1193A 1193B


embedded image









1194A 1194B


embedded image









1195A 1195B


embedded image









1196A 1196B


embedded image









1197A 1197B


embedded image









1198A 1198B


embedded image









1199A 1199B


embedded image









1200A 1200B


embedded image









1201A 1201B


embedded image









1202A 1202B


embedded image









1203A 1203B


embedded image









1204A 1204B


embedded image









1205A 1205B


embedded image









1206A 1206B


embedded image









1207A 1207B


embedded image



















EXAMPLE TABLE 17










Substituted 1-(1H-1-Methyl-indol-5-yl)-3-{3,4-dimethoxy-5-(heteroaryl or


heterocyclic)phenyl}-propen-2-ones.




embedded image









embedded image















Ex. No.
R












1208A 1208B


embedded image









1209A 1209B


embedded image









1210A 1210B


embedded image









1211A 1211B


embedded image









1212A 1212B


embedded image









1213A 1213B


embedded image









1214A 1214B


embedded image









1215A 1215B


embedded image









1216A 1216B


embedded image









1217A 1217B


embedded image









1218A 1218B


embedded image









1219A 1219B


embedded image









1220A 1220B


embedded image









1221A 1221B


embedded image









1222A 1222B


embedded image









1223A 1223B


embedded image









1224A 1224B


embedded image









1225A 1225B


embedded image









1226A 1226B


embedded image









1227A 1227B


embedded image









1228A 1228B


embedded image









1229A 1229B


embedded image









1230A 1230B


embedded image









1231A 1231B


embedded image









1232A 1232B


embedded image









1233A 1233B


embedded image









1234A 1234B


embedded image









1235A 1235B


embedded image









1236A 1236B


embedded image









1237A 1237B


embedded image









1238A 1238B


embedded image









1239A 1239B


embedded image









1240A 1240B


embedded image









1241A 1241B


embedded image









1242A 1242B


embedded image









1243A 1243B


embedded image









1244A 1244B


embedded image









1245A 1245B


embedded image









1246A 1246B


embedded image









1247A 1247B


embedded image









1248A 1248B


embedded image









1249A 1249B


embedded image









1250A 1250B


embedded image









1251A 1251B


embedded image









1252A 1252B


embedded image









1253A 1253B


embedded image









1254A 1254B


embedded image









1255A 1255B


embedded image









1256A 1256B


embedded image









1257A 1257B


embedded image









1258A 1258B


embedded image









1259A 1259B


embedded image









1260A 1260B


embedded image









1261A 1261B


embedded image









1262A 1262B


embedded image









1263A 1263B


embedded image









1264A 1264B


embedded image









1265A 1265B


embedded image









1266A 1266B


embedded image









1267A 1267B


embedded image









1268A 1268B


embedded image









1269A 1269B


embedded image









1270A 1270B


embedded image









1271A 1271B


embedded image









1272A 1272B


embedded image









1273A 1273B


embedded image









1274A 1274B


embedded image









1275A 1275B


embedded image









1276A 1276B


embedded image









1277A 1277B


embedded image









1278A 1278B


embedded image









1279A 1279B


embedded image



















EXAMPLE TABLE 17










Substituted 4-[3-{2-(Pyrrolidin-1-yl)-(4-heteroaryl or 4-heterocyclic)-


phenyl}-acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1280A 1280B


embedded image









1281A 1281B


embedded image









1282A 1282B


embedded image









1283A 1283B


embedded image









1284A 1284B


embedded image









1285A 1285B


embedded image









1286A 1286B


embedded image









1287A 1287B


embedded image









1288A 1288B


embedded image









1289A 1289B


embedded image









1290A 1290B


embedded image









1291A 1291B


embedded image









1292A 1292B


embedded image









1293A 1293B


embedded image









1294A 1294B


embedded image









1295A 1295B


embedded image









1296A 1296B


embedded image









1297A 1297B


embedded image









1298A 1298B


embedded image









1299A 1299B


embedded image









1300A 1300B


embedded image









1301A 1301B


embedded image









1302A 1302B


embedded image









1303A 1303B


embedded image









1304A 1304B


embedded image









1305A 1305B


embedded image









1306A 1306B


embedded image









1307A 1307B


embedded image









1308A 1308B


embedded image









1309A 1309B


embedded image









1310A 1310B


embedded image









1311A 1311B


embedded image









1312A 1312B


embedded image









1313A 1313B


embedded image









1314A 1314B


embedded image









1315A 1315B


embedded image









1316A 1316B


embedded image









1317A 1317B


embedded image









1318A 1318B


embedded image









1319A 1319B


embedded image









1320A 1320B


embedded image









1321A 1321B


embedded image









1322A 1322B


embedded image









1323A 1323B


embedded image









1324A 1324B


embedded image









1325A 1325B


embedded image









1326A 1326B


embedded image









1327A 1327B


embedded image









1328A 1328B


embedded image









1329A 1329B


embedded image









1330A 1330B


embedded image









1331A 1331B


embedded image









1332A 1332B


embedded image









1333A 1333B


embedded image









1334A 1334B


embedded image









1335A 1335B


embedded image









1336A 1336B


embedded image









1337A 1337B


embedded image









1338A 1338B


embedded image









1339A 1339B


embedded image









1340A 1340B


embedded image









1341A 1341B


embedded image









1342A 1342B


embedded image









1343A 1343B


embedded image









1344A 1344B


embedded image









1345A 1345B


embedded image









1346A 1346B


embedded image









1347A 1347B


embedded image









1348A 1348B


embedded image









1349A 1349B


embedded image









1350A 1350B


embedded image









1351A 1351B


embedded image



















EXAMPLE TABLE 18










Substituted 4-[3-{(5-Heteroaryl or 5-heterocyclic)-2,4-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1352A 1352B


embedded image









1353A 1353B


embedded image









1354A 1354B


embedded image









1355A 1355B


embedded image









1356A 1356B


embedded image









1357A 1357B


embedded image









1358A 1358B


embedded image









1359A 1359B


embedded image









1360A 1360B


embedded image









1361A 1361B


embedded image









1362A 1362B


embedded image









1363A 1363B


embedded image









1364A 1364B


embedded image









1365A 1365B


embedded image









1366A 1366B


embedded image









1367A 1367B


embedded image









1368A 1368B


embedded image









1369A 1369B


embedded image









1370A 1370B


embedded image









1371A 1371B


embedded image









1372A 1372B


embedded image









1373A 1373B


embedded image









1374A 1374B


embedded image









1375A 1375B


embedded image









1376A 1376B


embedded image









1377A 1377B


embedded image









1378A 1378B


embedded image









1379A 1379B


embedded image









1380A 1380B


embedded image









1381A 1381B


embedded image









1382A 1382B


embedded image









1383A 1383B


embedded image









1384A 1384B


embedded image









1385A 1385B


embedded image









1386A 1386B


embedded image









1387A 1387B


embedded image









1388A 1388B


embedded image









1389A 1389B


embedded image









1390A 1390B


embedded image









1391A 1391B


embedded image









1392A 1392B


embedded image









1393A 1393B


embedded image









1394A 1394B


embedded image









1395A 1395B


embedded image









1396A 1396B


embedded image









1397A 1397B


embedded image









1398A 1398B


embedded image









1399A 1399B


embedded image









1360A 1360B


embedded image









1401A 1401B


embedded image









1402A 1402B


embedded image









1403A 1403B


embedded image









1404A 1404B


embedded image









1405A 1405B


embedded image









1406A 1406B


embedded image









1407A 1407B


embedded image









1408A 1408B


embedded image









1409A 1409B


embedded image









1410A 1410B


embedded image









1411A 1411B


embedded image









1412A 1412B


embedded image









1413A 1413B


embedded image









1414A 1414B


embedded image



















EXAMPLE TABLE 19










Substituted 3-[3-{(5-Heteroaryl or 5-heterocyclic)-2,4-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1415A 1415B


embedded image









1416A 1416B


embedded image









1417A 1417B


embedded image









1418A 1418B


embedded image









1419A 1419B


embedded image









1420A 1420B


embedded image









1421A 1421B


embedded image









1422A 1422B


embedded image









1423A 1423B


embedded image









1424A 1424B


embedded image









1425A 1425B


embedded image









1426A 1426B


embedded image









1427A 1427B


embedded image









1428A 1428B


embedded image









1429A 1429B


embedded image









1430A 1430B


embedded image









1431A 1431B


embedded image









1432A 1432B


embedded image









1433A 1433B


embedded image









1434A 1434B


embedded image









1435A 1435B


embedded image









1436A 1436B


embedded image









1437A 1437B


embedded image









1438A 1438B


embedded image









1439A 1439B


embedded image









1440A 1440B


embedded image









1441A 1441B


embedded image









1442A 1442B


embedded image









1443A 1443B


embedded image









1444A 1444B


embedded image









1445A 1445B


embedded image









1446A 1446B


embedded image









1447A 1447B


embedded image









1448A 1448B


embedded image









1449A 1449B


embedded image









1450A 1450B


embedded image









1451A 1451B


embedded image









1452A 1452B


embedded image









1453A 1453B


embedded image









1454A 1454B


embedded image









1455A 1455B


embedded image









1456A 1456B


embedded image









1457A 1457B


embedded image









1458A 1458B


embedded image









1459A 1459B


embedded image









1460A 1460B


embedded image









1461A 1461B


embedded image









1462A 1462B


embedded image









1463A 1463B


embedded image









1464A 1464B


embedded image









1465A 1465B


embedded image









1466A 1466B


embedded image









1467A 1467B


embedded image









1468A 1468B


embedded image









1469A 1469B


embedded image









1470A 1470B


embedded image









1471A 1471B


embedded image









1473A 1473B


embedded image









1474A 1474B


embedded image









1475A 1475B


embedded image









1476A 1476B


embedded image









1477A 1477B


embedded image









1478A 1478B


embedded image









1479A 1479B


embedded image









1480A 1480B


embedded image









1481A 1481B


embedded image









1482A 1482B


embedded image









1483A 1483B


embedded image









1484A 1484B


embedded image









1485A 1485B


embedded image









1486A 1486B


embedded image









1487A 1487B


embedded image



















EXAMPLE TABLE 20










Substituted 2-[3-{(5-Heteroaryl or 5-heterocyclic)-2,4-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1488A 1488B


embedded image









1489A 1489B


embedded image









1490A 1490B


embedded image









1491A 1491B


embedded image









1492A 1492B


embedded image









1493A 1493B


embedded image









1494A 1494B


embedded image









1495A 1495B


embedded image









1496A 1496B


embedded image









1497A 1497B


embedded image









1498A 1498B


embedded image









1499A 1499B


embedded image









1500A 1500B


embedded image









1501A 1501B


embedded image









1502A 1502B


embedded image









1503A 1503B


embedded image









1504A 1504B


embedded image









1505A 1505B


embedded image









1506A 1506B


embedded image









1507A 1507B


embedded image









1508A 1508B


embedded image









1509A 1509B


embedded image









1510A 1510B


embedded image









1511A 1511B


embedded image









1512A 1512B


embedded image









1513A 1513B


embedded image









1514A 1514B


embedded image









1515A 1515B


embedded image









1516A 1516B


embedded image









1517A 1517B


embedded image









1518A 1518B


embedded image









1519A 1519B


embedded image









1520A 1520B


embedded image









1521A 1521B


embedded image









1522A 1522B


embedded image









1523A 1523B


embedded image









1524A 1524B


embedded image









1525A 1525B


embedded image









1526A 1526B


embedded image









1527A 1527B


embedded image









1528A 1528B


embedded image









1529A 1529B


embedded image









1530A 1530B


embedded image









1531A 1531B


embedded image









1532A 1532B


embedded image









1533A 1533B


embedded image









1534A 1534B


embedded image









1535A 1535B


embedded image









1536A 1536B


embedded image









1537A 1537B


embedded image









1538A 1538B


embedded image









1539A 1539B


embedded image









1540A 1540B


embedded image









1541A 1541B


embedded image









1542A 1542B


embedded image









1543A 1543B


embedded image









1544A 1544B


embedded image









1545A 1545B


embedded image









1546A 1546B


embedded image









1547A 1547B


embedded image









1548A 1548B


embedded image









1549A 1549B


embedded image









1550A 1550B


embedded image



















EXAMPLE TABLE 21










Substituted 2-[3-{(5-Heteroaryl or 5-heterocyclic)-2,4-dimethoxyphenyl}-


acryloyl]-5-methanesulfonylamino-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1551A 1551B


embedded image









1552A 1552B


embedded image









1553A 1553B


embedded image









1554A 1554B


embedded image









1555A 1555B


embedded image









1556A 1556B


embedded image









1557A 1557B


embedded image









1558A 1558B


embedded image









1559A 1559B


embedded image









1560A 1560B


embedded image









1561A 1561B


embedded image









1562A 1562B


embedded image









1563A 1563B


embedded image









1564A 1564B


embedded image









1565A 1565B


embedded image









1566A 1566B


embedded image









1567A 1567B


embedded image









1568A 1568B


embedded image









1569A 1569B


embedded image









1570A 1570B


embedded image









1571A 1571B


embedded image









1572A 1572B


embedded image









1573A 1573B


embedded image









1574A 1574B


embedded image









1575A 1575B


embedded image









1576A 1576B


embedded image









1577A 1577B


embedded image









1578A 1578B


embedded image









1579A 1579B


embedded image









1580A 1580B


embedded image









1581A 1581B


embedded image









1582A 1582B


embedded image









1583A 1583B


embedded image









1584A 1584B


embedded image









1585A 1585B


embedded image









1586A 1586B


embedded image









1587A 1587B


embedded image









1588A 1588B


embedded image









1589A 1589B


embedded image









1590A 1590B


embedded image









1591A 1591B


embedded image









1592A 1592B


embedded image









1593A 1593B


embedded image









1594A 1594B


embedded image









1595A 1595B


embedded image









1596A 1596B


embedded image









1597A 1597B


embedded image









1598A 1598B


embedded image









1599A 1599B


embedded image









1600A 1600B


embedded image









1601A 1601B


embedded image









1602A 1602B


embedded image









1603A 1603B


embedded image









1604A 1604B


embedded image









1605A 1605B


embedded image









1606A 1606B


embedded image









1607A 1607B


embedded image









1608A 1608B


embedded image









1609A 1609B


embedded image









1610A 1610B


embedded image









1611A 1611B


embedded image









1612A 1612B


embedded image









1613A 1613B


embedded image









1614A 1614B


embedded image









1615A 1615B


embedded image









1616A 1616B


embedded image









1617A 1617B


embedded image









1618A 1618B


embedded image









1619A 1619B


embedded image









1620A 1620B


embedded image









1621A 1621B


embedded image









1622A 1622B


embedded image



















EXAMPLE TABLE 22










Substituted 5-Amino-2-[3-{(5-heteroaryl or 5-heterocyclic)-2,4-


dimethoxy-phenyl}-acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1623A 1623B


embedded image









1624A 1624B


embedded image









1625A 1625B


embedded image









1626A 1626B


embedded image









1627A 1627B


embedded image









1628A 1628B


embedded image









1629A 1629B


embedded image









1630A 1630B


embedded image









1631A 1631B


embedded image









1632A 1632B


embedded image









1633A 1633B


embedded image









1634A 1634B


embedded image









1635A 1635B


embedded image









1636A 1636B


embedded image









1637A 1637B


embedded image









1638A 1638B


embedded image









1639A 1639B


embedded image









1640A 1640B


embedded image









1641A 1641B


embedded image









1642A 1642B


embedded image









1643A 1643B


embedded image









1644A 1644B


embedded image









1645A 1645B


embedded image









1646A 1646B


embedded image









1647A 1647B


embedded image









1648A 1648B


embedded image









1649A 1649B


embedded image









1650A 1650B


embedded image









1651A 1651B


embedded image









1652A 1652B


embedded image









1653A 1653B


embedded image









1654A 1654B


embedded image









1655A 1655B


embedded image









1656A 1656B


embedded image









1657A 1657B


embedded image









1658A 1658B


embedded image









1659A 1659B


embedded image









1660A 1660B


embedded image









1661A 1661B


embedded image









1662A 1662B


embedded image









1663A 1663B


embedded image









1664A 1664B


embedded image









1665A 1665B


embedded image









1666A 1666B


embedded image









1667A 1667B


embedded image









1668A 1668B


embedded image









1669A 1669B


embedded image









1670A 1670B


embedded image









1671A 1671B


embedded image









1672A 1672B


embedded image









1673A 1673B


embedded image









1674A 1674B


embedded image









1675A 1675B


embedded image









1676A 1676B


embedded image









1677A 1677B


embedded image









1678A 1678B


embedded image









1679A 1679B


embedded image









1680A 1680B


embedded image









1681A 1681B


embedded image









1682A 1682B


embedded image









1683A 1683B


embedded image









1684A 1684B


embedded image









1685A 1685B


embedded image



















EXAMPLE TABLE 23










Substituted 4-[3-{(5-Heteroaryl or 5-heterocyclic)-3,4-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1686A 1686B


embedded image









1687A 1687B


embedded image









1688A 1688B


embedded image









1689A 1689B


embedded image









1690A 1690B


embedded image









1691A 1691B


embedded image









1692A 1692B


embedded image









1693A 1693B


embedded image









1694A 1694B


embedded image









1695A 1695B


embedded image









1696A 1696B


embedded image









1697A 1697B


embedded image









1698A 1698B


embedded image









1699A 1699B


embedded image









1700A 1700B


embedded image









1701A 1701B


embedded image









1702A 1702B


embedded image









1703A 1703B


embedded image









1704A 1704B


embedded image









1705A 1705B


embedded image









1706A 1706B


embedded image









1707A 1707B


embedded image









1708A 1708B


embedded image









1709A 1709B


embedded image









1710A 1710B


embedded image









1711A 1711B


embedded image









1712A 1712B


embedded image









1713A 1713B


embedded image









1714A 1714B


embedded image









1715A 1715B


embedded image









1716A 1716B


embedded image









1717A 1717B


embedded image









1718A 1718B


embedded image









1719A 1719B


embedded image









1720A 1720B


embedded image









1721A 1721B


embedded image









1722A 1722B


embedded image









1723A 1723B


embedded image









1724A 1724B


embedded image









1725A 1725B


embedded image









1726A 1726B


embedded image









1727A 1727B


embedded image









1728A 1728B


embedded image









1729A 1729B


embedded image









1730A 1730B


embedded image









1731A 1731B


embedded image









1732A 1732B


embedded image









1733A 1733B


embedded image









1734A 1734B


embedded image









1735A 1735B


embedded image









1736A 1736B


embedded image









1737A 1737B


embedded image









1738A 1738B


embedded image









1739A 1739B


embedded image









1740A 1740B


embedded image









1741A 1741B


embedded image









1742A 1742B


embedded image









1743A 1743B


embedded image









1744A 1744B


embedded image









1745A 1745B


embedded image









1746A 1746B


embedded image









1747A 1747B


embedded image









1748A 1748B


embedded image









1749A 1749B


embedded image









1750A 1750B


embedded image









1751A 1751B


embedded image









1752A 1752B


embedded image









1753A 1753B


embedded image









1754A 1754B


embedded image









1755A 1755B


embedded image









1756A 1756B


embedded image









1757A 1757B


embedded image



















EXAMPLE TABLE 24










Substituted 3-[3-{(5-Heteroaryl or 5-heterocyclic)-3,4-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1758A 1758B


embedded image









1759A 1759B


embedded image









1760A 1760B


embedded image









1761A 1761B


embedded image









1762A 1762B


embedded image









1763A 1763B


embedded image









1764A 1764B


embedded image









1765A 1765B


embedded image









1766A 1766B


embedded image









1767A 1767B


embedded image









1768A 1768B


embedded image









1769A 1769B


embedded image









1770A 1770B


embedded image









1771A 1771B


embedded image









1772A 1772B


embedded image









1773A 1773B


embedded image









1774A 1774B


embedded image









1775A 1775B


embedded image









1776A 1776B


embedded image









1777A 1777B


embedded image









1778A 1778B


embedded image









1779A 1779B


embedded image









1780A 1780B


embedded image









1781A 1781B


embedded image









1782A 1782B


embedded image









1783A 1783B


embedded image









1784A 1784B


embedded image









1785A 1785B


embedded image









1786A 1786B


embedded image









1787A 1787B


embedded image









1788A 1788B


embedded image









1789A 1789B


embedded image









1790A 1790B


embedded image









1791A 1791B


embedded image









1792A 1792B


embedded image









1793A 1793B


embedded image









1794A 1794B


embedded image









1795A 1795B


embedded image









1796A 1796B


embedded image









1797A 1797B


embedded image









1798A 1798B


embedded image









1799A 1799B


embedded image









1800A 1800B


embedded image









1801A 1801B


embedded image









1802A 1802B


embedded image









1803A 1803B


embedded image









1804A 1804B


embedded image









1805A 1805B


embedded image









1806A 1806B


embedded image









1807A 1807B


embedded image









1808A 1808B


embedded image









1809A 1809B


embedded image









1810A 1810B


embedded image









1811A 1811B


embedded image









1812A 1812B


embedded image









1813A 1813B


embedded image









1814A 1814B


embedded image









1815A 1815B


embedded image









1816A 1816B


embedded image









1817A 1817B


embedded image









1818A 1818B


embedded image









1819A 1819B


embedded image









1820A 1820B


embedded image



















EXAMPLE TABLE 25










Substituted 2-[3-{(5-Heteroaryl or 5-heterocyclic)-3,4-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1821A 1821B


embedded image









1822A 1822B


embedded image









1823A 1823B


embedded image









1824A 1824B


embedded image









1825A 1825B


embedded image









1826A 1826B


embedded image









1827A 1827B


embedded image









1828A 1828B


embedded image









1829A 1829B


embedded image









1830A 1830B


embedded image









1831A 1831B


embedded image









1832A 1832B


embedded image









1833A 1833B


embedded image









1834A 1834B


embedded image









1835A 1835B


embedded image









1836A 1836B


embedded image









1837A 1837B


embedded image









1838A 1838B


embedded image









1839A 1839B


embedded image









1840A 1840B


embedded image









1841A 1841B


embedded image









1842A 1842B


embedded image









1843A 1843B


embedded image









1844A 1844B


embedded image









1845A 1845B


embedded image









1846A 1846B


embedded image









1847A 1847B


embedded image









1848A 1848B


embedded image









1849A 1849B


embedded image









1850A 1850B


embedded image









1851A 1851B


embedded image









1852A 1852B


embedded image









1853A 1853B


embedded image









1854A 1854B


embedded image









1855A 1855B


embedded image









1856A 1856B


embedded image









1857A 1857B


embedded image









1858A 1858B


embedded image









1859A 1859B


embedded image









1860A 1860B


embedded image









1861A 1861B


embedded image









1862A 1862B


embedded image









1863A 1863B


embedded image









1864A 1864B


embedded image









1865A 1865B


embedded image









1866A 1866B


embedded image









1867A 1867B


embedded image









1868A 1868B


embedded image









1869A 1869B


embedded image









1870A 1870B


embedded image









1871A 1871B


embedded image









1872A 1872B


embedded image









1873A 1873B


embedded image









1874A 1874B


embedded image









1875A 1875B


embedded image









1876A 1876B


embedded image









1877A 1877B


embedded image









1878A 1878B


embedded image









1879A 1879B


embedded image









1880A 1880B


embedded image









1881A 1881B


embedded image









1882A 1882B


embedded image









1883A 1883B


embedded image









1884A 1884B


embedded image









1885A 1885B


embedded image









1886A 1886B


embedded image









1887A 1887B


embedded image









1888A 1888B


embedded image









1889A 1889B


embedded image









1890A 1890B


embedded image









1891A 1891B


embedded image









1892A 1892B


embedded image



















EXAMPLE TABLE 26










Substituted 4-[3-{(5-Heteroaryl or 5-heterocyclic)-4-fluorophenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1893A 1893B


embedded image









1894A 1894B


embedded image









1895A 1895B


embedded image









1896A 1896B


embedded image









1897A 1897B


embedded image









1898A 1898B


embedded image









1899A 1899B


embedded image









1900A 1900B


embedded image









1901A 1901B


embedded image









1902A 1902B


embedded image









1903A 1903B


embedded image









1904A 1904B


embedded image









1905A 1905B


embedded image









1906A 1906B


embedded image









1907A 1907B


embedded image









1908A 1908B


embedded image









1909A 1909B


embedded image









1910A 1910B


embedded image









1911A 1911B


embedded image









1912A 1912B


embedded image









1913A 1913B


embedded image









1914A 1914B


embedded image









1915A 1915B


embedded image









1916A 1916B


embedded image









1917A 1917B


embedded image









1918A 1918B


embedded image









1919A 1919B


embedded image









1920A 1920B


embedded image









1921A 1921B


embedded image









1922A 1922B


embedded image









1923A 1923B


embedded image









1924A 1924B


embedded image









1925A 1925B


embedded image









1926A 1926B


embedded image









1927A 1927B


embedded image









1928A 1928B


embedded image









1929A 1929B


embedded image









1930A 1930B


embedded image









1931A 1931B


embedded image









1932A 1932B


embedded image









1933A 1933B


embedded image









1934A 1934B


embedded image









1935A 1935B


embedded image









1936A 1936B


embedded image









1937A 1937B


embedded image









1938A 1938B


embedded image









1939A 1939B


embedded image









1940A 1940B


embedded image









1941A 1941B


embedded image









1942A 1942B


embedded image









1943A 1943B


embedded image









1944A 1944B


embedded image









1945A 1945B


embedded image









1946A 1946B


embedded image









1947A 1947B


embedded image









1948A 1948B


embedded image









1949A 1949B


embedded image









1950A 1950B


embedded image









1951A 1951B


embedded image









1952A 1952B


embedded image









1953A 1953B


embedded image









1954A 1954B


embedded image









1955A 1955B


embedded image



















EXAMPLE TABLE 27










Substituted 4-[3-{(3-Heteroaryl or 3-heterocyclic)-4-(pyrrolidin-1-yl)-


phenyl}acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












1956A 1956B


embedded image









1957A 1957B


embedded image









1958A 1958B


embedded image









1959A 1959B


embedded image









1960A 1960B


embedded image









1961A 1961B


embedded image









1962A 1962B


embedded image









1963A 1963B


embedded image









1964A 1964B


embedded image









1965A 1965B


embedded image









1966A 1966B


embedded image









1967A 1967B


embedded image









1968A 1968B


embedded image









1969A 1969B


embedded image









1970A 1970B


embedded image









1971A 1971B


embedded image









1972A 1972B


embedded image









1973A 1973B


embedded image









1974A 1974B


embedded image









1975A 1975B


embedded image









1976A 1976B


embedded image









1977A 1977B


embedded image









1978A 1978B


embedded image









1979A 1979B


embedded image









1980A 1980B


embedded image









1981A 1981B


embedded image









1982A 1982B


embedded image









1983A 1983B


embedded image









1984A 1984B


embedded image









1985A 1985B


embedded image









1986A 1986B


embedded image









1987A 1987B


embedded image









1988A 1988B


embedded image









1989A 1989B


embedded image









1990A 1990B


embedded image









1991A 1991B


embedded image









1992A 1992B


embedded image









1993A 1993B


embedded image









1994A 1994B


embedded image









1995A 1995B


embedded image









1996A 1996B


embedded image









1997A 1997B


embedded image









1998A 1998B


embedded image









1999A 1999B


embedded image









2000A 2000B


embedded image









2001A 2001B


embedded image









2002A 2002B


embedded image









2003A 2003B


embedded image









2004A 2004B


embedded image









2005A 2005B


embedded image









2006A 2006B


embedded image









2007A 2007B


embedded image









2008A 2008B


embedded image









2009A 2009B


embedded image









2010A 2010B


embedded image









2011A 2011B


embedded image









2012A 2012B


embedded image









2013A 2013B


embedded image









2014A 2014B


embedded image









2015A 2015B


embedded image









2016A 2016B


embedded image









2017A 2017B


embedded image









2018A 2018B


embedded image









2019A 2019B


embedded image









2020A 2020B


embedded image









2021A 2021B


embedded image









2022A 2022B


embedded image









2023A 2023B


embedded image









2024A 2024B


embedded image









2025A 2025B


embedded image









2026A 2026B


embedded image









2027A 2027B


embedded image



















EXAMPLE TABLE 28










Substituted 4-[3-{(5-Heteroaryl or 5-heterocyclic)-2,4-dimethoxyphenyl}-


acryloyl]benzonitriles.




embedded image









embedded image















Ex. No.
R












2028A 2028B


embedded image









2029A 2029B


embedded image









2030A 2030B


embedded image









2031A 2031B


embedded image









2032A 2032B


embedded image









2033A 2033B


embedded image









2034A 2034B


embedded image









2035A 2035B


embedded image









2036A 2036B


embedded image









2037A 2037B


embedded image









2038A 2038B


embedded image









2039A 2039B


embedded image









2040A 2040B


embedded image









2041A 2041B


embedded image









2042A 2042B


embedded image









2043A 2043B


embedded image









2044A 2044B


embedded image









2045A 2045B


embedded image









2046A 2046B


embedded image









2047A 2047B


embedded image









2048A 2048B


embedded image









2049A 2049B


embedded image









2050A 2050B


embedded image









2051A 2051B


embedded image









2052A 2052B


embedded image









2053A 2053B


embedded image









2054A 2054B


embedded image









2055A 2055B


embedded image









2056A 2056B


embedded image









2057A 2057B


embedded image









2058A 2058B


embedded image









2059A 2059B


embedded image









2060A 2060B


embedded image









2061A 2061B


embedded image









2062A 2062B


embedded image









2063A 2063B


embedded image









2064A 2064B


embedded image









2065A 2065B


embedded image









2066A 2066B


embedded image









2067A 2067B


embedded image









2068A 2068B


embedded image









2069A 2069B


embedded image









2070A 2070B


embedded image









2071A 2071B


embedded image









2072A 2072B


embedded image









2073A 2073B


embedded image









2074A 2074B


embedded image









2075A 2075B


embedded image









2076A 2076B


embedded image









2077A 2077B


embedded image









2078A 2078B


embedded image









2079A 2079B


embedded image









2080A 2080B


embedded image









2081A 2081B


embedded image









2082A 2082B


embedded image









2083A 2083B


embedded image









2084A 2084B


embedded image









2085A 2085B


embedded image









2086A 2086B


embedded image









2087A 2087B


embedded image









2088A 2088B


embedded image









2089A 2089B


embedded image









2090A 2090B


embedded image



















EXAMPLE TABLE 29










Substituted 3-[2,4-Dimethoxy-(5-heteroaryl or 5-heterocyclic)phenyl]-


1-[4-(2H-tetrazol-5-yl)phenyl]-2-propen-1-ones.




embedded image









embedded image















Ex. No.
R












2091A 2091B


embedded image









2092A 2092B


embedded image









2093A 2093B


embedded image









2094A 2094B


embedded image









2095A 2095B


embedded image









2096A 2096B


embedded image









2097A 2097B


embedded image









2098A 2098B


embedded image









2099A 2099B


embedded image









2100A 2100B


embedded image









2101A 2101B


embedded image









2102A 2102B


embedded image









2103A 2103B


embedded image









2104A 2104B


embedded image









2105A 2105B


embedded image









2106A 2106B


embedded image









2107A 2107B


embedded image









2108A 2108B


embedded image









2109A 2109B


embedded image









2110A 2110B


embedded image









2111A 2111B


embedded image









2112A 2112B


embedded image









2113A 2113B


embedded image









2114A 2114B


embedded image









2115A 2115B


embedded image









2116A 2116B


embedded image









2117A 2117B


embedded image









2118A 2118B


embedded image









2119A 2119B


embedded image









2120A 2120B


embedded image









2121A 2121B


embedded image









2122A 2122B


embedded image









2123A 2123B


embedded image









2124A 2124B


embedded image









2125A 2125B


embedded image









2126A 2126B


embedded image









2127A 2127B


embedded image









2128A 2128B


embedded image









2129A 2129B


embedded image









2130A 2130B


embedded image









2131A 2131B


embedded image









2132A 2132B


embedded image









2133A 2133B


embedded image









2134A 2134B


embedded image









2135A 2135B


embedded image









2136A 2136B


embedded image









2137A 2137B


embedded image









2138A 2138B


embedded image









2139A 2139B


embedded image









2140A 2140B


embedded image









2141A 2141B


embedded image









2142A 2142B


embedded image









2143A 2143B


embedded image









2144A 2144B


embedded image









2145A 2145B


embedded image









2146A 2146B


embedded image









2147A 2147B


embedded image









2148A 2148B


embedded image









2149A 2149B


embedded image









2150A 2150B


embedded image









2151A 2151B


embedded image









2152A 2152B


embedded image









2153A 2153B


embedded image









2154A 2154B


embedded image









2155A 2155B


embedded image









2156A 2156B


embedded image









2157A 2157B


embedded image









2158A 2158B


embedded image









2159A 2159B


embedded image









2160A 2160B


embedded image









2161A 2161B


embedded image









2162A 2162B


embedded image



















EXAMPLE TABLE 30










Substituted 4-[3-{(4-Heteroaryl or 4-heterocyclic)phenyl}-acryloyl]-


benzoic Acids.




embedded image









embedded image















Ex. No.
R












2163A 2163B


embedded image









2164A 2164B


embedded image









2165A 2165B


embedded image









2166A 2166B


embedded image









2167A 2167B


embedded image









2168A 2168B


embedded image









2169A 2169B


embedded image









2170A 2170B


embedded image









2171A 2171B


embedded image









2172A 2172B


embedded image









2173A 2173B


embedded image









2174A 2174B


embedded image









2175A 2175B


embedded image









2176A 2176B


embedded image









2177A 2177B


embedded image









2178A 2178B


embedded image









2179A 2179B


embedded image









2180A 2180B


embedded image









2181A 2181B


embedded image









2182A 2182B


embedded image









2183A 2183B


embedded image









2184A 2184B


embedded image









2185A 2185B


embedded image









2186A 2186B


embedded image









2187A 2187B


embedded image









2188A 2188B


embedded image









2189A 2189B


embedded image









2190A 2190B


embedded image









2191A 2191B


embedded image









2192A 2192B


embedded image









2193A 2193B


embedded image









2194A 2194B


embedded image









2195A 2195B


embedded image









2196A 2196B


embedded image









2197A 2197B


embedded image









2198A 2198B


embedded image









2199A 2199B


embedded image









2200A 2200B


embedded image









2201A 2201B


embedded image









2202A 2202B


embedded image









2203A 2203B


embedded image









2204A 2204B


embedded image









2205A 2205B


embedded image









2206A 2206B


embedded image









2207A 2207B


embedded image









2208A 2208B


embedded image









2209A 2209B


embedded image









2210A 2210B


embedded image









2211A 2211B


embedded image









2212A 2212B


embedded image









2213A 2213B


embedded image









2214A 2214B


embedded image









2215A 2215B


embedded image









2216A 2216B


embedded image









2217A 2217B


embedded image









2218A 2218B


embedded image









2219A 2219B


embedded image









2220A 2220B


embedded image









2221A 2221B


embedded image









2222A 2222B


embedded image









2223A 2223B


embedded image









2224A 2224B


embedded image









2225A 2225B


embedded image



















EXAMPLE TABLE 31










Substituted 4-[3-{(4-Heteroaryl or 4-heterocyclic)phenyl}-3-oxo-


propenyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












2226A 2226B


embedded image









2227A 2227B


embedded image









2228A 2228B


embedded image









2229A 2229B


embedded image









2230A 2230B


embedded image









2231A 2231B


embedded image









2232A 2232B


embedded image









2233A 2233B


embedded image









2234A 2234B


embedded image









2235A 2235B


embedded image









2236A 2236B


embedded image









2237A 2237B


embedded image









2238A 2238B


embedded image









2239A 2239B


embedded image









2240A 2240B


embedded image









2241A 2241B


embedded image









2242A 2242B


embedded image









2243A 2243B


embedded image









2244A 2244B


embedded image









2245A 2245B


embedded image









2246A 2246B


embedded image









2247A 2247B


embedded image









2248A 2248B


embedded image









2249A 2249B


embedded image









2250A 2250B


embedded image









2251A 2251B


embedded image









2252A 2252B


embedded image









2253A 2253B


embedded image









2254A 2254B


embedded image









2255A 2255B


embedded image









2256A 2256B


embedded image









2257A 2257B


embedded image









2258A 2258B


embedded image









2259A 2259B


embedded image









2260A 2260B


embedded image









2261A 2261B


embedded image









2262A 2262B


embedded image









2263A 2263B


embedded image









2264A 2264B


embedded image









2265A 2265B


embedded image









2266A 2266B


embedded image









2267A 2267B


embedded image









2268A 2268B


embedded image









2269A 2269B


embedded image









2270A 2270B


embedded image









2271A 2271B


embedded image









2272A 2272B


embedded image









2273A 2273B


embedded image









2274A 2274B


embedded image









2275A 2275B


embedded image









2276A 2276B


embedded image









2277A 2277B


embedded image









2278A 2278B


embedded image









2279A 2279B


embedded image









2280A 2280B


embedded image









2281A 2281B


embedded image









2282A 2282B


embedded image









2283A 2283B


embedded image









2284A 2284B


embedded image









2285A 2285B


embedded image









2286A 2286B


embedded image









2287A 2287B


embedded image









2288A 2288B


embedded image









2289A 2289B


embedded image









2290A 2290B


embedded image









2291A 2291B


embedded image









2292A 2292B


embedded image









2293A 2293B


embedded image









2294A 2294B


embedded image









2295A 2295B


embedded image









2296A 2296B


embedded image









2297A 2297B


embedded image



















EXAMPLE TABLE 32










Substituted 4-[3-{(4-Heteroaryl or 4-heterocyclic)-2,6-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












2298A 2298B


embedded image









2299A 2299B


embedded image









2300A 2300B


embedded image









2301A 2301B


embedded image









2302A 2302B


embedded image









2303A 2303B


embedded image









2304A 2304B


embedded image









2305A 2305B


embedded image









2306A 2306B


embedded image









2307A 2307B


embedded image









2308A 2308B


embedded image









2309A 2309B


embedded image









2310A 2310B


embedded image









2311A 2311B


embedded image









2312A 2312B


embedded image









2313A 2313B


embedded image









2314A 2314B


embedded image









2315A 2315B


embedded image









2316A 2316B


embedded image









2317A 2317B


embedded image









2318A 2318B


embedded image









2319A 2319B


embedded image









2320A 2320B


embedded image









2321A 2321B


embedded image









2322A 2322B


embedded image









2323A 2323B


embedded image









2324A 2324B


embedded image









2325A 2325B


embedded image









2326A 2326B


embedded image









2327A 2327B


embedded image









2328A 2328B


embedded image









2329A 2329B


embedded image









2330A 2330B


embedded image









2331A 2331B


embedded image









2332A 2332B


embedded image









2333A 2333B


embedded image









2334A 2334B


embedded image









2335A 2335B


embedded image









2336A 2336B


embedded image









2337A 2337B


embedded image









2338A 2338B


embedded image









2339A 2339B


embedded image









2340A 2340B


embedded image









2341A 2341B


embedded image









2342A 2342B


embedded image









2343A 2343B


embedded image









2344A 2344B


embedded image









2345A 2345B


embedded image









2346A 2346B


embedded image









2347A 2347B


embedded image









2348A 2348B


embedded image









2349A 2349B


embedded image









2350A 2350B


embedded image









2351A 2351B


embedded image









2352A 2352B


embedded image









2353A 2353B


embedded image









2354A 2354B


embedded image









2355A 2355B


embedded image









2356A 2356B


embedded image









2357A 2357B


embedded image









2358A 2358B


embedded image









2359A 2359B


embedded image









2360A 2360B


embedded image



















EXAMPLE TABLE 33










Substituted 4-[3-{(5-Heteroaryl or 5-heterocyclic)-2,4-dimethoxyphenyl}-


acryloyl]-benzoic Acids.




embedded image









embedded image















Ex. No.
R












2361A 2361B


embedded image









2362A 2362B


embedded image









2363A 2363B


embedded image









2364A 2364B


embedded image









2365A 2365B


embedded image









2366A 2366B


embedded image









2367A 2367B


embedded image









2368A 2368B


embedded image









2369A 2369B


embedded image













Stereoisomerism and Polymorphism


It is appreciated that compounds of the present invention having a chiral center may exist in and be isolated in optically active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, diastereomeric, polymorphic, or stereoisomeric form, or mixtures thereof, of a compound of the invention, which possess the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase).


Examples of methods to obtain optically active materials are known in the art, and include at least the following.

    • i) physical separation of crystals—a technique whereby macroscopic crystals of the individual enantiomers are manually separated. This technique can be used if crystals of the separate enantiomers exist, i.e., the material is a conglomerate, and the crystals are visually distinct;
    • ii) simultaneous crystallization—a technique whereby the individual enantiomers are separately crystallized from a solution of the racemate, possible only if the latter is a conglomerate in the solid state;
    • iii) enzymatic resolutions—a technique whereby partial or complete separation of a racemate by virtue of differing rates of reaction for the enantiomers with an enzyme;
    • iv) enzymatic asymmetric synthesis—a synthetic technique whereby at least one step of the synthesis uses an enzymatic reaction to obtain an enantiomerically pure or enriched synthetic precursor of the desired enantiomer;
    • v) chemical asymmetric synthesis—a synthetic technique whereby the desired enantiomer is synthesized from an achiral precursor under conditions that produce asymmetry (i.e., chirality) in the product, which may be achieved using chiral catalysts or chiral auxiliaries;
    • vi) diastereomer separations—a technique whereby a racemic compound is reacted with an enantiomerically pure reagent (the chiral auxiliary) that converts the individual enantiomers to diastereomers. The resulting diastereomers are then separated by chromatography or crystallization by virtue of their now more distinct structural differences and the chiral auxiliary later removed to obtain the desired enantiomer;
    • vii) first- and second-order asymmetric transformations—a technique whereby diastereomers from the racemate equilibrate to yield a preponderance in solution of the diastereomer from the desired enantiomer or where preferential crystallization of the diastereomer from the desired enantiomer perturbs the equilibrium such that eventually in principle all the material is converted to the crystalline diastereomer from the desired enantiomer. The desired enantiomer is then released from the diastereomer;
    • viii) kinetic resolutions—this technique refers to the achievement of partial or complete resolution of a racemate (or of a further resolution of a partially resolved compound) by virtue of unequal reaction rates of the enantiomers with a chiral, non-racemic reagent or catalyst under kinetic conditions;
    • ix) enantiospecific synthesis from non-racemic precursors—a synthetic technique whereby the desired enantiomer is obtained from non-chiral starting materials and where the stereochemical integrity is not or is only minimally compromised over the course of the synthesis;
    • x) chiral liquid chromatography—a technique whereby the enantiomers of a racemate are separated in a liquid mobile phase by virtue of their differing interactions with a stationary phase. The stationary phase can be made of chiral material or the mobile phase can contain an additional chiral material to provoke the differing interactions;
    • xi) chiral gas chromatopraphy—a technique whereby the racemate is volatilized and enantiomers are separated by virtue of their differing interactions in the gaseous mobile phase with a column containing a fixed non-racemic chiral adsorbent phase;
    • xii) extraction with chiral solvents—a technique whereby the enantiomers are separated by virtue of preferential dissolution of one enantiomer into a particular chiral solvent;
    • xiii) transport across chiral membranes—a technique whereby a racemate is placed in contact with a thin membrane barrier. The barrier typically separates two miscible fluids, one containing the racemate, and a driving force such as concentration or pressure differential causes preferential transport across the membrane barrier. Separation occurs as a result of the non-racemic chiral nature of the membrane which allows only one enantiomer of the racemate to pass through.


      Pharmaceutically Acceptable Salt Formulations


In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compound as a pharmaceutically acceptable salt may be appropriate. The term “pharmaceutically acceptable salts” or “complexes” refers to salts or complexes that retain the desired biological activity of the compounds of the present invention and exhibit minimal undesired toxicological effects.


Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids, which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, α-ketoglutarate and α-glycerophosphate. Suitable inorganic salts may also be formed, including, sulfate, nitrate, bicarbonate and carbonate salts. Alternatively, the pharmaceutically acceptable salts may be made with sufficiently basic compounds such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.


Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and polygalcturonic acid; (b) base addition salts formed with metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with a cation formed from ammonia, N,N-dibenzylethylenediamine, D-glucosamine, tetraethylammonium, or ethylenediamine; or (c) combinations of (a) and (b); e.g., a zinc tannate salt or the like. Also included in this definition are pharmaceutically acceptable quaternary salts known by those skilled in the art, which specifically include the quaternary ammonium salt of the formula —NR+A, wherein R is as defined above and A is a counterion, including chloride, bromide, iodide, —O-alkyl, toluenesulfonate, methylsulfonate, sulfonate, phosphate, or carboxylate (such as benzoate, succinate, acetate, glycolate, maleate, malate, citrate, tartrate, ascorbate, benzoate, cinnamoate, mandeloate, benzyloate, and diphenylacetate).


Particular FDA-approved salts can be conveniently divided between anions and cations (Approved Drug Products with Therapeutic Equivalence Evaluations (1994) U.S. Department of Health and Human Services, Public Health Service, FDA, Center for Drug Evaluation and Research, Rockville, Md.; L. D. Bighley, S. M. Berge ad D. C. Monkhouse, Salt Forms of Drugs and Absorption, Encyclopedia of Pharmaceutical Technology, Vol. 13, J. Swarbridk and J. Boylan, eds., Marcel Dekker, NY (1996)). Among the approved anions include aceglumate, acephyllinate, acetamidobenzoate, acetate, acetylasparaginate, acetylaspartate, adipate, aminosalicylate, anhydromethylenecitrate, ascorbate, aspartate, benzoate, besylate, bicarbonate, bisulfate, bitartrate, borate, bromide, camphorate, camsylate, carbonate, chloride, chlorophenoxyacetate, citrate, closylate, cromesilate, cyclamate, dehydrocholate, dihydrochloride, dimalonate, edentate, edisylate, estolate, esylate, ethylbromide, ethylsulfate, fendizoate, fosfatex, fumarate, gluceptate, gluconate, glucuronate, glutamate, glycerophosphate, glysinate, glycollylarsinilate, glycyrrhizate, hippurate, hemisulfate, hexylresorcinate, hybenzate, hydrobromide, hydrochloride, hydroiodid, hydroxybenzenesulfonate, hydroxybenzoate, hydroxynaphthoate, hyclate, iodide, isethionate, lactate, lactobionate, lysine, malate, maleate, mesylate, methylbromide, methyliodide, methylnitrate, methylsulfate, monophosadenine, mucate, napadisylate, napsylate, nicotinate, nitrate, oleate, orotate, oxalate, oxoglurate, pamoate, pantothenate, pectinate, phenylethylbarbiturate, phosphate, pacrate, plicrilix, polistirex, polygalacturonate, propionate, pyridoxylphosphate, saccharinate, salicylate, stearate, succinate, stearylsulfate, subacetate, succinate, sulfate, sulfosalicylate, tannate, tartrate, teprosilate, terephthalate, teoclate, thiocyante, tidiacicate, timonacicate, tosylate, triethiodide, triethiodide, undecanoate, and xinafoate. The approved cations include ammonium, benethamine, benzathine, betaine, calcium, carnitine, clemizole, chlorcyclizine, choline, dibenylamine, diethanolamine, diethylamine, diethylammonium diolamine, eglumine, erbumine, ethylenediamine, heptaminol, hydrabamine, hydroxyethylpyrrolidone, imadazole, meglumine, olamine, piperazine, 4-phenylcyclohexylamine, procaine, pyridoxine, triethanolamine, and tromethamine. Metallic cations include, aluminum, bismuth, calcium lithium, magnesium, neodymium, potassium, rubidium, sodium, strontium and zinc.


A particular class of salts can be classified as organic amine salts. The organic amines used to form these salts can be primary amines, secondary amines or tertiary amines, and the substituents on the amine can be straight, branched or cyclic groups, including ringed structures formed by attachment of two or more of the amine substituents. Of particular interest are organic amines that are substituted by one or more, hydroxyalkyl groups, including alditol or carbohydrate moieties. These hydroxy substituted organic amines can be cyclic or acyclic, both classes of which can be primary amines, secondary amines or tertiary amines. A common class of cyclic hydroxy substituted amines are the amino sugars.


Carbohydrate moieties that can comprise one or more substituents in the amine salt include those made from substituted and unsubstituted monosaccharides, disaccharides, oligosaccharides, and polysaccharides. The saccharide can be an aldose or ketose, and may comprise 3, 4, 5, 6, or 7 carbons. In one embodiment the carbohydrates are monosaccharides. In another embodiment the carbohydrates are pyranose and furanose sugars. Non limiting examples of pyranose and furanose moieties that can be part of the organic amine salt include threose, ribulose, ketose, gentiobiose, aldose, aldotetrose, aldopentose, aldohexose, ketohexose, ketotetrose, ketopentose, erythrose, threose, ribose, deoxyribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, glactose, talose, erythrulose, ribulose, xylulose, psicose, fructose, sorbose, tagatose, dextrose, maltose, lactose, sucrose, cellulose, aldose, amylose, palatinose, trehalose, turanose, cellobiose, amylopectin, glucosamine, mannosamine, fucose, phamnose, glucuronate, gluconate, glucono-lactone, muramic acid, abequose, rhamnose, gluconic acid, glucuronic acid, and galactosamine. The carbohydrate moiety can optionally be deoxygenated at any corresponding C-position, and/or substituted with one or more moieties such as hydrogen, halo, haloalkyl, carboxyl, acyl, acyloxy, amino, amido, carboxyl-derivatives, alkylamino, dialkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, thiol, imine, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, ester, carboxylic acid, amide, phosphonyl, phosphinyl, phosphoryl, thioester, thioether, oxime, hydrazine, carbamate, phosphonic acid, phosphonate, or any other viable functional group that does not inhibit the pharmacological activity of this compound. Exemplary substituents include amine and halo, particularly fluorine. The substituent or carbohydrate can be either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, hereby incorporated by reference. In one embodiment the monosaccharide is a furanose such as (L or D)-ribose.


Of particular interest among the acyclic organic amines are a class represented by the formula
embedded image

wherein Y and Z are independently hydrogen or lower alkyl or, may be taken together to form a ring, R is hydrogen, alkyl or hydroxyloweralkyl, and n is 1, 2, 3, 4, or 5. Among these hydroxylamines are a particular class characterized when n is 4. A representative of this group is meglumine, represented when Y is hydrogen, Z is methyl and R is methoxy. Meglumine is also known in the art as N-methylglucamine, N-MG, and 1-deoxy-1-(methylamino)-D-glucitol.


The invention also includes pharmaceutically acceptable prodrugs of the compounds. Pharmaceutically acceptable prodrugs refer to a compound that is metabolized, for example hydrolyzed or oxidized, in the host to form the compound of the present invention. Typical examples of prodrugs include compounds that have biologically labile protecting groups on a functional moiety of the active compound. Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, dephosphorylated to produce the active compound.


Any of the compounds described herein can be administered as a prodrug to increase the activity, bioavailability, stability or otherwise alter the properties of the compound. A number of prodrug ligands are known. In general, alkylation, acylation or other lipophilic modification of the compound will increase the stability of the chalcone. Examples of substituent groups that can replace one or more hydrogens on the compound are alkyl, aryl, steroids, carbohydrates, including sugars, 1,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, Antiviral Research, 27 (1995) 1-17. Any of these can be used in combination with the disclosed compounds to achieve a desired effect.


The compounds can be used to treat inflammatory disorders that are mediated by VCAM-1 including, but not limited to arthritis, asthma, dermatitis, psoriasis, cystic fibrosis, post transplantation late and chronic solid organ rejection, multiple sclerosis, systemic lupus erythematosis, inflammatory bowel diseases, autoimmune diabetes, diabetic retinopathy, diabetic nephropathy, diabetic vasculopathy, rhinitis, ischemia-reperfusion injury, post-angioplasty restenosis, chronic obstructive pulmonary disease (COPD), glomerulonephritis, Graves disease, gastrointestinal allergies, conjunctivitis, atherosclerosis, coronary artery disease, angina and small artery disease.


The compounds disclosed herein can be used in the treatment of inflammatory skin diseases that are mediated by VCAM-1, and in particular, human endothelial disorders that are mediated by VCAM-1, which include, but are not limited to, psoriasis, dermatitis, including eczematous dermatitis, and Kaposi's sarcoma, as well as proliferative disorders of smooth muscle cells.


In yet another embodiment, the compounds disclosed herein can be selected to treat anti-inflammatory conditions that are mediated by mononuclear leucocytes.


In yet another embodiment, the compounds of the present invention can be selected for the prevention or treatment of tissue or organ transplant rejection. Treatment and prevention of organ or tissue transplant rejection includes, but are not limited to treatment of recipients of heart, lung, combined heart-lung, liver, kidney, pancreatic, skin, spleen, small bowel, or corneal transplants. They are also indicated for the prevention or treatment of graft-versus-host disease, which sometimes occurs following bone marrow transplantation.


In an alternative embodiment, the compounds described herein are useful in both the primary and adjunctive medical treatment of cardiovascular disease. The compounds are used in primary treatment of, for example, coronary disease states including atherosclerosis, post- angioplasty restenosis, coronary artery diseases and angina. The compounds can be administered to treat small vessel disease that is not treatable by surgery or angioplasty, or other vessel disease in which surgery is not an option. The compounds can also be used to stabilize patients prior to revascularization therapy.


In another aspect the invention provides pharmaceutical compositions for the treatment of diseases or disorders mediated by VCAM-1 wherein such compositions comprise a VCAM-1 inhibiting amount of a chalcone derivatives of the invention or a pharmaceutically acceptable salt thereof and/or a pharmaceutically acceptable carrier.


In another aspect invention provides a method for treating a disease or disorder mediated by VCAM-1 comprising administering to a patient a VCAM-1 inhibiting effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof.


In another aspect the invention provides a method for treating cardiovascular and inflammatory disorders in a patient in need thereof comprising administering to said patient an VCAM-1 inhibiting effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof.


In another aspect the invention provides a method and composition for treating asthma or arthritis in a patient in need thereof comprising administering to said patient an effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof.


The compounds of the present invention can be used to treat any disorder that is mediated by VCAM-1. VCAM-1 is upregulated in a wide variety of disease states, including but not limited to arthritis, asthma, dermatitis, psoriasis, cystic fibrosis, post transplantation late and chronic solid organ rejection, multiple sclerosis, systemic lupus erythematosis, inflammatory bowel diseases, autoimmune diabetes, diabetic retinopathy, diabetic nephropathy, diabetic vasculopathy, rhinitis, ischemia-reperfusion injury, post-angioplasty restenosis, chronic obstructive pulmonary disease (COPD), glomerulonephritis, Graves disease, gastrointestinal allergies, atherosclerosis, coronary artery disease, angina, small artery disease, and conjunctivitis.


Nonlimiting examples of arthritis include rheumatoid (such as soft-tissue rheumatism and non-articular rheumatism, fibromyalgia, fibrositis, muscular rheumatism, myofascil pain, humeral epicondylitis, frozen shoulder, Tietze's syndrome, fascitis, tendinitis, tenosynovitis, bursitis), juvenile chronic, spondyloarthropaties (ankylosing spondylitis), osteoarthritis, hyperuricemia and arthritis associated with acute gout, chronic gout and systemic lupus erythematosus.


Human endothelial disorders mediated by VCAM-1 include psoriasis, eczematous dermatitis, Kaposi's sarcoma, as well as proliferative disorders of smooth muscle cells.


In yet another embodiment, the compounds disclosed herein can be selected to treat anti-inflammatory conditions that are mediated by mononuclear leucocytes.


In one embodiment, the compounds of the present invention are selected for the prevention or treatment of tissue or organ transplant rejection. Treatment and prevention of organ or tissue transplant rejection includes, but are not limited to treatment of recipients of heart, lung, combined heart-lung, liver, kidney, pancreatic, skin, spleen, small bowel, or corneal transplants. The compounds can also be used in the prevention or treatment of graft-versus- host disease, such as sometimes occurs following bone marrow transplantation.


In an alternative embodiment, the compounds described herein are useful in both the primary and adjunctive medical treatment of cardiovascular disease. The compounds are used in primary treatment of, for example, coronary disease states including atherosclerosis, post- angioplasty restenosis, coronary artery diseases and angina. The compounds can be administered to treat small vessel disease that is not treatable by surgery or angioplasty, or other vessel disease in which surgery is not an option. The compounds can also be used to stabilize patients prior to revascularization therapy.


In addition to inhibiting the expression of VCAM-1, some of the compounds of the invenion have the additional properties of inhibiting monocyte chemoattractant protein-i (MCP-1) and/or smooth muscle proliferation. MCP-1 is a chemoattractant protein produced by endothelial cells, smooth muscle cells as well as macrophages. MCP-1 promotes integrin activation on endothelial cells thereby facilitating adhesion of leukocytes to VCAM-1, and MCP-1 is a chemoattractant for monocytes. MCP-1 has been shown to play a role in leukocyte recruitment in a number of chronic inflammatory diseases including atherosclerosis, rheumatoid arthritis, and asthma. Its expression is upregulated in these diseases and as such inhibition of MCP-1 expression represents a desirable property of anti-inflammatory therapeutics. Furthermore, smooth muscle cell hyperplasia and resulting tissue remodeling and decreased organ function is yet another characteristic of many chronic inflammatory diseases including atherosclerosis, chronic transplant rejection and asthma. Inhibition of the hyperproliferation of smooth muscle cells is another desirable property for therapeutic compounds.


Combination and Alternation Therapy


Any of the compounds disclosed herein can be administered in combination or alternation with a second biologically active agent to increase its effectiveness against the target disorder.


In combination therapy, effective dosages of two or more agents are administered together, whereas during alternation therapy an effective dosage of each agent is administered serially. The dosages will depend on absorption, inactivation and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens and schedules should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions.


The efficacy of a drug can be prolonged, augmented, or restored by administering the compound in combination or alternation with a second, and perhaps third, agent that induces a different biological pathway from that caused by the principle drug. Alternatively, the pharmacokinetics, biodistribution or other parameter of the drug can be altered by such combination or alternation therapy. In general, combination therapy is typically preferred over alternation therapy because it induces multiple simultaneous stresses on the condition.


Any method of alternation can be used that provides treatment to the patient. Nonlimiting examples of alternation patterns include 1-6 weeks of administration of an effective amount of one agent followed by 1-6 weeks of administration of an effective amount of a second agent. The alternation schedule can include periods of no treatment. Combination therapy generally includes the simultaneous administration of an effective ratio of dosages of two or more active agents.


Illustrative examples of specific agents that can be used in combination or alternation with the compounds of the present invention are described below in regard to asthma and arthritis. The agents set out below or others can alternatively be used to treat a host suffering from any of the other disorders listed above or that are mediated by VCAM-1 or MCP-1. Illustrative second biologically active agents for the treatment of cardiovascular disease are also provided below.


Asthma


In one embodiment, the compounds of the present invention are administered in combination or alternation with heparin, frusemide, ranitidine, an agent that effects respiratory function, such as DNAase, or immunosuppressive agents, IV gamma globulin, troleandomycin, cyclosporin (Neoral), methotrexate, FK-506, gold compounds such as Myochrysine (gold sodium thiomalate), platelet activating factor (PAF) antagonists such as thromboxane inhibitors, leukotriene-D4-receptor antagonists such as Accolate (zafirlukast), Ziflo (zileuton), leukotriene C1 or C2 antagonists and inhibitors of leukotriene synthesis such as zileuton for the treatment of asthma, or an inducible nitric oxide synthase inhibitor.


In another embodiment, the active compound is administered in combination or alternation with one or more other prophylactic agent(s). Examples of prophylactic agents that can be used in alternation or combination therapy include but are not limited to sodium cromoglycate, Intal (cromolyn sodium, Nasalcrom, Opticrom, Crolom, Ophthalmic Crolom), Tilade (nedocromiil, nedocromil sodium) and ketotifen.


In another embodiment, the active compound is administered in combination or alternation with one or more other O2-adrenergic agonist(s) (p agonists). Examples of β2-adrenergic agonists (β agonists) that can be used in alternation or combination therapy include but are not limited to albuterol (salbutamol, Proventil, Ventolin), terbutaline, Maxair (pirbuterol), Serevent (salmeterol), epinephrine, metaproterenol (Alupent, Metaprel), Brethine (Bricanyl, Brethaire, terbutaline sulfate), Tomalate (bitolterol), isoprenaline, ipratropium bromide, bambuterol hydrochloride, bitolterol meslyate, broxaterol, carbuterol hydrochloride, clenbuterol hydrochloride, clorprenaline hydrochloride, efirmoterol fumarate, ephedra (source of alkaloids), ephedrine (ephedrine hydrochloride, ephedrine sulfate), etafedrine hydrochloride, ethylnoradrenaline hydrochloride, fenoterol hydrochloride, hexoprenaline hydrochloride, isoetharine hydrochloride, isoprenaline, mabuterol, methoxyphenamine hydrochloride, methylephedrine hydrochloride, orciprenaline sulphate, phenylephrine acid tartrate, phenylpropanolamine (phenylpropanolamine polistirex, phenylpropanolamine sulphate), pirbuterol acetate, procaterol hydrochloride, protokylol hydrochloride, psuedoephedrine (psuedoephedrine polixtirex, psuedoephedrine tannate, psuedoephedrine hydrochloride, psuedoephedrine sulphate), reproterol hydrochloride, rimiterol hydrobromide, ritodrine hydrochloride, salmeterol xinafoate, terbutatine sulphate, tretoquinol hydrate and tulobuterol hydrochloride.


In another embodiment, the active compound is administered in combination or alternation with one or more other corticosteriod(s). Examples of corticosteriods that can be used in alternation or combination therapy include but are not limited to glucocorticoids (GC), Aerobid (Aerobid-M, flunisolide), Azmacort (triamcinolone acetonide), Beclovet (Vanceril, beclomethasone dipropionate), Flovent (fluticasone), Pulmicort (budesonide), prednisolone, hydrocortisone, adrenaline, Alclometasone Dipropionate, Aldosterone, Amcinonide, Beclomethasone Dipropionate, Bendacort, Betamethasone (Betamethasone Acetate, Betamethasone Benzoate, Betamethasone Dipropionate, Betamethasone Sodium Phosphate, Betamethasone Valerate), Budesonide, Ciclomethasone, Ciprocinonide, Clobetasol Propionate, Clobetasone Butyrate, Clocortolone Pivalate, Cloprednol, Cortisone Acetate, Cortivazol, Deflazacort, Deoxycortone Acetate (Deoxycortone Pivalate), Deprodone, Desonide, Desoxymethasone, Dexamethasone (Dexamethasone Acetate, Dexamethasone Isonicotinate, Dexamethasone Phosphate, Dexamethasone Sodium Metasulphobenzoate, Dexamethasone Sodium Phosphate), Dichlorisone Acetate, Diflorasone Diacetate, Diflucortolone Valerate, Difluprednate, Domoprednate, Endrysone, Fluazacort, Fluclorolone Acetonide, Fludrocortisone Acetate, Flumethasone (Flumethasone Pivalate), Flunisolide, Fluocinolone Acetonide, Fluocinonide, Fluocortin Butyl, Fluocortolone (Fluocortolone Hexanoate, Fluocortolone Pivalate), Fluorometholone (Fluorometholone Acetate), Fluprednidene Acetate, Fluprednisolone, Flurandrenolone, Fluticasone Propionate, Formocortal, Halcinonide, Halobetasol Propionate, Halometasone, Hydrocortamate Hydrochloride, Hydrocortisone (Hydrocortisone Acetate, Hydrocortisone Butyrate, Hydrocortisone Cypionate, Hydrocortisone Hemisuccinate, Hydrocortisone Sodium Phosphate, Hydrocortisone Sodium Succinate, Hydrocortisone Valerate), Medrysone, Meprednisone, Methylprednisolone (Methylprednisolone Acetate, Methylprednisolone, Hemisuccinate, Methylprednisolone Sodium Succinate), Mometasone Furoate, Paramethasone Acetate, Prednicarbate, Prednisolamate Hydrochloride, Prednisolone (Prednisolone Acetate, Prednisolone Hemisuccinate, Prednisolone Hexanoate, Prednisolone Pivalate, Prednisolone Sodium Metasulphobenzoate, Prednisolone Sodium Phosphate, Prednisb lone Sodium Succinate, Prednisolone Steaglate, Prednisolone Tebutate), Prednisone (Prednisone Acetate), Prednylidene, Procinonide, Rimexolone, Suprarenal Cortex, Tixocortol Pivalate, Triamcinolone (Triamcinolone Acetonide, Triamcinolone Diacetate and Triamcinolone Hexacetonide).


In another embodiment, the active compound is administered in combination or alternation with one or more other antihistimine(s) (H1 receptor antagonists). Examples of antihistimines (H1 receptor antagonists) that can be used in alternation or combination therapy include alkylamines, ethanolamines ethylenediamines, piperazines, piperidines or phenothiazines. Some non-limiting examples of antihistimes are Chlortrimeton (Teldrin, chlorpheniramine), Atrohist (brompheniramine, Bromarest, Bromfed, Dimetane), Actidil (triprolidine), Dexchlor (Poladex, Polaramine, dexchlorpheniramine), Benadryl (diphenhydramine), Tavist (clemastine), Dimetabs (dimenhydrinate, Dramamine, Marmine), PBZ (tripelennamine), pyrilamine, Marezine (cyclizine), Zyrtec (cetirizine), bydroxyzine, Antivert (meclizine, Bonine), Allegra (fexofenadine), Hismanal (astemizole), Claritin (loratadine), Seldane (terfenadine), Periactin (cyproheptadine), Nolamine (phenindamine, Nolahist), Phenameth (romethazine, Phenergan), Tacaryl (methdilazine) and Temaril (trimeprazine).


Alternatively, the compound of the present invention is administered in combination or alternation with

  • (a) xanthines and methylxanthines, such as Theo-24 (theophylline, Slo-Phylline, Uniphyllin, Slobid, Theo-Dur), Choledyl (oxitriphylline), aminophylline;
  • (b) anticholinergic agents (antimuscarinic agents) such as belladonna alkaloids, Atrovent (ipratropium bromide), atropine, oxitropium bromide;
  • (c) phosphodiesterase inhibitors such as zardaverine;
  • (d) calcium antagonists such as nifedipine; or
  • (e) potassium activators such as cromakalim for the treatment of asthma.


    Arthritic Disorders


In one embodiment, the compound of the present invention can also be administered in combination or alternation with apazone, amitriptyline, chymopapain, collegenase, cyclobenzaprine, diazepam, fluoxetine, pyridoxine, ademetionine, diacerein, glucosamine, hylan (hyaluronate), misoprostol, paracetamol, superoxide dismutase mimics, TNFα receptor antagonists, TNFα antibodies, P38 Kinase inhibitors, tricyclic antidepressents, cJun kinase inhibitors or immunosuppressive agents, IV gamma globulin, troleandomycin, cyclosporin (Neoral), methotrexate, FK-506, gold compounds such as Myochrysine (gold sodium thiomalate), platelet activating factor (PAF) antagonists such as thromboxane inhibitors, and inducible nitric oxide sythase inhibitors.


In another embodiment, the active compound is administered in combination or alternation with one or more other corticosteriod(s). Examples of corticosteriods that can be used in alternation or combination therapy include but are not limited to glucocorticoids (GC), Aerobid (Aerobid-M, flunisolide), Azmacort (triamcinolone acetonide), Beclovet (Vanceril, beclomethasone dipropionate), Flovent (fluticasone), Pulmicort (budesonide), prednisolone, hydrocortisone, adrenaline, Alclometasone Dipropionate, Aldosterone, Amcinonide, Beclomethasone Dipropionate, Bendacort, Betamethasone (Betamethasone Acetate, Betamethasone Benzoate, Betamethasone Dipropionate, Betamethasone Sodium Phosphate, Betamethasone Valerate), Budesonide, Ciclomethasone, Ciprocinonide, Clobetasol Propionate, Clobetasone Butyrate, Clocortolone Pivalate, Cloprednol, Cortisone Acetate, Cortivazol, Deflazacort, Deoxycortone Acetate (Deoxycortone Pivalate), Deprodone, Desonide, Desoxymethasone, Dexamethasone (Dexamethasone Acetate, Dexamethasone Isonicotinate, Dexamethasone Phosphate, Dexamethasone Sodium Metasulphobenzoate, Dexamethasone Sodium Phosphate), Dichlorisone Acetate, Diflorasone Diacetate, Diflucortolone Valerate, Difluprednate, Domoprednate, Endrysone, Fluazacort, Fluclorolone Acetonide, Fludrocortisone Acetate, Flumethasone (Flumethasone Pivalate), Flunisolide, Fluocinolone Acetonide, Fluocinonide, Fluocortin Butyl, Fluocortolone (Fluocortolone Hexanoate, Fluocortolone Pivalate), Fluorometholone (Fluorometholone Acetate), Fluprednidene Acetate, Fluprednisolone, Flurandrenolone, Fluticasone Propionate, Formocortal, Halcinonide, Halobetasol Propionate, Halometasone, Hydrocortamate Hydrochloride, Hydrocortisone (Hydrocortisone Acetate, Hydrocortisone Butyrate, Hydrocortisone Cypionate, Hydrocortisone Hemisuccinate, Hydrocortisone Sodium Phosphate, Hydrocortisone Sodium Succinate, Hydrocortisone Valerate), Medrysone, Meprednisone, Methylprednisolone (Methylprednisolone Acetate, Methylprednisolone, Hemisuccinate, Methylprednisolone Sodium Succinate), Mometasone Furoate, Paramethasone Acetate, Prednicarbate, Prednisolamate Hydrochloride, Prednisolone (Prednisolone Acetate, Prednisolone Hemisuccinate, Prednisolone Hexanoate, Prednisolone Pivalate, Prednisolone Sodium Metasulphobenzoate, Prednisolone Sodium Phosphate, Prednisolone Sodium Succinate, Prednisolone Steaglate, Prednisolone Tebutate), Prednisone (Prednisone Acetate), Prednylidene, Procinonide, Rimexolone, Suprarenal Cortex, Tixocortol Pivalate, Triamcinolone (Triamcinolone Acetonide, Triamcinolone Diacetate and Triamcinolone Hexacetonide).


In another embodiment, the active compound is administered in combination or alternation with one or more other non-steroidal anti-inflammatory drug(s) (NSAIDS). Examples of NSAIDS that can be used in alternation or combination therapy are carboxylic acids, propionic acids, fenamates, acetic acids, pyrazolones, oxicans, alkanones, gold compounds and others that inhibit prostaglandin synthesis, preferably by selectively inhibiting cylcooxygenase-2 (COX-2). Some nonlimiting examples of COX-2 inhibitors are Celebrex (celecoxib), Bextra (valdecoxib), Dynastat (parecoxib sodium) and Vioxx (rofacoxib). Some non-limiting examples of NSAIDS are aspirin (acetylsalicylic acid), Dolobid (diflunisal), Disalcid (salsalate, salicylsalicylate), Trisilate (choline magnesium trisalicylate), sodium salicylate, Cuprimine (penicillamine), Tolectin (tolmetin), ibuprofen (Motrin, Advil, Nuprin Rufen), Naprosyn (naproxen, Anaprox, naproxen sodium), Nalfon (fenoprofen), Orudis (ketoprofen), Ansaid (flurbiprofen), Daypro (oxaprozin), meclofenamate (meclofanamic acid, Meclomen), mefenamic acid, Indocin (indomethacin), Clinoril (sulindac), tolmetin, Voltaren (diclofenac), Lodine (etodolac), ketorolac, Butazolidin (phenylbutazone), Tandearil (oxyphenbutazone), piroxicam (Feldene), Relafen (nabumetone), Myochrysine (gold sodium thiomalate), Ridaura (auranofin), Solganal (aurothioglucose), acetaminophen, colchicine, Zyloprim (allopurinol), Benemid (probenecid), Anturane (sufinpyrizone), Plaquenil (hydroxychloroquine), Aceclofenac, Acemetacin, Acetanilide, Actarit, Alclofenac, Alminoprofen, Aloxiprin, Aluminium Aspirin, Amfenac Sodium, Amidopyrine, Aminopropylone, Ammonium Salicylate, Ampiroxicam, Amyl Salicylate, Anirolac, Aspirin, Auranofin, Aurothioglucose, Aurotioprol, Azapropazone, Bendazac (Bendazac Lysine), Benorylate, Benoxaprofen, Benzpiperylone, Benzydamine, Hydrochloride, Bornyl Salicylate, Bromfenac Sodium, Bufexamac, Bumadizone Calcium, Butibufen Sodium, Capsaicin, Carbaspirin Calcium, Carprofen, Chloithenoxazin, Choline Magnesium Trisalicylate, Choline Salicylate, Cinmetacin, Clofexamide, Clofezone, Clometacin, Clonixin, Cloracetadol, Cymene, Diacerein, Diclofenac (Diclofenac Diethylammonium Salt, Diclofenac Potassium, Diclofenac Sodium), Diethylamine Salicylate, Diethylsalicylamide, Difenpiramide, Diflunisal, Dipyrone, Droxicam, Epirizole, Etenzamide, Etersalate, Ethyl Salicylate, Etodolac, Etofenamate, Felbinac, Fenbufen, Fenclofenac, Fenoprofen Calcium, Fentiazac, Fepradinol, Feprazone, Floctafenine, Flufenamic, Flunoxaprofen, Flurbiprofen (Flurbiprofen Sodium), Fosfosal, Furprofen, Glafenine, Glucametacin, Glycol Salicylate, Gold Keratinate, Harpagophytum Procumbens, Ibufenac, Ibuprofen, Ibuproxam, Imidazole Salicylate, Indomethacin (Indomethacin Sodium), Indoprofen, Isamifazone, Isonixin, Isoxicam, Kebuzone, Ketoprofen, Ketorolac Trometamol, Lithium Salicylate, Lonazolac Calcium, Lomoxicam, Loxoprofen Sodium, Lysine Aspirin, Magnesium Salicylate, Meclofenamae Sodium, Mefenamic Acid, Meloxicam, Methyl Butetisalicylate, Methyl Gentisate, Methyl Salicylate, Metiazinic Acid, Metifenazone, Mofebutazone, Mofezolac, Morazone Hydrochloride, Momiflurnate, Morpholine Salicylate, Nabumetone, Naproxen (Naproxen Sodium), Nifenazone, Niflumic Acid, Nimesulide, Oxametacin, Oxaprozin, Oxindanac, Oxyphenbutazone, Parsalmide, Phenybutazone, Phenyramidol Hydrochloride, Picenadol Hydrochloride, Picolamine Salicylate, Piketoprofen, Pirazolac, Piroxicam, Pirprofen, Pranoprofen, Pranosal, Proglumetacin Maleate, Proquazone, Protizinic Acid, Ramifenazone, Salacetamide, Salamidacetic Acid, Salicylamide, Salix, Salol, Salsalate, Sodium Aurothiomalate, Sodium Gentisate, Sodium Salicylate, Sodium Thiosalicylate, Sulindac, Superoxide Dismutase (Orgotein, Pegorgotein, Sudismase), Suprofen, Suxibuzone, Tenidap Sodium, Tenoxicam, Tetrydamine, Thurfyl Salicylate, Tiaprofenic, Tiaramide Hydrochloride, Tinoridine Hydrochloride, Tolfenamic Acid, Tometin Sodium, Triethanolamine Salicylate, Ufenamate, Zaltoprofen, Zidometacin and Zomepirac Sodium.


Cardiovascular Disease


Compounds useful for combining with the compounds of the present invention for the treatment of cardiovascular disease encompass a wide range of therapeutic compounds.


Ileal bile acid transporter (IBAT) inhibitors, for example, are useful in the present invention, and are disclosed in patent application no. PCT/US95/10863, herein incorporated by reference. More IBAT inhibitors are described in PCT/US97/04076, herein incorporated by reference. Still further IBAT inhibitors useful in the present invention are described in U.S. application Ser. No. 08/816,065, herein incorporated by reference. More IBAT inhibitor compounds useful in the present invention are described in WO 98/40375, and WO 00/38725, herein incorporated by reference. Additional IBAT inhibitor compounds useful in the present invention are described in U.S. application Ser. No. 08/816,065, herein incorporated by reference.


In another aspect, the second biologically active agent is a statin. Statins lower cholesterol by inhibiting of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, a key enzyme in the cholesterol biosynthetic pathway. The statins decrease liver cholesterol biosynthesis, which increases the production of LDL receptors thereby decreasing plasma total and LDL cholesterol (Grundy, S. M. New Engl. J. Med. 319, 24 (1988); Endo, A. J. Lipid Res. 33, 1569 (1992)). Depending on the agent and the dose used, statins may decrease plasma triglyceride levels and may increase HDLc. Currently the statins on the market are lovastatin (Merck), simvastatin (Merck), pravastatin (Sankyo and Squibb) and fluvastatin (Sandoz). A fifth statin, atorvastatin (Parke-Davis/Pfizer), is the most recent entrant into the statin market. Any of these statins or thers can be used in combination with the chalcones of the present invention.


MTP inhibitor compounds useful in the combinations and methods of the present invention comprise a wide variety of structures and functionalities. Some of the MTP inhibitor compounds of particular interest for use in the present invention are disclosed in WO 00/38725, the disclosure from which is incorporated by reference. Descriptions of these therapeutic compounds can be found in Science, 282, 23 Oct. 1998, pp. 751-754, herein incorporated by reference.


Cholesterol absorption antagonist compounds useful in the combinations and methods of the present invention comprise a wide variety of structures and functionalities. Some of the cholesterol absorption antagonist compounds of particular interest for use in the present invention are described in U.S. Pat. No. 5,767,115, herein incorporated by reference. Further cholesterol absorption antagonist compounds of particular interest for use in the present invention, and methods for making such cholesterol absorption antagonist compounds are described in U.S. Pat. No. 5,631,365, herein incorporated by reference.


A number of phytosterols suitable for the combination therapies of the present invention are described by Ling and Jones in “Dietary Phytosterols: A Review of Metabolism, Benefits and Side Effects,” Life Sciences, 57 (3), 195-206 (1995). Without limitation, some phytosterols of particular use in the combination of the present invention are Clofibrate, Fenofibrate, Ciprofibrate, Bezafibrate, Gemfibrozil. The structures of the foregoing compounds can be found in WO 00/38725.


Phytosterols are also referred to generally by Nes (Physiology and Biochemistry of Sterols, American Oil Chemists' Society, Champaign, Ill., 1991, Table 7-2). Especially preferred among the phytosterols for use in the combinations of the present invention are saturated phytosterols or stanols. Additional stanols are also described by Nes (Id.) and are useful in the combination of the present invention. In the combination of the present invention, the phytosterol preferably comprises a stanol. In one preferred embodiment the stanol is campestanol. In another preferred embodiment the stanol is cholestanol. In another preferred embodiment the stanol is clionastanol. In another preferred embodiment the stanol is coprostanol. In another preferred embodiment the stanol is 22,23-dihydrobrassicastanol. In another embodiment the stanol is epicholestanol. In another preferred embodiment the stanol is fucostanol. In another preferred embodiment the stanol is stigmastanol.


Another embodiment the present invention encompasses a therapeutic combination of a compound of the present invention and an HDLc elevating agent. In one aspect, the second HDLc elevating agent can be a CETP inhibitor. Individual CETP inhibitor compounds useful in the present invention are separately described in WO 00/38725, the disclosure of which is herein incorporated by reference. Other individual CETP inhibitor compounds useful in the present invention are separately described in WO 99/14174, EP818448, WO 99/15504, WO 99/14215, WO 98/04528, and WO 00/17166, the disclosures of which are herein incorporated by reference. Other individual CETP inhibitor compounds useful in the present invention are separately described in WO 00/18724, WO 00/18723, and WO 00/18721, the disclosures of which are herein incorporated by reference. Other individual CETP inhibitor compounds useful in the present invention are separately described in WO 98/35937 as well as U.S. Pat. Nos. 6,313,142, 6,310;075, 6,197,786, 6,147,090, 6,147,089, 6,140,343, and 6,140,343, the disclosures of which is herein incorporated by reference.


In another aspect, the second biologically active agent can be a fibric acid derivative. Fibric acid derivatives useful in the combinations and methods of the present invention comprise a wide variety of structures and functionalities which have been reported and published in the art.


In another embodiment the present invention encompasses a therapeutic combination of a compound of the present invention and an antihypertensive agent. Hypertension is defined as persistently high blood pressure. In another embodiment, the chalcone is administered in combination with an ACE inhibitor, a beta andrenergic blocker, alpha andrenergic blocker, angiotensin II receptor antagonist, vasodilator and diuretic.


Pharmaceutical Compositions


Any host organism, including a pateint, mammal, and specifically a human, suffering from any of the above-described conditions can be treated by the administration of a composition comprising an effective amount of the compound of the invention or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier or diluent.


The composition can be administered in any desired manner, including oral, topical, parenteral, intravenous, intradermal, intra-articular, intra-synovial, intrathecal, intra-arterial, intracardiac, intramuscular, subcutaneous, intraorbital, intracapsular, intraspinal, intrasternal, topical, transdermal patch, via rectal, vaginal or urethral suppository, peritoneal, percutaneous, nasal spray, surgical implant, internal surgical paint, infusion pump, or via catheter. In one embodiment, the agent and carrier are administered in a slow release formulation such as an implant, bolus, microparticle, microsphere, nanoparticle or nanosphere. For standard information on pharmaceutical formulations, see Ansel, et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, Sixth Edition, Williams & Wilkins (1995).


An effective dose for any of the herein described conditions can be readily determined by the use of conventional techniques and by observing results obtained under analogous circumstances in determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication. Typical systemic dosages for all of the herein described conditions are those ranging from 0.1 mg/kg to 500 mg/kg of body weight per day as a single daily dose or divided daily doses. Preferred dosages for the described conditions range from 5-1500 mg per day. A more particularly preferred dosage for the desired conditions ranges from 25-750 mg per day. Typical dosages for topical application are those ranging from 0.001 to 100% by weight of the active compound.


The compound is administered for a sufficient time period to alleviate the undesired symptoms and the clinical signs associated with the condition being treated.


The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutic amount of compound in vivo in the absence of serious toxic effects.


The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.


A preferred mode of administration of the active compound for systemic delivery is oral. Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.


The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.


The compound or its salts can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.


The compound can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action. The compounds can also be administered in combination with nonsteroidal antiinflammatories such as ibuprofen, indomethacin, fenoprofen, mefenamic acid, flufenamic acid, sulindac. The compound can also be administered with corticosteriods.


Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


If administered intravenously, preferred carriers are physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (TBS).


In a preferred embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) are also preferred as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the compound is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.


Suitable vehicles or carriers for topical application can be prepared by conventional techniques, such as lotions, suspensions, ointments, creams, gels, tinctures, sprays, powders, pastes, slow-release transdermal patches, suppositories for application to rectal, vaginal, nasal or oral mucosa. In addition to the other materials listed above for systemic administration, thickening agents, emollients and stabilizers can be used to prepare topical compositions. Examples of thickening agents include petrolatum, beeswax, xanthan gum, or polyethylene, humectants such as sorbitol, emollients such as mineral oil, lanolin and its derivatives, or squalene.


Any of the compounds described herein for combination or alternation therapy can be administered as any derivative that upon administration to the recipient, is capable of providing directly or indirectly, the parent compound, or that exhibits activity itself. Nonlimiting examples are the pharmaceutically acceptable salts (alternatively referred to as “physiologically acceptable salts”), and a compound which has been alkylated or acylated at an appropriate position. The modifications can affect the biological activity of the compound, in some cases increasing the activity over the parent compound. This can easily be assessed by preparing the derivative and testing its anti-inflammatory activity according to known methods.


Biological Activity of Active Compounds


The ability of a compound described herein to inhibit the expression of VCAM-1 or in the treatment of diseases in a host can be assessed using any known method, including that described in detail below.


In Vitro MCP-1 Activity Assay


Cultured human endothelial cells were seeded in 96-well plates. On the following day cells were stimulated with TNF-α (1 ng/ml) in the presence or absence of compounds dissolved in DMSO. To establish a dose curve an IC50, multiple concentrations in 2- to 5-fold increments were used. Cells were exposed to TNF-α and compounds for approximately 16 hours. The next day the cells were visually examined via light microscopy to score for visual signs of toxicity. Cell culture media, diluted 1:10, was analyzed by an MCP-1 immunoassay kit (R & D Systems). This assay is a sandwich immunoassay using immobilized anti-MCP-1 antibody in 96-well plate to capture secreted MCP-1 in cell culture media. Captured MCP-1 was subsequently detected with a horse radish peroxidase-conjugated anti-MCP-1 antibody for color development. Compound 3 expressed an IC50 values of >10(the amount of compound (μM) required to achieve a 50% reduction compared to control (cells stimulated with TNF-α only)).


In Vitro VCAM-1 Assay


Cell Culture and compound dosing: Cultured primary human aortic (HAEC) or pulmonary (HPAEC) endothelial cells were obtained from Clonetics, Inc., and were used below passage 9. Cells were seeded in 96 well plates such that they would reach 90-95% confluency by the following day. On the following day the cells were stimulated with TNF-α (1 ng/ml) in the presence or absence of compounds dissolved in DMSO such that the final concentration of DMSO is 0.25% or less. To establish a dose curve for each compound, four concentrations in 2- to 5-fold increments were used. Cells were exposed to TNF-α and compounds for approximately 16 hours. The next day the cells were examined under microscope to score for visual signs of toxicity or cell stress.


Following 16 hr exposure to TNF-α and compound the media was discarded and the cells were washed once with Hanks Balanced Salt Solution (HBSS)/Phosphate buffered saline (PBS) (1:1). Primary antibodies against VCAM-1 (0.251 g/ml in HBSS/PBS+5% FBS) were added and incubated for 30-60 minutes at 37° C. Cells were washed with HBSS/PBS three times, and secondary antibody Horse Radish Peroxidase (HRP)-conjugated goat anti-mouse IgG (1:500 in HBSS/PBS+5% FBS) were added and incubated for 30 minutes at 37° C. Cells were washed with HBSS/PBS four time and TMB substrate were added and incubated at room temperature in the dark until there was adequate development of blue color. The length of time of incubation was typically 5-15 minutes. 2N sulfuric acid was added to stop the color development and the data was collected by reading the absorbance on a BioRad ELISA plate reader at OD 450 nm. The results are expressed as IC50 values (the concentration (micromolar) of compound required to inhibit 50% of the maximal response of the control sample stimulated by TNF-α only). Compounds exhibiting IC50's of less than 5 micromolar are tabulated in Biological Table 1.

Biological Table 1VCAM-1ExampleIC50Number(μM)1<12<53<14<105<16<17<18<19<510<511<512<513<514<115>1016<517<518<519<120>1021<522>1023<124>1025>1026>1027<528<529<130<131>1032<533<534>1035>1036<537>1038<1039>1040<141<542<543<544<145<546<1047>1048<1049<1050>1051<552>1053<554<1055<556<157<558>1059NE60<161<162<563<1064>1065<166<167<1068<569<570<571NE72073074>1075>1076>1077<578<1079<180<581<182NE83<184<585<186<587<18889NE90<191<592<193<194<195<196<597NE98<599>10100>10101>10102>10103>10104NE105NE106<10107NE108<10109NE110>10111>10112NE113<5114<5115<5116117<5118<10119120<1


Rheumatoid Arthritis Protocol


Male Lewis rats (150-175 g) from Charles River Laboratories were anesthetized on day 0 with 3-5% isoflurane anesthesia while the tail base was shaved and adjuvant mixture was injected. Fifty μL of adjuvant (10 mg/ml M. butyricum in mineral oil) was injected subcutaneously into two sites at the tail base. Paw swelling was monitored using a plethysmometer (UGO Basile), after shaving each leg to the level of the Achilles tendon to mark the level of immersion. A baseline paw measurement for both hindpaws was taken between d2-d5 and a second measurement was taken on day 7-8. Onset of paw swelling occurred rapidly between d9-11 and daily measurements were performed every weekday between d9 and day 15. Compounds of the invention and vehicles were dosed either prophylactically (d1-14), or therapeutically (d9-14) after swelling was confirmed. Solutions were injected subcutaneously or given orally by gavage 1-2 times per day. From day 0, rats were weighed every 2-3 days and overall health was monitored. Plasma drug levels, if desired, were measured in tail-vein derived blood samples taken on day 14. On day 15, blood samples were obtained by cardiac puncture, rats were euthanized with CO2, selected organs removed and both hindpaws were amputated and placed in 10% buffered formalin for histopathological analysis. See Biological Table 2.

Biological Table 2Compound Example% Inhibition 60 mg/Kg/day,Numbersq, bid, d1-14396677298260 62*
*75 mg/kg/day, sq, bid, d1-14


Asthma Protocol


Balb/C mice (6-8 weeks old) are sensitized to ovalbumin (ova) (8 ug ova absorbed in 3.3 mg Alum inject) on days 0 and 5. On day 12, the mice were aerosol challenged with 0.5% ovalbumin dissolved in sterile saline for 1 hr in the AM, and then again in the PM (at least 4 hr apart). On day 14, the mice were anesthetized with ketamine/xylazine/acepromazine cocktail, exsanguinated, and then euthanized. Following blood collection, bronchoaveolar lavage was performed on each animal. Total cell counts were conducted on the lavage fluid, which was subsequently diluted with cell media 1:1. Slides of the lavage fluid were made by spinning the samples with a cytospin centrifuge. Slides were airdried and stained with x. Cell differentials of the lavage fluid were completed at the conclusion of the study. All compounds except Example 2 were well tolerated with no body weight loss throughout the course of the study. Statistical analysis involved ANOVA and Tukey-Kramer post hoc tests. Compounds were administered except where noted by subcutaneous injection once daily from day 0-13. The formulations used contained various mixtures of the following excipients (pharmasolve, cremdphor RH 40, tween 80, PEG 300). See Biological Table 3

Biological Table 3% Inhibition sc, dailydosing at 100 mg/kgCompound Example Numberfrom day 0-133796818648367160362924


Effect of Serum IgE Levels in Ovalbumin Sensitized Balb/c Mice


Peripheral blood samples were collected from ovalbumin (Calbiochem) or vehicle (2% Cremophor/Bicarbonate) treated Balb/c mice (Charles River) with or without administration of test compound (100 mg/kg/d, from day 0 to day 14). Serum was obtained by centrifugation and transferred into Microtainer serum tubes and frozen at −80° C. Mouse IgE ELISA Quantitation Kit (Bethyl Laboratories, Inc. Montgomery, Tex. or PharMingen, San Diego, Calif.) was applied to measure the IgE levels of serum samples. Immuno-reactions were performed as Kit protocol with IgE standard and serum samples in duplicates. The results were read in a microplate reader (Bio-Rad Model 550) at 450 nm and the amounts of IgE were calculated according to the standard curve. The limit of detection in our experiments was 7 ng/ml. Compound 3 administrated at 100 mg/kg/d from day 0 to day 14, reduced serum IgE levels by 38% in ovalbumin sensitized Balb/c mice compared with vehicle treated mice.


Effect of Levels of IL-13, IL-5, IL-4, IFN-gamma and IL-2 mRNA in Mouse Lungs of Balb/c Mice with Ovalbumin Sensitization and Challenge


Lung tissues were collected from ovalbumin (Calbiochem) or vehicle (2% Cremophor/Bicarbonate) sensitized Balb/c mice (Charles River) with or without treatment of test compound (100 mg/kg/d, from day 0 to day 14). Total RNA samples were isolated by the Trizol method: (Life Technologies, Grand Island, N.Y.) and quantitatively measured by UV spectrophotometer, as well as qualitatively examined by ethidum bromide stained gel electrophoresis. First strand cDNA templates were generated with oligo (dT) by Reverse Transcription Kit (invitrogen, Carlsbad, Calif.). The initial amounts of mRNA of each samples were quantitatively determined by running a SYBR Green (Qiagen, Valencia, Calif.) based real-time PCR (programmed as: initial denaturation at 95° C. for 15 minutes, denaturation at 95° C. for 15 seconds, annealing and elongation at 51±1° C. for 1 minute for total 40 cycles) with a specific pair of primers (IDT Corporation, Coralville, Iowa) and control primers for GAPDH in iCycler IQ Optical System (Hercules, Calif.). The data were statistically analyzed by ANOVA and t-tests with multiple comparisons of means (n=5 and P<0.05 were considered significant). Compound 3 administrated at 100 mg/kg/d, significantly inhibited ovalbumin induced levels of IL-13, IL-5 and IL-4 mRNA in the lung of Balb/c mice by 82%, 98% and 68% respectively; without significantly affecting IFN-gamma and IL-2 compared with vehicle treated mice.


List of Primers Used in Above Experiments:

PrimerAnnealingNameForward SequenceReverse SequenceTemperatureGAPDHCTA CCC CCA ATGCTG CTT CAC CAC52.2TGT CCCTT CTTIL-13AAF AFF AGA GCACTG TGT AAC CTT51.3AAT GAA AGCCC AAC AIL-4TGA ATG AGT CCAAGC ATG GTG GCT51.2AGT CCACAG TAIL5AGC TCT GTT GACCCC TGA AAG ATT52.4AAG CAA TTCT CCA ATGIL-2GTC GAC TTT CTGATG TGT TGT AAG53.2AGG AGA TGCAG GAG GTIFN-γTTC TGT CTC CTCCAA TCA CAG TCT51.3AAC TAT TTC TTGG CTA AT


Smooth Muscle Cell Proliferation Protocol


Human Aortic Smooth Mucle Cells (HAoSMC) were obtained from Clonetics, Inc. and were used below passage 10. Cells were seeded in 24-well plates. When cells were 80% confluent, they were made quiescent by adding media containing 0.2% serum (as compared to 5% serum in normal culture media) for 48 hours. The cells were, then, stimulated by 5% serum in the presence or absence of compounds dissolved in DMSO. To establish a dose curve and IC50 for each compound, multiple concentrations in the range of 20 to 0.05 μM were used. Rapamycin (at 1 and 0.1 μM) was used as a positive control for the assay. After a 20 hour incubation with or without test compounds, 3H-thymidine (0.5 μCi/well) was added to the cells for 4 hours of labeling. Washed cells were then lysed in NaOH and the amount of 3H-thymidine incorporation was determined. Cytotoxicity of the drug was measured by use of the CytolTox 96 assay kit (Promega, Madison, Wis.). Compound 3 had an IC50 of 0.5 μM.


Effect of Test Compounds on LPS-Stimulated IL-1β


Human peripheral blood mononuclear cells were treated with or without Compound 3 for 1 hour, then stimulated with LPS (1-2 μg/ml) for 3 hours. Condition media was collected and IL-1β measured using an ELISA kit. Compound 3 demonstrated a dose dependent inhibition of LPS-stimulated IL-1β secretion. See Biological Table 4

Biological Table 4Amount of Compound 3(μM)Percent IL-1β Secreted1.25>402.5>105>510>1


Reduction of Plasma TNF-α Levels and Lung VCAM-1 mRNA Levels in LPS-Challenged Mice.


Balb/C mice (6-8 weeks) were injected with LPS (1 mg/kg; 5 mls/kg) and sacrificed 2 hr later. Blood was collected for plasma TNF-α levels and lungs for measurement of VCAM-1 mRNA levels by quantitative RT-PCR. Compound 3 administered subcutaneously at a dose of 100 mg/kg/d, 2 hr prior to LPS injection, inhibited TNF-α production by 80% and VCAM-1 expression by 60% compared with vehicle controls.


Disease Modifying Anti-Rheumatic Drug (DMARD) Activity in Rat Adjuvant Arthritis


Compound 3 at twice daily subcutaneous doses of 60, 40 and 20 mg/kg/d was found to inhibit bone erosion in the ankle joint by histopathological analysis when administered prophylactically in the rat adjuvant arthritis model. The evaluation was carried out with hematoxylin and eosin stained ankle cross sections by a certified veterinary pathologist. When dosed prophylactically at doses of 100, 50 and 25 mg/kg/d, b.i.d., s.c., Compound 3 was also found to inhibit splenomegaly. Splenomegaly tracks with bone erosion in the adjuvant arthritis model and is thought to be a predictor of DMARDs activity.


Modifications and variations of the present invention relating to compounds and methods of treating diseases will be obvious to those skilled in the art from the foregoing detailed description of the invention. Such modifications and variations are intended to come within the scope of the appended claims.

Claims
  • 1. A compound of Formula I
  • 2. The compound of claim 1 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2 R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R1)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R2β, R3β, R4β, R5β or R62 , or one of R2α, R3α, R4α, R5α or R6α must be a carbon-carbon linked heterocyclic or heteroaryl; wherein when one of R2β, R3β, R4β, R5β or R6β is a carbon-carbon linked heterocyclic or heteroaryl, only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; wherein when one of R2α, R3α, R4α, R5α or R6α is a carbon-carbon linked heterocyclic or heteroaryl, only one of R2β, R3β, R4β, R5β or R6β can be —OCH3; with the proviso that R2α and R3α taken together or R3α and R4α taken together or R4α and R5α taken together, or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; or R2α and R3α taken together or R3α and R4α taken together or R4α and R5α taken together or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R1)2; provided that R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β cannot be —OC(R1)2C(O)OH; and at least one of R2α R3α, R4α, or one of R2β, R3β, R4β must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2—SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2 SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.
  • 3. The compound of claim 1 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R2β, R3β, R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that R2α and R3α taken together or R3α and R4α taken together or R4α and R5α taken together, or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; or R2α and R3α taken together or R3α and R4α taken together or R4α and R5α taken together or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β cannot be —OC(R1)2C(O)OH; and with the proviso that at least one of R2α, R3α, R4α, R5α, or R6α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl,-cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2.
  • 4. The compound of claim 3 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R1)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that R2α and R3α taken together or R3α and R4α taken together or R4α and R5α taken together, or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; or R2α and R3α taken together of R3α and R4α taken together or R4α and R5α taken together or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R6β and R6β cannot be —OC(R1)2C(O)OH; and with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2.
  • 5. The compound of claim 4 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2 SO2R2, —NHC(O)NHR7, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R1)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH—SCF2C(O)OH—SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.
  • 6. The compound of claim 5 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R1)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.
  • 7. The compound of claim 6 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R1)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —(O)N(R2)2.
  • 8. The compound of claim 7 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —N(R2)C(O)R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NHC(O)NR7R8, —NHC(O)N(R2)2, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R1)2, —SO2NHC(O)NR7R8, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, aryl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, —C(O)NR7R8, and —C(O)N(R2)2.
  • 9. The compound of claim 8 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, alkyl, lower alkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, heterocyclicamino lower alkyl, hydroxyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, dialkylamino, N(R2)2, —NR7R8, tetrazol-5-yl, carboxy, —C(O)OR, —C(O)N(R2)2, —C(O)NR7R8, —C(CH3)2C(O)OH, and —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, cycloalkyl, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 8-membered monocyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of tetrazol-5-yl, carboxy, —C(O)OR2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6; wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.
  • 10. The compound of claim 9 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, lower alkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, heteroaryl lower alkoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, carboxy, —C(O)OR2, —C(O)N(R2)2, and —C(O)NR7R8, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, hydroxy, hydroxyalkyl, heterocyclic, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, and lower alkyl, wherein all may be substituted by one or more selected from the group consisting of halo, lower alkyl, —NR7R8, alkoxy, —C(O)NR7R8, and —C(O)N(R1)2; R7 and R8 are independently alkyl, and linked together forming a 5- to 7-membered monocyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from carboxy or —C(O)OR2; wherein all R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, lower alkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2.
  • 11. The compound of claim 10 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, heterocyclic lower alkoxy, and carboxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2; R2 is lower alkyl; R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be carboxy.
  • 12. The compound of claim 11 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, and R6α are independently selected from the group consisting of hydrogen and carboxy; R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2; R2 is lower alkyl; R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl; with the proviso that at least one of R2α, R3α, or R4α must be carboxy.
  • 13. The compound of claim 12 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, and R6α are independently selected from the group consisting of hydrogen and carboxy; R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, heteroaryl, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2; R2 is lower alkyl; R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heteroaryl; with the proviso that at least one of R2α, R3α, or R4α must be carboxy.
  • 14. The compound of claim 13 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, and R6α are independently selected from the group consisting of hydrogen and carboxy; R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, fluorine, chlorine, methoxy, ethoxy, propoxy, 3-(1-morpholino) propoxy, 2-(1-morpholino) ethoxy, CH3O(CH2)2O(CH2)2—, and wherein one of R4β, R5β or R6β must be selected from the group consisting of thiophen-2-yl, thiophen-3-yl, benzo[b]thiophen-2-yl, benzo[b]thiophen-3-yl, indol-2-yl, indol-3-yl, pyrrol-2-yl, pyrrol-3-yl, 1-methyl-indol-2-yl, 1-methyl-indol-3-yl, N-Boc-indol-2-yl, N-Boc-indol-3-yl, N-Boc-pyrrol-2-yl, and N-Boc-pyrrol-3-yl; with the proviso that at least one of R2α, R3α, or R4α must be carboxy.
  • 15. The compound of claim 14 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5, and R6α are independently selected from the group consisting of hydrogen and carboxy; R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, methoxy, 3-(1-morpholino) propoxy, 2-(1-morpholino) ethoxy, and CH3O(CH2)2O(CH2)2; wherein one of R4β, R5β or R6β must be selected from the group consisting of thiophen-2-yl, benzo[b]thiophen-2-yl, indol-2-yl, 1-methyl-indol-2-yl, N-Boc-indol-2-yl, N-Boc-pyrrol-2′yl, and N-Boc-pyrrol-3-yl; with the proviso that at least one of R2α, R3α, or R4α must be carboxy.
  • 16. The compound of claim 15 selected from the group consisting of: 4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid; 4-[3E-(4-Pyrimidin-5-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(4-Thiazol-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 2-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid; 4-[3E-(3,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 2-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid, sodium salt; 4-[3E-(4-Thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3-{4-(thien-2-yl)-phenyl}-3-oxo-E-propenyl]-benzoic acid, sodium salt; 4-[3-{4-(thien-2-yl)-phenyl}-3-oxo-E-propenyl]-benzoic acid; 4-[3-(2-Methoxy-4-thiophen-2-yl-phenyl)-3-oxo-E-propenyl]-benzoic acid; 4-[3E-(4-Pyrrolidin-1-yl-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-{4-Fluoro-3-(thiophen-2-yl)-phenyl}-acryloyl]-benzoic acid; 4-(3E-{4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic Acid; 4-[3E-(2-Fluoro-4-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(2,4-Dimethoxy-5-pyrimidin-5-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(2-Cyclopropylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[5-(3,5-Dimethyl-isoxazol-4-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid; 4-[3E-(4-Methoxy-2-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 2-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 2-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-indole-1-carboxylic acid tert-butyl ester; 4-[3E-(2,6-Dimethoxy-4-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[5-(2,4-Dimethoxy-pyrimidin-5-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid; 4-[3E-(2,4-Dimethoxy-6-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[2,4-Dimethoxy-5-(5-methyl-thiophen-2-yl)-phenyl]-acryloyl}-benzoic acid; 4-[3E-(4-Methoxy-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(3-Thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 3-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(3-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid; 4-[3E-(2-Methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(2,4-Dimethoxy-5-pyrazin-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[4-(1-Carboxy-1-methyl-ethoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid; 2-[3E-(4-Methoxy-3-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-(3E-{2-Methoxy-4-[2-(2-methoxy-ethoxy)-ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic acid; 4-{3E-[4-(3-Hydroxy-2-hydroxymethyl-propoxy)-2-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid; 5-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-thiophene-2-carboxylic acid methyl ester; 5-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-thiophene-2-carboxylic acid; 4-[3E-(4-Ethoxy-2-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(4-Hydroxy-2-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(2,4-Dimethoxy-5-thiazol-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid, sodium salt; 2-{5-[3-(4-Carboxy-phenyl)-3-oxo-E-propenyl]-2,4-dimethoxy-phenyl}-pyrrole-1-carboxylic acid tert-butyl ester; 4-[3E-(2-Hydroxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[2-(1-Carboxy-1-methyl-ethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid; 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-S-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride; 2 4-{3E-[5-(1H-Indol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid; 4-{3E-[2-(3,5-Dimethyl-isoxazol-4-ylmethoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid; 4-[3E-(2-Pyrrolidin-1-yl-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[2-(3-Hydroxy-2-hydroxymethyl-propoxy)-4-methoxy-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid; 4-{3E-[2-(3-Morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride; 4-{3E-[4-Methoxy-2-(3-morpholin-4-yl-propoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride; 4-[3E-(2-Dimethylcarbamoylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-[3E-(4-Methoxy-2-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[2,4-Dimethoxy-5-(2-methyl-thiazol-4-yl)-phenyl]-acryloyl}-benzoic acid; 4-{3E-[5-(1H-Benzoimidazol-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid; 4-[3E-(2-Carbamoylmethoxy-4-methoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-2-oxo-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid; 4-(3E-{4-Methoxy-2-[2-(1-methyl-pyrrolidin-2-yl)-ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic acid, hydrochloride; 4-{3E-[2,4-Dimethoxy-5-(1H-pyrazol-4-yl)-phenyl]-acryloyl}-benzoic acid; 4-{3E-[2,4-Dimethoxy-5-(2H-tetrazol-5-yl)-phenyl]-acryloyl}-benzoic acid; 4-{3E-[5-(3H-Imidazo[4,5-b]pyridin-2-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid; 2-{4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-phenyl}-2-methyl-propionic acid; 4-{3E-[5-(2-Cyclopropyl-1H-imidazol-4-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid, hydrochloride; 4-{3E-[5-(4-Isobutyl-4H-[1,2,4]triazol-3-yl)-2,4-dimethoxy-phenyl]-acryloyl}-benzoic acid; 4-{3E-[2,4-Dimethoxy-5-(1-methyl-1H-indol-2-yl)-phenyl]-acryloyl}-benzoic acid; and 4-[3E-(5-Benzo[b]thiophen-2-yl-2,4-dimethoxy-phenyl)-acryloyl]-benzoic acid ethyl ester, or its pharmaceutically acceptable salt or ester.
  • 17. The compound of claim 16 selected from the group consisting of: 4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid; 4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid; 4-(3E-{4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic Acid; and 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride, or its pharmaceutically acceptable salt or ester.
  • 18. The compound of claim 17 wherein the compound is 4-[3E-(5-Benzo[b]thien-2-yl-2,4-dimethoxyphenyl)-acryloyl]-benzoic acid or its pharmaceutically acceptable salt or ester.
  • 19. The compound of claim 17 wherein the compound is 4-[3E-(2,4-Dimethoxy-5-thiophen-2-yl-phenyl)-acryloyl]-benzoic acid, or its pharmaceutically acceptable salt or ester.
  • 20. The compound of claim 17 wherein the compound is 4-(3E-{4-Methoxy-2-[2-(2-methoxyethoxy)ethoxy]-5-thiophen-2-yl-phenyl}-acryloyl)-benzoic Acid; and, or its pharmaceutically acceptable salt or ester.
  • 21. The compound of claim 17 wherein the compound is 4-{3E-[4-Methoxy-2-(2-morpholin-4-yl-ethoxy)-5-thiophen-2-yl-phenyl]-acryloyl}-benzoic acid, hydrochloride, or its pharmaceutically acceptable salt or ester.
  • 22. The compound of claim 5 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, and R6α are independently selected from the group consisting of hydrogen and carboxy; R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, heteroaryl, heterocyclic, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, heteroaryl lower alkoxy, and heterocyclic lower alkoxy, all of which can be optionally substituted by one or more selected from the group consisting of hydroxy, hydroxyalkyl, —NR7R8, —C(O)NR7R8, and —C(O)N(R2)2; R2 is lower alkyl; R7 and R8 are independently alkyl, and linked together forming a 6-membered monocyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic; with the proviso that at least one of R2α, R3α, or R4α must be carboxy.
  • 23. The compound of claim 22 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, and R6α are independently selected from the group consisting of hydrogen and carboxy; R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, fluorine, chlorine, methoxy, ethoxy, propoxy, 3-(1-morpholino) propoxy, 2-(1-morpholino) ethoxy, CH3O(CH2)2O(CH2)2—, and wherein one of R4β, R5β or R6β must be a carbon-carbon linked tetrahydrofuran-2-yl or dihydrofuran-2-yl; with the proviso that at least one of R2α, R3α, or R4α must be carboxy.
  • 24. The compound of claim 5 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.
  • 25. The compound of claim 5 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R1)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2.
  • 26. The compound of claim 5 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2) 2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R1)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of amino, —NHR2, N(R2)2, NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2; wherein all R1, R2 R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R2)2.
  • 27. The compound of claim 5 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2 R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R1)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.
  • 28. The compound of claim 3 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2, R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R1)2, —C(O)NR7R8, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that R2α and R3α taken together or R3α and R4α taken together or R4α and R5α taken together, or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a heterocyclic or heteroaryl optionally substituted by one or more alkoxycarbonylalkyl, carboxyalkyl, hydroxyalkyl or aminoalkyl and optionally substituted with one or more selected from the group consisting of hydroxy, alkyl, carboxy, hydroxyalkyl, carboxyalkyl, amino, cyano, alkoxy, alkoxycarbonyl, acyl, oxo, —NR7R8, and halo; and with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2)2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R2)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R2)2C(O)OH, —NHC(R1)2C(O)OR2, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2; wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2.
  • 29. The compound of claim 3 or its pharmaceutically acceptable salt or ester, wherein: R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β are independently selected from the group consisting of hydrogen, halogen, nitro, alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, cycloalkylalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroaryl lower alkyl, heterocyclic, heterocyclic lower alkyl, alkylthioalkyl, cycloalkylthioalkyl, arylthio lower alkyl, aralkyl lower thioalkyl, heteroarylthio lower alkyl, heteroaralkyl lower thioalkyl, heterocyclicthio lower alkyl, heterocyclicalkyl lower thioalkyl, lower alkyl S(O)-lower alkyl, lower alkyl-S(O)2-lower alkyl, arylsulfinyl lower alkyl, arylsulfonyl lower alkyl, —C(O)R2 R2C(O)alkyl, aminoalkyl, cycloalkylaminoalkyl, arylamino lower alkyl, heteroarylamino lower alkyl, heterocyclicamino lower alkyl, hydroxyl, hydroxyalkyl, alditol, carbohydrate, polyol alkyl, alkoxy, lower alkoxy, —(O(CH2)2)1-3—O-lower alkyl, polyoxyalkylene, cycloalkyloxy, cycloalkylalkoxy, haloalkoxy, aryloxy, arylalkoxy, heteroaryloxy, heteroarylalkoxy, heteroaryl lower alkoxy, heterocyclicoxy, heterocyclicalkoxy, heterocyclic lower alkoxy, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R1)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, alkylamino, acylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclicamino, heterocyclicalkylamino, —NHR2, N(R2)2, —NR7R8, —NHC(R1)2C(O)OH, —NHC(R2)2C(O)OR, —NHC(O)R2)2, —N(R1)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, —NHC(O)N(R2)2, thiol, alkylthio, cycloalkylthio, cycloalkylalkylthio, haloalkylthio, arylthio, aralkylthio, heteroarylthio, heteroaralkylthio, heterocyclicthio, heterocyclicalkylthio, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R2)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R2)2, —SO2NHC(O)NR7R8, sulfonic acid, sulfonate, sulfate, sulfinic acid, sulfenic acid, cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR78R2, —C(O)NHC(O)R2, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2R2, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, —PO2H2, —PO3H2, —P(R2)O2H, and phosphate, all of which can be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R1 is independently selected from the group consisting of hydrogen, lower alkyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be optionally substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R2 is independently selected from the group consisting of alkyl, lower alkyl, alkenyl, alkynyl, carbocycle, cycloalkyl, aryl, heteroaryl, heterocyclic, arylalkyl, heteroarylalkyl, and heterocyclicalkyl, wherein all may be substituted by one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; R7 and R8 are independently selected from the group consisting of alkyl, alkenyl and aryl and linked together forming a 4- to 12-membered monocyclic, bicylic, tricyclic or benzofused ring; wherein one of R4β, R5β or R6β must be a carbon-carbon linked heterocyclic or heteroaryl, and only one of R2α, R3α, R4α, R5α or R6α can be —OCH3; with the proviso that R2α and R3α taken together or R3α and R4α taken together or R4α and R5α taken together or R2β and R3β taken together or R3β and R4β taken together or R4β and R5β taken together form a 5- or 6-membered ring containing one nitrogen, which may optionally be substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and —C(O)N(R2)2; provided that R2α, R3α, R4α, R5α, R6α, R2β, R3β, R4β, R5β and R6β cannot be —OC(R1)2C(O)OH; and with the proviso that at least one of R2α, R3α, or R4α must be selected from the group consisting of cyano, tetrazol-5-yl, carboxy, —C(O)OR2, —C(O)NH2, —C(O)NHR2, —C(O)N(R2)2, —C(O)NR7R8, —C(O)NHC(O)NHR2, —C(O)NHC(O)N(R2)2, —C(O)NHC(O)NR7R8, —C(O)NHSO2NHR2, —C(O)NHSO2N(R2), —C(O)NHSO2NR7R8, —C(O)NHC(O)R2, —C(O)NHSO2R2, —C(CH3)2C(O)OH, —(CH2)yC(O)OH, wherein y is 1, 2, 3, 4, 5, or 6, thiol, —SC(R1)2C(O)OH, —SC(R1)2C(O)OR2, —SCH2C(O)OH, —SCF2C(O)OH, —SO2NH2, —SO2NHR2, —SO2N(R1)2, SO2NR7R8, —SO2NHC(O)R2, —SR2, —SO2NHC(O)NHR2, —SO2NHC(O)N(R1)2, —SO2NHC(O)NR7R8, —OC(R1)2C(O)OH, —OC(R1)2C(O)OR2, —OC(R1)2C(O)NH2, —OC(R2)2C(O)NHR2, —OC(R1)2C(O)N(R2)2, —OC(R1)2C(O)NR7R8, amino, —NHR2, N(R2)2, NR7R8, —NHC(R2)2C(O)OH, —NHC(R1)2C(O)OR, —NHC(O)R2, —N(R2)C(O)R2, —NHC(O)OR2, —NHC(O)SR2, —NHSO2NHR2, —NHSO2R2, —NHSO2NR7R8, —N(C(O)NHR2)2, —NR2SO2R2, —NHC(O)NHR2, —NHC(O)NR7R8, and —NHC(O)N(R2)2, wherein all R1, R2, R7 and R8 substituents can be optionally substituted with one or more selected from the group consisting of halo, alkyl, lower alkyl, alkenyl, cycloalkyl, acyl, hydroxy, hydroxyalkyl, heterocyclic, amino, aminoalkyl, —NR7R8, alkoxy, oxo, cyano, carboxy, carboxyalkyl, alkoxycarbonyl, —C(O)NR7R8, and C(O)N(R1)2.
  • 30. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 together with one or more pharmaceutically acceptable carrier.
  • 31. A method for the treatment or prophylaxis of an inflammatory disorder, comprising administering an effective amount of a compound of claim 1.
  • 32. The method of claim 31, wherein the disorder is arthritis.
  • 33. The method of claim 31, wherein the disorder is rheumatoid arthritis.
  • 34. The method of claim 31, wherein the disorder is asthma.
  • 35. The method of claim 31, wherein the treatment is disease modifying for the treatment of rheumatoid arthritis.
  • 36. The method of claim 31, wherein the disorder is allergic rhinitis.
  • 37. The method of claim 31, wherein the disorder is chronic obstructive pulmonary disease.
  • 38. The method of claim 31, wherein the disorder is atherosclerosis.
  • 39. The method of claim 31, wherein the disorder is restinosis.
  • 40. A method for inhibiting the expression of VCAM-1, comprising administering an effective amount of a compound of claim 1.
Parent Case Info

This patent application claims priority to U.S. Provisional Patent Application Ser. No. 60/342,034 filed Dec. 19, 2001 and U.S. Provisional Patent Application Ser. No. 60/386,482 filed Jun. 5, 2002.

Provisional Applications (2)
Number Date Country
60342034 Dec 2001 US
60386482 Jun 2002 US
Continuations (1)
Number Date Country
Parent 10324987 Dec 2002 US
Child 11337207 Jan 2006 US