Chambered flexographic ink units with quick-change, blade thickness compensating clamping mechanism

Information

  • Patent Grant
  • 6293195
  • Patent Number
    6,293,195
  • Date Filed
    Thursday, October 7, 1999
    25 years ago
  • Date Issued
    Tuesday, September 25, 2001
    23 years ago
Abstract
A flexographic printer ink unit has an elongated body with an elongated ink chamber recessed into one side of the body. The chamber is defined in part by a pair of elongated walls. An elongated blade, doctor or containment, is positioned on each of the opposite elongated walls. An elongated clamping bar is coupled with a separate one of the wall to rotate about a pivot axis defined by a set of T bars mounted along each wall. One longitudinal edge of each clamping bar holds the blade against a proximal edge of the proximal elongated wall to form an edge of the ink chamber. One or more plungers are movably coupled with the ink unit body and pressed against the clamping bar on a side of the bar pivot axis opposite the one longitudinal edge of the bar so as to pivot the one longitudinal edge of the bar against the proximal edge of the wall to secure the blade there between. The plunger is carried in a conventional toggle clamp. The plunger is an assembly with a spring loaded smaller plunger located at its working tip, which adjusts the plunger automatically for wear and minor dimensional changes in the blade and/or seal. The plunger can be threaded into a threaded sleeve of a conventional toggle clamp to permit further gross adjustment of plunger height/position.
Description




BACKGROUND OF THE INVENTION




Chambered flexographic (“flexo”) ink units, employ two opposing, blades—a doctor blade and a sealer or containment blade—together with elastomeric end seals to form an enclosed chamber which contains ink being applied to a metering, (“anilox”) roll. These two types of blades will hereafter be referred to collectively as “roll blades”. A simplified yet typical flexographic printing system is depicted in FIG.


1


and is indicated generally at


10


. A conventional, chambered flexographic ink unit or “inker”


12


adjoins and applies ink to a metering or anilox roll


14


of the system


10


. The anilox roll


14


in turn applies its ink to the image carrier


16


, typically a “flexo plate cylinder”. Cylinder


16


in turn applies its ink to a flexible web


18


typically carried on a central drum


20


rolling against the flexo plate cylinder


16


. Ink unit


12


is one of several such units which would be arrayed around the central drum.




As is further indicated in

FIG. 2

, the ink unit or “inker”


12


includes a body


30


, which may be C-shaped in transverse cross section as indicated or of another shape. A recessed chamber


32


is formed into one side of the body facing the anilox roll


14


to receive ink to be printed on the web. A doctor blade


34


is typically clamped to the downstream edge of the holder body


30


by means of screws


38


and a clamping bar


40


. A sealer or containment blade


36


is clamped to the upstream edge of the body


30


(see FIG.


1


). There is typically one screw


38


every three to five inches of clamping bar


40


on ink units over twenty-two inches in length, (so-called “wide web” equipment) and one screw approximately every inch on ink units under twenty-two inches (so-called “narrow web” equipment). In this clamping configuration, the blades


34


,


36


may be aligned to the holder body


30


by means of alignment pins


42


or, in some cases, machined “steps” (not depicted) in the holder body, which engage the back of the blades


34


,


36


in a manner similar to the pins


42


. Elastic seals


44


(e.g., “O-ring” strips) are provided between the blades


34


,


36


and the body


30


to seal the blades with the body.




Doctor blades are typically installed nearly edge (i.e. nearly perpendicular to) on the anilox roll and are subject to significant pressure and wear. For that reason, they are made of steel, typically stainless steel or tool steel or steel otherwise treated to resist wear. Containment blades are generally installed at much shallower angles closer to tangent and are subject to significantly less pressure and wear than doctor blades. For that reason, containment blades are made from non-steel materials and can be made from non-metallic materials such as plastic.




A number of costs and operational problems exist with the existing means of clamping doctor and sealer or containment blades with screws. These are:




(A) Distortion of the clamp bar by non-uniform screw tightening. Uniform torquing of each screw with hand tools is difficult, time consuming and easily frustrated by varying degrees of individual screw-thread ink contamination, wear, damage and corrosion. This is a major cause of waviness, distortion or “ripples” in the clamped blade, resulting in doctoring and print defects and/or shortened blade life, as well as ink leakage paths under wavy, distorted or rippled doctor blades.




(B) Increased costs and/or extended press make-ready time resulting from operators working to prevent or correct holder screw problems described in (A).




(C) Difficult access to the inside of the “jaws” which hold the doctor and containment blades. Fast, easy and complete access to these surfaces is needed to remove dried ink which may be present, inspect jaw surfaces for scratches and other damage and/or replace blade ink seals if they are the type that require access, such as the O-ring strip seal


44


illustrated in FIG.


2


. Removing ten or more holder screws to gain this access is very slow.




BRIEF SUMMARY OF THE INVENTION




The invention is a flexographic printer ink unit comprising: an elongated body having an elongated ink chamber recessed into one side of the body, the chamber being defined in part by one elongated wall of the body; an elongated roll blade on the one elongated wall; an elongated clamping bar coupled with the body to rotate about one pivot, one longitudinal edge of the clamping bar holding the roll blade against a proximal edge of the elongated wall such that the roll blade forms an edge of the ink chamber; and a plunger movably coupled with the body and pressed against the clamping bar on a side of the first pivot axis opposite the one longitudinal edge so as to pivot the one longitudinal edge of the clamping bar against the proximal edge of the wall to secure the roll blade there between.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS




The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:





FIG. 1

is a typical prior art doctor blade installation on a chambered flexographic ink unit.





FIG. 2

is a detailed end cross section view of the ink unit body with blade taken along the line


2





2


in FIG.


1


.





FIG. 3

is a perspective view of an ink unit body incorporating the quick-change blade thickness compensating mechanism of the present invention with the clamping bars in the open position.





FIG. 4

is a perspective view of an ink unit body incorporating the quick-change blade thickness compensating mechanism of the present invention with the clamping bars in the closed position.





FIG. 5

is a cross sectioned end view of the ink unit body taken along the line


5





5


in FIG.


3


.





FIG. 6

is a cross sectioned end view of the ink unit body taken along the line


6





6


in FIG.


4


.





FIG. 7

is an exploded side view of a clamp plunger of the invention.





FIG. 8

is a local cross sectional view taken along the lines


8





8


in FIG.


4


.





FIG. 9

is a detailed side view of area “9” in

FIG. 6

showing the mechanism.











DETAILED DESCRIPTION OF THE INVENTION




In the drawings, like numerals are used to indicate like elements throughout. Referring to

FIGS. 3

,


4


,


5


and


6


the blade clamping mechanism


50


of the present invention is installed on an ink unit body


60


and uses commercial overcenter clamps (so-called “toggle” clamps)


70


with a novel load distribution and spring loading mechanism that provides rapid positioning, locking and effective sealing of each blade


34


,


36


into the jaws formed by the body


60


and a modified clamping bar


80


.




The ink unit body


60


is like conventional body


30


from

FIGS. 1 and 2

, generally C-shaped and elongated, with a recessed ink chamber


61


defined in part by a pair of opposing, first and second, preferably parallel elongated walls


60




a,




60




b.


Body


60


has been modified over conventional body


30


of

FIGS. 1-2

to support first and second clamps


70


and to pivotally support first and second clamping bars


80


. More particularly, brackets


62


are preferably provided on opposite edges on a rear side of the body


60


to support at least one and more preferably at least two clamps


70


on either longitudinal rear edge of the body


60


, overhanging the edge. A plurality of preferably identical T-bars


64


are fixed to the body proximal the front opposing edges of the body, spaced along elongated walls


60




a,




60




b,


where they pivotally support a pair of mirror image clamping bars


80


. Referring to

FIGS. 3 and 8

, elongated cut-outs


82


and sunken bores


84


can be provided in the front faces of the clamping bars


80


to respectively receive cross members and stems of the T-bars


64


. Referring to

FIG. 8

, the stems of the T-bars


64


can be secured to the elongated walls


60




a,




60




b


of the bodies


60


by suitable fasteners


66


such as screws or bolts. Shims


68


can be provided at the base of the T-bar stems to adjust the height of the T bars and thus the height or position of the clamping bars


80


and of its pivot axis with respect to the body


60


for different blade or blade/seal thicknesses. Suggestedly, the T-bars


64


can be provided along each elongated wall


60




a,




60




b


approximately eight inches on center with cross members collinear. The T bars


64


support each clamping bar


80


to rotate about a pivot axis defined by the collinear cross members of the T bars. Suggestedly, for up to a thirty inch long clamping bar


80


, a pair of toggle clamps


70


should be provided for each bar


80


, one for either half of the bar. First and second clamps


70


with first and second plungers are depicted in

FIGS. 5 and 6

. Longer clamping bars


80


may require more than two toggle clamps. Although the toggle clamps


70


are depicted in

FIGS. 3 and 4

as being located between T-bars


64


, it is now recommended that the toggle clamps


70


be located directly adjoining a T-bar, if possible. Referring again to

FIGS. 3 and 4

, it will be appreciated that additional transverse slots


86


may be provided in the clamping bar


80


between the T-bar openings


82


/


84


to receive alignment (i.e. dowel) pins


68


, if such pins are provided on the ink unit body


60


for blade alignment. As is best seen if

FIG. 9

, an elastic seal


88


is suggestedly provided between the blade


34


,


36


, which is compressed by the near longitudinal edge of the clamping bar


80


against the proximal front side of the proximal elongated wall


60




a,




60




b


of the body


60


to seal the blade


34


,


36


against the body


60


. As can be seen in FIGS.


3


-


6


, an inner edge of each blade


34


,


36


overhangs an inner edge of its supporting wall


60




a,




60




b


so as to define an edge of the ink chamber


61


.




The T-bars


64


may be made from oil impregnated, sintered bearing stock for use with a hard anodized, aluminum clamp bar. Alternatively, the T-bars


64


can be made of steel with nylon bearing sleeves lubricated with molybdenum disulfide. Other self-lubricating or non-self-lubricating combinations might be employed.




The clamping bar hinge system comprising T-bars


64


recessed into the clamping bar


80


has several novel functions.




First, the T-bars


64


spread the hold-down and toggle clamp loads imposed on the clamping bar


80


. Elimination of concentrated blade clamping loads on the clamping bars


80


is essential to avoiding distortion of the blades (doctor and/or containment) clamped by the bars


80


, and because of the basic press geometry related to the flexo ink process, spreading loads merely by means of thick clamp bars is generally impractical.




Second, the T-bars


64


can be provided with a self-lubricating metal surface to avoid binding due to ink contamination and their anchor post height may be adjusted (e.g. by shims


86


) to accommodate various ranges of doctor blade thickness and/or sealer strip material. They therefore prevent various binding and distortion phenomenon common to flexo ink unit clamping bars.




Third, the positioning of the T-bar hinge system allows the anilox side corner of the clamping bar to contact the doctor blade


34


at a small (one to three) degree angle, in effect pinching the blade against the seal


88


along a line contact, thereby causing a small but desirable curvature of the blade


34


across its width in the clamped condition as shown in FIG.


9


. This effectively eliminates the well-known tendency of a thin strip of doctor blade to ripple or wrinkle when clamped flat. Although ink unit bodies


60


sometimes provide a blade lifting ridge to provide curvature, the ridge was subject to damage and required a wider blade and larger ink unit dimensions to work.




Each clamp


70


comprises a toggle subassembly


72


mounted by a bracket


62


to the body


60


and a plunger


74


movably coupled to the body


60


and clamping bar


80


on the toggle subassembly


72


. Plunger


74


is preferably subassembly itself.

FIG. 7

shows details of a preferred plunger


74


subassembly. A main plunger body


76


has one end which is received in the toggle subassembly


72


and an opposite, head or working end, which is capped. The plunger body


76


is preferably externally threaded to removably receive an internally threaded cap


77


. Cap


77


captures a second, smaller plunger


78


and preferably one or more spring members


79


such as Belleville washers. The washers


79


are located to permit adjustment of the plunger length and at least resilient if not elastic compression of the plunger


74


. A sufficient number of Belleville washers or other spring element(s)


79


are used to provide the desired travel of the smaller plunger


78


. The desired travel is that which permits the toggle subassemblies


72


to be moved from the open/blade change position shown in

FIGS. 3 and 5

to the over-center, clamped position shown in

FIGS. 4 and 6

while maintaining pressure against the clamping bar


80


in the clamped position shown in

FIGS. 4

,


6


and


9


. The plunger


74


is pressed against the clamping bar on a side of the bar pivot axis (defined by the T bars), which is opposite the one longitudinal edge of the clamping bar


80


located against the blade


34


or


36


so as to pivot that edge of the bar


80


against the proximal side of the wall


60




a


or


60




b


to secure the roll blade


34


or


36


there between. The body


76


of the plunger subassembly


70


can be threaded into a sleeve


72




d,


in the toggle subassembly


72


to adjustably receive the plunger


74


and further provide position/height adjustment of the plunger


74


with respect to the toggle subassembly


72


and adjoining wall


60




a,




60


. Referring to

FIG. 4

, toggle subassembly


72


typically flier includes a base


72




a


and a toggle handle


72




b


pivotally mounted to the base


72




a


on a link


72




c


and pivotally coupled to the sleeve


72




d


with the link


72




c.






The compressible plunger


70


provides several advantages. It effectively eliminates the need to manually adjust plunger length as the clamping bar and the toggle clamp bearing surfaces and pins undergo normal wear, effectively preventing a loose clamp or jammed-clamp situation. It also avoids exposed mechanical or elastomeric spring elements subject to liquid and/or dried ink damage and contamination, resulting in loss of spring action or mechanical failure of an elastomer spring due to ink solvents. It further provides appropriate compression spring rate and spring alignment in the available space envelope.




It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.



Claims
  • 1. A flexographic printer ink unit comprising:an elongated body having an elongated ink chamber recessed into one side of the body, the chamber being defined in part by one elongated wall of the body; an elongated roll blade on the one elongated wall; an elongated clamping bar coupled with the body to rotate about a first pivot axis, one longitudinal edge of the clamping bar holding the roll blade against a proximal edge of the elongated wall to form an edge of the ink chamber; and a plunger movably coupled with the body and pressed against the clamping bar on a side of the one pivot axis opposite the one longitudinal edge so as to pivot the one longitudinal edge of the clamping bar against the proximal edge of the wall to secure the roll blade there between.
  • 2. The flexographic printer ink unit of claim 1 wherein the first pivot axis is adjustably spaced from the one elongated wall of the body.
  • 3. The flexographic printer ink unit of claim 1 wherein the plunger is adjustable in length.
  • 4. The flexographic printer ink unit of claim 1 wherein the plunger is at least resiliently compressible.
  • 5. The flexographic printer ink unit of claim 4 wherein the plunger is part of a toggle clamp assembly fixed to the elongated body.
  • 6. The flexographic printer ink unit of claim 5 wherein the toggle clamp assembly includes a sleeve adjustably receiving the plunger to adjust a position of the plunger with respect to the elongated body.
  • 7. The flexographic printer ink unit of claim 1 wherein the plunger is adjustable in length, at least resiliently compressible, and part of a toggle clamp assembly fixed to the elongated body.
  • 8. The flexographic printer ink unit of claim 1 further comprising a plurality of T bars each having a generally T shape with a stem fixed to one of the elongated body and the clamping bar and a cross member pivotally engaged with a remaining one of the elongated body and the clamping bar so as to pivotally support the clamping bar with respect to the elongated body.
  • 9. The flexographic printer ink unit of claim 8 wherein the first pivot axis is defined by the plurality of T bars, cross members of the T bars being arranged in a single line defining the first pivot axis.
  • 10. The flexographic printer ink unit of claim 9 wherein the T bars are adjustably secured to the elongated wall so that spacing of the first pivot axis from the elongated wall can be varied.
  • 11. The flexographic printer ink unit of claim 10 wherein the plunger is adjustable in length.
  • 12. The flexographic printer ink unit of claim 11 wherein the plunger is at least resiliently compressible.
  • 13. The flexographic printer ink unit of claim 12 wherein the plunger is part of a toggle clamp assembly fixed to the elongated body.
  • 14. The flexographic printer ink unit of claim 1 further comprising:a second elongated wall of the body located opposite the one elongated wall and defining part of the ink chamber; a second elongated roll blade on the second wall; a second elongated clamping bar coupled with the body to pivot about a second axis parallel to the one pivot axis, one longitudinal edge of the second clamping bar holding the second roll blade against a proximal side of the second elongated wall to form a second edge of the chamber, and a second plunger movably coupled with the body and pressed against the second clamping bar on a side of the second axis opposite the one longitudinal edge of the second clamping bar so as to pivot the one longitudinal edge of the second clamping bar against the proximal edge of the second elongated wall to secure the second roll blade there between.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of Provisional U.S. Patent Application No. 60/103,369 filed Oct. 7, 1998 and incorporated by reference herein.

US Referenced Citations (3)
Number Name Date Kind
3783781 Grommek Jan 1974
5406887 Hertel et al. Apr 1995
6089159 Gorter Jul 2000
Provisional Applications (1)
Number Date Country
60/103369 Oct 1998 US