Not applicable.
The present invention relates generally to a system and method for chamfering a tenon or peg and, more particularly, to a system and method for accurately controlling a tenon or peg taper length using a portable chamfer tool.
Traditional portable chamfer tools are useful tools in woodworking applications because they enable a user to create a tenon or tapered peg using traditional hand drills rather than a floor standing lathe or similar stationary tool. However, typical tools require the user to rely on estimated tenon or taper lengths and do not provide a means to accurately assess the length of the tenon or taper without ceasing the cutting process and removing the workpiece from the chamfer tool. As a result, these portable chamfer tools have limited applications
For example, timber frame homes built using a traditional construction process are a popular home design option. Referring to
Referring now to
Therefore, it would be desirable to have a system and method for accurately controlling the length of a tenon or tapered peg during the cutting process. Furthermore, it would be desirable to have a system and method to taper a blunt end of a peg driven through a mortise-and-tenon joint.
The present invention overcomes the aforementioned drawbacks by providing a system and method for accurately controlling a tenon or peg taper length using a portable chamfer tool.
In accordance with one aspect of the invention, a portable chamfer tool is disclosed that includes a housing configured to support a blade to cut a tenon in a workpiece as the housing is rotated about the workpiece. The portable chamfer tool also includes a passage through the housing configured to receive the workpiece and expose the workpiece to at least one blade to form the tenon and at least one sighting hole disposed in the housing to expose a portion of the workpiece as it travels through the passage. The portable chamfer tool further includes a plurality of measuring markers disposed about the at least one sighting hole to indicate a measure of a length of the portion of the workpiece exposed by the at least one sighting hole.
In accordance with another aspect of the invention, a method of constructing a tenon and mortise joint is disclosed that includes positioning a precut tenon inside a precut mortise and aligning at least one precut peg hole in the tenon with at least one precut peg hole in the mortise. The method further includes driving a first end of a peg having a preformed taper thereabout into the at least one precut peg hole in the tenon and the at least one precut peg hole in the mortise by striking a second end of the peg having a consistent diameter. Furthermore, the method includes forming a taper on the second end of the peg using a portable chamfer tool once the peg is positioned through the at least one precut peg hole in the tenon and the at least one precut peg hole in the mortise.
In accordance with yet another aspect of the invention, a portable chamfer tool is disclosed that includes a first end configured to receive a workpiece for creating a tenon therein. The portable chamfer tool also includes a first portion configured to be rotated about the workpiece to cut the tenon from the workpiece and a second portion configured to receive the tenon as it passes from the first portion and provide a metered indication of a length of the tenon as it is formed by the first portion.
Various other features and advantages of the present invention will be made apparent from the following detailed description and the drawings.
a is an additional plan view of the portable chamfer tool of
b is side elevational view of the portable chamfer tool of
c is a perspective view of the portable chamfer tool of
d is a front elevational view of the portable chamfer tool of
a is a perspective view of an angled portable chamfer tool having a tenon/peg taper length sight and associated metering marks and showing a blade mounted in a blade receptacle;
b is a perspective view of the angled portable chamfer tool of
Referring generally to
Extending from the cutting passage 12 is a tenon passage 20. A plurality of sights 22 formed as cutouts or slots is disposed about the tenon passage 20 to allow a user to identify the length of the tenon during cutting. Encircling the exterior of the tenon passage 20 is a plurality of index grooves or measuring markers 24. Extending from an end of the tenon passage 20 opposite the cutting passage 12 is a hexagonal peg 26 configured to be engaged by a traditional hand drill (not shown).
In operation, a workpiece requiring a taper or a tenon is fed into the cutting passage 12. As the workpiece enters the cutting passage 12, the cutting blades 15 disposed in the cutting blade mounts 14 engage the workpiece. Accordingly, the workpiece is cut to form a taper extending from the original workpiece diameter to a diameter equal to the diameter 18 of the cutting passage 12.
Once cut, the workpiece passes from the cutting passage 12 into the tenon passage 20. As the workpiece extends into the tenon passage 20 it passes into operator view through the sights 22. Accordingly, by viewing the workpiece as it passes into the tenon passage 20, an operator can quickly estimate the length of the tenon formed on the workpiece. In the embodiments illustrated in
To allow the operator to immediately and accurately identify the actual length of the tenon during the cutting process, the operator needs to simply compare the extent of the tenon passing through the sights 22 to the measuring markers 24. As shown, the measuring markers 24 are positioned along the exterior of the tenon passage 20 to form a point of reference to which an operator can compare the workpiece extending through the sights 22 to immediately and accurately identify the actual length of the tenon during the cutting process.
While the measuring markers 24 are shown as a plurality of grooves evenly spaced along and completely encircling the exterior of the tenon passage, numerous variations may be made while still achieving the desired functionality. For example, instead of grooves, the measuring markers 24 may be painted on the exterior of the tenon passage 20 or other non-etched marks may be formed on the exterior of the chamfer tool 10. Furthermore, while it is preferable that measuring markers 24 completely encircle at least the tenon passage 20 so that the measuring markers 24 are continuously visible as the chamfer tool 10 rotates, it is contemplated that the measuring markers 24 may be reduced to encircle less than the whole of the tenon passage 20 while still providing the desired functionality. Additionally, while the measuring markers 24 are shown as being evenly spaced, it is contemplated that the measuring markers 24 may be advantageously unevenly spaced for some applications. For example, it is contemplated that the measuring markers 24 may be disposed at reducing intervals extending from the cutting passage 12 to the hexagonal peg 26. In this regard, the measuring markers 24 present the operator with a measurement that is less accurate when the workpiece enters the tenon passage 20 but becomes more accurate as the workpiece moves through the tenon passage 20. Also, it is contemplated that the measuring markers 24 may be accompanied with etched or painted measurement values indicating the length of the tenon created when the workpiece extends to a given measuring marker 24.
Additionally, it is contemplated that taper shape created by the chamfer tool 10 may be varied by adjusting a shape of the chamfer tool 10 and the position of the blades when secured therein. For example, as shown in
Furthermore, as shown in
Also, though the sights 22 are shown in
It is contemplated that the chamfer tool 10 may be used in a variety of applications. In particular, referring to
The present invention has been described in terms of the preferred embodiment, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention. Therefore, the invention should not be limited to a particular described embodiment.
This application claims the benefit of U.S. Provisional Patent Application No. 60/711,490 filed Aug. 26, 2005, and entitled “Chamfer Tool.”
Number | Date | Country | |
---|---|---|---|
60711490 | Aug 2005 | US |