The present invention relates to a chambering device for an automatic firearm according to the preamble of claim 1.
The invention also relates to an automatic firearm equipped with such a chambering device.
In this document, position terms such as “up,” “down,” “front,” and “rear,” etc. relate to an automatic firearm in which the bore axis is horizontal, and rounds are fired toward the front, away from the shooter.
A chambering device chambers rounds in an automatic firearm, using a loading lever to ready it for firing. The functional sequence in firing and automatically reloading an automatic firearm can be broken down as follows:
There is a breechblock assembly in the receiver that can move longitudinally therein for firing shots, extracting a spent cartridge shell, and reloading. For firing a shot, the breechblock assembly, in particular the breechblock head, guides the uppermost cartridge from the magazine into a chamber in the barrel in the known manner. When a trigger mechanism is actuated, a firing pin strikes the base of the cartridge and ignites a charge, such that a projectile is shot out of the cartridge shell through the barrel. When the projectile passes through the barrel, the propellant in a gas operated chambering device released during the firing process is diverted into a gas discharge. The diverted propellant is used in the known manner to return the breechblock assembly. The propellant drives the breechblock assembly back toward the stock at a high speed via the discharge and a gas piston rod coupled thereto.
There is an extractor on the breechblock head that grips the edge of the cartridge at the base, and pulls it out of the chamber as the breechblock assembly returns. An ejector then pushes the shell out of the receiver in the known manner, through a cartridge ejection window. As the breechblock assembly returns, it slides over the magazine toward the stock. As it subsequently moves forward, the breechblock head again pulls the uppermost cartridge from the magazine, and places it in the chamber, and the cycle is repeated. Alternatively, a recoil loading mechanism can be used in the known manner for this cycle.
For chambering a round, the upper surfaces of the magazine rear wall and front wall each have a recess extending to a certain length on their upper ends. The side walls of a magazine are extended upward, and form so-called magazine lips, which prevent cartridges from falling out of the magazine. A spring in the magazine forces the cartridge feed upward in the magazine housing, thus pushing the cartridges upward to the magazine lips.
With so-called open breechblock automatic firearms, the breechblock (breechblock carrier and breechblock head) are in a forward position prior to firing, i.e. the breechblock head is locked in place in the chamber. When a first or new magazine is inserted in the automatic firearm, the chambering of rounds described above is then carried out.
With a so-called closed breechblock, the breechblock can be brought to a rear position by means of the loading lever, where it is held in place by the triggering mechanism.
Known chambering devices are often attached to the breechblock, and the breechblock can be moved backward, thus toward the stock, by means of the loading lever, such that the breechblock is moved backward over the magazine, counter to the force of the recoil spring. As the breechblock subsequently moves forward, the breechblock head takes the uppermost cartridge from a magazine and pushes it forward into the chamber.
A chambering device lever permanently coupled to the breechblock is provided, by way of example, in the known G36 by the applicant, as well as in the known SA 80. Such a loading lever is also known as a conjoint movement loading lever, because it moves back and forth along with the breechblock carrier that it is coupled to. When the loading lever protrudes from the firearm, it can injure the shooter. When the protruding lever collides with an obstruction, this can obstruct chambering. Such a fixed assembly on the breechblock is known presently in both military as well as civilian automatic firearms.
Non-conjoint movement chambering devices are also known from the AR15 variations, e.g. the HK 416/417 by the same applicant. It is also known that the loading lever can be mounted on and removed from the chambering device without tools.
Chambering devices had already been developed before the First World War, in which the chambering device was decoupled from the breechblock after chambering a round. Because of this decoupling, it was disadvantageously impossible to close the breechblock with the loading lever if it did not close properly.
In general, a number of different types of chambering devices are known for automatic firearms, which may also contain a loading lever, which is located on either the right or left side of the firearm.
By way of example, a non-conjoint movement slide, which is attached to one side of the firearm, and can only be operated from one side, is known from DE 101 22 345 C1 by the same applicant, in particular for the M64, by means of which the breechblock is tensioned in place by a closing spring. There is an oblong slot in the receiver with a clamping track, in which the slide is guided and can be secured in place.
A chambering device, e.g. for the HK416 is also known from DE 10 2006 006 034 B3 by the same applicant, in which the loading lever can be operated ambidextrously via two handles. Actuation of one of the handles automatically releases the safety for the second handle, in order to chamber rounds.
A chambering device for an automatic handgun, in particular the known G36, with a pivoting and latching chambering device is also known from EP 0 489 024 B1 by the same applicant. This is mounted directly, or via an intermediate component, on the breechblock, and can be pivoted away from the receiver on both sides of the longitudinal axis of the breechblock.
Restrictions for military weapons have increased, e.g. regarding ambient temperature, weapon temperature, contaminants, sustained firing, etc. As a result, in certain circumstances, a cartridge may not be fully chambered, or some other loading obstruction may arise. If there is a loading obstruction, the breechblock system may not be able to be closed properly without additional manipulation, such that the shooter may be at risk of injury. Although these obstructions are extremely rare, a military weapon should be as free of obstructions as possible. With such a chambering device, the breechblock can often be operated manually, thus eliminating any chambering obstructions.
A chambering device with a non-conjoint movement loading lever is known from U.S. Pat. No. 7,798,045 B1, wherein the loading lever is provided with handles projecting from the left and right sides. This cannot be disassembled without tools, and also cannot be operated ambidextrously. The chambering device comprises a slide with a hook on the end facing the breechblock carrier, which engages in a corresponding recess on the breechblock carrier, in order to guide it forward, toward the chamber, functioning as a closing aid.
Chambering devices are known from U.S. Pat. No. 9,109,848 B2, 8,156,854 B2 and 8,561,517 B2, requiring tools for mounting it on either the left or right side. The automatic firearms disclosed therein comprise a receiver and a hand guard attached thereto, wherein the chambering device is incorporated in the hand guard. The loading lever can be pivoted between a standby position and an actuation position, wherein it engages with a hole in the gas piston rod when in the actuation position as well as when functioning as a closing aid. The chambering device thus does not act directly on the breechblock carrier. In an alternative design, the chambering device is provided with actuation handles on both sides.
U.S. Pat. No. 8,307,747 B2 discloses another non-conjoint movement chambering device with a chambering slide that has a spring loaded catch-lug that engages with the breechblock carrier. The chambering device lever extends rigidly from the side of the firearm. In its function as a closing aid, the catch-lug engages in the breechblock carrier and pushes it forward. U.S. Pat. No. 8,539,871 B1 discloses a similar chambering device.
FR 1,349,766 and the parallel German patent DE 1 208 221 disclose a chambering device with a non-conjoint movement loading slide, which can be coupled directly to the breechblock carrier via a locking pin. The chambering device is located on top of the firearm, comprises a spring loaded central slide handle, that acts either in a purely spring loaded manner via a threaded connection or via a pivoting lever on a locking element, and moves it from a standby position to its operating position, in which the slide can be coupled directly to the breechblock carrier. This chambering device cannot be switched between right-hand and left-hand operation without tools.
Furthermore, DE 199 03 321 A1 and the parallel US 2002/0046642 by the same applicant disclose a chambering device for a handgun. The loading lever can be switched without tools, is mounted directly in the breechblock, and is thus configured for conjoint movement. The loading lever cannot pivot, and therefore extends laterally from the firearm.
EP 0 207 058 B1 discloses a non-conjoint movement, one-sided chambering device with a loading lever that cannot be switched, and can be pivoted laterally. When chambering rounds, the loading lever acts on the end of a longitudinal rod in the breechblock via a slider. When functioning as a closing aid, the loading lever likewise engages with the longitudinal rod via the slider.
Lastly, U.S. Pat. No. 3,686,998 discloses a pivotal loading lever, which does not move conjointly while chambering a round. A slider acts directly on the breechblock. When used as a closing aid, the pivotal loading lever latches onto a loading lever extension via an oblong hole on its axle and a hook provided thereon. It cannot be disassembled without tools.
With this background, the object of the invention is to create an alternative, structurally simple and functionally reliable chambering device for chambering rounds in an automatic firearm.
This object is achieved by the respective subject matter of the independent claims 1 and 19.
The chambering device for an automatic firearm specified in the introduction is also distinguished in that the loading lever handle can be pivoted from a standby position to an actuation position and back in the loading lever retainer, and the loading lever retainer can be mounted in and removed from the loading lever housing without tools, on either the left or right side.
The automatic firearm according to claim 19 is characterized in that it is equipped with such a chambering device.
The loading lever retainer can be selectively mounted in and removed from the loading lever housing on the left or right side. In particular because it can be mounted and removed without tools, an ambidextrous chambering device can be obtained with structurally simple means, which can be adapted to the ergonomics of the shooter, and thus to a left or right handed operator. The ambidextrousness is currently a frequently demanded criteria in official requirements.
Furthermore, the chambering device, in particular the loading lever can be positioned optimally in relation to the loading lever housing from an ergonomic perspective, such that the aiming of the automatic firearm can be easily maintained while chambering rounds, and the firearm can also be operated from a prone position without raising the body signature. Advantageously, the automatic firearm can also be loaded with the safety on, thus ensuring that the firearm will not be misfired.
In a structurally simple design, the loading lever handle can be pivoted over a bearing axle between a standby position and an actuation position in the chambering device. In a simple design, the loading lever axle can be in the form of a pin.
The loading lever handle can have a profiled surface, in order to improve its grip, in particular in difficult conditions and/or with gloves. The loading lever handle can also have a casing and/or profile elements on its entirety or in part. In particular a rubber casing improves the feel. Such a casing material can also be provided as a buffering material.
The loading lever handle is preferably tensioned in its standby position on the chambering device.
In a technologically or structurally simple design, it is tensioned in place by an elastic element, e.g. a spring element.
During the chambering process of the automatic firearm, preferably only one bearing surface of the chambering device and/or one end surface of the loading lever housing is releasably connected to the breechblock.
The breechblock can be moved backward toward the stock during the chambering via the bearing surface or end surface of the loading lever housing. Advantageously, this is only a form-fitting connection, and supplementary coupling elements needed with the prior art can be eliminated. It is also ensured that the breechblock and the loading lever retainer or loading lever housing, and thus the entire chambering device, are only releasably connected during the chambering process, and not while firing.
It is therefore preferred that while firing the automatic firearm, the chambering device is entirely separated from the breechblock.
Advantageously, the loading lever is thus secured in place while firing. As a result, the safety of the shooter is increased, in particular in stressful situations. At the same time, the shooter is free to assume any shooting position. Such a loading lever is referred to as a non-conjoint movement loading lever. In comparison with a conjoint movement loading lever, e.g. in the known G36 by the same applicant, or the known SA 80, it is possible to avoid injury to the shooter due to the conjoint movement loading lever.
Because the chambering device is entirely separated from the breechblock carrier, it can also be guided separately and locked in place in the receiver.
At least one retaining element is also provided on the loading lever, which latches to or on a counter-retaining element on the receiver, such that the loading lever can be secured to the counter-retaining element.
In a structurally simple design, the retaining element can be, e.g., a retaining lug on the loading lever, in particular the inner surface thereof, facing the receiver.
The retaining element is preferably provided on the loading lever handle, and engages with a complementary counter-retaining element in the receiver, e.g. another retaining lug. Because the loading lever, or its loading lever handle is tensioned in its standby position, it preferably bears on the receiver in this position, wherein its retaining lug engages with the counter-retaining element on the receiver. It can advantageously be ensured in this manner that the chambering device is secured to the receiver during the movement of the breechblock, in particular when firing, thus not moving conjointly. The loading lever bears laterally on the receiver when in the standby position.
The loading lever housing can be solid. Preferably at least one hole passes through it longitudinally, provided in particular for receiving a gas piston rod.
There can also be other holes, in particular for reducing the weight of the loading lever housing. The longitudinal hole for the gas piston rod is basically complementary to the dimensions of the gas piston rod.
The chambering device can preferably be secured in place on the automatic firearm, in particular on the gas piston rod, for manually supported chambering of a round.
After it has been secured to the gas piston rod, the chambering device can be moved forward via the loading lever, toward the chamber, by means of which the breechblock coupled to the gas piston rod is automatically moved forward toward the chamber.
This function serves as an integrated closing aid, in particular for manually supported chambering of a round. Because the chambering device is separated from the breechblock, a connection or coupling is needed for this manual closing function.
The closing aid function eliminates disruptions, e.g. loading disruptions, or for closing the breechblock quietly.
In the actuation position, the loading lever handle can be spring loaded toward the receiver.
The securing of the chambering device on the gas piston rod can take place via appropriate coupling measures.
The chambering device preferably comprises an engagement element that engages in a hole in the gas piston rod, wherein the engagement element can be switched between an engaged position and a released position.
When the loading lever handle is in the actuation position, it can be spring loaded toward the receiver. In a simple design, the engagement element can be a spring loaded locking pin, for example, the outer dimensions of which are basically complementary to the hole in the gas piston rod, such that it passes through the loading lever housing, or the slide, thus securing or retaining the chambering device on the gas piston rod.
The engagement element is preferably tensioned in its released position via an elastic element provided for this.
The elastic element can be an appropriate elastic agent, in particular a spring.
The loading lever is in its outward pivoted position when in the engaged position, thus the actuation position, in which it is folded upward, transverse to the direction of firing. The loading lever can be secured in this position via the engaged position.
If the breechblock is released from its rear position when the loading lever is pivoted outward and secured in place in its engaged position, a front stop on the loading lever housing can strike a fixed stop in the receiver. In this manner, it is ensured that the loading lever is automatically folded down, and again engages with the counter-retaining element on the receiver, after it has been pivoted into its standby position, in which it extends parallel to the receiver.
The loading lever handle can preferably also be slid and/or pivoted into its engaged position only when it is in the actuation position in the loading lever retainer.
In this manner, it is ensured that no unintentional connection to the gas piston rod will take place.
The loading lever handle is preferably hinged at its end facing the chambering device such that it can pivot about a bearing axle in the loading lever retainer between its standby position and its actuation position, and comprises an oblong hole for this, which encompasses the bearing axle, and extends basically transverse to the longitudinal direction of the chambering device when in the actuation position.
In this manner, it is ensured that the bearing axle is guided in the oblong hole.
The oblong hole is basically parallel to the receiver in the standby position, and is at basically 90° to the direction of firing when in its actuation position.
The loading lever handle can preferably pivot about the end of the oblong hole facing the loading lever housing when pivoted between its standby position and its actuation position, and can be displaced in the oblong hole when the loading lever handle is brought into its engaged position such that the bearing axle bears on the end of the oblong hole away from the loading lever housing.
This can be achieved with structurally simple means, and ensures that the overall loading lever handle can be inserted in the defined position, basically over the entire length of the oblong hole in the loading lever retainer, and thus displacing the loading lever handle over a defined distance.
The loading lever handle preferably comprises a locking lug on its end facing the loading lever housing, that engages with the engagement element in the standby position. The locking lug is disengaged from the engagement element when the loading lever handle is pivoted into the actuation position, and pivots and/or slides the engagement element toward the loading lever housing.
The end of the loading lever handle facing the loading lever housing can be rounded, for example, and have a latching recess that engages with the engagement element when in the standby position. For this, the engagement element can be a locking pin or bolt, for example, in a structurally simple design. The latching position prevents unintentional operation when in the standby position.
When in the form of a locking pin or bolt, the undersurface of the pin can have an angled wedge surface, which interacts with the end of the loading lever handle such that when it is pivoted it engages with the wedge surface and pivots or slides the locking pin or bolt toward the gas piston rod. When in the actuation position, which is also combined with the engaged position, the locking pin is then pushed or slid against the gas piston rod such that it engages with the recess provided therein.
The loading lever housing preferably has at least one receiver bearing on each side for receiving and coupling the loading lever retainer.
As a result, a precisely reproducible, defined working position of the loading lever retainer with the loading lever handle coupled to it can be established with structurally simple means. The loading lever retainer can be placed in the receiver bearing from the side. Alternatively, the loading lever retainer can also be inserted into the corresponding guide section in the loading lever housing from the rear or from the front, depending on where the receiver bearing is located on the loading lever housing.
The loading lever retainer can preferably be latched onto the loading lever housing, in particular onto the receiver bearing.
In a structurally simple design, a spring loaded pin or bolt can be provided for this. In this manner, it is possible to securely latch the loading lever retainer in place with structurally simple means.
The loading lever retainer preferably has a spring loaded disassembly element, the actuation of which to a disassembly position disengages the loading lever retainer from the loading lever housing.
By way of example, the disassembly element can be a disassembly slider, the actuation or pulling of which away from the loading lever retainer, preferably counter to the force of a spring, disengages the loading lever retainer from the loading lever housing.
The loading lever housing preferably comprises at least one guide section on each side that engages with and is guided in complementary guide rails in the receiver.
Particularly preferably there are at least two guide sections on each side, which enable a two-point guidance of the loading lever housing. By way of example, the guide sections can be grooves formed in the loading lever housing, and exhibit inner dimensions that are basically complementary to the guide rails.
There is preferably a stop element with a buffer element on the loading lever housing, which strikes a fixed stop in the receiver. When the breechblock moves forward, the loading lever housing strikes the fixed stop in the receiver.
The buffer element reduces the impact forces and can be made of a suitable buffering material.
Preferably, guide rails extend in the interior of the receiver on both sides, in the longitudinal direction of the receiver, for guiding the breechblock carrier via at least two guide sections provided on both sides of the breechblock carrier, and for guiding the loading lever housing via the at least one guide section formed on each side.
The guide rails can be formed as an integral part of the receiver in the production thereof, e.g. through aluminum extrusion. They can also be subsequently placed in the receiver.
There is preferably a hole on at least one side of the receiver, through which the loading lever retainer coupled to the loading lever handle can be placed in or removed from the loading lever housing for assembly or disassembly, respectively, and is guided therein while chambering rounds.
Recesses forming guide slots are particularly preferably provided on both sides in the receiver. These can be formed with structurally simple means, and also serve to receive the loading lever retainer and the loading lever handle. They can also be used for guiding the loading lever handle inside the receiver with a complementary formation of guide sections on the loading lever retainer. The mounting of the loading lever takes place, e.g. through a window in the receiver, or through the receiving thereof in a T-groove in the loading lever housing, for example. There is preferably at least one counter-retaining element on the receiver, to which the loading lever can be secured during the breechblock movement.
In another design, the counter-retaining element can be formed by retaining lugs on the receiver, which are complementary to the retaining elements on the loading lever handle.
Exemplary embodiments of the invention are explained in greater detail below with reference to the attached schematic drawings.
Therein:
The construction and the functioning of the chambering device according to the invention shall be explained below with reference to the figures.
The reference symbols are not all included in all of the figures, for purposes of clarity. The same reference symbols, however, apply to all of the figures.
The chambering device 1 according to the invention substantially comprises the following components: a loading lever 13, 13′, composed of a loading lever handle 15 and a loading lever retainer 17, and which can be coupled to a slide or a loading lever housing 59, 59′, which is inserted into the receiver 3.
The HK433 is a so-called indirect gas operated loader with a short stroke gas piston system and a rotating lugged loading lever. The short stroke gas piston transfers an impulse to the breechblock carrier via a piston rod after a round has been fired. A short stroke gas piston is distinguished by a short movement path, which is sufficient for transferring a corresponding drive impulse to the piston rod, or the breechblock assembly. The short stroke gas piston is not permanently connected to a piston rod of the breechblock assembly. The breechblock comprises a breechblock carrier 119 and a breechblock head 172. The breechblock carrier 119 can move longitudinally in the known manner in the receiver 3 or the upper part thereof.
When in this position, a magazine (not shown) can be inserted into the automatic firearm from below in the known manner.
The chambering device 1 can be operated to then insert a cartridge (not shown) into the chamber 155, thus to ready the automatic firearm for firing. For this, a shooter grips the loading lever handle 15 of the loading lever and folds it back and away from the automatic firearm, such that it projects laterally away from the upper part of the receiver 3 at basically a 90° angle in its actuation position (cf.
The chambering device 1 can then be moved backward toward the stock (not shown) via the loading lever handle 15, wherein the loading lever handle 15 pushes against the slide or loading lever housing 59, 59′ bearing on the front surface of the breechblock carrier 119, and thus guides the slide or loading lever housing 59, 59′ and thus the breechblock carrier 119 counter the pressure of the closing spring 161 (cf.
The breechblock carrier 119 and the chambering device 1 guiding it are in their rearmost position in
If there is a loading obstruction, or an automatic closing of the breechblock system or breechblock carrier 119 is not possible, a shooter can also secure the loading lever handle 15 inside the loading lever retainer 17 and in the gas piston rod 111 via a closing aid pin 125 (cr.
The chambering described above shall now be described in detail with reference to all of the figures.
There are receivers 11 on the undersurface 9 of the upper part of the receiver 3, for attaching the stock and hand guard in the known manner. Longitudinal guide slots 7 are provided on both sides of the upper part of the receiver 3, in which the chambering device 1 or its loading lever 13, 13′ can be moved. The loading lever 13, 13′ comprises the loading lever handle 15 and the loading lever retainer 17, the details of which are enlarged in
The loading lever 13 is in its standby position in
The inner end 20 of the loading lever handle 15 is pivotably supported in the loading lever retainer (cf.
Because the loading lever 13 (13′) bears laterally flush against the receiver 3 when it is in its standby position, and is latched in place there, it is also referred to as a non-conjoint movement loading lever 13 (13′). Because it does not move with the breechblock, the loading lever 13 (13′) remains in its latched standby position while firing the firearm (cf.
The outer surface facing away from the receiver 3 comprises two slanted surfaces 25 extending longitudinally, basically in the shape of a wedge. These are also beveled via wedge-shaped surfaces 27 toward the outer end 19 of the loading lever handle 15, toward the front and downward. At the front end, the outer end 19 of the loading lever handle 15 transitions to a basically semicircular cross section, via a rounded undersurface 29 at the inside 22.
The inner end 20 of the loading lever handle is located inside a slot 39 in the loading lever retainer 17 such that it can pivot about a loading lever axle 31. For this, an oblong hole 33 (cf.
A disassembly slider 43 adjoins the stop inside the outer contour or upper surface 37 of the loading lever retainer 17, which can be slid outward, transverse to the longitudinal direction of the loading lever retainer, thus away from the upper part of the receiver 3. The upper and lower surfaces of the disassembly slider 43 have a profiled structure 44, to improve the grip, in particular if it is dirty or the shooter is wearing gloves.
The disassembly slider 43 can be slid out of the outer surface 37 of the loading lever retainer 17 for disassembling the loading lever 13, 13′, counter to the force of a disassembly slider spring 45 (cf. 4c, 5c and 6c, etc.). The disassembly slider 43 is coupled on the inside to a locking pin 51 via a bearing pin 123 (cf.
The functioning of the locking pin 51 and the disassembly slider 43 shall be explained below. There is a circumferential recess 47 in the upper surface 41 of the loading lever retainer 17, running toward the undersurface thereof 50, which enables a latching of the loading lever retainer 17 in the slide 59 (59′) (cf.
The dimensions of the retaining lugs 49 fit to their complementary retaining lugs 85 in the bearing 83 over the loading lever retainer 17 (cf.
In this position, the retaining lugs 49 are offset toward the back of the retaining lugs 85, and are thus behind them. The locking pin 51 is located opposite a bore hole 87 in the slide or loading lever housing 59, 59′ (cf.
In contrast to the first embodiment according to
The loading lever housing 59′ comprises a bearing 99 with a rail-like, raised guide slot 103, parallel to the continuous retention ridge 57. The loading lever 13′ is thus inserted with its retention ridge 57 into the guide slot 103, and is held in place there. For disassembly, as with the first embodiment, the disassembly slider 43 is pulled out of the loading lever retainer 17, counter to the spring force of the disassembly slider spring 45, and the loading lever retainer 17 with its retention ridge 57 can be removed toward the rear from the bearing 99 for the loading lever retainer 17. For the assembly, it is sufficient to simply insert the loading lever retainer 17 with its retention ridge 57 up to the stop in the bearing 99 for the loading lever retainer 17 and it is latched in place in the guide slot 103. The spring loaded locking pin 51 slides over its bevel 52 into and over the inner contour of the bearing 99 for the loading lever retainer 17, and enters the complementary bore 87. The loading lever retainer 17 is entirely secured and latched in place in this position.
The slide or loading lever housing 59 shown in
A front loading lever housing guide 73 and a rear loading lever housing guide 75 are provided on each side of the loading lever housing 59. Both loading lever housing guides comprise upper guide sections 77 and lower guide sections 79, which engage with guide rails 175 on the inner surface of the upper part of the receiver (cf.
The front and rear loading lever housing guides 73 and 75 collectively form a type of two-point guide, in order to reduce the overall friction of the loading lever housing 49 with respect to the guide rails 175 in the receiver 3.
The bearings 84 for the loading lever retainer 17 extend along both longitudinal sides of the loading lever housing 59, basically adjoining the front loading lever housing guides 73. In the first exemplary embodiment shown here, there are retaining lugs 85 formed on the upper surface and lower surface of the outer contour of the bearing 83. As explained above, the loading lever retainer 17 is placed from the outside thereon, with its complementary retaining lugs 49 between the retaining lugs 85 in the bearing 83, and inserted therein, and then pushed toward the rear under the retaining lugs 85 in the bearing 83, until the retaining lugs 49 latch behind the retaining lugs 85, and the locking pin 51 is located opposite the locking pin bore hole 87 in the loading lever housing 59, and can enter this hole.
There is another through hole 89, basically in the middle of the bearing 83, in which a closing aid pin 125 can be inserted. This can be seen in particular in
The upper lateral surfaces 91 of the loading lever housing 59 are slightly beveled where they are adjacent to the bearing 83, and the undersurfaces of the loading lever housing 59 are likewise cut out in order to reduce weight. There are further cutouts 93 in the longitudinal direction of the loading lever housing 59 on the interior, for further weight reduction. A receiver 95 for the gas piston rod 111 passes longitudinally through the middle of the entire loading lever housing 59. The undersurface of the loading lever housing 59 is rounded in the front and rear loading lever housing guides 73, 75, as is also the case for the section 98 connecting the two sections 73, 75, which extends longitudinally. This improves the guidance of the loading lever housing 59 and the gas piston rod 111.
There is a buffer bearing 104 on the upper surface of the loading lever housing 59′, in the proximity of the front loading lever housing guide 73, which can engage with a rubber buffer 106 (cf.
There are bearings 99 for the loading lever retainer 17 in
The loading lever 13′ is secured in
The loading lever housing 59′ is slid onto the gas piston rod 111 over the front end 115 thereof, and it passes through the loading lever housing 59′, such that it can move longitudinally therein. The rear end 113 of the gas piston rod 111 (cf.
The loading lever handle 15 is folded away from the loading lever housing 59′, toward the back, into its actuation position, in
The closing aid pin 125 is also shown in
In the standby position of the loading lever 13 shown in
When the loading lever handle 15 is pivoted out of its standby position shown in
When the loading lever handle 15 is pivoted, the inner end 20 of the loading lever handle 15 rotates about the bearing axle 31. In doing so, the wedge shaped end 131 of the closing aid pin 125 moves in relation to the locking latch 34, such that when the rounded inner end 20 of the loading lever handle 15 strikes the wedge surface 131, the closing aid pin 125 is slid in the loading lever retainer 17 toward the gas piston rod 111. As can be seen in
The loading lever handle 15 is in its closing aid position in
In this secured closing aid position, the loading lever handle 15 and thus the chambering device 1 can be moved toward the muzzle of the firearm, wherein, because the closing aid pin 125 is secured in the recess 127, the entire loading lever 13 is secured to the gas piston rod 111. Because the gas piston rod 111 is engaged with the breechblock carrier 119, as described above, the gas piston rod 111, the loading lever 13, and the breechblock carrier 119 can be moved forward, in order to bring the breechblock carrier 119 forward, from a not fully closed position to its closed position (cf.
While chambering rounds, the loading lever 13/13′ can be moved back to its actuation position as well as its closing aid position. In practice, the closing aid pin 125 is not locked in place for chambering rounds. When it is locked in place, however, the loading lever handle 15 of the loading lever 13/13′ is automatically pivoted to its starting position when the breechblock carrier and the loading lever housing 59′ such that a part of the firearm does not protrude or extend outward unintentionally, possibly injuring the shooter while firing the firearm.
The loading lever handle 15 and the closing aid pin 125 are automatically disengaged from the closing aid position when the loading lever handle 15 is released from its rearmost position (cf.
With the loading lever housing 59 of the first embodiment, the locking pin 51 is automatically pushed in, counter to the force of the spring 137, when the loading lever housing 59 is pushed into the bearing 83, and is likewise automatically retained in the bore hole 87 when the loading lever housing 59 strikes the rearmost part of the bearing 83. The disassembly slider 43 needs only to be actuated when the loading lever housing 59 is to be removed.
With the loading lever housing 59′ in the second embodiment, the locking pin 51 has a bevel 52 at its latching end (cf.
Furthermore, the receiver bearing 36 for the loading lever handle leg of the leg spring that pivots the loading lever handle 15 into the folded-in starting or standby position is shown in the cutting plane I-I depicted in
In the side view in
The barrel 143 comprises a flash suppressor 145 at its front end in each case. A gas discharge 147 is attached to the upper surface of the barrel in the known manner, and supported on the barrel 143 via a locking pin or retaining pin 149. The barrel 143 is reinforced in a section 151 in the region of the gas discharge 147. The barrel transitions toward the back into a chamber 155, into which a cartridge (not shown) is inserted in the known manner via the breechblock head 172.
Two receivers 11 for attaching a grip stock and a hand guard (not shown) are shown in each case on the undersurface of the upper part of the receiver 3.
There is a further receiver 153 at the rear end of the upper part of the receiver 3 for a rear locking pin for a grip stock and breech ring (not shown). The known Picatinny rail 5 is located on the upper surface of the upper part of the receiver 3. The side walls of the upper part of the receiver 3 have guide slots 7 for an ambidextrous attachment of the loading lever 13 with its loading lever handle 15 and loading lever receiver 17. The loading lever handle 15 is secured with its loading lever latch to a counter-retaining element 24 on the receiver in its standby position shown in
The chambering device 1 (and thus the loading lever 13) is in its foremost position when in the standby position, in which the buffer 16 on the loading lever housing 59′ bears on the fixed stop 109 in the inner surface of the upper part of the receiver 3.
A firing pin safety 159 is located at the rear lower end of the breechblock carrier 119. The upper rear end of the breechblock carrier 119 borders on a closing spring 161, which encompasses a closing spring guide tube 163.
Upon firing a round, the breechblock carrier 119 is pushed backward by propellant diverted by the gas discharge 147 acting on the front end of the gas piston rod 111, toward the stock, and decoupled from the loading lever 13 and the loading lever housing 59, 59′. Because the loading lever housing 59, 59′ is secured at its starting position on the receiver 3, it does not move therewith. In the rearmost position of the breechblock carrier 119 (cf.
At the rear end of the closing spring guide tube 163 and the closing spring 161 there is a breech ring 165 in the known manner, which has a retaining pin 167 for coupling to the upper surface of the receiver 3. A known removal handle 169 and a receiver 171 for a housing retaining pin are located on the undersurface of the breech ring 165.
In returning to
The chambering of rounds basically simulates a firing of the firearm, but is carried out manually. For this, the loading lever handle 15 is pivoted about 90 degrees to the back (cf.
When the loading lever handle 15 is pulled back, it pushes against the back surface of the loading lever housing 59 in the first embodiment, and against the bearing surface 121 on the front surface of the breechblock carrier 119 in the second embodiment. In this manner, it is possible to manually guide the breechblock carrier 119 together with the loading lever handle 15 and the loading lever retainer, as well as the loading lever housing 59′ toward the back inside the guide slot 7, counter to the force of the closing spring 161. The breechblock head 172 passes over a magazine (not shown) that is inserted into the automatic firearm in doing so.
If the chambering position or actuation position of the loading lever 13, 13′ shown in
The disassembly slider 43 is pushed out of the loading lever retainer 17 in
The locking of the loading lever retainer 17 is illustrated in
The breechblock guide rails 175 are formed in the receiver 3 on both sides in the middle, and extend to engage with guide grooves on both sides of the breechblock carrier guide 120 on the upper surface of the breechblock carrier 119, and with the front and rear loading lever housing guides 73 and 75, at a right angle toward the inside. The breechblock guide rails 175 are formed as an integral part of the monolithic receiver over the entire length of the receiver, during the extrusion or molding of the receiver 3. The breechblock guide rails 175 form a rail guide for the breechblock carrier 119 as well as for the loading lever housing, or slide 59, 59′.
Because of this loading lever housing guidance, the loading lever can be located relatively far back in the firearm, thus improving the ergonomic manipulation of the chambering device 1.
Further embodiments of the invention can be derived by the person skilled in the art from the following claims and the attached drawings.
Example methods, apparatus, systems, and articles of manufacture to Device for Chambering of Rounds in an Automatic Firearm, and an Automatic Firearm Equipped with the Same are disclosed herein. Further examples and combinations thereof include the following:
Example 1 includes a device for chambering rounds in an automatic firearm having a breech that can move longitudinally in a receiver, the device comprising a chambering lever including a charging handle coupled to a handle retainer, and a slide having a left side and a right side, the slide movable longitudinally in the receiver, wherein the charging handle is pivotable from a standby position to an actuation position relative to the handle retainer, and wherein the handle retainer can be mounted to the left side or the right side the slide and can be removed therefrom without tools.
Example 2 includes the device according to example 1, wherein the charging handle is pretensioned on the handle retainer when in the standby position.
Example 3 includes the device according to example 1 or 2, wherein when chambering a round in the automatic firearm, only one bearing surface of the handle retainer or one end surface of the slide is releasably connected to the breech.
Example 4 includes the device according to any of examples 1-3, wherein when firing the automatic firearm, the device is entirely separated from the breech.
Example 5 includes the device according to any of examples 1-4, wherein at the bolt includes a latching element that is configured to latch onto or with a counter-latch on the receiver, such that the bolt can be secured to the counter-latch.
Example 6 includes the device according to any of examples 1-5, wherein the slide includes at least one longitudinal hole to receive a gas piston rod.
Example 7 includes the device according to any of examples 1-6, wherein the device can be secured to the gas piston rod for loading a cartridge into a chamber.
Example 8 includes the device according to example 7, wherein the device has an engagement element that engages with at least one hole in the gas piston rod, wherein the engagement element can be moved between an engaged position and a released position.
Example 9 includes the device according to example 8, wherein the engagement element is pretensioned in its released position via an elastic element.
Example 10 includes the device according to example 8 or 9, wherein the charging handle can only be slid and/or pivoted into its engaged position when the handle retainer is in the actuation position.
Example 11 includes the device according to any of examples 1-10, wherein the charging handle is hinged at an end facing the slide such that the charging handle can pivot about a bearing axle in the handle retainer between the standby position and the actuation position, and the bold handle includes an elongated hole that encompasses the bearing axle and extends in a direction substantially transverse to the longitudinal direction of the device when the charging handle is in the actuation position.
Example 12 includes the device according to example 11, wherein the charging handle is pivotable about an end of the elongated hole facing the slide when pivoted between the standby position and the actuation position, and can be displaced when the charging handle is brought into the engaged position inside the elongated hole such that the bearing axle bears on an end of the elongated hole lying opposite the slide.
Example 13 includes the device according to example 12, wherein the charging handle includes a locking latch at an end facing the slide that engages with the engagement element when in the standby position, wherein the locking latch is disengaged from the engagement element when the charging handle is pivoted into the actuation position, and pivots and/or slides the engagement element toward the slide.
Example 14 includes the device according to any of examples 1-13, wherein the slide has a receiver bearing for receiving and coupling the handle retainer.
Example 15 includes the device according to any of examples 1-14, wherein the handle retainer can be locked in place on the slide in or on the receiver bearing.
Example 16 includes the device according to any of examples 1-15, wherein the handle retainer has a spring-loaded element, the actuation of which to a disassembly position unlatches the handle retainer from the slide.
Example 17 includes the device according to any of examples 1-16, wherein the slide comprises a guide section on each side thereof, in which complementary guide rails engage and are guided in the receiver.
Example 18 includes the device according to any of examples 1-17, wherein the slide includes a stop element with a buffer element that strikes a fixed stop in the receiver.
Example 19 includes an automatic firearm including a bolt action for chambering rounds and a breech that can move longitudinally in a receiver, the automatic firearm comprising a chambering lever including a charging handle coupled to a bolt retainer, and a slide having a left side and a right side, the slide movable longitudinally in the receiver, wherein the charging handle is pivotable from a standby position to an actuation position relative to the bolt retainer, and wherein the handle retainer can be mounted to the left side or the right side the slide and can be removed therefrom without tools.
Example 20 includes the automatic firearm according to example 19, wherein the receiver includes guide rails extending on both longitudinal sides of the receiver for guiding the breechblock carrier via guide sections on both sides of the breechblock carrier, and for guiding the slide via its guide sections formed on each side thereof.
Example 21 includes the automatic firearm according to example 19 or 20, wherein the receiver includes a hole on a side of the receiver, through which the handle retainer coupled to the charging handle can be placed in or removed from the slide for assembly or disassembly, respectively, and in which it is guided during the chambering procedure.
Example 22 includes the automatic firearm according to any of examples 19-21, wherein the receiver includes a counter-latch on the receiver, which can be secured in place on the bolt lever during the movement of the breech.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 001 984.6 | Mar 2018 | DE | national |