Changeable electrode polarity stimulation by an implantable medical device

Information

  • Patent Grant
  • 8565867
  • Patent Number
    8,565,867
  • Date Filed
    Friday, January 25, 2008
    16 years ago
  • Date Issued
    Tuesday, October 22, 2013
    10 years ago
Abstract
We disclose a method of treating a medical condition in a patient using an implantable medical device including coupling at least a first electrode and a second electrode to a cranial nerve of the patient, providing a programmable electrical signal generator coupled to the first electrode and the second electrode, generating a first electrical signal with the electrical signal generator, applying the first electrical signal to the electrodes, wherein the first electrode is a cathode and the second electrode is an anode, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is an anode and the second electrode is a cathode, generating a second electrical signal with the electrical signal generator, applying the second electrical signal to the electrodes, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is a cathode and the second electrode is an anode, generating a third electrical signal with the electrical signal generator, and applying the third electrical signal to the electrodes. Each of the electrical signals can independently contain one or more pulses or one or more bursts. The number of pulses need not be equal between any two of the electrical signals.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to medical devices, and, more particularly, to methods, apparatus, and systems for performing electrical signal therapy by a medical device.


2. Description of the Related Art


There have been many improvements over the last several decades in medical treatments for disorders of the nervous system, such as epilepsy and other motor disorders, and abnormal neural discharge disorders. One of the more recently available treatments involves the application of an electrical signal to reduce various symptoms or effects caused by such neural disorders. For example, electrical signals have been successfully applied at strategic locations in the human body to provide various benefits, including reducing occurrences of seizures and/or improving or ameliorating other conditions. A particular example of such a treatment regimen involves applying an electrical signal to the vagus nerve of the human body to reduce or eliminate epileptic seizures, as described in U.S. Pat. Nos. 4,702,254, 4,867,164, and 5,025,807 to Dr. Jacob Zabara, which are hereby incorporated in this specification in their entirety by reference.


More generally, the endogenous electrical activity (i.e., activity attributable to the natural functioning of the patient's own body) of a neural structure of a patient may be modulated in a variety of ways. In particular, the electrical activity may be modulated by exogenously applied (i.e., from a source other than the patient's own body) electrical, chemical, or mechanical signals applied to the neural structure. The modulation (hereinafter referred to generally as “neurostimulation” or “neuromodulation”) may involve the induction of afferent action potentials, efferent action potentials, or both, in the neural structure, and may also involve blocking or interrupting the transmission of endogenous electrical activity traveling along the nerve. Electrical signal therapy or electrical modulation of a neural structure (also known as “electrical signal therapy”) refers to the application of an exogenous therapeutic electrical signal (as opposed to a chemical or mechanical signal), to the neural structure. Electrical signal therapy may be provided by implanting an electrical device underneath the skin of a patient and delivering an electrical signal to a nerve such as a cranial nerve. The electrical signal therapy may involve performing a detection step, with the electrical signal being delivered in response to a detected body parameter. This type of stimulation is generally referred to as “active,” “feedback,” or “triggered” stimulation. Alternatively, the system may operate without a detection system once the patient has been diagnosed with epilepsy (or another medical condition), and may periodically apply a series of electrical pulses to the nerve (e.g., a cranial nerve such as a vagus nerve) intermittently throughout the day, or over another predetermined time interval. This type of stimulation is generally referred to as “passive,” “non-feedback,” or “prophylactic,” stimulation. The stimulation may be applied by an implantable medical device that is implanted within the patient's body.


A number of medical conditions that are amenable to electrical signal therapy via cranial nerve stimulation present symptoms in regions outside the brain. For example, disorders of the neurological system, the gastrointestinal system, the pancreas, or the kidneys feature impaired or improper function of those organs. Diabetes, particularly type I diabetes, often features impaired production of insulin by the islets of Langerhans in the pancreas. Electrical signal stimulation of either the brain alone or the organ alone may have some efficacy in treating such medical conditions, but may lack maximal efficacy.


Therefore, a need exists for apparatus and methods for performing electrical signal stimulation of both the brain and an organ outside the brain. A need also exists for apparatus and methods for performing electrical signal stimulation with increased efficacy.


SUMMARY OF THE INVENTION

In one aspect, the present invention relates to a method of treating a medical condition in a patient using an implantable medical device including coupling at least a first electrode and a second electrode to a cranial nerve of the patient, providing a programmable electrical signal generator coupled to the first electrode and the second electrode, generating a first electrical signal with the electrical signal generator, applying the first electrical signal to the electrodes, wherein the first electrode is a cathode and the second electrode is an anode, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is an anode and the second electrode is a cathode, generating a second electrical signal with the electrical signal generator, applying the second electrical signal to the electrodes, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is a cathode and the second electrode is an anode, generating a third electrical signal with the electrical signal generator, and applying the third electrical signal to the electrodes.


Each of the electrical signals can independently contain one or more pulses or one or more bursts. The number of pulses need not be equal between any two of the electrical signals.


In one aspect, in a method of neuromodulation effected by delivery to a cranial nerve of an electrical signal characterized by a number of electrical pulses, the present invention relates to an improvement including delivering a first electrical signal using a first electrode as a cathode and a second electrode as an anode; reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is an anode and the second electrode is a cathode; delivering a second electrical signal using the first electrode and the second electrode; reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is a cathode and the second electrode is an anode; and delivering a third electrical signal using the first electrode and the second electrode.


In one aspect, the present invention relates to a system for treating a medical condition in a patient, comprising at least two electrodes coupled to at least one cranial nerve of a patient, and an implantable device operatively coupled to the electrodes and comprising an electrical signal generator capable of applying an electrical signal to the cranial nerve using the electrodes to treat the medical condition and an electrode polarity reversal unit capable of reversibly reversing the configuration of the electrodes.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:



FIGS. 1A-1C provide stylized diagrams of an implantable medical device implanted into a patient's body for providing an electrical signal to a portion of the patient's body, in accordance with one illustrative embodiment of the present invention;



FIG. 2 illustrates a block diagram depiction of the implantable medical device of FIG. 1, in accordance with one illustrative embodiment of the present invention;



FIG. 3 illustrates a block diagram depiction of an electrode polarity reversal unit shown in FIG. 2, in accordance with one illustrative embodiment of the present invention;



FIG. 4 illustrates a flowchart depiction of a method for performing limited patient-initiated electrical signal therapy, in accordance with an illustrative embodiment of the present invention; and



FIG. 5 illustrates a flowchart depiction of a method for performing limited patient-initiated electrical signal therapy, in accordance with another illustrative embodiment of the present invention.





While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Illustrative embodiments of the invention are described herein. In the interest of clarity, not all features of an actual implementation are described in this specification. In the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the design-specific goals, which will vary from one implementation to another. It will be appreciated that such a development effort, while possibly complex and time-consuming, would nevertheless be a routine undertaking for persons of ordinary skill in the art having the benefit of this disclosure.


This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “includes” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” Also, the term “couple” or “couples” is intended to mean either a direct or an indirect electrical connection. “Direct contact,” “direct attachment,” or providing a “direct coupling” indicates that a surface of a first element contacts the surface of a second element with no substantial attenuating medium there between. The presence of small quantities of substances, such as bodily fluids, that do not substantially attenuate electrical connections does not vitiate direct contact. The word “or” is used in the inclusive sense (i.e., “and/or”) unless a specific use to the contrary is explicitly stated.


The term “electrode” or “electrodes” described herein may refer to one or more stimulation electrodes (i.e., electrodes for delivering an electrical signal generated by an IMD to a tissue), sensing electrodes (i.e., electrodes for sensing a physiological indication of a patient's body), and/or electrodes that are capable of delivering a stimulation signal, as well as performing a sensing function.


Cranial nerve stimulation, such as vagus nerve stimulation (VNS), has been proposed to treat a number of medical conditions pertaining to or mediated by one or more structures of the nervous system of the body, including epilepsy and other movement disorders, depression, anxiety disorders and other neuropsychiatric disorders, dementia, head trauma, coma, migraine headache, obesity, eating disorders, sleep disorders, cardiac disorders (such as congestive heart failure and atrial fibrillation), hypertension, endocrine disorders (such as diabetes and hypoglycemia), and pain, among others. See, e.g., U.S. Pat. Nos. 4,867,164; 5,299,569; 5,269,303; 5,571,150; 5,215,086; 5,188,104; 5,263,480; 6,587,719; 6,609,025; 5,335,657; 6,622,041; 5,916,239; 5,707,400; 5,231,988; and 5,330,515. Despite the numerous disorders for which cranial nerve stimulation has been proposed or suggested as a treatment option, the fact that detailed neural pathways for many (if not all) cranial nerves remain relatively unknown, makes predictions of efficacy for any given disorder difficult or impossible. Moreover, even if such pathways were known, the precise stimulation parameters that would modulate particular pathways relevant to a particular disorder generally cannot be predicted.


In one embodiment, the present invention provides a method of treating a medical condition. The medical condition can be selected from the group consisting of epilepsy, neuropsychiatric disorders (including but not limited to depression), eating disorders/obesity, traumatic brain injury/coma, addiction disorders, dementia, sleep disorders, pain, migraine, endocrine/pancreatic disorders (including but not limited to diabetes), motility disorders, hypertension, congestive heart failure/cardiac capillary growth, hearing disorders, angina, syncope, vocal cord disorders, thyroid disorders, pulmonary disorders, gastrointestinal disorders, kidney disorders, and reproductive endocrine disorders (including infertility).


In a further embodiment, the medical condition is selected from the group consisting of gastrointestinal disorders, pancreatic disorders, kidney disorders, and diabetes.


Although not so limited, a system capable of implementing embodiments of the present invention is described below. FIGS. 1A-1C depict a stylized implantable medical system 100 for implementing one or more embodiments of the present invention. FIGS. 1A-1C illustrate an electrical signal generator 110 having main body 112 comprising a case or shell 121 (FIG. 1B) with a header 116 (FIGS. 1A, 1B) for connecting to leads 122. The generator 110 is implanted in the patient's chest in a pocket or cavity formed by the implanting surgeon just below the skin (indicated by a line 145, FIG. 1A), similar to the implantation procedure for a pacemaker pulse generator.


A stimulating nerve electrode assembly 125, preferably comprising at least an electrode pair, is conductively connected to the distal end of an insulated, electrically conductive lead assembly 122, which preferably comprises a pair of lead wires (one wire for each electrode of an electrode pair). Lead assembly 122 is attached at its proximal end to connectors on the header 116 (FIG. 1B) on case 121. The electrode assembly 125 may be surgically coupled to a cranial nerve, such as vagus nerve 127 in the patient's neck or head or at another location, e.g., near the patient's diaphragm. Other cranial nerves, such as the trigeminal nerve may also be used to deliver the therapeutic electrical signal. The electrode assembly 125 preferably comprises a bipolar stimulating electrode pair 125-1, 125-2 (FIG. 1C), such as the electrode pair described in U.S. Pat. No. 4,573,481 issued Mar. 4, 1986 to Bullara. Suitable electrode assemblies are available from Cyberonics, Inc., Houston, Tex., USA as the Model 302 electrode assembly. However, persons of skill in the art will appreciate that many electrode designs could be used in the present invention, including unipolar electrodes. Returning to FIGS. 1A and 1C, the two electrodes are preferably wrapped about the cranial nerve (e.g., vagus nerve 127), and the electrode assembly 125 may be secured to the nerve by a spiral anchoring tether 128 (FIG. 1C) such as that disclosed in U.S. Pat. No. 4,979,511 issued Dec. 25, 1990 to Reese S. Terry, Jr. and assigned to the same assignee as the instant application. Lead assembly 122 is secured, while retaining the ability to flex with movement of the chest and neck, by a suture connection 130 to nearby tissue (FIG. 1C).


In one embodiment, the open helical design of the electrode assembly 125 (described in detail in the above-cited Bullara patent), which is self-sizing and flexible, minimizes mechanical trauma to the nerve and allows body fluid interchange with the nerve. The electrode assembly 125 preferably conforms to the shape of the nerve, providing a low stimulation threshold by allowing a large stimulation contact area with the nerve. Structurally, the electrode assembly 125 comprises two electrode ribbons (not shown), of a conductive material such as platinum, iridium, platinum-iridium alloys, and/or oxides of the foregoing. The electrode ribbons are individually bonded to an inside surface of an elastomeric body portion of the two spiral electrodes 125-1 and 125-2 (FIG. 1C), which may comprise two spiral loops of a three-loop helical assembly. The lead assembly 122 may comprise two distinct lead wires or a coaxial cable whose two conductive elements are respectively coupled to one of the conductive electrode ribbons. One suitable method of coupling the lead wires or cable to the electrodes 125-1, 125-2 comprises a spacer assembly such as that disclosed in U.S. Pat. No. 5,531,778, although other known coupling techniques may be used.


The elastomeric body portion of each loop is preferably composed of silicone rubber, and the third loop 128 (which typically has no electrode) acts as the anchoring tether for the electrode assembly 125.


The electrical pulse generator 110 may be programmed with an external computer 150 using programming software of a type known in the art for stimulating neural structures, or other suitable software based on the description herein, and a programming wand 155 to facilitate radio frequency (RF) communication between the computer 150 (FIG. 1A) and the pulse generator 110. The wand 155 and software permit wireless, non-invasive communication with the generator 110 after the latter is implanted. The wand 155 is preferably powered by internal batteries, and provided with a “power on” light to indicate sufficient power for communication. Another indicator light may be provided to show that data transmission is occurring between the wand and the generator.


A variety of stimulation therapies may be provided in implantable medical systems 100 of the present invention. Different types of nerve fibers (e.g., A, B, and C-fibers being different fibers targeted for stimulation) respond differently to stimulation from electrical signals. More specifically, the different types of nerve fibers have different conduction velocities and stimulation thresholds and, therefore, differ in their responsiveness to stimulation. Certain pulses of an electrical stimulation signal, for example, may be below the stimulation threshold for a particular fiber and, therefore, may generate no action potential in the fiber. Thus, smaller or narrower pulses may be used to avoid stimulation of certain nerve fibers (such as C-fibers) and target other nerve fibers (such as A and/or B fibers, which generally have lower stimulation thresholds and higher conduction velocities than C-fibers). Additionally, techniques such as pre-polarization may be employed wherein particular nerve regions may be polarized before a more robust stimulation is delivered, which may better accommodate particular electrode materials. Furthermore, opposing polarity phases separated by a zero current phase may be used to excite particular axons or postpone nerve fatigue during long term stimulation.


As used herein, the terms “stimulating” and “stimulator” may generally refer to delivery of a signal, stimulus, or impulse to neural tissue for affecting neuronal activity of a neural tissue (e.g., a volume of neural tissue in the brain or a nerve). The effect of such stimulation on neuronal activity is termed “modulation”; however, for simplicity, the terms “stimulating” and “modulating”, and variants thereof, are sometimes used interchangeably herein. The effect of delivery of the stimulation signal to the neural tissue may be excitatory or inhibitory and may potentiate acute and/or long-term changes in neuronal activity. For example, the effect of “stimulating” or “modulating” a neural tissue may comprise one or more of the following effects: (a) changes in neural tissue to initiate an action potential (bi-directional or uni-directional); (b) inhibition of conduction of action potentials (endogenous or externally stimulated) or blocking the conduction of action potentials (hyperpolarizing or collision blocking), (c) affecting changes in neurotransmitter/neuromodulator release or uptake, and (d) changes in neuro-plasticity or neurogenesis of brain tissue. Applying an electrical signal to an autonomic nerve may comprise generating a response that includes an afferent action potential, an efferent action potential, an afferent hyperpolarization, an efferent hyperpolarization, an afferent sub-threshold depolarization, and/or an efferent sub-threshold depolarization.


In one embodiment, the stimulation method includes the steps of generating a first electrical signal with the electrical signal generator, applying the first electrical signal to the electrodes, wherein the first electrode is a cathode and the second electrode is an anode, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is an anode and the second electrode is a cathode, generating a second electrical signal with the electrical signal generator, applying the second electrical signal to the electrodes, reversing the polarity of the first electrode and the second electrode, yielding a configuration wherein the first electrode is a cathode and the second electrode is an anode, generating a third electrical signal with the electrical signal generator, and applying the third electrical signal to the electrodes.


In one embodiment, the first electrical signal, the second electrical signal, and the third electrical signal are substantially identical. In another embodiment, the first electrical signal may vary from the second electrical signal, the third electrical signal, or both in terms of one or more of pulse width, number of pulses, amplitude, frequency, stimulation on-time, and stimulation off-time, among other parameters.


The first electrical signal, the second electrical signal, and the third electrical signal are described herein in terms of exemplary illustrations. The person of ordinary skill in the art having benefit of the present disclosure would appreciate that more than three electrical signals, up to an nth electrical signal, can be used and are within the scope of the present invention.


“Cathode” and “anode” have their standard meanings, as the electrode at which current leaves the IMD system and the electrode at which current enters the IMD system, respectively. Reversing the polarity of the electrodes can be effected by any switching technique known in the art.


A “pulse” is used herein to refer to a single application of electrical charge from the cathode to the cranial nerve. Individual pulses are separated by a time period in which no charge is delivered to the nerve, which can be called the “interpulse interval.” A “burst” is used herein to refer to a plurality of pulses, wherein no charge is delivered to the nerve before the first pulse of the burst for a time period at least twice as long as the interpulse interval and no charge is delivered to the nerve after the last pulse of the burst for a time period at least twice as long as the interpulse interval. The time period between the end of the last pulse of a first burst and the initiation of the first pulse of the next subsequent burst can be called the “interburst interval.” In one embodiment, the interburst interval is at least 100 msec.


A plurality of pulses can refer to any of (a) a number of consecutive pulses within a burst, (b) all the pulses of a burst, or (c) a number of consecutive pulses including the final pulse of a first burst and the first pulse of the next subsequent burst.


Each of the first, second, and third electrical signals can independently contain one or more pulses. In one embodiment, the first electrical signal contains one or more pulses, the second electrical signal contains one or more pulses, and the third electrical signal contains one or more pulses. In a further embodiment, the first electrical signal contains one pulse, the second electrical signal contains one pulse, and the third electrical signal contains one pulse.


The number of pulses contained within the first and second electrical signals or the second and third electrical signals need not be equal, and can be in any ratio. In one embodiment, the ratio is from about 1:100 to about 100:1. In a further embodiment, the ratio is from about 1:10 to about 10:1.


In one embodiment, the first electrical signal contains a first number of pulses, the second electrical signal contains a second number of pulses, and the third electrical signal contains a third number of pulses, wherein the first number of pulses is not equal to the second number of pulses or the second number of pulses is not equal to the third number of pulses.


In another embodiment, the first electrical signal contains one or more bursts, the second electrical signal contains one or more bursts, and the third electrical signal contains one or more bursts. In a further embodiment, the first electrical signal contains one burst, the second electrical signal contains one burst, and the third electrical signal contains one burst.


The number of bursts contained within the first and second electrical signals or the second and third electrical signals need not be equal, and can be in any ratio. In one embodiment, the ratio is from about 1:100 to about 100:1. In a further embodiment, the ratio is from about 1:10 to about 10:1.


In one embodiment, the first electrical signal contains a first number of bursts, the second electrical signal contains a second number of bursts, and the third electrical signal contains a third number of bursts, wherein the first number of bursts is not equal to the second number of bursts or the second number of bursts is not equal to the third number of bursts.


Typical cranial nerve stimulation can be performed with an interpulse frequency of 20-30 Hz (resulting in a number of pulses per burst of 140-1800, at a burst duration from 7-60 sec). In one embodiment, at least one of the first electrical signal, the second electrical signal, and the third electrical signal delivers microbursts. Microburst neurostimulation is discussed by U.S. Ser. No. 11/693,451, filed Mar. 2, 2007 and published as United States patent Publication No. 20070233193, and incorporated herein by reference. In one embodiment, at least one of the first electrical signal, the second electrical signal, and the third electrical signal is characterized by having a number of pulses per microburst from 2 pulses to about 25 pulses, an interpulse interval of about 2 msec to about 50 msec, an interburst period of at least 100 msec, and a microburst duration of less than about 1 sec.


As stated above, different fiber types of cranial nerves propagate action potentials at different velocities. In one embodiment of the method, after performance of a prior applying step, the subsequent applying step is performed before an action potential induced by the prior applying step in C-fibers of the cranial nerve reaches the anode of the subsequent applying step and after an action potential induced by the prior applying step in A-fibers of the cranial nerve has passed the anode of the subsequent applying step. As a result, in this embodiment, an action potential induced in the A-fibers in the prior applying step can propagate along the nerve in the direction from the anode of the prior applying step to the cathode of the prior applying step and beyond to the brain or the distal terminus of the cranial nerve. Whereas, an action potential induced in the C-fibers in the prior applying step, though originally propagating along the nerve in the direction from the anode of the prior applying step to the cathode of the prior applying step, can be blocked by an electrical stimulation performed at the anode of the subsequent applying step, which was the cathode of the prior applying step. To generalize, by performing this method, particular fiber types in the cranial nerve can be selectively stimulated to propagate an action potential to either the proximal terminus (i.e., the brain) or distal terminus of the cranial nerve.


Turning now to FIG. 2, a block diagram depiction of an implantable medical device, in accordance with one illustrative embodiment of the present invention is illustrated. The IMD 200 may be coupled to various leads, e.g., 122 (FIGS. 1A, 1C). Stimulation signals used for therapy may be transmitted from the IMD 200 to target areas of the patient's body, specifically to various electrodes associated with the leads 122. Stimulation signals from the IMD 200 may be transmitted via the leads 122 to stimulation electrodes (electrodes that apply the therapeutic electrical signal to the target tissue) associated with the electrode assembly 125, e.g., 125-1, 125-2 (FIG. 1A). Further, signals from sensor electrodes (electrodes that are used to sense one or more body parameters such as temperature, heart rate, brain activity, etc.) may also traverse the leads back to the IMD 200.


The IMD 200 may comprise a controller 210 capable of controlling various aspects of the operation of the IMD 200. The controller 210 is capable of receiving internal data and/or external data and controlling the generation and delivery of a stimulation signal to target tissues of the patient's body. For example, the controller 210 may receive manual instructions from an operator externally, or may perform stimulation based on internal calculations and programming. The controller 210 is capable of affecting substantially all functions of the IMD 200.


The controller 210 may comprise various components, such as a processor 215, a memory 217, etc. The processor 215 may comprise one or more micro controllers, micro processors, etc., that are capable of executing a variety of software components. The memory 217 may comprise various memory portions, where a number of types of data (e.g., internal data, external data instructions, software codes, status data, diagnostic data, etc.) may be stored. The memory 217 may store various tables or other database content that could be used by the IMD 200 to implement the override of normal operations. The memory 217 may comprise random access memory (RAM) dynamic random access memory (DRAM), electrically erasable programmable read-only memory (EEPROM), flash memory, etc.


The IMD 200 may also comprise a stimulation unit 220. The stimulation unit 220 is capable of generating and delivering a variety of electrical signal therapy signals to one or more electrodes via leads. The stimulation unit 220 is capable of delivering a programmed, primary mode electrical signal to the leads 122 coupled to the IMD 200. The electrical signal may be delivered to the leads 122 by the stimulation unit 220 based upon instructions from the controller 210. The stimulation unit 220 may comprise various types of circuitry, such as stimulation signal generators, impedance control circuitry to control the impedance “seen” by the leads, and other circuitry that receives instructions relating to the type of stimulation to be performed.


The IMD 200 may also comprise an electrode polarity reversal unit 280. The electrode polarity reversal unit 280 is capable of reversing the polarity of electrodes associated with the electrode assembly 125. The electrode polarity reversal unit 280 is shown in more detail in FIG. 3. In preferred embodiments, the electrode polarity reversal unit is capable of reversing electrode polarity rapidly, i.e., in about 10 microseconds or less, and in any event at a sufficiently rapid rate to permit electrode polarities to be changed between adjacent pulses in a pulsed electrical signal.


The IMD 200 may also comprise a power supply 230. The power supply 230 may comprise a battery, voltage regulators, capacitors, etc., to provide power for the operation of the IMD 200, including delivering the stimulation signal. The power supply 230 comprises a power-source battery that in some embodiments may be rechargeable. In other embodiments, a non-rechargeable battery may be used. The power supply 230 provides power for the operation of the IMD 200, including electronic operations and the stimulation function. The power supply 230, may comprise a lithium/thionyl chloride cell or a lithium/carbon monofluoride (LiCFx) cell. Other battery types known in the art of implantable medical devices may also be used.


The IMD 200 also comprises a communication unit 260 capable of facilitating communications between the IMD 200 and various devices. In particular, the communication unit 260 is capable of providing transmission and reception of electronic signals to and from an external unit 270. The external unit 270 may be a device that is capable of programming various modules and stimulation parameters of the IMD 200. In one embodiment, the external unit 270 comprises a computer system that is capable of executing a data-acquisition program. The external unit 270 may be controlled by a healthcare provider, such as a physician, at a base station in, for example, a doctor's office. The external unit 270 may be a computer, preferably a handheld computer or PDA, but may alternatively comprise any other device that is capable of electronic communications and programming. The external unit 270 may download various parameters and program software into the IMD 200 for programming the operation of the implantable device. The external unit 270 may also receive and upload various status conditions and other data from the IMD 200. The communication unit 260 may be hardware, software, firmware, and/or any combination thereof. Communications between the external unit 270 and the communication unit 260 may occur via a wireless or other type of communication, illustrated generally by line 275 in FIG. 2.


In one embodiment, the communication unit 260 can transmit a log of stimulation data to the patient, a physician, or another party.


The IMD 200 is capable of delivering stimulation that can be intermittent, periodic, random, sequential, coded, and/or patterned. The stimulation signals may comprise an electrical stimulation frequency of approximately 01 to 2500 Hz. The stimulation signals may comprise a pulse width in the range of approximately 1-2000 micro-seconds. The stimulation signals may comprise current amplitude in the range of approximately 0.1 mA to 10 mA. The stimulation delivered by the IMD 200 according to its programming may be referred to herein as “normal operations” or as a “normal operating mode.”


The IMD 200 may also comprise a magnetic field detection unit 290. The magnetic field detection unit 290 is capable of detecting magnetic and/or electromagnetic fields of a predetermined magnitude. Whether the magnetic field results from a magnet placed proximate to the IMD 200, or whether it results from a substantial magnetic field encompassing an area, the magnetic field detection unit 290 is capable of informing the IMD of the existence of a magnetic field. The changeable electrode polarity stimulation described herein may be activated, deactivated, or alternatively activated or deactivated using a magnetic input.


The magnetic field detection unit 290 may comprise various sensors, such as a Reed Switch circuitry, a Hall Effect sensor circuitry, and/or the like. The magnetic field detection unit 290 may also comprise various registers and/or data transceiver circuits that are capable of sending signals that are indicative of various magnetic fields, the time period of such fields, etc. In this manner, the magnetic field detection unit 290 is capable of detecting whether the detected magnetic field relates to an inhibitory input or an excitory input from an external source. The inhibitory input may refer to an inhibition of, or a deviation from, normal stimulation operation. The excitory input may refer to additional stimulation or deviation from normal stimulation.


One or more of the blocks illustrated in the block diagram of the IMD 200 in FIG. 2, may comprise hardware units, software units, firmware units, or any combination thereof. Additionally, one or more blocks illustrated in FIG. 2 may be combined with other blocks, which may represent circuit hardware units, software algorithms, etc. Additionally, one or more of the circuitry and/or software units associated with the various blocks illustrated in FIG. 2 may be combined into a programmable device, such as a field programmable gate array, an ASIC device, etc.



FIG. 3 shows in greater detail the electrode polarity reversal unit 280 (FIG. 2). The electrode polarity reversal unit 280 comprises an electrode configuration switching unit 340, which includes a switching controller 345. The switching controller 345 transmits signals to one or more switches, generically, n switches 330(1), 330(2), . . . 330(n) which effect the switching of the configuration of two or more electrodes, generically, n electrodes 125(1), 125(2), . . . 125(n). Although FIG. 3 shows equal numbers of switches 330 and electrodes 125, the person of ordinary skill in the art having the benefit of the present disclosure will understand that the number of switches 330 and their connections with the various electrodes 125 can be varied as a matter of routine optimization. A switching timing unit 333 can signal to the electrode configuration switching unit 340 that a desired time for switching the electrode configuration has been reached.


Instructions for implementing a series of predetermined and/or programmable stimulation regimens may be stored in the IMD 200. These stimulation regimens may include data relating to the type of bidirectional stimulation to be implemented. For example, a first stimulation regimen may call for a particular type of pulse signal in one direction and having one electrode polarity configuration (e.g., an electrical signal in which action potentials to the brain are not blocked, and in which action potentials to a distal terminus of the nerve are partially or completely blocked or inhibited), followed by a plurality of microburst type signals during the normal off-time and delivered in the other direction (e.g., with the electrode polarities reversed such that action potentials to the brain are partially or completely blocked or inhibited, but action potentials to the distal terminus of the nerve are not blocked or inhibited). A second exemplary stimulation regimen may call for a series of pulses in a first direction, followed by an off-time, and then followed by a series of pulses in the opposite direction. A third exemplary stimulation regimen may call for switching electrode polarity in a 2-electrode configuration after each pulse, such that propagation of action potentials in each direction are sequentially permitted and then at least partially blocked, then permitted again in alternating sequence. In other embodiments, multiple pulses may be generated in a first electrode configuration, followed by switching electrode polarity to a second electrode configuration for one or a few pulses, followed by switching polarity back to the first electrode configuration. Information relating to the stimulation regimens may be used by the electrode polarity reversal unit 280 to control the operations of the first through nth switches 330(1-n).


In one embodiment, each of a plurality of stimulation regimens may respectively relate to a particular disorder. In one embodiment, different regimens relating to the same disorder may be implemented to accommodate improvements or regressions in the patient's present condition relative to his or her condition at previous times. By providing flexibility in electrode configurations nearly instantaneously, the present invention greatly expands the range of adjustments that may be made to respond to changes in the patient's underlying medical condition.


The switching controller 345 may be a processor that is capable of receiving data relating to the stimulation regimens. In an alternative embodiment, the switching controller may be a software or a firmware module. Based upon the particulars of the stimulation regimens, the switching timing unit 333 may provide timing data to the switching controller 345. The first through nth switches 330(1-n) may be electrical devices, electromechanical devices, and/or solid state devices (e.g., transistors).



FIG. 4 shows one embodiment of a method of performing changeable electrode polarity stimulation according to the present invention. In this embodiment, the IMD 200 has a first normal stimulation mode in which it performs single polarity stimulation 410, i.e., stimulation in which only one electrode 125 of the IMD 200 is the cathode for delivery of electrical signals to the cranial nerve such as vagus nerve 127, and in which the electrode polarities are only changed by manual programming. At predetermined times during performance of single polarity stimulation 410, the IMD 200 checks 420 whether a signal to enter a changeable electrode polarity stimulation mode has been received. The signal to enter a changeable electrode polarity stimulation mode can be received, by way of nonlimiting examples, from the controller 210 (FIG. 2), from a sensor or sensors implanted in or on the patient's body which detect(s) one or more bodily parameters (e.g., heart rate, respiration rate, blood pressure, blood glucose, etc.), from a medical practitioner communicating with the device via wand 155 (FIG. 1), or a medical practitioner or patient using a magnet to provide a signal via the magnetic field detection unit 290. Regardless of the nature of the signal, if the IMD 200 does not detect it when checking 420, the IMD reverts to single polarity stimulation 410.


However, if the signal is received, the IMD 200 then implements a changeable electrode polarity stimulation mode shown in steps 430-460. Specifically, the IMD 200 delivers 430 a first predetermined number of pulses in a first polarity configuration of the electrodes. For an example, a first electrode 125(1) may be the cathode and a second electrode 125(2) may be the anode in step 430. After the first predetermined number of pulses are delivered in the first configuration (step 430), the IMD 200 reverses 440 the polarity of the electrodes to a second polarity configuration. Continuing the example, the first electrode 125(1) may be switched to be the anode and the second electrode 125(2) may be switched to be the cathode. It will be appreciated that, where 3 or more electrodes are used, only some of the electrode polarities may be reversed. Step 450 resembles step 430, though it will be noted the second electrode polarity configuration differs from the first electrode polarity configuration, and the second predetermined number of pulses may differ in number of pulses or other stimulation parameters (pulse frequency, pulse width, On Time, Off Time, interpulse interval, number of pulses per burst, or interburst interval, among others) from the first predetermined number of pulses. Step 460 resembles step 440, though it will be noted it reverts the configuration of the electrodes to the first electrode polarity configuration as in step 430.


After steps 430-460 have been performed, the IMD 200 checks 470 whether a signal to discontinue the changeable electrode polarity stimulation mode has been received. The signal to discontinue the changeable electrode polarity stimulation mode can be received from the same sources described above in the context of checking step 420. Regardless of the nature of the signal, if the IMD 200 does not detect the signal when performing checking step 470, the IMD 200 continues changeable electrode polarity stimulation by returning to step 430. If the signal is detected when performing checking step 470, the IMD 200 reverts to single polarity stimulation 410.



FIG. 5 shows another embodiment of a method according to the present invention. The method comprises steps 530-560, which resemble steps 430-460 shown in FIG. 4. The method shown in FIG. 5 does not include single polarity stimulation; after the second reversal step 560 is performed, the IMD 200 continues changeable electrode polarity stimulation by returning to step 530.


In the methods shown in FIGS. 4-5, one or more of the properties of the first predetermined number of pulses (e.g., number of pulses, pulse frequency, pulse width, On time, Off time, interpulse interval, number of pulses per burst, or interburst interval, among others) can be changed upon each performance of step 430 or 530. The properties can be varied in a preprogrammed fashion, following programming executed by the controller 210, or can be varied according to data retrieved from a sensor of a bodily parameter of the patient or in response to instructions received from a medical practitioner or the patient. Similarly, one or more of the properties of the second predetermined number of pulses can be changed upon each performance of step 450 or 550.


The particular embodiments disclosed above are illustrative only as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown other than as described in the claims below. It is, therefore, evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.

Claims
  • 1. A method of treating one or more medical conditions in a patient, the method comprising: applying a first electrical signal in a first stimulation mode to a cranial nerve of the patient, via at least first and second electrodes coupled to an electrical signal generator of an implantable medical device and to the cranial nerve, wherein the first electrode operates as a cathode and is proximal to a brain relative to the second electrode that operates as an anode and is distal to the brain, wherein the first stimulation mode performs single polarity stimulation;receiving an output from a sensor configured to detect one or more bodily parameters of the patient;entering a second stimulation mode based on the output received from the sensor, wherein the second stimulation mode performs changeable electrode polarity stimulation;applying a second electrical signal in the second stimulation mode to the cranial nerve of the patient, via the first and second electrodes, wherein the first and second electrodes are configured to switch between a first electrode configuration and a second electrode configuration in the second stimulation mode, wherein the first electrode operates as the cathode and the second electrode operates as the anode in the first electrode configuration, wherein the first electrode operates as the anode and the second electrode operates as the cathode in the second electrode configuration.
  • 2. The method of claim 1, wherein the first electrical signal contains one pulse and the second electrical signal contains one pulse.
  • 3. The method of claim 1, wherein the first electrical signal contains a first number of pulses and the second electrical signal contains a second number of pulses, wherein: the first number of pulses is not equal to the second number of pulses.
  • 4. The method of claim 1, wherein the first electrical signal contains one burst and the second electrical signal contains one burst.
  • 5. The method of claim 1, wherein the first electrical signal contains a first number of bursts and the second electrical signal contains a second number of bursts, the first number of bursts is not equal to the second number of bursts.
  • 6. The method of claim 1, wherein the second electrical signal is characterized by having an interpulse interval in a range from about 2 milliseconds to about 4.3 milliseconds for each centimeter of distance between the first electrode and the second electrode.
  • 7. The method of claim 1, wherein at least one of the first electrical signal and the second electrical signal is characterized by having a number of pulses per microburst from 2 pulses to about 25 pulses, an interpulse interval of about 2 milliseconds to about 50 milliseconds, an interburst period of at least 100 milliseconds, and a microburst duration of less than about 1 second.
  • 8. The method of claim 1, wherein the medical condition being treated is at least one of a neurological disorder, neuropsychiatric disorder, gastrointestinal disorder, pancreatic disorder, kidney disorder, or diabetes.
  • 9. The method of claim 1, wherein the cranial nerve is a vagus nerve.
  • 10. The method of claim 1, wherein applying the first electrical signal to the cranial nerve treats a first medical condition of the brain.
  • 11. The method of claim 1, wherein applying the second electrical signal to the cranial nerve treats a non-brain medical condition.
  • 12. An implantable medical device to treat medical conditions in a patient, the implantable medical device comprising: a controller configured to receive an output from a sensor configured to detect one or more bodily parameters of the patient;a stimulation unit coupled to the controller, the stimulation unit configured to generate and deliver electrical signals to a cranial nerve of the patient via first and second electrodes coupled to the cranial nerve, wherein the stimulation unit is configured to deliver a first electrical signal in a first stimulation mode to the cranial nerve via the first electrode and the second electrode, the first electrode operating as a cathode and proximal to a brain relative to the second electrode, the second electrode operating as an anode and distal to the brain, wherein the first stimulation mode performs single polarity stimulation;wherein the controller is configured to enter a second stimulation mode based on the output received from the sensor, wherein the second stimulation mode performs changeable electrode polarity stimulation;wherein the stimulation unit is configured to deliver a second electrical signal to the cranial nerve, via the first and second electrodes, wherein the first and second electrodes are configured to switch between a first electrode configuration and a second electrode configuration in the second stimulation mode, wherein the first electrode operates as the cathode and the second electrode operates as the anode in the first electrode configuration, wherein the first electrode operates as the anode and the second electrode operates as the cathode in the second electrode configuration.
  • 13. The implantable medical device of claim 12, wherein the first electrical signal contains one pulse and the second electrical signal contains one pulse.
  • 14. The implantable medical device of claim 12, wherein the first electrical signal contains a first number of pulses and the second electrical signal contains a second number of pulses, wherein the first number of pulses is not equal to the second number of pulses.
  • 15. The implantable medical device of claim 12, wherein the first electrical signal contains one burst and the second electrical signal contains one burst.
  • 16. The implantable medical device of claim 12, wherein the first electrical signal contains a first number of bursts and the second electrical signal contains a second number of bursts, wherein the first number of bursts is not equal to the second number of bursts.
  • 17. The implantable medical device of claim 12, wherein the stimulation unit is configured to provide for an interpulse interval, between delivery of the first electrical signal and the second electrical signal, in a range from about 2 milliseconds to about 4.3 milliseconds for each centimeter of distance between the first electrode and the second electrode.
  • 18. The implantable medical device of claim 12, wherein at least one of the first electrical signal and the second electrical signal is characterized by having a number of pulses per microburst from 2 pulses to about 25 pulses, an interpulse interval of about 2 milliseconds to about 50 milliseconds, an interburst period of at least 100 milliseconds, and a microburst duration of less than about 1 second.
  • 19. The implantable medical device of claim 12, wherein the medical condition being treated is at least one of a neurological disorder, neuropsychiatric disorder, gastrointestinal disorder, pancreatic disorder, kidney disorder, or diabetes.
  • 20. The implantable medical device of claim 12, wherein the cranial nerve is a vagus nerve.
  • 21. The implantable medical device of claim 12, wherein delivering the first electrical signal to the cranial nerve treats a first medical condition of the brain.
  • 22. The implantable medical device of claim 12, wherein delivering the second electrical signal to the cranial nerve treats a non-brain medical condition.
  • 23. A method of treating at least one medical condition in a patient, the method comprising: applying a first electrical signal in a first stimulation mode to a cranial nerve of the patient, via at least first and second electrodes coupled to an electrical signal generator of an implantable medical device and to the cranial nerve, wherein the first electrode operates as a cathode and is proximal to a brain relative to the second electrode that operates as an anode and is distal to the brain, wherein the first stimulation mode performs single polarity stimulation;receiving an output from a sensor configured to detect one or more bodily parameters of the patient, the one or more bodily parameters including at least one of heart rate, respiration rate, blood pressure, and blood glucose;entering a second stimulation mode based on the output received from the sensor, wherein the second stimulation mode performs changeable electrode polarity stimulation;applying a second electrical signal in the second stimulation mode to the cranial nerve of the patient, via the first and second electrodes coupled to the electrical signal generator and to the cranial nerve, wherein the first and second electrodes are configured to switch between a first electrode configuration and a second electrode configuration in the second stimulation mode, wherein the first electrode operates as the cathode and the second electrode operates as the anode in the first electrode configuration, wherein the first electrode operates as the anode and the second electrode operates as the cathode in the second electrode configuration.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-in-Part of U.S. patent application No. 11/046,430 filed on Jan. 28, 2005 with inventors Randolph K. Armstrong and Scott A. Armstrong.

US Referenced Citations (548)
Number Name Date Kind
3760812 Timm et al. Sep 1973 A
3796221 Hagfors Mar 1974 A
4107469 Jenkins Aug 1978 A
4305402 Katims Dec 1981 A
4338945 Kosugi et al. Jul 1982 A
4424812 Lesnick Jan 1984 A
4431000 Butler et al. Feb 1984 A
4459989 Borkan Jul 1984 A
4503863 Katims Mar 1985 A
4541432 Molina-Negro et al. Sep 1985 A
4573481 Bullara Mar 1986 A
4577316 Schiff Mar 1986 A
4590946 Loeb May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4606349 Livingston et al. Aug 1986 A
4608985 Crish et al. Sep 1986 A
4612934 Borkan Sep 1986 A
4625308 Kim et al. Nov 1986 A
4628942 Sweeney et al. Dec 1986 A
4649936 Ungar et al. Mar 1987 A
4702254 Zarbara Oct 1987 A
4793353 Borkan Dec 1988 A
4867164 Zabara Sep 1989 A
4920979 Bullara May 1990 A
4949721 Toriu et al. Aug 1990 A
4977895 Tannenbaum Dec 1990 A
4979511 Terry, Jr. Dec 1990 A
5025807 Zabara Jun 1991 A
5081987 Nigam Jan 1992 A
5154172 Terry, Jr. et al. Oct 1992 A
5179950 Stanislaw Jan 1993 A
5186170 Varrichio et al. Feb 1993 A
5188104 Wernicke et al. Feb 1993 A
5205285 Baker, Jr. Apr 1993 A
5215086 Terry, Jr. et al. Jun 1993 A
5222494 Baker, Jr. Jun 1993 A
5231988 Wernicke et al. Aug 1993 A
5235980 Varrichio et al. Aug 1993 A
5263480 Wernicke et al. Nov 1993 A
5269303 Wernicke et al. Dec 1993 A
5299569 Wernicke et al. Apr 1994 A
5330507 Schwartz Jul 1994 A
5330515 Rutecki et al. Jul 1994 A
5334221 Bardy Aug 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5354320 Schaldach et al. Oct 1994 A
5411531 Hill et al. May 1995 A
5411540 Edell et al. May 1995 A
5423872 Cigaina Jun 1995 A
5507784 Hill et al. Apr 1996 A
5522862 Testerman et al. Jun 1996 A
5522865 Schulman et al. Jun 1996 A
5531778 Maschino et al. Jul 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5571150 Wernicke et al. Nov 1996 A
5601617 Loeb et al. Feb 1997 A
5611350 John Mar 1997 A
5645570 Corbucci Jul 1997 A
5651378 Matheny et al. Jul 1997 A
5658318 Stroetmann et al. Aug 1997 A
5690681 Geddes et al. Nov 1997 A
5690688 Noren et al. Nov 1997 A
5690691 Chen et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5702428 Tippey et al. Dec 1997 A
5702429 King Dec 1997 A
5707400 Terry, Jr. et al. Jan 1998 A
5755750 Petruska et al. May 1998 A
5792212 Weijand Aug 1998 A
5800474 Benabid et al. Sep 1998 A
5814092 King Sep 1998 A
5836994 Bourgeois Nov 1998 A
5861014 Familoni Jan 1999 A
5913882 King Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5928272 Adkins et al. Jul 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5995868 Osorio et al. Nov 1999 A
6002966 Loeb et al. Dec 1999 A
6016449 Fischell et al. Jan 2000 A
6041258 Cigaina et al. Mar 2000 A
6083249 Familoni Jul 2000 A
6101412 Duhaylongsod Aug 2000 A
6104955 Bourgeois Aug 2000 A
6104956 Naritoku et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6132361 Epstein et al. Oct 2000 A
6141590 Renirie et al. Oct 2000 A
6161044 Silverstone Dec 2000 A
6167311 Rezai Dec 2000 A
6175764 Loeb et al. Jan 2001 B1
6188929 Giordano Feb 2001 B1
6219580 Faltys et al. Apr 2001 B1
6221908 Kilgard et al. Apr 2001 B1
6238423 Bardy May 2001 B1
6249704 Maltan et al. Jun 2001 B1
6253109 Gielen Jun 2001 B1
6266564 Hill et al. Jul 2001 B1
6269270 Boveja Jul 2001 B1
6295472 Rubinstein et al. Sep 2001 B1
6304775 Iasemidis et al. Oct 2001 B1
6308102 Sieracki Oct 2001 B1
6324421 Stadler et al. Nov 2001 B1
6327503 Familoni Dec 2001 B1
6339725 Naritoku et al. Jan 2002 B1
6341236 Osorio et al. Jan 2002 B1
6353762 Baudino et al. Mar 2002 B1
6356788 Boveja Mar 2002 B2
6358203 Bardy Mar 2002 B2
6366813 DiLorenzo Apr 2002 B1
6366814 Boveja Apr 2002 B1
6374140 Rise Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6381496 Meadows et al. Apr 2002 B1
6381499 Taylor et al. Apr 2002 B1
6418344 Rezai et al. Jul 2002 B1
6425852 Epstein et al. Jul 2002 B1
6438423 Rezai et al. Aug 2002 B1
6449512 Boveja Sep 2002 B1
6453199 Kobozev Sep 2002 B1
6459936 Fischell et al. Oct 2002 B2
6463328 John Oct 2002 B1
6466822 Pless Oct 2002 B1
6473639 Fischell et al. Oct 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6477417 Levine Nov 2002 B1
6477418 Plicchi et al. Nov 2002 B2
6480743 Kirkpatrick et al. Nov 2002 B1
6484132 Hively et al. Nov 2002 B1
6487446 Hill et al. Nov 2002 B1
6505074 Boveja et al. Jan 2003 B2
6522928 Whitehurst et al. Feb 2003 B2
6532388 Hill et al. Mar 2003 B1
6549804 Osorio et al. Apr 2003 B1
6556868 Naritoku et al. Apr 2003 B2
6564102 Boveja May 2003 B1
6565503 Leysieffer et al. May 2003 B2
6579280 Kovach et al. Jun 2003 B1
6587719 Barrett et al. Jul 2003 B1
6587724 Mann Jul 2003 B2
6587726 Lurie et al. Jul 2003 B2
6587727 Osorio et al. Jul 2003 B2
6591138 Fischell et al. Jul 2003 B1
6594524 Esteller et al. Jul 2003 B2
6600953 Flesler et al. Jul 2003 B2
6609025 Barrett et al. Aug 2003 B2
6609030 Rezai et al. Aug 2003 B1
6609031 Law et al. Aug 2003 B1
6610713 Tracey Aug 2003 B2
6611715 Boveja Aug 2003 B1
6612983 Marchal Sep 2003 B1
6615081 Boveja Sep 2003 B1
6615084 Cigaina Sep 2003 B1
6615085 Boveja Sep 2003 B1
6622038 Barrett et al. Sep 2003 B2
6622041 Terry, Jr. et al. Sep 2003 B2
6622047 Barrett et al. Sep 2003 B2
6628987 Hill et al. Sep 2003 B1
6656960 Puskas Dec 2003 B2
6662053 Borkan Dec 2003 B2
6668191 Boveja Dec 2003 B1
6671547 Lyster et al. Dec 2003 B2
6671555 Gielen et al. Dec 2003 B2
6671556 Osorio et al. Dec 2003 B2
6684104 Gordon et al. Jan 2004 B2
6684105 Cohen et al. Jan 2004 B2
6690973 Hill et al. Feb 2004 B2
6690974 Archer et al. Feb 2004 B2
6708064 Rezai Mar 2004 B2
6721603 Zabara et al. Apr 2004 B2
6731979 MacDonald May 2004 B2
6731986 Mann May 2004 B2
6754536 Swoyer et al. Jun 2004 B2
6760626 Boveja Jul 2004 B1
6764498 Mische Jul 2004 B2
6768969 Nikitin et al. Jul 2004 B1
6775573 Schuler et al. Aug 2004 B2
6793670 Osorio et al. Sep 2004 B2
6819956 DiLorenzo Nov 2004 B2
6826428 Chen et al. Nov 2004 B1
6832114 Whitehurst et al. Dec 2004 B1
6853862 Marchal et al. Feb 2005 B1
6885888 Rezai Apr 2005 B2
6895278 Gordon May 2005 B1
6904390 Nikitin et al. Jun 2005 B2
6907295 Gross et al. Jun 2005 B2
6920357 Osorio et al. Jul 2005 B2
6934580 Osorio et al. Aug 2005 B1
6944501 Pless Sep 2005 B1
6961618 Osorio et al. Nov 2005 B2
7006859 Osorio et al. Feb 2006 B1
7006872 Gielen et al. Feb 2006 B2
7050856 Stypulkowski May 2006 B2
7054686 MacDonald May 2006 B2
7146217 Firlik et al. Dec 2006 B2
7167750 Knudson et al. Jan 2007 B2
7177678 Osorio et al. Feb 2007 B1
7188053 Nikitin et al. Mar 2007 B2
7204833 Osorio et al. Apr 2007 B1
7209787 DiLorenzo Apr 2007 B2
7231254 DiLorenzo Jun 2007 B2
7236830 Gliner Jun 2007 B2
7236831 Firlik et al. Jun 2007 B2
7242983 Frei et al. Jul 2007 B2
7242984 DiLorenzo Jul 2007 B2
7340302 Falkenberg et al. Mar 2008 B1
20010034541 Lyden Oct 2001 A1
20010037220 Merry et al. Nov 2001 A1
20020052539 Haller et al. May 2002 A1
20020065509 Lebel et al. May 2002 A1
20020072782 Osorio et al. Jun 2002 A1
20020082480 Riff et al. Jun 2002 A1
20020099412 Fischell et al. Jul 2002 A1
20020099417 Naritoku et al. Jul 2002 A1
20020116030 Rezai Aug 2002 A1
20020120310 Linden et al. Aug 2002 A1
20020133204 Hrdlicka Sep 2002 A1
20020143368 Bakels et al. Oct 2002 A1
20020151939 Rezai Oct 2002 A1
20020153901 Davis et al. Oct 2002 A1
20020188214 Misczynski et al. Dec 2002 A1
20030028226 Thompson et al. Feb 2003 A1
20030055457 MacDonald Mar 2003 A1
20030074032 Gliner Apr 2003 A1
20030083716 Nicolelis et al. May 2003 A1
20030088274 Gliner et al. May 2003 A1
20030095648 Kaib et al. May 2003 A1
20030097161 Firlik et al. May 2003 A1
20030109903 Berrang et al. Jun 2003 A1
20030125786 Gliner et al. Jul 2003 A1
20030130706 Sheffield et al. Jul 2003 A1
20030144711 Pless et al. Jul 2003 A1
20030144829 Geatz et al. Jul 2003 A1
20030181954 Rezai Sep 2003 A1
20030181958 Dobak Sep 2003 A1
20030181959 Dobak Sep 2003 A1
20030208212 Cigaina Nov 2003 A1
20030210147 Humbard Nov 2003 A1
20030212440 Boveja Nov 2003 A1
20030236558 Whitehurst et al. Dec 2003 A1
20040006278 Webb et al. Jan 2004 A1
20040015205 Whitehurst et al. Jan 2004 A1
20040036377 Mezinis Feb 2004 A1
20040039424 Merritt et al. Feb 2004 A1
20040088024 Firlik et al. May 2004 A1
20040111139 McCreery Jun 2004 A1
20040112894 Varma Jun 2004 A1
20040122484 Hatlestad et al. Jun 2004 A1
20040122485 Stahmann et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133119 Osorio et al. Jul 2004 A1
20040138516 Osorio et al. Jul 2004 A1
20040138517 Osorio et al. Jul 2004 A1
20040138518 Rise et al. Jul 2004 A1
20040138647 Osorio et al. Jul 2004 A1
20040138711 Osorio et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147992 Bluger et al. Jul 2004 A1
20040153129 Pless et al. Aug 2004 A1
20040158119 Osorio et al. Aug 2004 A1
20040158165 Yonce et al. Aug 2004 A1
20040167583 Knudson et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172085 Knudson et al. Sep 2004 A1
20040172088 Knudson et al. Sep 2004 A1
20040172089 Whitehurst et al. Sep 2004 A1
20040172091 Rezai Sep 2004 A1
20040172094 Cohen et al. Sep 2004 A1
20040176812 Knudson et al. Sep 2004 A1
20040176831 Gliner et al. Sep 2004 A1
20040193231 David et al. Sep 2004 A1
20040199146 Rogers et al. Oct 2004 A1
20040199187 Loughran Oct 2004 A1
20040199212 Fischell et al. Oct 2004 A1
20040210270 Erickson Oct 2004 A1
20040210274 Bauhahn et al. Oct 2004 A1
20040249302 Donoghue et al. Dec 2004 A1
20040249416 Yun et al. Dec 2004 A1
20040260346 Overall et al. Dec 2004 A1
20040263172 Gray et al. Dec 2004 A1
20050004615 Sanders Jan 2005 A1
20050004621 Boveja et al. Jan 2005 A1
20050010262 Rezai et al. Jan 2005 A1
20050015128 Rezai et al. Jan 2005 A1
20050016657 Bluger Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021092 Yun et al. Jan 2005 A1
20050021103 DiLorenzo Jan 2005 A1
20050021104 DiLorenzo Jan 2005 A1
20050021105 Firlik et al. Jan 2005 A1
20050021106 Firlik et al. Jan 2005 A1
20050021107 Firlik et al. Jan 2005 A1
20050021118 Genau et al. Jan 2005 A1
20050027284 Lozano et al. Feb 2005 A1
20050028026 Shirley et al. Feb 2005 A1
20050033378 Sheffield et al. Feb 2005 A1
20050033379 Lozano et al. Feb 2005 A1
20050038326 Mathur Feb 2005 A1
20050038484 Knudson et al. Feb 2005 A1
20050049515 Misczynski et al. Mar 2005 A1
20050049655 Boveja et al. Mar 2005 A1
20050060007 Goetz Mar 2005 A1
20050060008 Goetz Mar 2005 A1
20050060009 Goetz Mar 2005 A1
20050060010 Goetz Mar 2005 A1
20050065562 Rezai Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065574 Rezai Mar 2005 A1
20050065575 Dobak Mar 2005 A1
20050070971 Fowler et al. Mar 2005 A1
20050075679 Gliner et al. Apr 2005 A1
20050075680 Lowry et al. Apr 2005 A1
20050075681 Rezai et al. Apr 2005 A1
20050075691 Phillips et al. Apr 2005 A1
20050075701 Shafer Apr 2005 A1
20050075702 Shafer Apr 2005 A1
20050088145 Loch Apr 2005 A1
20050101873 Misczynski et al. May 2005 A1
20050102002 Salo et al. May 2005 A1
20050107753 Rezai et al. May 2005 A1
20050107842 Rezai May 2005 A1
20050107858 Bluger May 2005 A1
20050113705 Fischell et al. May 2005 A1
20050113744 Donoghue et al. May 2005 A1
20050119703 DiLorenzo Jun 2005 A1
20050124901 Misczynski et al. Jun 2005 A1
20050131467 Boveja et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050131486 Boveja et al. Jun 2005 A1
20050131493 Boveja et al. Jun 2005 A1
20050131506 Rezai et al. Jun 2005 A1
20050137480 Alt et al. Jun 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050143786 Boveja Jun 2005 A1
20050148893 Misczynski et al. Jul 2005 A1
20050148894 Misczynski et al. Jul 2005 A1
20050148895 Misczynski et al. Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050154425 Boveja et al. Jul 2005 A1
20050154435 Stern et al. Jul 2005 A1
20050159789 Brockway et al. Jul 2005 A1
20050161052 Rezai et al. Jul 2005 A1
20050165458 Boveja et al. Jul 2005 A1
20050177192 Rezai et al. Aug 2005 A1
20050177200 George et al. Aug 2005 A1
20050177206 North et al. Aug 2005 A1
20050182389 LaPorte et al. Aug 2005 A1
20050187590 Boveja et al. Aug 2005 A1
20050187593 Housworth et al. Aug 2005 A1
20050187796 Rosenfeld et al. Aug 2005 A1
20050192644 Boveja et al. Sep 2005 A1
20050197590 Osorio et al. Sep 2005 A1
20050222631 Dalal et al. Oct 2005 A1
20050228693 Webb et al. Oct 2005 A1
20050240246 Lee et al. Oct 2005 A1
20050245944 Rezai Nov 2005 A1
20050245971 Brockway et al. Nov 2005 A1
20050245990 Roberson Nov 2005 A1
20050261542 Riehl Nov 2005 A1
20050267550 Hess et al. Dec 2005 A1
20050272280 Osypka Dec 2005 A1
20050277872 Colby, Jr. et al. Dec 2005 A1
20050277998 Tracey et al. Dec 2005 A1
20050283200 Rezai et al. Dec 2005 A1
20050283201 Machado et al. Dec 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288600 Zhang et al. Dec 2005 A1
20050288736 Persen et al. Dec 2005 A1
20050288760 Machado et al. Dec 2005 A1
20060009815 Boveja Jan 2006 A1
20060015153 Gliner et al. Jan 2006 A1
20060020292 Goetz et al. Jan 2006 A1
20060020491 Mongeon et al. Jan 2006 A1
20060041222 Dewing et al. Feb 2006 A1
20060041223 Dewing et al. Feb 2006 A1
20060041287 Dewing et al. Feb 2006 A1
20060047205 Ludomirsky et al. Mar 2006 A1
20060052843 Elsner et al. Mar 2006 A1
20060058597 Machado et al. Mar 2006 A1
20060064133 Von Arx et al. Mar 2006 A1
20060064134 Mazar et al. Mar 2006 A1
20060064143 Von Arx et al. Mar 2006 A1
20060069322 Zhang et al. Mar 2006 A1
20060074450 Boveja Apr 2006 A1
20060079936 Boveja Apr 2006 A1
20060079942 Deno et al. Apr 2006 A1
20060079945 Libbus Apr 2006 A1
20060085046 Rezai et al. Apr 2006 A1
20060094971 Drew May 2006 A1
20060095081 Zhou et al. May 2006 A1
20060100667 Machado et al. May 2006 A1
20060106430 Fowler et al. May 2006 A1
20060106431 Wyler et al. May 2006 A1
20060111644 Guttag et al. May 2006 A1
20060122525 Shusterman Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060122864 Gottesman et al. Jun 2006 A1
20060135877 Giftakis et al. Jun 2006 A1
20060135881 Giftakis et al. Jun 2006 A1
20060155495 Osorio et al. Jul 2006 A1
20060161459 Rosenfeld et al. Jul 2006 A9
20060167497 Armstrong et al. Jul 2006 A1
20060173493 Armstrong et al. Aug 2006 A1
20060173522 Osorio Aug 2006 A1
20060190056 Fowler et al. Aug 2006 A1
20060195155 Firlik et al. Aug 2006 A1
20060195163 KenKnight et al. Aug 2006 A1
20060200206 Firlik et al. Sep 2006 A1
20060212091 Lozano et al. Sep 2006 A1
20060217780 Gliner et al. Sep 2006 A1
20060220839 Fifolt et al. Oct 2006 A1
20060224067 Giftakis et al. Oct 2006 A1
20060224191 DiLorenzo Oct 2006 A1
20060241697 Libbus et al. Oct 2006 A1
20060241725 Libbus et al. Oct 2006 A1
20060253164 Zhang et al. Nov 2006 A1
20060253168 Wyler et al. Nov 2006 A1
20060253169 Wyler et al. Nov 2006 A1
20060253170 Wyler et al. Nov 2006 A1
20060253171 Wyler et al. Nov 2006 A1
20060259095 Wyler et al. Nov 2006 A1
20060264730 Stivoric et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20060271409 Rosenfeld et al. Nov 2006 A1
20060293720 DiLorenzo Dec 2006 A1
20070027486 Armstrong et al. Feb 2007 A1
20070032734 Najafi et al. Feb 2007 A1
20070032834 Gliner et al. Feb 2007 A1
20070038262 Kieval et al. Feb 2007 A1
20070043392 Gliner et al. Feb 2007 A1
20070055320 Weinand et al. Mar 2007 A1
20070073150 Gopalsami et al. Mar 2007 A1
20070073346 Corbucci et al. Mar 2007 A1
20070073355 DiLorenzo Mar 2007 A1
20070078491 Siejko et al. Apr 2007 A1
20070088403 Wyler et al. Apr 2007 A1
20070088404 Wyler et al. Apr 2007 A1
20070088405 Jacobson et al. Apr 2007 A1
20070100278 Frei et al. May 2007 A1
20070100397 Seeberger et al. May 2007 A1
20070100398 Sloan May 2007 A1
20070112393 Gliner et al. May 2007 A1
20070123946 Masoud May 2007 A1
20070135855 Foshee et al. Jun 2007 A1
20070142862 DiLorenzo Jun 2007 A1
20070142873 Esteller et al. Jun 2007 A1
20070149952 Bland et al. Jun 2007 A1
20070150011 Meyer et al. Jun 2007 A1
20070150014 Kramer et al. Jun 2007 A1
20070150024 Leyde et al. Jun 2007 A1
20070150025 DiLorenzo et al. Jun 2007 A1
20070156179 Karashurov Jul 2007 A1
20070156450 Roehm et al. Jul 2007 A1
20070156626 Roehm et al. Jul 2007 A1
20070161919 DiLorenzo Jul 2007 A1
20070162086 DiLorenzo Jul 2007 A1
20070167991 DiLorenzo Jul 2007 A1
20070173901 Reeve Jul 2007 A1
20070179534 Firlik et al. Aug 2007 A1
20070179558 Gliner et al. Aug 2007 A1
20070179584 Gliner Aug 2007 A1
20070191905 Errico et al. Aug 2007 A1
20070203548 Pawelzik et al. Aug 2007 A1
20070208212 DiLorenzo Sep 2007 A1
20070208390 Von Arx et al. Sep 2007 A1
20070213785 Osorio et al. Sep 2007 A1
20070233192 Craig Oct 2007 A1
20070233193 Craig Oct 2007 A1
20070238939 Giftakis et al. Oct 2007 A1
20070239210 Libbus et al. Oct 2007 A1
20070239211 Lorincz et al. Oct 2007 A1
20070239220 Greenhut et al. Oct 2007 A1
20070244407 Osorio Oct 2007 A1
20070249953 Frei et al. Oct 2007 A1
20070249954 Virag et al. Oct 2007 A1
20070250130 Ball et al. Oct 2007 A1
20070250145 Kraus et al. Oct 2007 A1
20070255147 Drew et al. Nov 2007 A1
20070255155 Drew et al. Nov 2007 A1
20070255330 Lee et al. Nov 2007 A1
20070255337 Lu Nov 2007 A1
20070260147 Giftakis et al. Nov 2007 A1
20070260289 Giftakis et al. Nov 2007 A1
20070265489 Fowler et al. Nov 2007 A1
20070265508 Sheikhzadeh-Nadjar et al. Nov 2007 A1
20070265536 Giftakis et al. Nov 2007 A1
20070272260 Nikitin et al. Nov 2007 A1
20070282177 Pilz Dec 2007 A1
20070287931 Dilorenzo Dec 2007 A1
20070288072 Pascual-Leone et al. Dec 2007 A1
20070299349 Alt et al. Dec 2007 A1
20070299473 Matos Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080015651 Ettori et al. Jan 2008 A1
20080015652 Maile et al. Jan 2008 A1
20080021332 Brainard, III Jan 2008 A1
20080021341 Harris et al. Jan 2008 A1
20080021517 Dietrich Jan 2008 A1
20080021520 Dietrich Jan 2008 A1
20080027347 Harris et al. Jan 2008 A1
20080027348 Harris et al. Jan 2008 A1
20080027515 Harris et al. Jan 2008 A1
20080033502 Harris et al. Feb 2008 A1
20080033503 Fowler et al. Feb 2008 A1
20080033508 Frei et al. Feb 2008 A1
20080039895 Fowler et al. Feb 2008 A1
20080046035 Fowler et al. Feb 2008 A1
20080046037 Haubrich et al. Feb 2008 A1
20080046038 Hill et al. Feb 2008 A1
20080051852 Dietrich et al. Feb 2008 A1
20080058884 Matos Mar 2008 A1
20080064934 Frei et al. Mar 2008 A1
20080071323 Lowry et al. Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080081962 Miller et al. Apr 2008 A1
20080082132 Annest et al. Apr 2008 A1
20080103548 Fowler et al. May 2008 A1
20080114417 Leyde May 2008 A1
20080119900 DiLorenzo May 2008 A1
20080125820 Stahmann et al. May 2008 A1
20080139870 Gliner et al. Jun 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080146959 Sheffield et al. Jun 2008 A1
20080161712 Leyde Jul 2008 A1
20080161713 Leyde et al. Jul 2008 A1
20080161879 Firlik et al. Jul 2008 A1
20080161880 Firlik et al. Jul 2008 A1
20080161881 Firlik et al. Jul 2008 A1
20080161882 Firlik et al. Jul 2008 A1
20080183096 Snyder et al. Jul 2008 A1
20080183097 Leyde et al. Jul 2008 A1
20080183245 Van Oort et al. Jul 2008 A1
20080195175 Balzer et al. Aug 2008 A1
20080200925 Johnson Aug 2008 A1
20080208013 Zhang et al. Aug 2008 A1
20080208074 Snyder et al. Aug 2008 A1
20080208285 Fowler et al. Aug 2008 A1
20080208291 Leyde et al. Aug 2008 A1
20080208781 Snyder Aug 2008 A1
20080215112 Firlik et al. Sep 2008 A1
20080215114 Stuerzinger et al. Sep 2008 A1
20080221644 Vallapureddy et al. Sep 2008 A1
20080234598 Snyder et al. Sep 2008 A1
20080249591 Gaw et al. Oct 2008 A1
20080255582 Harris Oct 2008 A1
20090054795 Misczynski et al. Feb 2009 A1
20090076567 Fowler et al. Mar 2009 A1
Foreign Referenced Citations (44)
Number Date Country
2339971 Jun 2004 CA
0402683 Dec 1990 EP
0713714 May 1996 EP
1139861 Dec 1999 EP
1070518 Jan 2001 EP
0944411 Apr 2001 EP
1145736 Oct 2001 EP
1483020 Dec 2004 EP
1486232 Dec 2004 EP
1595497 Nov 2005 EP
1120130 Dec 2005 EP
1647300 Apr 2006 EP
1202775 Sep 2006 EP
2026870 Feb 1980 GB
2079610 Jan 1982 GB
9302744 Feb 1993 WO
9417771 Aug 1994 WO
0064336 Nov 2000 WO
0108749 Feb 2001 WO
0064336 Jun 2002 WO
03085546 Oct 2003 WO
2004036377 Apr 2004 WO
2004064918 Aug 2004 WO
2004069330 Aug 2004 WO
2004071575 Aug 2004 WO
2004075982 Sep 2004 WO
2004112894 Dec 2004 WO
2005007120 Jan 2005 WO
2005007232 Jan 2005 WO
2005028026 Mar 2005 WO
2005053788 Jun 2005 WO
2005067599 Jul 2005 WO
2005101282 Oct 2005 WO
2006014760 Feb 2006 WO
2006019822 Feb 2006 WO
2006050144 May 2006 WO
2006122148 Nov 2006 WO
2007018793 Feb 2007 WO
2007066343 Jun 2007 WO
2007072425 Jun 2007 WO
2007124126 Nov 2007 WO
2007124190 Nov 2007 WO
2007124192 Nov 2007 WO
2007142523 Dec 2007 WO
Non-Patent Literature Citations (40)
Entry
PCT Search Report for International Application No. PCT/US2009/000379, dated May 25, 2009; 8 pgs.
Bachman, D.,S. et al.; “Effects Of Vagal Volleys And Serotonin On Units Of Cingulate Cortex in Monkeys;” Brain Research , vol. 130 (1977). pp. 253-269.
Bohning, D.E., et al.; “Feasibility of Vagus Nerve Stimulation—Synchronized Blood Oxygenation Level-Dependent Functional MRI,” A Journal of Clinical and Laboratory Research: Investigative Radiology; vol. 36, No. 8 (Aug. 2001); pp. 470-479.
Boon, Paul, et al.; “Programmed and Magnet-Induced Vagus Nerve Stimulation for Refractory Epilepsy;” Journal of Clinical Neurophysiology vol. 18 No. 5; (2001); pp. 402-407.
Clark, K.B., et al.; “Posttraining Electrical Stimulation of Vagal Afferents with Concomitant Vagal Efferent Inactivation Enhances Memory Storage Processes in the Rat,” Neurobiology of Learning and Memory, vol. 70, 364-373 (1998) Art. No. NL983863.
Clark, K.B., et al.; “Enhanced Recognition Memory Following Vagus Nerve Stimulation in Human Subjects;” Nature Neuroscience, vol. 2, No. 1, (Jan. 1999) pp. 93-98.
Craig, A.D. (BUD); “Distribution of Trigeminothalamic and Spinothalamic Lamina I Terminations in the Macaque Monkey;” The Journal of Comparative Neurology, vol. 447, pp. 119-148 (2004).
DeGiorgo, Christopher M., et al.; “Vagus Nerve Stimulation: Analysis of Device Parameters in 154 Patients During the Long-Term XE5 Study;” Epilepsia, vol. 42, No. 8; pp. 1017-1020 (2001).
Devous, Michael D., et al.; “Effects of Vagus Nerve Stimulation on Regional Cerebral Blood Flow in Treatment-Resistant Depression,” National Institute of Mental Health—42nd Annual NCDEU Meeting: Poster Session II; Poster Abstracts, Jun. 10-13, 2002, 1 page; http://www.nimh.nih.gov/ncdeu/abstracts2002/ncdeu2019.cfm.
Hallowitz, R.A., et al.; “Effects Of Vagal Tolleys On Units Of Intralaminar and Juxtalaminar Thalamic Nuclei in Monkeys;” Brain Research, vol. 130 (1977), pp. 271-286.
Harry, J.D., et al.; “Balancing Act: Noise is the Key to Restoring the Body's Sense of Equilibrium;” IEEE Spectrum (Apr. 2005)pp. 37-41.
Henry, T.R., et al.; “Brain Blood-Flow Alterations Induced by Therapeutic Vagus Nerve Stimulation in Partial Epilepsy: I. Acute Effects at High and Low Levels of Stimulation;” Epilepsia vol. 39, No. 9; pp. 984-990 (1988).
Henry, MD, T.R.; “Therapeutic Mechanisms of Vagus Nerve Stimulation” Neurology, vol. 59 Suppl. 4 (Sep. 2002); pp. S3-S14.
King, M.D., “Effects of Short-Term Vagus Nerve Stimulation (VNS) on FOS Expression in Rat Brain Nuclei” 58th Annual Scientific Convention of the Society of Biological Psychiatry, (May 2003).
Klapper, M.D., et al., “VNS Therapy Shows Potential Benefit in Patients with Migraine and Chronic Daily Headache After 3 to 6 Months of Treatment (Preliminary Results)” 45th Annual Scientific Meeting of the American Headache Society (Jun. 2003).
Koo, B., “EEG Changes With Vagus Nerve Stimulation” Journal of Clinical Neurophysiology, vol. 18 No. 5 (Sep. 2001); pp. 434-441.
Labar, D., “Vagus Nerve Stimulation for 1 Year in 269 patients on Unchanged Antiepilectic Drugs” Seizure vol. 13, (2004) pp. 392-398.
Lockard et al., “Feasibility And Safety Of Vagal Stimulation In Monkey Model;” Epilepsia, vol. 31 (Supp. 2) (1990), pp. S20-S26.
Liebman, K.M. et al.; “Improvement in Cognitive Function After Vagal Nerve Stimulator Implantation;” Epilepsia, vol. 39, Suppl. 6 (1998) 1 page.
Malow, B.A., et al.; “Vagus Nerve Stimulation Reduces Daytime Sleepiness in Epilepsy Patients” Neurology 57 (2001) pp. 978-884.
McClintock, P., “Can Noise Actually Boost Brain Power” Physics World Jul. 2002; pp. 20-21.
Mori, T., et al.; “Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves” Physical Review Letters vol. 88, No. 21 (2002); pp. 218101-1-218101-4.
Rugg-Gunn, F.J., et al.; “Cardic Arrhythmias in Focal Epilepsy: a Prospective Long-Term Study” www.thelancet.com vol. 364 (2004) pp. 2212-2219.
Rutecki, P.; “Anatomical, Physiological, and Theoretical Basis for the Antiepileptic Effect of Vagus Nerve Stimulation” Epilepsia, vol. 31 Suppl. 2; S1-S6 (1990).
Sahin, M.; et al.; “Improved Nerve Cuff Electrode Recordings with Subthreshold Anodic Currents,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 8 (Aug. 1998) pp. 1044-1050.
Schachter, S.C., et al.; “Progress in Epilepsy Research: Vagus Nerve Stimulation,” Epilepsia, vol. 39, No. 7 (1998) pp. 677-686.
Tatum, W.O., et al.; “Ventricular Asystole During Vagus Nerve Stimulation for Epilepsy in Humans” American Academy of Neurologgy (1999) p. 1267 (See also pp. 1117, 1166, and 1265).
Tatum, W.O., et al.; “Vagus Nerve Stimulation and Drug Reduction” Neurology, vol. 56, No. 4 (Feb. 2001) pp. 561-563.
Terry et al.; “The Implantable Neurocybernetic Prosthesis System”, Pacing and Clinical Electrophysiology, vol. 14, No. 1 (Jan. 1991), pp. 86-93.
Tubbs, R.S., et al.; “Left-Sided Vagus Nerve Stimulation Decreases Intracranial Pressure Without Resultant Bradycardia in the Pig: A Potential Therapeutic Modality for Humans” Child's Nervous System Original Paper; Springer-Verlag 2004.
Valdez-Cruz, A., et al.; “Chronic Stimulation of the Cat Vagus Nerve Effect on Sleep and Behavior” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 26 (2002) pp. 113-118.
Vonck, K., et al. “The Mechanism of Action Of Vagus Nerve Stimulation For Refractory Epilepsy—The Current Status”, Journal of Neurophysiology, vol. 18 No. 5 (2001), pp. 394-401.
Ward, H., M.D., et al.; “Treatment-Refractory Obsessive-Compulsive Disorder: Potential Benefit of VNS Therapy” 23rd Annual Conference of the Anxiety Disorders Association of America (2007).
Woodbury, et al., “Vagal Stimulation Reduces the Severity Of Maximal Electroshock Seizures in Intact Rats. Use of a Cuff Electrode for Stimulating And Recording”; Pacing and Clinical Electrophysiology, vol. 14 (Jan. 1991), pp. 94-107.
Zabara, J. “Inhibition of Experimental Seizures in Canines by Repetivie Vagal Stimulation” Epilepsia vol. 33, No. 6 (1992); pp. 1005-1012.
Dodrill, Ph.D., et al.; “Effects of Vagal Nerve Stimulation on Cognition and Quality of Life in Epilepsy;” Epilepsy and Behavior, vol. 2 (2001); pp. 46-53.
Fromes, G. A.et al.; “Clinical Utility of On-Demand Magnet use with Vagus Nerve Stimulation;” AES Proceedings, p. 117.
George, M.S., et al.; “Open Trial of VNS Therapy in Severe Anxiety Disorders;” 156th American Psychiatric Association Annual Meeting; May 17-22, 2003.
George, M.S., et al.; “Vagus Nerve Stimulation: A New Tool for Brain Research and Therapy;” Social of Biological Psychiatry vol. 47 (2000) pp. 287-295.
Fanselow, E.E., at al., “Reduction of Pentylenetetrazole-Induced Seizure Activity in Awake Rates by Seizure-Triggered Trigeminal Nerve Stimulation;” The Journal of Neuroscience, Nov. 1, 2000; vol. 20/21 ; pp. 8160-8168.
Related Publications (1)
Number Date Country
20110213437 A9 Sep 2011 US
Continuation in Parts (1)
Number Date Country
Parent 11046430 Jan 2005 US
Child 12020097 US