The subject matter of this application is related to the subject matter in the following applications:
Field
This disclosure is generally related to distribution of digital content. More specifically, this disclosure is related to a system for facilitating synchronization via consensus by applying the Chandra-Toueg consensus algorithm in a content centric network.
Related Art
The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending interest packets for various content items and receiving content-object packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level.
A CCN is a distributed system where consensus among nodes is an important feature (e.g., agreeing on a single value that is the outcome of an election or an environmental observation). However, CCN nodes can crash and suffer a Byzantine failure. Consensus algorithms for a distributed system require that all processes involved in a system decision eventually terminate and that all processes decide on the same legitimate value that was proposed by some (e.g., a majority) processes. Though CCN brings many desirable features to a network, some issues remain unsolved for implementing a consensus algorithm.
One embodiment provides a system that facilitates synchronization via consensus in a CCN. During operation, the system generates a first interest that indicates a vote for a value associated with a group prefix and a round number. In response to the first interest, the system receives a first content object that indicates an acknowledgment of the vote and has a payload that includes a nonce validator. In response to a second interest that indicates an acknowledgment of the first content object, the system receives a second content object that indicates a decision for the value and has a payload that includes a nonce which is used as a pre-image of the nonce validator. The system verifies the second content object based on the nonce and the nonce validator.
In some embodiments, in response to not receiving the first content object before an expiration of the first interest, and in response to determining that a current round number is the round number, the system re-transmits the first interest.
In some embodiments, in response to not receiving the first content object before an expiration of the first interest, and in response to determining that a current round number is a next round number, the system sets the current round number to the next round number, and transmits an interest that indicates a vote for a value associated with the group prefix and the current round number.
In some embodiments, in response to not receiving the second content object before an expiration of the second interest, the system generates a third interest that indicates a negative acknowledgment of the second interest.
In some embodiments, in response to the first interest, the system receives a marker content object that has a payload which includes a future name for a content object that will correspond to the first content object. The system generates a fourth interest with a name that is the future name. In response to the fourth interest, the system receives the first content object.
In some embodiments, in response to the second interest, the system receives a marker content object that has a payload which includes a future name for a content object that will correspond to the second content object. The system generates a fourth interest with a name that is the future name. In response to the fourth interest, the system receives the second content object.
In some embodiments, the acknowledgment of the vote indicated in the first content object further indicates that a majority of a plurality of nodes with the group prefix has submitted a vote for a value that is the same as the value indicated in the first interest, and the decision for the value indicated in the second content object further indicates that a majority of a plurality of nodes with the group prefix has submitted an acknowledgment of the first content object.
In some embodiments, verifying the second content object further comprises: performing a hash on the nonce; and determining that the hash matches the nonce validator.
Another embodiment provides a system that facilitates synchronization via consensus in a CCN. During operation, the system receives a first interest that indicates a vote for a value associated with a group prefix and a round number, wherein the computer system is a coordinator for a plurality of nodes associated with the group prefix. In response to receiving the first interest, and in response to receiving a vote for the value from a majority of the nodes, the system generates a first content object that indicates an acknowledgment of the vote and has a payload that includes a nonce validator. In response to receiving a second interest that indicates an acknowledgment of the first content object, and in response to receiving an acknowledgment of an acknowledgment of the vote for the value from the majority of the nodes, the system generates a second content object that indicates a decision for the value and has a payload that includes a nonce which is used as a pre-image of the nonce validator.
In some embodiments, generating the first content object further comprises: generating the nonce based on a random method; and performing a hash on the nonce to obtain the nonce validator.
In some embodiments, the system receives a third interest that indicates a negative acknowledgment of the second interest.
In some embodiments, in response to receiving the first interest, the system generates a marker content object that has a payload which includes a future name for a content object that will correspond to the first content object. In response to receiving a fourth interest with a name that is the future name, the system generates the first content object.
In some embodiments, in response to receiving the second interest, the system generates a marker content object that has a payload which includes a future name for a content object that will correspond to the second content object. In response to receiving a fourth interest with a name that is the future name, the system generates the second content object.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
Embodiments of the present invention provide a system which provides synchronization via consensus by applying the Chandra-Toueg consensus algorithm in a content centric network. In a distributed system such as a CCN, nodes can crash and suffer Byzantine failures. Consensus in such a distributed system is used to reliably determine a single value that may be the outcome of, for example, an election or environmental observations. A consensus algorithm requires that the algorithm eventually terminates and that all nodes or processes “decide” on the same valid value proposed by some correct processes. For example, in a group of N processes or nodes, the Chandra-Toueg algorithm requires at least N/2 (e.g., a majority) non-faulty or correct processes to achieve the desired outcome. A coordinator process is chosen and known to all other processes in the group. The coordinator accepts “votes” for the desired value and if a majority of the nodes decide on the same value “V,” the coordinator decides on and finalizes the value by informing all nodes of the decision for the value “V.”
Each node can maintain a timer (e.g., a failure detector) after submitting messages corresponding to its vote and its acknowledgment of the selected value. If a failure of either message is detected, the node can re-submit its vote, submit a message of a negative acknowledgment, or choose a new coordinator at the next round. Eventually, a correct coordinator will be selected and, with a majority of correctly operating nodes, a sufficient number of votes (e.g., at least N/2) will be submitted for a decision to be made by the coordinator. The correctness of the Chandra-Toueg algorithm is guaranteed based on the timers and the progression of the rounds.
The Chandra-Toueg algorithm relies on the ability of nodes to directly address each other within a group (e.g., directly push messages). In contrast, communication between CCN nodes is performed on a pull-based model using interest and content object messages. Embodiments of the present invention map the flow of messages in the Chandra-Toueg algorithm to interest and content object messages in a CCN, and also rely on native communication timeouts for CCN nodes as failure detectors. In a CCN with a plurality of voting nodes and a known coordinator node, each voting node issues to the coordinator a vote for a value in the form of an interest. The coordinator waits until it has collected a majority of votes, responds with a “vote preference acknowledgment” content object, and includes in the payload a nonce validator, y, where y is the result of a hash function performed on a randomly generated nonce, x (i.e., such that y=H(x)). The nonce validator and the nonce are subsequently used by the voting nodes for verification. After receiving the vote preference acknowledgment content object, each node issues to the coordinator an acknowledgment interest and includes in the payload the nonce validator y, which confirms that the node acknowledges the preference for the value associated with y. The coordinator waits until it has collected a majority of acknowledgment interests, responds with a “decision content object,” and includes in the payload the nonce x. Each node which submitted an acknowledgment interest then verifies the decision content object by checking that y=H(x), and if so, accepts the decision and terminates. This communication is described below in relation to
Exceptions may occur during the communication between the voting nodes and the coordinator node. For example, the vote interest may time out, such that no vote preference acknowledgment content object is returned, or, the acknowledgment interest may time out, such that no decision content object is returned. These exceptions are described below in relation to
The following terms describe elements of a CCN architecture:
Content Object or “content object”: A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.
Unique Names: A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document.
In some embodiments, the name can include a non-hierarchical identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814, which is hereby incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).
Interest or “interest”: A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.
The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175, which is hereby incorporated by reference.
Exemplary Network and Overview of Exemplary Communication
Let “n” be the number of nodes in a group participating in a consensus decision, and let “r” be the current round number in which a consensus decision is to be attempted. Each node in a group has a predictable name and knows the group to which it belongs. Each group has a well-defined name prefix for routing purposes, e.g., “/group-name.” All messages are directed to and from a coordinator which is determined by the current round number r, so the prefix for all messages will be “/group-name/r mod n.”
During operation, nodes 102-114 can be seven nodes in a group participating in a consensus decision (“voting nodes”), and node 108 can be the coordinator node. Each voting node submits its vote to coordinator 108. For example, node 104 sends an interest 211 with the name “/prefix/round=r/id=<N_104>/cmd=vote” and a payload with a value of “v,” where “/prefix” is the group prefix name and “<N_104>” is an identifier for node 104. Coordinator 108 waits until it has collected a majority of votes from the group (e.g., at least n/2, which is at least 4 votes when n is equal to 7), and subsequently sends to voting node 104 (and all other nodes that submitted a vote for the round, such as node 112 that submitted its vote via interest 112) a content object 212 with a payload that has a value of “y,” where y is a nonce validator that is the result of a hash function performed on a randomly generated nonce value “x,” such that y=H(x). The nonce and nonce validator are subsequently used for verification purposes. Content object 212 is a vote preference acknowledgment.
Upon receiving content object 212, node 104 (and all other nodes that receive the vote preference acknowledgment, such as node 112 that receives content object 222) submits an acknowledgment message to coordinator 108. For example, node 104 sends an interest 213 with the name “/prefix/round=r/id=<N_104>/cmd=ack” and an empty payload. Coordinator 108 again waits until it has collected a majority of acknowledgments from the group (e.g., at least n/2, or at least 4 votes), and subsequently sends to voting node 104 (and all other nodes that submitted an acknowledgment for the round, such as node 112 that submitted its acknowledgment via interest 223) a content object 214 with a payload that has a value of “x,” where x is the randomly generated nonce that is used as the pre-image of the nonce validator y included in the payload of content object 212 (e.g., y=H(x)). Content object 214 indicates a decision for the value indicated in the votes for round r.
Upon receiving content object 214, node 104 (and all other nodes that receive the decision from coordinator 108, such as node 112 that receives content object 224) can verify the decision indicated in content object 212 by performing a hash on the nonce x (included in content object 214) and comparing it with the nonce validator y (included in content object 212). If the result matches, the voting node is assured that the decision is a valid decision for the value indicated in the vote for the current round r, and voting node 104 accepts the decision.
Thus, the system binds together the vote for the value (interest 211) and the vote preference acknowledgment (content object 212) with the acknowledgment of the vote preference acknowledgment (interest 213) and the final decision (content object 214) by using the nonce x and the nonce validator y. This allows each voting node to verify the correctness of the final decision from the coordinator (content object 214).
Detailed Description of Exemplary Communication
Next, upon receiving content object 212, node 104 generates and transmits an interest 213 to coordinator 108. Interest 213 is an acknowledgment of the vote preference acknowledgment and has a name of “/prefix/round=r/id=<i>/cmd=ack” and an empty payload. Upon receiving interest 213, coordinator 108 collects a sufficient number of acknowledgments (function 206), e.g., from a majority of the voting nodes. After collecting the sufficient number of acknowledgments, coordinator 108 generates and sends to node 104 a content object 214 with a name of “/prefix/round=r/id=<i>/cmd=ack” and a payload with a value of “x,” where x is the randomly generated nonce used as the pre-image of the nonce validator y (e.g., y=H(x)) (“decision content object”). Note that coordinator 118 also sends a similar decision content object to all voting nodes in the group.
Upon receiving content object 214, node 104 verifies the decision content object 214 by performing a hash on the nonce x (included in content object 214) and comparing it with the nonce validator y (included in content object 212) (function 206). If the result matches, node 104 accepts the decision and the process terminates.
Handling Exceptions During Consensus in a CCN
Communication 200 of
Role of Voting Node in Facilitating Synchronization Via Consensus
If the system does receive a vote preference acknowledgment before the timeout for the first interest (decision 322), the system generates a second interest that indicates an acknowledgment of the first content object (“acknowledgment of the vote preference acknowledgment”) (operation 306). The system determines whether it receives a second content object before the timeout for the second interest, where the second content object indicates a decision for the vote (e.g., the value) and has a payload that includes the nonce used as a pre-image of the nonce validator (“decision content object”) (decision 328). If the system does not receive the decision content object before the timeout for the second interest, the system generates a third interest that indicates a negative acknowledgment of the second interest (operation 330) and the operation returns. If the system does receive the decision content object before the timeout for the second interest, the operation returns.
Role of Coordinator Node in Facilitating Synchronization Via Consensus
Exemplary Computer System
Content-processing system 518 can include instructions, which when executed by computer system 502, can cause computer system 502 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 518 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network, where a data packet can correspond to an interest or a content-object packet with a name and a payload (communication module 520). Content-processing system 518 may include instructions for generating a first interest that indicates a vote for a value associated with a group prefix and a round number (packet-constructing module 524). Content-processing system 518 may include instructions for, in response to the first interest, receiving a first content object that indicates an acknowledgment of the vote and has a payload that includes a nonce validator (communication module 520). Content-processing system 518 may include instructions for, in response to a second interest that indicates an acknowledgment of the first content object, receiving a second content object that indicates a decision for the value and has a payload that includes a nonce which is used as a pre-image of the nonce validator (communication module 520). Content-processing system 518 may include instructions for verifying the second content object based on the nonce and the nonce validator (packet-verifying module 528).
Content-processing system 518 can include instructions for, in response to not receiving the first content object before an expiration of the first interest, and in response to determining that a current round number is the round number (exception-handling module 526), re-transmitting the first interest (communication module 520). Content-processing system 518 can include instructions for, in response to not receiving the first content object before an expiration of the first interest, and in response to determining that a current round number is a next round number (exception-handling module 526), setting the current round number to the next round number (exception-handling module 526), and transmitting an interest that indicates a vote for a value associated with the group prefix and the current round number (communication module 520). Content-processing system 518 can include instructions for, in response to not receiving the second content object before an expiration of the second interest (exception-handling module 526), generating a third interest that indicates a negative acknowledgment of the second interest (packet-constructing module 524).
Content-processing system 518 can include instructions for, in response to the first interest, receiving a marker content object that has a payload which includes a future name for a content object that will correspond to the first content object (communication module 520). Content-processing system 518 can include instructions for generating a fourth interest with a name that is the future name (packet-constructing module 524), and, in response to the fourth interest, receiving the first content object (communication module 520). Content-processing system 518 can include instructions for, in response to the second interest, receiving a marker content object that has a payload which includes a future name for a content object that will correspond to the second content object (communication module 520). Content-processing system 518 can include instructions for generating a fourth interest with a name that is the future name (packet-constructing module 524), and, in response to the fourth interest, receiving the second content object (communication module 520). Content-processing system 518 can include instructions for performing a hash on the nonce and determining that the hash matches the nonce validator (packet-verifying module 528)
Content-processing system 518 can further include instructions for receiving a first interest that indicates a vote for a value associated with a group prefix and a round number (communication module 520). Content-processing system 518 can include instructions for, in response to receiving the first interest (communication module 520), and in response to receiving a vote for the value from a majority of the nodes (packet-processing module 522), generating a first content object that indicates an acknowledgment of the vote and has a payload that includes a nonce validator (packet-constructing module 524). Content-processing system 518 can include instructions for, in response to receiving a second interest that indicates an acknowledgment of the first content object (communication module 520), and in response to receiving an acknowledgment of an acknowledgment of the vote for the value from the majority of the nodes (packet-processing module 522), generating a second content object that indicates a decision for the value and has a payload that includes a nonce which is used as a pre-image of the nonce validator (packet-constructing module 524). Content-processing system 518 can include instructions for generating the nonce based on a random method and performing a hash on the nonce to obtain the nonce validator (packet-verifying module 528). Content-processing system 518 can include instructions for receiving a third interest that indicates a negative acknowledgment of the second interest (communication module 520).
Content-processing system 518 can include instructions for, in response to receiving the first interest (communication module 520), generating a marker content object that has a payload which includes a future name for a content object that will correspond to the first content object (packet-constructing module 524). Content-processing system 518 can include instructions for, in response to receiving a fourth interest with a name that is the future name, the system generating the first content object (packet-constructing module 524).
Content-processing system 518 can include instructions for, in response to receiving the second interest (communication module 520), generating a marker content object that has a payload which includes a future name for a content object that will correspond to the second content object (packet-constructing module 524). Content-processing system 518 can include instructions for, in response to receiving a fourth interest with a name that is the future name (communication module 520), generating the second content object (packet-constructing module 524).
Data 530 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 530 can store at least: an interest packet; a content-object packet; a vote; a value for a decision; a vote for a value; a group prefix; a round number; a nonce; a nonce validator that is the result of a hash function performed on the nonce; a first interest that indicates a vote for a value associated with a group prefix and a round number; a first content object that indicates an acknowledgment of the vote and has a payload that includes a nonce validator; a second interest that indicates an acknowledgment of the first content object; a second content object that indicates a decision for the value and has a payload that includes a nonce which is used as a pre-image of the nonce validator; a timeout or expiration time for the first or second interest; a third interest that indicates a negative acknowledgment of the second interest; a marker content object that has a payload which includes a future name for a content object that will correspond to the first content object or the second content object; a future name; a fourth interest with a name that is the future name; and an indicator of a majority of a plurality of nodes that share a same group prefix.
The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
817441 | Niesz | Apr 1906 | A |
4309569 | Merkle | Jan 1982 | A |
4921898 | Lenney | May 1990 | A |
5070134 | Oyamada | Dec 1991 | A |
5110856 | Oyamada | May 1992 | A |
5214702 | Fischer | May 1993 | A |
5377354 | Scannell | Dec 1994 | A |
5506844 | Rao | Apr 1996 | A |
5629370 | Freidzon | May 1997 | A |
5845207 | Amin | Dec 1998 | A |
5870605 | Bracho | Feb 1999 | A |
6021464 | Yao | Feb 2000 | A |
6047331 | Medard | Apr 2000 | A |
6052683 | Irwin | Apr 2000 | A |
6085320 | Kaliski, Jr. | Jul 2000 | A |
6091724 | Chandra | Jul 2000 | A |
6128623 | Mattis | Oct 2000 | A |
6128627 | Mattis | Oct 2000 | A |
6173364 | Zenchelsky | Jan 2001 | B1 |
6209003 | Mattis | Mar 2001 | B1 |
6226618 | Downs | May 2001 | B1 |
6233617 | Rothwein | May 2001 | B1 |
6233646 | Hahm | May 2001 | B1 |
6289358 | Mattis | Sep 2001 | B1 |
6292880 | Mattis | Sep 2001 | B1 |
6332158 | Risley | Dec 2001 | B1 |
6363067 | Chung | Mar 2002 | B1 |
6366988 | Skiba | Apr 2002 | B1 |
6574377 | Cahill | Jun 2003 | B1 |
6654792 | Verma | Nov 2003 | B1 |
6667957 | Corson | Dec 2003 | B1 |
6681220 | Kaplan | Jan 2004 | B1 |
6681326 | Son | Jan 2004 | B2 |
6732273 | Byers | May 2004 | B1 |
6769066 | Botros | Jul 2004 | B1 |
6772333 | Brendel | Aug 2004 | B1 |
6775258 | vanValkenburg | Aug 2004 | B1 |
6834272 | Naor | Dec 2004 | B1 |
6862280 | Bertagna | Mar 2005 | B1 |
6901452 | Bertagna | May 2005 | B1 |
6915307 | Mattis | Jul 2005 | B1 |
6917985 | Madruga | Jul 2005 | B2 |
6957228 | Graser | Oct 2005 | B1 |
6968393 | Chen | Nov 2005 | B1 |
6981029 | Menditto | Dec 2005 | B1 |
7007024 | Zelenka | Feb 2006 | B2 |
7013389 | Srivastava | Mar 2006 | B1 |
7031308 | Garcia-Luna-Aceves | Apr 2006 | B2 |
7043637 | Bolosky | May 2006 | B2 |
7061877 | Gummalla | Jun 2006 | B1 |
7080073 | Jiang | Jul 2006 | B1 |
RE39360 | Aziz | Oct 2006 | E |
7149750 | Chadwick | Dec 2006 | B2 |
7152094 | Jannu | Dec 2006 | B1 |
7177646 | ONeill | Feb 2007 | B2 |
7206860 | Murakami | Apr 2007 | B2 |
7206861 | Callon | Apr 2007 | B1 |
7210326 | Kawamoto | May 2007 | B2 |
7233948 | Shamoon | Jun 2007 | B1 |
7246159 | Aggarwal | Jul 2007 | B2 |
7257837 | Xu | Aug 2007 | B2 |
7287275 | Moskowitz | Oct 2007 | B2 |
7315541 | Housel | Jan 2008 | B1 |
7339929 | Zelig | Mar 2008 | B2 |
7350229 | Lander | Mar 2008 | B1 |
7362727 | ONeill | Apr 2008 | B1 |
7382787 | Barnes | Jun 2008 | B1 |
7395507 | Robarts | Jul 2008 | B2 |
7430755 | Hughes | Sep 2008 | B1 |
7444251 | Nikovski | Oct 2008 | B2 |
7466703 | Arunachalam | Dec 2008 | B1 |
7472422 | Agbabian | Dec 2008 | B1 |
7496668 | Hawkinson | Feb 2009 | B2 |
7509425 | Rosenberg | Mar 2009 | B1 |
7523016 | Surdulescu | Apr 2009 | B1 |
7535926 | Deshpande | May 2009 | B1 |
7542471 | Samuels | Jun 2009 | B2 |
7543064 | Juncker | Jun 2009 | B2 |
7552233 | Raju | Jun 2009 | B2 |
7555482 | Korkus | Jun 2009 | B2 |
7555563 | Ott | Jun 2009 | B2 |
7564812 | Elliott | Jul 2009 | B1 |
7567547 | Mosko | Jul 2009 | B2 |
7567946 | Andreoli | Jul 2009 | B2 |
7580971 | Gollapudi | Aug 2009 | B1 |
7623535 | Guichard | Nov 2009 | B2 |
7636767 | Lev-Ran | Dec 2009 | B2 |
7647507 | Feng | Jan 2010 | B1 |
7660324 | Oguchi | Feb 2010 | B2 |
7685290 | Satapati | Mar 2010 | B2 |
7698463 | Ogier | Apr 2010 | B2 |
7698559 | Chaudhury | Apr 2010 | B1 |
7769887 | Bhattacharyya | Aug 2010 | B1 |
7779467 | Choi | Aug 2010 | B2 |
7801069 | Cheung | Sep 2010 | B2 |
7801177 | Luss | Sep 2010 | B2 |
7816441 | Elizalde | Oct 2010 | B2 |
7831733 | Sultan | Nov 2010 | B2 |
7873619 | Faibish | Jan 2011 | B1 |
7908337 | Garcia-Luna-Aceves | Mar 2011 | B2 |
7924837 | Shabtay | Apr 2011 | B1 |
7953014 | Toda | May 2011 | B2 |
7953885 | Devireddy | May 2011 | B1 |
7979912 | Roka | Jul 2011 | B1 |
8000267 | Solis | Aug 2011 | B2 |
8010691 | Kollmansberger | Aug 2011 | B2 |
8069023 | Frailong | Nov 2011 | B1 |
8074289 | Carpentier | Dec 2011 | B1 |
8117441 | Kurien | Feb 2012 | B2 |
8160069 | Jacobson | Apr 2012 | B2 |
8204060 | Jacobson | Jun 2012 | B2 |
8214364 | Bigus | Jul 2012 | B2 |
8224985 | Takeda | Jul 2012 | B2 |
8225057 | Zheng | Jul 2012 | B1 |
8239331 | Shanmugavelayutham | Aug 2012 | B2 |
8271578 | Sheffi | Sep 2012 | B2 |
8271687 | Turner | Sep 2012 | B2 |
8312064 | Gauvin | Nov 2012 | B1 |
8332357 | Chung | Dec 2012 | B1 |
8375420 | Farrell | Feb 2013 | B2 |
8386622 | Jacobson | Feb 2013 | B2 |
8447851 | Anderson | May 2013 | B1 |
8462781 | McGhee | Jun 2013 | B2 |
8467297 | Liu | Jun 2013 | B2 |
8473633 | Eardley | Jun 2013 | B2 |
8553562 | Allan | Oct 2013 | B2 |
8572214 | Garcia-Luna-Aceves | Oct 2013 | B2 |
8654649 | Vasseur | Feb 2014 | B2 |
8665757 | Kling | Mar 2014 | B2 |
8667172 | Ravindran | Mar 2014 | B2 |
8677451 | Bhimaraju | Mar 2014 | B1 |
8688619 | Ezick | Apr 2014 | B1 |
8699350 | Kumar | Apr 2014 | B1 |
8718055 | Vasseur | May 2014 | B2 |
8750820 | Allan | Jun 2014 | B2 |
8761022 | Chiabaut | Jun 2014 | B2 |
8762477 | Xie | Jun 2014 | B2 |
8762570 | Qian | Jun 2014 | B2 |
8762707 | Killian | Jun 2014 | B2 |
8767627 | Ezure | Jul 2014 | B2 |
8817594 | Gero | Aug 2014 | B2 |
8826381 | Kim | Sep 2014 | B2 |
8832302 | Bradford | Sep 2014 | B1 |
8836536 | Marwah | Sep 2014 | B2 |
8861356 | Kozat | Oct 2014 | B2 |
8862774 | Vasseur | Oct 2014 | B2 |
8868779 | ONeill | Oct 2014 | B2 |
8874842 | Kimmel | Oct 2014 | B1 |
8880682 | Bishop | Nov 2014 | B2 |
8903756 | Zhao | Dec 2014 | B2 |
8923293 | Jacobson | Dec 2014 | B2 |
8934496 | Vasseur | Jan 2015 | B2 |
8937865 | Kumar | Jan 2015 | B1 |
8972969 | Gaither | Mar 2015 | B2 |
8977596 | Montulli | Mar 2015 | B2 |
9002921 | Westphal | Apr 2015 | B2 |
9032095 | Traina | May 2015 | B1 |
9071498 | Beser | Jun 2015 | B2 |
9112895 | Lin | Aug 2015 | B1 |
9137152 | Xie | Sep 2015 | B2 |
9253087 | Zhang | Feb 2016 | B2 |
9270598 | Oran | Feb 2016 | B1 |
9280610 | Gruber | Mar 2016 | B2 |
20020002680 | Carbajal | Jan 2002 | A1 |
20020010795 | Brown | Jan 2002 | A1 |
20020038296 | Margolus | Mar 2002 | A1 |
20020048269 | Hong | Apr 2002 | A1 |
20020054593 | Morohashi | May 2002 | A1 |
20020077988 | Sasaki | Jun 2002 | A1 |
20020078066 | Robinson | Jun 2002 | A1 |
20020138551 | Erickson | Sep 2002 | A1 |
20020152305 | Jackson | Oct 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020188605 | Adya | Dec 2002 | A1 |
20020199014 | Yang | Dec 2002 | A1 |
20030004621 | Bousquet | Jan 2003 | A1 |
20030009365 | Tynan | Jan 2003 | A1 |
20030033394 | Stine | Feb 2003 | A1 |
20030046396 | Richter | Mar 2003 | A1 |
20030046421 | Horvitz et al. | Mar 2003 | A1 |
20030046437 | Eytchison | Mar 2003 | A1 |
20030048793 | Pochon | Mar 2003 | A1 |
20030051100 | Patel | Mar 2003 | A1 |
20030061384 | Nakatani | Mar 2003 | A1 |
20030074472 | Lucco | Apr 2003 | A1 |
20030088696 | McCanne | May 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030099237 | Mitra | May 2003 | A1 |
20030140257 | Peterka | Jul 2003 | A1 |
20030229892 | Sardera | Dec 2003 | A1 |
20040024879 | Dingman | Feb 2004 | A1 |
20040030602 | Rosenquist | Feb 2004 | A1 |
20040064737 | Milliken | Apr 2004 | A1 |
20040071140 | Jason | Apr 2004 | A1 |
20040073617 | Milliken | Apr 2004 | A1 |
20040073715 | Folkes | Apr 2004 | A1 |
20040139230 | Kim | Jul 2004 | A1 |
20040196783 | Shinomiya | Oct 2004 | A1 |
20040218548 | Kennedy | Nov 2004 | A1 |
20040221047 | Grover | Nov 2004 | A1 |
20040225627 | Botros | Nov 2004 | A1 |
20040233916 | Takeuchi | Nov 2004 | A1 |
20040246902 | Weinstein | Dec 2004 | A1 |
20040252683 | Kennedy | Dec 2004 | A1 |
20040254984 | Dinker | Dec 2004 | A1 |
20040267902 | Yang | Dec 2004 | A1 |
20050003832 | Osafune | Jan 2005 | A1 |
20050028156 | Hammond | Feb 2005 | A1 |
20050043060 | Brandenberg | Feb 2005 | A1 |
20050050211 | Kaul | Mar 2005 | A1 |
20050066121 | Keeler | Mar 2005 | A1 |
20050074001 | Mattes | Apr 2005 | A1 |
20050132207 | Mourad | Jun 2005 | A1 |
20050149508 | Deshpande | Jul 2005 | A1 |
20050159823 | Hayes | Jul 2005 | A1 |
20050198351 | Nog | Sep 2005 | A1 |
20050198359 | Basani | Sep 2005 | A1 |
20050249196 | Ansari | Nov 2005 | A1 |
20050259637 | Chu | Nov 2005 | A1 |
20050262217 | Nonaka | Nov 2005 | A1 |
20050281288 | Banerjee | Dec 2005 | A1 |
20050286535 | Shrum | Dec 2005 | A1 |
20050289222 | Sahim | Dec 2005 | A1 |
20060010249 | Sabesan | Jan 2006 | A1 |
20060029102 | Abe | Feb 2006 | A1 |
20060039379 | Abe | Feb 2006 | A1 |
20060051055 | Ohkawa | Mar 2006 | A1 |
20060072523 | Richardson | Apr 2006 | A1 |
20060099973 | Nair | May 2006 | A1 |
20060129514 | Watanabe | Jun 2006 | A1 |
20060133343 | Huang | Jun 2006 | A1 |
20060146686 | Kim | Jul 2006 | A1 |
20060173831 | Basso | Aug 2006 | A1 |
20060193295 | White | Aug 2006 | A1 |
20060203804 | Whitmore | Sep 2006 | A1 |
20060206445 | Andreoli | Sep 2006 | A1 |
20060215684 | Capone | Sep 2006 | A1 |
20060223504 | Ishak | Oct 2006 | A1 |
20060242155 | Moore | Oct 2006 | A1 |
20060256767 | Suzuki | Nov 2006 | A1 |
20060268792 | Belcea | Nov 2006 | A1 |
20060288237 | Goodwill | Dec 2006 | A1 |
20070019619 | Foster | Jan 2007 | A1 |
20070073888 | Madhok | Mar 2007 | A1 |
20070094265 | Korkus | Apr 2007 | A1 |
20070112880 | Yang | May 2007 | A1 |
20070124412 | Narayanaswami | May 2007 | A1 |
20070127457 | Mirtorabi | Jun 2007 | A1 |
20070156998 | Gorobets | Jul 2007 | A1 |
20070160062 | Morishita | Jul 2007 | A1 |
20070162394 | Zager | Jul 2007 | A1 |
20070171828 | Dalal | Jul 2007 | A1 |
20070189284 | Kecskemeti | Aug 2007 | A1 |
20070195765 | Heissenbuttel | Aug 2007 | A1 |
20070204011 | Shaver | Aug 2007 | A1 |
20070209067 | Fogel | Sep 2007 | A1 |
20070239892 | Ott | Oct 2007 | A1 |
20070240207 | Belakhdar | Oct 2007 | A1 |
20070245034 | Retana | Oct 2007 | A1 |
20070253418 | Shiri | Nov 2007 | A1 |
20070255677 | Alexander | Nov 2007 | A1 |
20070255699 | Sreenivas | Nov 2007 | A1 |
20070255781 | Li | Nov 2007 | A1 |
20070274504 | Maes | Nov 2007 | A1 |
20070275701 | Jonker | Nov 2007 | A1 |
20070276907 | Maes | Nov 2007 | A1 |
20070283158 | Danseglio | Dec 2007 | A1 |
20070294187 | Scherrer | Dec 2007 | A1 |
20080005056 | Stelzig | Jan 2008 | A1 |
20080005223 | Flake | Jan 2008 | A1 |
20080010366 | Duggan | Jan 2008 | A1 |
20080037420 | Tang | Feb 2008 | A1 |
20080043989 | Furutono | Feb 2008 | A1 |
20080046340 | Brown | Feb 2008 | A1 |
20080059631 | Bergstrom | Mar 2008 | A1 |
20080080440 | Yarvis | Apr 2008 | A1 |
20080082662 | Dandliker | Apr 2008 | A1 |
20080095159 | Suzuki | Apr 2008 | A1 |
20080101357 | Iovanna | May 2008 | A1 |
20080107034 | Jetcheva | May 2008 | A1 |
20080107259 | Satou | May 2008 | A1 |
20080123862 | Rowley | May 2008 | A1 |
20080133583 | Artan | Jun 2008 | A1 |
20080133755 | Pollack | Jun 2008 | A1 |
20080151755 | Nishioka | Jun 2008 | A1 |
20080159271 | Kutt | Jul 2008 | A1 |
20080165775 | Das | Jul 2008 | A1 |
20080186901 | Itagaki | Aug 2008 | A1 |
20080200153 | Fitzpatrick | Aug 2008 | A1 |
20080215669 | Gaddy | Sep 2008 | A1 |
20080216086 | Tanaka | Sep 2008 | A1 |
20080243992 | Jardetzky | Oct 2008 | A1 |
20080250006 | Dettinger | Oct 2008 | A1 |
20080256138 | Sim-Tang | Oct 2008 | A1 |
20080256359 | Kahn | Oct 2008 | A1 |
20080270618 | Rosenberg | Oct 2008 | A1 |
20080271143 | Stephens | Oct 2008 | A1 |
20080287142 | Keighran | Nov 2008 | A1 |
20080288580 | Wang | Nov 2008 | A1 |
20080291923 | Back | Nov 2008 | A1 |
20080298376 | Takeda | Dec 2008 | A1 |
20080320148 | Capuozzo | Dec 2008 | A1 |
20090006659 | Collins | Jan 2009 | A1 |
20090013324 | Gobara | Jan 2009 | A1 |
20090022154 | Kiribe | Jan 2009 | A1 |
20090024641 | Quigley | Jan 2009 | A1 |
20090030978 | Johnson | Jan 2009 | A1 |
20090037763 | Adhya | Feb 2009 | A1 |
20090052660 | Chen | Feb 2009 | A1 |
20090067429 | Nagai | Mar 2009 | A1 |
20090077184 | Brewer | Mar 2009 | A1 |
20090092043 | Lapuh | Apr 2009 | A1 |
20090097631 | Gisby | Apr 2009 | A1 |
20090103515 | Pointer | Apr 2009 | A1 |
20090113068 | Fujihira | Apr 2009 | A1 |
20090116393 | Hughes | May 2009 | A1 |
20090117922 | Bell | May 2009 | A1 |
20090132662 | Sheridan | May 2009 | A1 |
20090135728 | Shen | May 2009 | A1 |
20090144300 | Chatley | Jun 2009 | A1 |
20090157887 | Froment | Jun 2009 | A1 |
20090185745 | Momosaki | Jul 2009 | A1 |
20090193101 | Munetsugu | Jul 2009 | A1 |
20090198832 | Shah | Aug 2009 | A1 |
20090222344 | Greene | Sep 2009 | A1 |
20090228593 | Takeda | Sep 2009 | A1 |
20090254572 | Redlich | Oct 2009 | A1 |
20090268905 | Matsushima | Oct 2009 | A1 |
20090274158 | Sharp | Nov 2009 | A1 |
20090276396 | Gorman | Nov 2009 | A1 |
20090285209 | Stewart | Nov 2009 | A1 |
20090287835 | Jacobson | Nov 2009 | A1 |
20090287853 | Carson | Nov 2009 | A1 |
20090288076 | Johnson | Nov 2009 | A1 |
20090288143 | Stebila | Nov 2009 | A1 |
20090288163 | Jacobson | Nov 2009 | A1 |
20090292743 | Bigus | Nov 2009 | A1 |
20090293121 | Bigus | Nov 2009 | A1 |
20090296719 | Maier | Dec 2009 | A1 |
20090300079 | Shitomi | Dec 2009 | A1 |
20090300407 | Kamath | Dec 2009 | A1 |
20090300512 | Ahn | Dec 2009 | A1 |
20090307286 | Laffin | Dec 2009 | A1 |
20090307333 | Welingkar | Dec 2009 | A1 |
20090323632 | Nix | Dec 2009 | A1 |
20100005061 | Basco | Jan 2010 | A1 |
20100027539 | Beverly | Feb 2010 | A1 |
20100046546 | Ram | Feb 2010 | A1 |
20100057929 | Merat | Mar 2010 | A1 |
20100058346 | Narang | Mar 2010 | A1 |
20100088370 | Wu | Apr 2010 | A1 |
20100094767 | Miltonberger | Apr 2010 | A1 |
20100094876 | Huang | Apr 2010 | A1 |
20100098093 | Ejzak | Apr 2010 | A1 |
20100100465 | Cooke | Apr 2010 | A1 |
20100103870 | Garcia-Luna-Aceves | Apr 2010 | A1 |
20100124191 | Vos | May 2010 | A1 |
20100125911 | Bhaskaran | May 2010 | A1 |
20100131660 | Dec | May 2010 | A1 |
20100150155 | Napierala | Jun 2010 | A1 |
20100165976 | Khan | Jul 2010 | A1 |
20100169478 | Saha | Jul 2010 | A1 |
20100169503 | Kollmansberger | Jul 2010 | A1 |
20100180332 | Ben-Yochanan | Jul 2010 | A1 |
20100182995 | Hwang | Jul 2010 | A1 |
20100185753 | Liu | Jul 2010 | A1 |
20100195653 | Jacobson | Aug 2010 | A1 |
20100195654 | Jacobson | Aug 2010 | A1 |
20100195655 | Jacobson | Aug 2010 | A1 |
20100217874 | Anantharaman | Aug 2010 | A1 |
20100217985 | Fahrny | Aug 2010 | A1 |
20100232402 | Przybysz | Sep 2010 | A1 |
20100232439 | Dham | Sep 2010 | A1 |
20100235516 | Nakamura | Sep 2010 | A1 |
20100246549 | Zhang | Sep 2010 | A1 |
20100250497 | Redlich | Sep 2010 | A1 |
20100250939 | Adams | Sep 2010 | A1 |
20100257149 | Cognigni | Oct 2010 | A1 |
20100268782 | Zombek | Oct 2010 | A1 |
20100272107 | Papp | Oct 2010 | A1 |
20100281263 | Ugawa | Nov 2010 | A1 |
20100284309 | Allan | Nov 2010 | A1 |
20100284404 | Gopinath | Nov 2010 | A1 |
20100293293 | Beser | Nov 2010 | A1 |
20100316052 | Petersen | Dec 2010 | A1 |
20100322249 | Thathapudi | Dec 2010 | A1 |
20100332595 | Fullagar | Dec 2010 | A1 |
20110013637 | Xue | Jan 2011 | A1 |
20110019674 | Iovanna | Jan 2011 | A1 |
20110022812 | vanderLinden et al. | Jan 2011 | A1 |
20110029952 | Harrington | Feb 2011 | A1 |
20110055392 | Shen | Mar 2011 | A1 |
20110055921 | Narayanaswamy | Mar 2011 | A1 |
20110060716 | Forman | Mar 2011 | A1 |
20110060717 | Forman | Mar 2011 | A1 |
20110090908 | Jacobson | Apr 2011 | A1 |
20110106755 | Hao | May 2011 | A1 |
20110131308 | Eriksson | Jun 2011 | A1 |
20110137919 | Ryu | Jun 2011 | A1 |
20110145597 | Yamaguchi | Jun 2011 | A1 |
20110145858 | Philpott | Jun 2011 | A1 |
20110149858 | Hwang | Jun 2011 | A1 |
20110153840 | Narayana | Jun 2011 | A1 |
20110158122 | Murphy | Jun 2011 | A1 |
20110161408 | Kim | Jun 2011 | A1 |
20110202609 | Chaturvedi | Aug 2011 | A1 |
20110219093 | Ragunathan | Sep 2011 | A1 |
20110219427 | Hito | Sep 2011 | A1 |
20110219727 | May | Sep 2011 | A1 |
20110225293 | Rathod | Sep 2011 | A1 |
20110231578 | Nagappan | Sep 2011 | A1 |
20110239256 | Gholmieh | Sep 2011 | A1 |
20110258049 | Ramer | Oct 2011 | A1 |
20110264824 | Venkata Subramanian | Oct 2011 | A1 |
20110265159 | Ronda | Oct 2011 | A1 |
20110265174 | Thornton | Oct 2011 | A1 |
20110271007 | Wang | Nov 2011 | A1 |
20110280214 | Lee | Nov 2011 | A1 |
20110286457 | Ee | Nov 2011 | A1 |
20110286459 | Rembarz | Nov 2011 | A1 |
20110295783 | Zhao | Dec 2011 | A1 |
20110299454 | Krishnaswamy | Dec 2011 | A1 |
20120011170 | Elad | Jan 2012 | A1 |
20120011551 | Levy | Jan 2012 | A1 |
20120023113 | Ferren | Jan 2012 | A1 |
20120036180 | Thornton | Feb 2012 | A1 |
20120045064 | Rembarz | Feb 2012 | A1 |
20120047361 | Erdmann | Feb 2012 | A1 |
20120066727 | Nozoe | Mar 2012 | A1 |
20120079056 | Turanyi et al. | Mar 2012 | A1 |
20120102136 | Srebrny | Apr 2012 | A1 |
20120106339 | Mishra | May 2012 | A1 |
20120110159 | Richardson | May 2012 | A1 |
20120114313 | Phillips | May 2012 | A1 |
20120120803 | Farkas | May 2012 | A1 |
20120127994 | Ko | May 2012 | A1 |
20120136676 | Goodall | May 2012 | A1 |
20120136936 | Quintuna | May 2012 | A1 |
20120136945 | Lee | May 2012 | A1 |
20120137367 | Dupont | May 2012 | A1 |
20120141093 | Yamaguchi | Jun 2012 | A1 |
20120155464 | Kim | Jun 2012 | A1 |
20120158973 | Jacobson | Jun 2012 | A1 |
20120163373 | Lo | Jun 2012 | A1 |
20120166433 | Tseng | Jun 2012 | A1 |
20120170913 | Isozaki | Jul 2012 | A1 |
20120179653 | Araki | Jul 2012 | A1 |
20120197690 | Agulnek | Aug 2012 | A1 |
20120198048 | Ioffe | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120224487 | Hui | Sep 2012 | A1 |
20120226902 | Kim | Sep 2012 | A1 |
20120257500 | Lynch | Oct 2012 | A1 |
20120284791 | Miller | Nov 2012 | A1 |
20120290669 | Parks | Nov 2012 | A1 |
20120290919 | Melnyk | Nov 2012 | A1 |
20120291102 | Cohen | Nov 2012 | A1 |
20120300669 | Zahavi | Nov 2012 | A1 |
20120307629 | Vasseur | Dec 2012 | A1 |
20120314580 | Hong | Dec 2012 | A1 |
20120317307 | Ravindran | Dec 2012 | A1 |
20120317655 | Zhang | Dec 2012 | A1 |
20120322422 | Frecks | Dec 2012 | A1 |
20120323933 | He | Dec 2012 | A1 |
20120331112 | Chatani | Dec 2012 | A1 |
20130024560 | Vasseur | Jan 2013 | A1 |
20130041982 | Shi | Feb 2013 | A1 |
20130051392 | Filsfils | Feb 2013 | A1 |
20130054971 | Yamaguchi | Feb 2013 | A1 |
20130060962 | Wang | Mar 2013 | A1 |
20130061084 | Barton | Mar 2013 | A1 |
20130066823 | Sweeney | Mar 2013 | A1 |
20130073552 | Rangwala | Mar 2013 | A1 |
20130073882 | Inbaraj | Mar 2013 | A1 |
20130074155 | Huh | Mar 2013 | A1 |
20130090942 | Robinson | Apr 2013 | A1 |
20130091237 | Ambalavanar | Apr 2013 | A1 |
20130091539 | Khurana | Apr 2013 | A1 |
20130110987 | Kim | May 2013 | A1 |
20130111063 | Lee | May 2013 | A1 |
20130128786 | Sultan | May 2013 | A1 |
20130132719 | Kobayashi | May 2013 | A1 |
20130139245 | Thomas | May 2013 | A1 |
20130151584 | Westphal | Jun 2013 | A1 |
20130151646 | Chidambaram | Jun 2013 | A1 |
20130152070 | Bhullar | Jun 2013 | A1 |
20130163426 | Beliveau | Jun 2013 | A1 |
20130166668 | Byun | Jun 2013 | A1 |
20130173822 | Hong | Jul 2013 | A1 |
20130182568 | Lee | Jul 2013 | A1 |
20130182931 | Fan | Jul 2013 | A1 |
20130185406 | Choi | Jul 2013 | A1 |
20130191412 | Kitamura | Jul 2013 | A1 |
20130197698 | Shah | Aug 2013 | A1 |
20130198119 | Eberhardt, III | Aug 2013 | A1 |
20130212185 | Pasquero | Aug 2013 | A1 |
20130219038 | Lee | Aug 2013 | A1 |
20130219081 | Qian | Aug 2013 | A1 |
20130219478 | Mahamuni | Aug 2013 | A1 |
20130223237 | Hui | Aug 2013 | A1 |
20130227048 | Xie | Aug 2013 | A1 |
20130227114 | Vasseur | Aug 2013 | A1 |
20130227166 | Ravindran | Aug 2013 | A1 |
20130242996 | Varvello | Sep 2013 | A1 |
20130250809 | Hui | Sep 2013 | A1 |
20130262365 | Dolbear | Oct 2013 | A1 |
20130262698 | Schwan | Oct 2013 | A1 |
20130275544 | Westphal | Oct 2013 | A1 |
20130282854 | Jang | Oct 2013 | A1 |
20130282860 | Zhang | Oct 2013 | A1 |
20130282920 | Zhang | Oct 2013 | A1 |
20130304758 | Gruber | Nov 2013 | A1 |
20130304937 | Lee | Nov 2013 | A1 |
20130325888 | Oneppo | Dec 2013 | A1 |
20130329696 | Xu | Dec 2013 | A1 |
20130332971 | Fisher | Dec 2013 | A1 |
20130336103 | Vasseur | Dec 2013 | A1 |
20130336323 | Srinivasan | Dec 2013 | A1 |
20130339481 | Hong | Dec 2013 | A1 |
20130343408 | Cook | Dec 2013 | A1 |
20140003232 | Guichard | Jan 2014 | A1 |
20140003424 | Matsuhira | Jan 2014 | A1 |
20140006354 | Parkison | Jan 2014 | A1 |
20140006565 | Muscariello | Jan 2014 | A1 |
20140029445 | Hui | Jan 2014 | A1 |
20140032714 | Liu | Jan 2014 | A1 |
20140033193 | Palaniappan | Jan 2014 | A1 |
20140040505 | Barton | Feb 2014 | A1 |
20140040628 | Fort | Feb 2014 | A1 |
20140043987 | Watve | Feb 2014 | A1 |
20140047513 | vantNoordende | Feb 2014 | A1 |
20140074730 | Arensmeier | Mar 2014 | A1 |
20140075567 | Raleigh | Mar 2014 | A1 |
20140082135 | Jung | Mar 2014 | A1 |
20140082661 | Krahnstoever | Mar 2014 | A1 |
20140089454 | Jeon | Mar 2014 | A1 |
20140096249 | Dupont | Apr 2014 | A1 |
20140098685 | Shattil | Apr 2014 | A1 |
20140108313 | Heidasch | Apr 2014 | A1 |
20140108474 | David | Apr 2014 | A1 |
20140115037 | Liu | Apr 2014 | A1 |
20140122587 | Petker et al. | May 2014 | A1 |
20140129736 | Yu | May 2014 | A1 |
20140136814 | Stark | May 2014 | A1 |
20140140348 | Perlman | May 2014 | A1 |
20140143370 | Vilenski | May 2014 | A1 |
20140146819 | Bae | May 2014 | A1 |
20140149733 | Kim | May 2014 | A1 |
20140156396 | deKozan | Jun 2014 | A1 |
20140165207 | Engel | Jun 2014 | A1 |
20140172783 | Suzuki | Jun 2014 | A1 |
20140172981 | Kim | Jun 2014 | A1 |
20140173034 | Liu | Jun 2014 | A1 |
20140173076 | Ravindran | Jun 2014 | A1 |
20140181140 | Kim | Jun 2014 | A1 |
20140192677 | Chew | Jul 2014 | A1 |
20140192717 | Liu | Jul 2014 | A1 |
20140195328 | Ferens | Jul 2014 | A1 |
20140195641 | Wang | Jul 2014 | A1 |
20140195666 | Dumitriu | Jul 2014 | A1 |
20140204945 | Byun | Jul 2014 | A1 |
20140214942 | Ozonat | Jul 2014 | A1 |
20140233575 | Xie | Aug 2014 | A1 |
20140237085 | Park | Aug 2014 | A1 |
20140237095 | Bevilacqua-Linn | Aug 2014 | A1 |
20140245359 | DeFoy | Aug 2014 | A1 |
20140254595 | Luo | Sep 2014 | A1 |
20140280823 | Varvello | Sep 2014 | A1 |
20140281489 | Peterka | Sep 2014 | A1 |
20140281505 | Zhang | Sep 2014 | A1 |
20140282816 | Xie | Sep 2014 | A1 |
20140289325 | Solis | Sep 2014 | A1 |
20140289790 | Wilson | Sep 2014 | A1 |
20140298248 | Kang | Oct 2014 | A1 |
20140314093 | You | Oct 2014 | A1 |
20140337276 | Iordanov | Nov 2014 | A1 |
20140365550 | Jang | Dec 2014 | A1 |
20150006896 | Franck | Jan 2015 | A1 |
20150018770 | Baran | Jan 2015 | A1 |
20150032892 | Narayanan | Jan 2015 | A1 |
20150033365 | Mellor | Jan 2015 | A1 |
20150039890 | Khosravi | Feb 2015 | A1 |
20150063802 | Bahadur | Mar 2015 | A1 |
20150089081 | Thubert | Mar 2015 | A1 |
20150095481 | Ohnishi | Apr 2015 | A1 |
20150095514 | Yu | Apr 2015 | A1 |
20150120663 | LeScouarnec | Apr 2015 | A1 |
20150169758 | Assom | Jun 2015 | A1 |
20150188770 | Naiksatam | Jul 2015 | A1 |
20150195149 | Vasseur | Jul 2015 | A1 |
20150207633 | Ravindran | Jul 2015 | A1 |
20150207864 | Wilson | Jul 2015 | A1 |
20150279348 | Cao | Oct 2015 | A1 |
20150288755 | Mosko | Oct 2015 | A1 |
20150312300 | Mosko | Oct 2015 | A1 |
20150341175 | Mosko | Nov 2015 | A1 |
20150349961 | Mosko | Dec 2015 | A1 |
20150372903 | Hui | Dec 2015 | A1 |
20150381546 | Mahadevan | Dec 2015 | A1 |
20160019275 | Mosko | Jan 2016 | A1 |
20160021172 | Mahadevan | Jan 2016 | A1 |
20160062840 | Scott | Mar 2016 | A1 |
20160110466 | Uzun | Apr 2016 | A1 |
20160171184 | Solis | Jun 2016 | A1 |
20170142226 | De Foy | May 2017 | A1 |
Number | Date | Country |
---|---|---|
103873371 | Jun 2014 | CN |
1720277 | Jun 1967 | DE |
19620817 | Nov 1997 | DE |
0295727 | Dec 1988 | EP |
0757065 | Jul 1996 | EP |
1077422 | Feb 2001 | EP |
1383265 | Jan 2004 | EP |
1384729 | Jan 2004 | EP |
1473889 | Nov 2004 | EP |
2120402 | Nov 2009 | EP |
2120419 | Nov 2009 | EP |
2120419 | Nov 2009 | EP |
2124415 | Nov 2009 | EP |
2214357 | Aug 2010 | EP |
2299754 | Mar 2011 | EP |
2323346 | May 2011 | EP |
2552083 | Jan 2013 | EP |
2869536 | May 2015 | EP |
2214356 | May 2016 | EP |
03005288 | Jan 2003 | WO |
03042254 | May 2003 | WO |
03049369 | Jun 2003 | WO |
03091297 | Nov 2003 | WO |
2005041527 | May 2005 | WO |
2007113180 | Oct 2007 | WO |
2007122620 | Nov 2007 | WO |
2007144388 | Dec 2007 | WO |
2011049890 | Apr 2011 | WO |
2012077073 | Jun 2012 | WO |
2013123410 | Aug 2013 | WO |
2014023072 | Feb 2014 | WO |
2015084327 | Jun 2015 | WO |
Entry |
---|
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9. |
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192. |
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09. |
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117. |
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171. |
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835. |
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48. |
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015. |
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460. |
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature. |
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015. |
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015. |
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015. |
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015. |
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53. |
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011. |
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999. |
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013. |
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009). |
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36. |
“PBC Library-Pairing-Based Cryptography—About,” http://crypto.stanford.edu/pbc. downloaded Apr. 27, 2015. |
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53. |
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (Infocom Wkshps), Mar. 2012, pp. 274-279. |
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009. |
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002). |
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014. |
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004. |
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583. |
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013. |
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009. |
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015. |
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015. |
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005. |
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001). |
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010. |
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014. |
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702. |
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4. |
Dijkstra, Edsger W., Wim HJ Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512. |
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006. |
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983. |
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM. |
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006. |
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7. |
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737. |
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013. |
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012. |
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989. |
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014. |
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014. |
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011. |
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011. |
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004. |
Xiong et al., “CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services”, 2012. |
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995. |
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012). |
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012). |
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20. |
https://code.google.com/p/ccnx-trace/. |
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91. |
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000. |
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012. |
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334. |
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013. |
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Sciencevol. 5443 (2009). |
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009. |
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843). |
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011. |
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559. |
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25. |
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187. |
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012. |
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013. |
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010. |
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093. |
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages. |
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306. |
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40. |
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20. |
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014. |
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997. |
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737. |
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007. |
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006. |
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221. |
Matted Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012. |
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005). |
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140. |
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015. |
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169. |
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015. |
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286. |
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154. |
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008). |
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010). |
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988. |
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996. |
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415. |
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149. |
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564. |
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78. |
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9. |
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002. |
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf. |
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015. |
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005. |
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51. |
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322. |
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29. |
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008. |
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993. |
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988. |
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008. |
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007. |
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/. |
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98. |
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12. |
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012). |
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002. |
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012). |
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999. |
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224. |
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002. |
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003. |
Wang, Jiangzhe et al.,“DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56. |
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049. |
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791. |
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67. |
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395. |
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report. |
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73. |
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1. |
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering. |
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network and Computer Applications 35 (2012) 221-229. |
D. Trossen and G. Parisis, “Designing and realizing and information-centric Internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012. |
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium. |
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7. |
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium. |
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011. |
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digit. |
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006. |
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010). |
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/ content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf. |
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13. |
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est. |
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79. |
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142. |
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012. |
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content- Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013. |
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012). |
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6. |
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7. |
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013. |
Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003]. |
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*. |
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]-[006], [0011], [0013]* *figures 1,2*. |
Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*. |
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* * Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*. |
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014. |
Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011. |
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5. |
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36. |
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3. |
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*. |
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*. |
Gelenbe et al.: “Networks With Cognitive Packets”, Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. IEEE, Aug. 29, 2000, pp. 3-10. |
Vangelis et al.: “On the Role of Semantic Descriptions for Adaptable Protocol Stacks in the Internet of Things”, 2014 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE, May 13, 2014, pp. 437-443, *last paragraph of section II.B*. |
Smetters et al. “Securing Network Content” Technical Report, PARC TR-2009-1, Oct. 1 2009, Retrieved from the internet URL:http//www.parc.com/content/attachments/TR-2009-01.pdf [retrieved Nov. 1, 2016]. |
Marc Mosko “CCNx Label Forwarding (CCNLF)” Jul. 21, 2014. |
Gallo Alcatel-Lucent Bell Labs “Content-Centric Networking Packet Header Format” Jan. 26, 2015. |
Huard J-F et al. “A Programmable Transport Architecture with QOS Guarantees” IEEE Communications Magazine, vol. 36, No. 10, Oct. 1, 1998. |
Microsoft Computer Dictionary, Fifth Edition, 2002, Microsoft Press, p. 23. |
Mind—A Brief Introduction, John R. Searle, 2004, Oxford University Press, pp. 62-67. |
International Search Report and Written Opinion in corresponding International Application No. PCT/US2017/013039, dated Mar. 29, 2017, 9 pages. |
G. An, G. Kim and S. Lee, “Consensus-based information synchronization for content-centric networks,” 2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT)(MOWNET), Cairo, Egypt, 2016, pp. 1-2. |
Number | Date | Country | |
---|---|---|---|
20170201577 A1 | Jul 2017 | US |