1. The Field of the Invention
The present invention relates generally to upstream data communications over networks primarily designed for downstream transmission of television and data signals, and particularly to a system and method for accurately changing the compression mode between two points without introducing errors in a compressed or uncompressed signal.
2. Background and Relevant Art
Cable television systems (CATV) were initially deployed so that remotely located communities were allowed to place a receiver on a hilltop and then use coaxial cable and amplifiers to distribute received signals down to the town which otherwise had poor signal reception. These early systems brought the signal down from the antennas to a “head end” and then distributed the signals out from this point. Since the purpose was to distribute television channels throughout a community, the systems were designed to be one-way and did not have the capability to take information back from subscribers to the head end.
Over time, it was realized that the basic system infrastructure could be made to operate two-way with the addition of some new components. Two-way CATV was used for many years to carry back some locally generated video programming to the head end where it could be up-converted to a carrier frequency compatible with the normal television channels.
Definitions for CATV systems today call the normal broadcast direction from the head end to the subscribers the “forward path” and the direction from the subscribers back to the head end the “return path”. A good review of much of today's existing return path technology is contained in the book entitled Return Systems for Hybrid Fiber Coax Cable TV Networks, by Donald Raskin and Dean Stoneback, hereby incorporated by reference as background information.
One additional innovation has become pervasive throughout the CATV industry over the past 10 years—the introduction of analog optical fiber transmitters and receivers operating over single mode optical fiber. These optical links have been used to break up the original tree and branch architecture of most CATV systems and to replace that with an architecture labeled Hybrid Fiber/Coax (HFC). In this approach, optical fibers connect the head end of the system to neighborhood nodes, and then coaxial cable is used to distribute signals from the neighborhood nodes to homes, businesses and the like in a small geographical area. Return path optical fibers are typically located in the same cable as the forward path optical fibers so that return signals can have the same advantages as the forward path.
An RF input signal, having an associated signal level, is submitted to a transmitter portion of the optoelectronic transceiver 114, which in turn gains or attenuates the signal level, as appropriate. The RF input signal is then amplitude-modulated, and converted into a corresponding optical signal by a laser diode 122. Both Fabre-Perot (FP) and distributed feedback (DFB) lasers are typically used for this application. DFB lasers are used in conjunction with an optical isolator, and have improved signal to noise over FP lasers, but at a sacrifice of substantial cost. DFB lasers are preferred, as the improved SNR allows for better system performance when aggregating multiple returns.
The optical signal from the laser diode 122 is coupled to a single mode optical fiber (i.e., the return path optical fiber 112) that carries the signal to an optical receiver 130 typically located at a cable hub, such as a cable hub at the head end system 132. The optical receiver 130 converts the amplitude-modulated light signal back to an RF signal. Sometimes a manual output amplitude adjustment mechanism is provided to adjust the signal level of the output produced by the optical receiver. A cable modem termination system (CMTS) 134 at the head end 132 receives and demodulates the recovered RF signals so as to recover the return path data signals sent by the subscribers.
When the sample clock operates at a rate of 100 MHz, the output section of the serializer 154 is driven by a 125 MHz clock 157A, and outputs data bits to a fiber optic transmitter 158, 159 at a rate of 1.25 Gb/s. The fiber optic transmitter 158, 159 converts electrical 1 and 0 bits into optical 1 and 0 bits, which are then transmitted over an optical fiber 112. The fiber optic transmitter includes a laser diode driver 158 and a laser diode 159.
The receiver 170 at the receive end of the optical fiber 112 (e.g., a cable hub) includes a fiber receiver 172, 174 that receives the optical 1 and 0 bits transmitted over V oz the optical fiber 112, and converts them into corresponding electrical 1 and 0 bits. This serial bit stream is conveyed to a deserializer circuit 178. A clock recovery circuit 176 recovers a 1.25 GHz bit clock from the incoming data and also generates a 100 MHz clock 153B that is synchronized with the recovered 1.25 GHz bit clock.
The recovered 1.25 GHz bit clock is used by the deserializer 178 to clock in the received data, and the recovered 100 MHz clock 153B is used to drive a digital to analog converter 180, which converts ten-bit data values into analog voltage signals at the head end system. As a result, the RF signal from the coaxial cable 106 is regenerated at point 182 of the head end system.
Prior art return path link systems, such as the one shown in
In addition to the foregoing, compression technology has become increasingly important in CATV networks, as more and more network users and devices require a wider variety of data transmissions on both the forward and return CATV paths. For example, CATV networks are increasingly used for high-speed, high-bandwidth Internet connections. As such, the increasing numbers of people that use CATV networks for Internet traffic often do so to take advantage of the speed and bandwidth capabilities. This means that increasing numbers of users and devices use the CATV networks to access large files at a relatively high speed compared with standard dialup or digital subscriber line Internet connections.
Unfortunately, changing data compression in a data stream can present difficulty in some cases on CATV networks. For example, when a cable node begins to use a new type of signal compression (or begin using signal compression), the cable hub receives the compressed signals at the same time of—or some time just after—receiving an indicator to change compression methods. As such, there would be at least some communication inconsistency between the cable node and the cable hub when switching compression modes.
In particular, if the data streams sent by the cable node are received by the cable hub in a compression format that the cable hub does not immediately recognize because the cable hub has not yet switched communication modes, the cable hub will not be able to correctly read the compressed data. This can result in an inappropriate data loss or data corruption, and can also result in inappropriate delays in transferring the data signals. In particular, the cable hub may simply discard the data or read the data incorrectly, until the cable hub can switch to reading the data with the proper compression algorithm. Furthermore, if the cable node switches to compression format immediately upon transmitting notice of the change to the cable hub, the cable hub might continue communicating with the cable node using the old communication mode for a brief time until the cable hub is able to switch communication modes. This may cause the cable node to similarly discard data or read data incorrectly.
Accordingly, an advantage in the art can be realized with systems, methods, and apparatus configured to consistently transmit variably compressed data streams between a cable node and a cable hub on a hybrid CATV network. In particular, in would be advantageous if such systems and methods were able to adjust in a timely manner so that data are not lost, corrupted, or delayed.
The present invention solves one or more of the foregoing problems in the prior art with systems, methods, and apparatus configured to appropriately transfer data streams in different compression algorithms while avoiding inconsistent communications between the cable node and the cable hub. In particular, examples of the present invention relate to switching a hub component on the CATV network to an appropriate new communication mode (e.g., a different compression rate) prior to that component receiving communications that conforms with the new communication mode.
For example, an example cable node on the CATV network can transmit one or more mute commands in a data stream to a cable hub on the network using a first communication mode. In at least one instance, the one or more mute commands cause the cable hub to abstain from communicating with the cable node until receiving a subsequent communication from the cable node. In some implementations, the cable node also sends a switch mode command to the cable hub, which instructs the cable hub to switch to the second, or next, communication mode, although this switching instruction may be implicit from one of the cable mute commands. Once the cable hub has switched appropriately to the second, or next, communication mode, as instructed, the cable node and cable hub can begin communicating using the second, or next, communication mode.
Additional features and advantages of examples of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such examples. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such examples as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention solves one or more of the foregoing problems in the prior art with systems, methods, and apparatus configured to appropriately transfer data streams in different compression algorithms while avoiding inconsistent communications between the cable node and the cable hub. In particular, examples of the present invention relate to switching a hub component on the CATV network to an appropriate new communication mode (e.g., a different compression rate) prior to that component receiving communications that conforms with the new communication mode.
In particular,
Similarly, the Node Tx 210 also comprises a signal processing logic component 207A. Similar with signal logic 207D, signal logic 207A also includes one or more sets of computer-executable instructions stored within the relevant logic circuitry, which, when executed, also direct relevant operations at Node Tx 210 for one or more of the data signals and/or component functions. Thus, for example, in one implementation, signal logic 207A can direct the sampling rate of the A/D converters, and can combine the digitized RF data with one or more Ethernet data signals received from the Node Rx 220.
In one embodiment, the cable node 200 is capable of operating in two different communication modes, depending on whether or not there is a Node Rx 220 available. If there is no Node Rx 220 available, then the signal logic 207A does not combine RF data with Ethernet data. Instead, the RF data is sent (with potentially some other non-Ethernet supplemental data) over the return path 260 to a hub receiving component (hereinafter “Hub Rx”) 230 of the cable hub 250. This communication mode will also be referred to herein as the “RF data only” communication mode. If there is a Node Rx 220 available, then the cable node 200 is capable of processing Ethernet data as well. In this case, the signal logic 207A would compress the RF data to make room from the Ethernet data to be transmitted, and then combine the compressed RF data with the Ethernet data. This communication mode will also be referred to herein as the “RF and Ethernet data” communication mode.
In one embodiment, when operating in RF and Ethernet data communication mode, the signal logic 207A compresses the RF data using 10 bit fixed length to 9 bit fixed length compression algorithms. For this reason, this embodiment of the RF and Ethernet data communication mode may also be referred to as the 9-bit communication mode. Also in one embodiment, when operating in RF data only mode, the RF data may not be compressed. In other words, the same 10 bits of RF data remains as 10 bits without modification. For this reason, this embodiment of the RF data only communication mode may also be referred to as the 10-bit communication mode.
A more particular description of an example for combining digitized RF signals with digital non-RF signals is described in greater detail in commonly-assigned, U.S. patent application Ser. No. 09/735,710, filed Dec. 12, 2000, entitled “SYSTEM AND METHOD FOR TRANSMITTING DATA ON RETURN PATH OF CABLE TELEVISION SYSTEM”, hereinafter referred to as REFERENCE 1.
A more particular description of an example for combining digitized RF signals with digital non-RF signals using a single master clock rate is described in greater detail in commonly-assigned, U.S. Patent Application No. 60/570,892, filed on the same day as the instant application, entitled “SINGLE MASTER CLOCK CONTROL OF ETHERNET DATA TRANSFER OVER BOTH A CABLE TV RETURN PATH AND AN ETHERNET FORWARD PATH”, hereinafter referred to as REFERENCE 2.
A more particular description of an example for compressing a combined data stream at certain bit compression is described in greater detail in commonly-assigned, U.S. patent application Ser. No. 10/845,202, filed on the same day as the instant application, entitled “AUTOMATED ETHERNET CONFIGURATION OF CATV NETWORK”, hereinafter referred to as REFERENCE 3.
Some descriptions of compression techniques for RF signals in CATV networks can be found in commonly-assigned, U.S. patent application Ser. No. 10/102,625, filed on Mar. 19, 2002, entitled “EFFICIENT TRANSMISSION OF DIGITAL RETURN PATH DATA IN CABLE TELEVISION RETURN PATH”; and in U.S. patent application Ser. No. 10/102,619, filed on Mar. 19, 2002, entitled “DATA RATE COMPRESSION FOR CABLE TELEVISION RETURN PATH USING BANDPASS PUNCTURING”, hereinafter referred to respectively as REFERENCES 4 and 5.
Some descriptions of combining Ethernet data with compressed RF data on a cable return pathway can be found in U.S. patent application Ser. No. 10/285,205, filed on Oct. 30, 2002, entitled CABLE TELEVISION RETURN LINK SYSTEM WITH HIGH DATA-RATE SIDE-BAND COMMUNICATION CHANNELS, hereinafter referred to as REFERENCE 6. The entire contents of the foregoing REFERENCE 1, REFERENCE 2, REFERENCE 3, REFERENCE 4, REFERENCE 5, and REFERENCE 6 are also incorporated herein by reference.
Continuing with
In at least one implementation, transmitting the data (whether in RF communication mode or RF and data communication mode) comprises serializing the data stream at a SERDES component 215A. In any case, the serialized data (or non-serialized data) are then generally passed through a laser driver (not shown) and a laser diode 217A, which turns the electronic data stream into corresponding optical signals.
In any event, the cable hub 250 receives the data stream at a Hub Rx 230, which comprises a photodiode 227A. The photodiode 227A converts the optical signals into corresponding electrical current signals, which are then processed by other components (e.g., transimpedance amplifier, postamp, etc.—not shown) so that the data stream can be used by other components at the cable hub 250. If the data streams have been serialized before being transmitted by laser 217A, the data streams must first be deserialized at a corresponding SERDES 215B component at the cable hub.
However the data are transmitted and received, the data streams are then read and processed at the signal logic 207B. The signal logic 207B comprise computer-executable instructions stored within, which, when executed, performs appropriate processing on the data streams as appropriate, assuming that the signal logic 207B knows which communication mode is being used. For example, if the data are sent in one communication mode by the Node Tx 210 (e.g., using the RF and data communication mode such as the 9-bit communication mode), the signal logic 207A at the Node Tx 210 will have ensured that the signal logic 207B at the Hub Rx 230 is set to that communication mode, thereby causing the signal logic 207B to separate out the compressed RF data and Ethernet data, and then decompress the RF data. If the data are sent in a another communication mode by the Node Tx 210 (e.g., using the RF communication mode such as the 10-bit communication mode), the signal logic 207A at the Node Tx 210 will have ensured that the signal logic 207B at the Hub Rx 230 is set to that other communication mode, thereby extracting the RF data without expecting Ethernet data and without decompressing the RF data.
Switching communication modes can be done by sending a “mute command”, and, in some cases, then sending a “switch mode” command that instructs the signal logic 207B to switch to the second communication mode, or, for example, to the 9-bit compression mode. The “switch mode” command may be as passive as computer-readable instructions that simply imply that a future incoming data stream will be sent using a next communication mode. Furthermore, the “mute” command can be one or more computer-readable instructions that are generated at the signal logic 207A, and inserted into an appropriate position in the outgoing data stream.
When the relevant signal logic at the Node Tx 210 and the Hub Rx 230 are set in the same communication mode, the Hub Rx 230 can read the data sent by the Node Tx 210. As used herein, the terms “communication mode”, and “first” or “second” “communication mode” refer to an arbitrary designation of compression algorithms (or lack of compression), such that the Node Tx 210 is sending a data stream at one or another compression mode. Thus, for example, if the Node Tx 210 is sending a data stream using a first compression mode, the Node Tx 210 may be sending the data stream in 10-bit communication mode. Alternatively, if the Node Tx 210 is sending a data stream at a second communication mode, the Node Tx 210 may be sending a data stream using, for example, a 9-bit communication mode. Accordingly, one will appreciate after reading this specification and claims that first or second communication modes are arbitrary designations referencing an instant point in time and a next point in time for a given communication mode.
In one implementation, therefore, the cable node 200 configures the cable hub 250 to read data in a certain communication mode by sending a sequence of command instructions in the outgoing data stream. In particular, and as will be understood more fully after reading this specification and claims, the cable node 200 can include a predetermined number of “mute commands” in the transmitted data stream. After the cable hub 250 receives a required number of “mute commands”, the cable hub 250 mutes one or more of the channels as instructed, such as one or more of the RF channels. The cable node 200 then sends the relevant switch command (also referred to as a “subsequent communication”) to the cable hub 250 that causes the relevant component of the cable hub 250 to switch to the appropriate compression algorithm. Afterward, the cable hub 250 can receive data that has been compressed at the appropriate bit rate, that is, data streams sent using the appropriate communication mode.
After the signal logic 207B has read and/or decompressed the received data stream as appropriate, the signal logic 207B can separate the RF data from the non-RF data (e.g., Ethernet data), and transfer the relevant data along the appropriate path. For example, the digitized RF data can be sent to digital-to-analog (D/A) converters 235, where the digitized RF data can be converted back to analog, and sent to the head end system. Alternatively, the signal logic 207B can send the Ethernet data (if any) to a hub transmission component (hereinafter “Hub Tx”) 240 via connector 212B.
Ethernet data that are transferred to the Hub Tx component 245 can then be sent to users or devices through ports 245, or can be processed and/or relayed to the Node Rx 220 via the forward optical cable 265. In particular, signal logic 207C comprises one or more sets of computer-executable instructions stored within that, when executed, interpret and/or direct the Ethernet data traffic, process the Ethernet data, format the Ethernet data, direct the operation of components at the Hub Tx 240, and so forth. For example, some Ethernet data that arrives through ports 245 from other users or devices may be intended to be sent to the cable node 200 via the optical cable 265. Other Ethernet data that has been extracted from the cable node 200 via optical cable 260 may also need to be sent back to the cable node 200. Accordingly, the signal processing logic 207C combines the relevant Ethernet data into a single Ethernet data stream and, in some cases, serializes the data stream at the SERDES component 215C.
When the Ethernet data is ready to be sent back to the node, an optical laser 217B converts the data stream into a corresponding optical signal, and transmits the corresponding optical signal on the forward optical cable 265 to Node Rx 220 of the cable node 200. The Node Rx 220 receives the optical version of the Ethernet data stream at the photodiode 227B, and converts the Ethernet data stream to a corresponding electrical signal, which can be processed by other components at Node Rx 220. For example, if the Ethernet data stream has been serialized prior to transmission at the cable hub 250, the Ethernet data stream will be deserialized by the SERDES component 215D. Thereafter, signal processing logic 207D can identify to where and how the Ethernet data will be directed. A more particular description of the transmission/reception, serialization/deserialization, and sampling/desampling of the relevant data signals is found in the incorporated REFERENCE 2.
Reasons for compressing RF data signals in this manner include at least one benefit of providing as much as 200 Mb/s more bandwidth than under 10-bit mode. Specific types and advantage of certain compression algorithms, however, are not critical to the present disclosure. For example, a manufacturer may find that compressing a certain type of data stream to 3-bits, rather than to 9-bits, produces a desired effect within acceptable data loss parameters. All that is required in some implementations, therefore, is that a given cable node 200 or cable hub 250 be able to read a data stream based on a specific compression algorithm prior to receiving the data stream that has been compressed using that algorithm. Accordingly, upon reading the present specification and claims, one will appreciate that any number of compression algorithms can be employed equally consistent within the context of the present inventive concepts.
In any case,
In general, 10-bit communication mode involves communication of data (e.g., RF data) in the return path 260 only from the Node Tx 210 to the Hub Rx 230. Specifically, the Node Tx 210 sends 10-bit switch mode commands (i.e., commands that specify in which mode the Hub Rx 230 should operate), and the Hub Rx 230 receives 10-bit switch mode commands. However, if a Node Rx 220 is also present in the cable node 200, then forward path 265 communication from the Hub Tx 240 to the Node Rx 220 may also be desired. For example, perhaps a Node Rx 220 component was just added to the cable node 200. In that case, it may be desirable to transition to 9-bit communication mode so that Ethernet data may be transmitted bi-directionally. Specifically, RF data and Ethernet data may be transmitted in the return path with the extra bandwidth required for the Ethernet data being provided by performing 10-bit to 9-bit compression on the RF data. The forward path may be a dedicated optical link reserved for forward-path Ethernet data.
Continuing with
By way of explanation, the mode and/or mute commands described can be sent in a standard format that is independent of the instant communication mode. For example, even though the communication mode may specify that that RF data are in 9-bit or 10-bit communication mode, the mute and/or mode commands need not necessarily also be in 9-bit or 10-bit mode format. In particular, the relevant mute and/or mode command can be sent over a fiber link (e.g., path 260) with any RF and Ethernet data, albeit in a position in the data stream that is independent of the RF and Ethernet data.
Upon receiving at least one of a predetermined number of mute commands, the hub component starts to count the number of mute commands it receives. In particular, the predetermined number of mute commands can be more than one, such that the cable hub 250 and cable node 200 do not change state until the predetermined number of mute commands have been sent and received. Generally, this can help the overall system such that the system does not change relevant state until it should be changing its state. For example, after receiving a certain number of a single switch mode commands, the Hub Rx 230 can be sure that the given switch mode command being received is being intentionally sent by the Node Tx 210, such that a given switch mode command is not due to possible bit errors in the link. Assuming that multiple switch mode commands are required for the description in
After the appropriate number of mute commands have been sent by the Node Tx 210, and have been received by the Hub Rx 230, the Hub Rx 230 transitions to the muted mode, as represented by state 320. Furthermore, the Node Tx 210 switches to the 9-bit communication mode, and starts sending 9-bit mode commands, as represented by state 330. This enables Ethernet traffic in the return direction (e.g., on return path 260). In at least one implementation, muted mode for the Hub Rx 230 also means that the Hub Rx 230 disables the RF outputs being routed through the D/A converters 235. Once the RF outputs are disabled, the Hub Rx 230 can “safely” convert to the next communication mode, in this case 9-bit communication mode. This is a “safe” transition since the boundary where the compression module in the signal logic 207B switches from 10-bit to 9-bit will not be sent to the RF outputs.
In any event, the Hub Rx 230 remains in 9-bit muted mode (states 320, 330) until also receiving a predetermined number of 9-bit switch mode commands. For example, the predetermined number of switch mode commands can also be one switch mode command, or multiple switch mode commands. Thus, after all of the predetermined number of 9-bit switch mode commands have been sent by the Node Tx 210, and have been received by the Hub Rx 230, the Hub Rx 230 transitions to the 9-bit mode state 340. At this state, the Hub Rx 230 can enable the RF outputs.
As illustrated in states 350-370, it may be desirable at some later point to switch from 9-bit communication mode back to 10-bit communication mode. For example, perhaps the Node Rx 220 is no longer functioning, or is not available, such that bi-directional Ethernet traffic is not possible. Alternatively, perhaps there is simply no Ethernet traffic communicating between the cable node 200 and cable hub 250. In these cases, 10-bit communication mode may be desired to preserve the processing resources associated with compression. Whatever the reason for returning to the 10-bit communication mode, states 350-370 show that the communication mode switching process is similar in the reverse direction.
To switch back to the first communication mode, the Node Tx 210 sends a predetermined number (one or more) of mute commands to the Hub Rx 230. In at least one implementation, an initial of the predetermined number mute commands causes the Hub Tx 230 to start counting the remaining of the predetermined number of incoming mute commands. Once all of the predetermined number of mute commands is received by the Hub Rx 230, the Hub Rx 230 can switch to muted mode, as represented by state 360. At this state, the Hub Rx 230 can again disable the RF outputs being routed through the D/A 235. Furthermore, the Hub Rx 230 can now safely convert to a different communication mode, in this case 10-bit communication mode. As before, this is a “safe” transition since the boundary where the compression module in the FPGA 207B switches from 9-bit to 10-bit mode will not be sent to the RF outputs.
As shown in state 370, after the Node Tx 210 sends all of the predetermined number of mute commands, the Node Tx 210 then starts sending 10-bit mode commands, which are counted by the Hub Rx 230. After the appropriate number of 10-bit mode commands have been sent by the Node Tx 210, and have been received by the Hub Rx 230, the Hub Rx 230 transitions to the 10-bit mode, and safely enables the RF outputs. This is illustrated as the system returns back to the default state 300.
Accordingly, the example implementations described herein allow the cable node 200 and the cable hub 250 to communicate relatively seamlessly between points on a CATV network, while switching between different communication modes. In particular, example implementations of the present invention optimize compression requirements in a CATV transmission network without significantly sacrificing signal quality, or creating signal loss, due to inconsistent communication modes between the cable node 200 and the cable hub 250. This can provide a particular advantage in systems in which RF data needs to be compressed only some of the time to include non-RF data, such as Ethernet data.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
4513426 | Jayant | Apr 1985 | A |
4809271 | Kondo et al. | Feb 1989 | A |
4862392 | Steiner | Aug 1989 | A |
4918446 | Yagi | Apr 1990 | A |
5014309 | West, Jr. | May 1991 | A |
5036315 | Gurley | Jul 1991 | A |
5070402 | Ishii et al. | Dec 1991 | A |
5113189 | Messer et al. | May 1992 | A |
5142690 | McMullan, Jr. et al. | Aug 1992 | A |
5155590 | Beyers, II et al. | Oct 1992 | A |
5208854 | West, Jr. | May 1993 | A |
5225902 | McMullan, Jr. | Jul 1993 | A |
5235619 | Beyers, II et al. | Aug 1993 | A |
5243651 | Parikh et al. | Sep 1993 | A |
5245420 | Harney et al. | Sep 1993 | A |
5247364 | Banker et al. | Sep 1993 | A |
5251324 | McMullan, Jr. | Oct 1993 | A |
5255086 | McMullan, Jr. et al. | Oct 1993 | A |
5301028 | Banker et al. | Apr 1994 | A |
5303295 | West et al. | Apr 1994 | A |
5313467 | Varghese et al. | May 1994 | A |
5317391 | Banker et al. | May 1994 | A |
5319454 | Schutte | Jun 1994 | A |
5323462 | Farmer | Jun 1994 | A |
5357276 | Banker et al. | Oct 1994 | A |
5430568 | Little et al. | Jul 1995 | A |
5442472 | Skrobko | Aug 1995 | A |
5481542 | Logston et al. | Jan 1996 | A |
5497187 | Banker et al. | Mar 1996 | A |
5499241 | Thompson et al. | Mar 1996 | A |
5505901 | Harney et al. | Apr 1996 | A |
5539822 | Lett | Jul 1996 | A |
5581555 | Dubberly et al. | Dec 1996 | A |
5594726 | Thompson et al. | Jan 1997 | A |
5657333 | Ikekawa | Aug 1997 | A |
5680394 | Bingham et al. | Oct 1997 | A |
5684799 | Bigham et al. | Nov 1997 | A |
5719867 | Borazjani | Feb 1998 | A |
5719872 | Dubberly et al. | Feb 1998 | A |
5794117 | Benard | Aug 1998 | A |
5826167 | Jelinek et al. | Oct 1998 | A |
5844706 | Kohn et al. | Dec 1998 | A |
5854703 | West, Jr. | Dec 1998 | A |
5854830 | Kenmochi | Dec 1998 | A |
5864560 | Li et al. | Jan 1999 | A |
5907363 | Botsford et al. | May 1999 | A |
5926478 | Ghaibeh et al. | Jul 1999 | A |
5930231 | Miller et al. | Jul 1999 | A |
5963352 | Atlas et al. | Oct 1999 | A |
6041056 | Bingham et al. | Mar 2000 | A |
6041066 | Meki et al. | Mar 2000 | A |
6161011 | Loveless | Dec 2000 | A |
6175861 | Williams, Jr. et al. | Jan 2001 | B1 |
6178446 | Gerszberg et al. | Jan 2001 | B1 |
6272150 | Hrastar et al. | Aug 2001 | B1 |
6356369 | Farhan | Mar 2002 | B1 |
6356374 | Farhan | Mar 2002 | B1 |
6373611 | Farhan et al. | Apr 2002 | B1 |
6389075 | Wang et al. | May 2002 | B2 |
6417949 | Farhan et al. | Jul 2002 | B1 |
6433906 | Farhan | Aug 2002 | B1 |
6437895 | Farhan et al. | Aug 2002 | B1 |
6449071 | Farhan et al. | Sep 2002 | B1 |
6457178 | Slim | Sep 2002 | B1 |
6462851 | West, Jr. | Oct 2002 | B1 |
6493005 | Wu | Dec 2002 | B1 |
6505271 | Lien et al. | Jan 2003 | B1 |
6519067 | Farhan et al. | Feb 2003 | B2 |
6523177 | Brown | Feb 2003 | B1 |
6535715 | Dapper et al. | Mar 2003 | B2 |
6622281 | Yun | Sep 2003 | B1 |
6625166 | Tsukamoto et al. | Sep 2003 | B2 |
6715124 | Betts | Mar 2004 | B1 |
6751269 | Shalvi | Jun 2004 | B1 |
6754221 | Whitcher et al. | Jun 2004 | B1 |
6798790 | Enssle et al. | Sep 2004 | B1 |
6831901 | Millar | Dec 2004 | B2 |
7000018 | Begis | Feb 2006 | B1 |
7131024 | Venkata | Oct 2006 | B1 |
7222358 | Levinson | May 2007 | B2 |
7257328 | Levinson et al. | Aug 2007 | B2 |
7519078 | Oyadomari et al. | Apr 2009 | B2 |
20020073434 | Pience | Jun 2002 | A1 |
20020129379 | Levinson et al. | Sep 2002 | A1 |
20020131426 | Amit et al. | Sep 2002 | A1 |
20030035445 | Choi | Feb 2003 | A1 |
20050039103 | Azenko et al. | Feb 2005 | A1 |
20060013194 | Baumann et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
WO 0025459 | May 2000 | WO |
WO 0143441 | Jun 2001 | WO |
WO 0152455 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050273836 A1 | Dec 2005 | US |