This invention relates to high-speed communication using AC power lines.
Communication systems are designed to reliably transfer information using the underlying physical medium. Well-known communication systems like Ethernet use special wiring (e.g., Cat 5 cable) for exchanging information. Such systems, by design, allow all connected stations to exchange data at a fixed data rate. With the increasing need for ubiquitous exchange of information, a new class of no-new-wire systems has emerged. Such systems use existing infrastructure to exchange information. Power line communication systems are one example of such systems.
Power line communication systems use existing AC wiring to exchange information. Owing to their being designed for much lower frequency transmissions, AC wiring provides varying channel characteristics at the higher frequencies used for data transmission (e.g., depending on the wiring used and the actual layout). To maximize the data rate between various links, stations need to adjust their transmission parameters dynamically in both time and frequency. This process is called channel adaptation. Channel adaptation results in a set of transmission parameters (referred to as tone maps in this document) that can be used on each link. Tone maps include such parameters as the frequencies used, their modulation, and the forward error correction (FEC) used. In high-speed power line communication systems, good channel adaptation is critical to providing high data rates on all links.
We have discovered that higher data rates can be achieved in power line communication systems by taking into account the fact that the noise and/or the frequency response of the power line channel between any pair of stations depends on the AC line cycle phase.
Power line communication systems share the power line medium with various appliances that draw electric power from the power supply grid. These devices are some of the major sources of noise that affect the characteristics of power line channels. Several types of such devices generate noise that varies with the AC line cycle phase and the carrier frequencies.
In general the invention features a method of operating in a network in which a plurality of stations communicate over a shared medium having a periodically varying channel. The method includes determining a plurality of channel adaptations for communication between a pair of stations, and assigning a different one of the plurality of channel adaptations to each of a plurality of phase regions of the periodically varying channel.
In preferred implementations, one or more of the following features may be incorporated. The channel adaptations for a particular phase region may be adapted to the channel in that phase region. The network may be a power line communication network, the shared medium may be an AC power line (inside or outside a building and low, medium, or high voltage), and the channel characteristics may vary with the phase of the AC line cycle. Channel adaptation may be synchronized to the periodically varying channel. Channel adaptation may be substantially unique between any pair of transmitter and receiver. Each station may have a channel adaptation facility that interacts with the channel facility at other stations. The channel adaptation facility may include a tone map generator for generating a tone map. The channel adaptation facility may include an indication of the start of the AC line cycle. The stations may exchange tone maps. The tone map generator may have the capability to generate multiple tone maps, with different tone maps being assigned to different phases regions of the AC line cycle. Different tone maps may be assigned to different regions of each half cycle of the AC line cycle, with each half cycle of the AC line cycle being treated as equivalent to the other half cycle for the purpose of channel adaptation. The AC line cycle may be divided into a plurality of substantially equal size phase regions, to which a different tone map may be assigned. Some of the substantially equal size phase regions may be assigned the same tone map. Associated with each tone map may be an indication of the tolerance of that tone map for use outside its boundaries. The indication of the start of an AC line cycle may include recognition of an AC line cycle zero crossing. The indication of the start of an AC line cycle may include recognition of an AC line cycle zero crossing followed by a rising signal. The indication of the start of an AC line cycle may include recognition of an AC line cycle zero crossing followed by a falling signal. The indication of the start of an AC line cycle may include recognition of a repeating feature in the AC line signal. The repeating feature in the AC line signal may include one or more of the following: a zero crossing, a peak in AC power amplitude, a peak or a minimum in noise amplitude. Time stamps may be transmitted between stations to aid synchronization of channel adaptation to the AC line cycle. The phase of the AC line cycle at a receiving station may be offset from the AC line cycle at a transmitting station, and information relating to the phase offset may be provided to the transmitting station so that the channel adaptation used by the transmitting station is synchronized to the AC line cycle at the receiving station. The information relating to the phase offset may include a zero crossing offset between the receiving and transmitting stations. The receiving station may determine the zero crossing offset, and transmit it to the transmitting station. The transmitting station may determine the zero crossing offset. One station in the network may track the AC line cycle zero crossing and transmit information on the time of the zero crossing to a plurality of stations on the network, and the plurality of stations may use the time of the zero crossing at the one station as their own local AC line cycle zero crossing. The AC line cycle zero crossing may be derived using virtual tracking, wherein a station uses its local clock along with knowledge of the AC line cycle frequency to track a virtual zero crossing. The number of tone map regions, boundaries of each region, and the tone map for each region may be determined based on periodically varying channel attenuation characteristics or on periodically varying local noise characteristics. If data is transmitted in packets that include at least one header and one payload, the tone map boundaries and length of the packets may be configured so that the payload of most packets is transmitted within one phase region so that a payload does not cross a boundary between tone maps. Or the tone map boundaries and length of the packets may be configured so that the payload of at least some packets is transmitted in two adjoining phase regions, so that a first portion of the payload is transmitted using one tone map and a second portion of the payload is transmitted using a second tone map.
Among the many advantages of the invention (some of which may be achieved only in some of its implementations) are the following. It enables stations to operate reliability and at higher data rates under various power line environments. It provides a channel adaptation mechanism that can be used in power line communication systems as well as other media that are affected by periodically varying channel impairments. It can provide a higher level of guaranteed quality of service (QoS).
There are a great many possible implementations of the invention, too many to describe herein. Some possible implementations that are presently preferred are described below. It cannot be emphasized too strongly, however, that these are descriptions of implementations of the invention, and not descriptions of the invention, which is not limited to the detailed implementations described in this section but is described in broader terms in the claims.
As shown in
Stations exchange structured protocol entities called packets, the format of which is shown in
Various implementations of the tone map generator are possible. In general terms, the tone map generator uses knowledge of channel characteristics and the variation of those characteristics with the phase of the AC line cycle to derive multiple tone maps, which are assigned to different phase regions. The tone map generator uses the channel characteristics and their variation of those characteristics with the phase of the AC line cycle to determine the number of tone maps regions and the boundaries for each tone map region. Tone Map generator also generates tone maps for each of the tone map regions. The channel characteristics used by the tone map generator can include channel attenuation characteristics (or equivalently, the channel impulse response). The channel characteristics used by the tone map generator can also include local noise characteristics.
In one implementation, the receiver generates multiple tone maps that can be used in various phase regions of each AC line cycle.
Another implementation allows the receiver to generate multiple tone maps that can be used in various phase regions of each AC half line cycle. But in this implementation; both the positive and negative halves of the AC line cycle are treated as equivalent. The two halves of the line cycle are very often substantially identical (except for being of opposite phase) in most PLC networks.
Another implementation divides the AC line cycle into a fixed number of equal size phase regions. The channel adaptation process in this case results in tone maps for each of the equal size regions. It may turn out, that the same tone map is used in more than one of the regions. This approach can also use either full line cycle (e.g.,
In all the above implementations, the tone maps generated may contain a tolerance for their boundaries. For example, a tone map may have a 100 μsec tolerance, which indicates that the tone map may be used up to a maximum of 100 μsec away from the actual boundary. Alternatively, a tone map may have a zero tolerance, indicating that the tone map may not be used beyond the boundaries provided. Another approach is to have tone maps boundaries overlap to indicate the tolerance. The transmitting station should ensure that proper tone maps are used at various phases of the AC line cycle. Several approaches can be used by the transmitter to maintain tone map boundaries. Some implementations that are considered preferred are presented below. These implementations can be used in packet-oriented networks, where MAC Protocol Data Units (MPDUs) are used to exchange data between stations.
One preferred implementation is to align the MPDU payload boundaries so that they do not cross tone map boundaries.
As shown in
One implementation uses knowledge of the AC zero crossing at each station. A circuit at both the transmitter and receiver, tracks the rising edge of the AC line cycle zero crossing, and information characterizing the offset of the zero crossings is transmitted to the other station. For example, the transmitter (Station A in
Another implementation uses a centralized approach, wherein one station (referred to as the synchronizer station) in the network has a circuit for tracking the rising edge of the AC line cycle zero crossing. The packet format for this implementation enables the transmission of the zero crossing offset between the synchronizer station and all other stations in the network (e.g., by broadcast to all stations in the network and/or unicast to each individual station). All stations in the network track the AC line cycle zero crossing of the synchronizer station and use it as their own local AC line cycle zero crossing.
Various alternatives to tracking the rising edge of the AC line cycle zero crossing are possible. For example, a circuit tracking the falling edge of the AC Line cycle zero crossing can be used. Alternatively, a circuit tracking the zero crossing (irrespective of whether it is the rising or falling edge) of the AC line cycle can be used. And a circuit tracking a certain phase (for example, a peak of one polarity of the other) can be tracked in place of zero crossings. Another of the many possibilities is a circuit that tracks the synchronous noise on the line cycle.
The physical tracking of the zero crossing can also be replaced by virtual tracking. To use virtual tracking, a station uses its local clock along with knowledge of the AC line cycle frequency to track a virtual zero crossing. If the local clocks are not tightly synchronized, stations may exchange time stamps to obtain tight synchronization.
Time stamps of various types can be sent while channel adaptation is in progress or during regular transmissions.
Many other implementations of the invention other than those described above are within the invention, which is defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3806885 | Moore | Apr 1974 | A |
4032884 | Gutleber | Jun 1977 | A |
4569044 | Tao et al. | Feb 1986 | A |
4581734 | Olson et al. | Apr 1986 | A |
4630261 | Irvin | Dec 1986 | A |
4677612 | Olson et al. | Jun 1987 | A |
4682324 | Ulug | Jul 1987 | A |
4720850 | Oberlander et al. | Jan 1988 | A |
4726018 | Bux et al. | Feb 1988 | A |
4792947 | Takiyasu et al. | Dec 1988 | A |
4819229 | Pritty et al. | Apr 1989 | A |
4881241 | Pommier et al. | Nov 1989 | A |
4943959 | Arnold | Jul 1990 | A |
5001472 | Fischer et al. | Mar 1991 | A |
5003539 | Takemoto et al. | Mar 1991 | A |
5046069 | Calvignac et al. | Sep 1991 | A |
5081678 | Kaufman et al. | Jan 1992 | A |
5105423 | Tanaka et al. | Apr 1992 | A |
5121396 | Irvin et al. | Jun 1992 | A |
5140584 | Suzuki | Aug 1992 | A |
5157659 | Schenkel | Oct 1992 | A |
5197061 | Halbert-Lassalle et al. | Mar 1993 | A |
5214646 | Yacoby | May 1993 | A |
5228025 | Le Floch et al. | Jul 1993 | A |
5231634 | Giles et al. | Jul 1993 | A |
5274629 | Helard et al. | Dec 1993 | A |
5280480 | Pitt et al. | Jan 1994 | A |
5307376 | Castelain et al. | Apr 1994 | A |
5339313 | Ben-Michael et al. | Aug 1994 | A |
5343473 | Cidon et al. | Aug 1994 | A |
5384777 | Ahmadi et al. | Jan 1995 | A |
5416801 | Chouly et al. | May 1995 | A |
5426646 | Slack | Jun 1995 | A |
RE35001 | Grow | Jul 1995 | E |
5432848 | Butter et al. | Jul 1995 | A |
5436905 | Li et al. | Jul 1995 | A |
5448565 | Chang et al. | Sep 1995 | A |
5452288 | Rahuel et al. | Sep 1995 | A |
5452322 | Lauer | Sep 1995 | A |
5473602 | McKenna et al. | Dec 1995 | A |
5481535 | Hershey | Jan 1996 | A |
5483529 | Baggen et al. | Jan 1996 | A |
5488632 | Mason et al. | Jan 1996 | A |
5504747 | Sweazey | Apr 1996 | A |
5515379 | Crisler et al. | May 1996 | A |
5524027 | Huisken | Jun 1996 | A |
5537414 | Takiyasu et al. | Jul 1996 | A |
5541922 | Pyhalammi | Jul 1996 | A |
5548649 | Jacobson | Aug 1996 | A |
5555268 | Fattouche et al. | Sep 1996 | A |
5563883 | Cheng | Oct 1996 | A |
5563897 | Pyndiah et al. | Oct 1996 | A |
5568476 | Sherer et al. | Oct 1996 | A |
5610908 | Shelswell et al. | Mar 1997 | A |
5612975 | Becker et al. | Mar 1997 | A |
5615212 | Ruszczyk et al. | Mar 1997 | A |
5619651 | Young | Apr 1997 | A |
5623512 | Sasaki | Apr 1997 | A |
5629948 | Hagiwara et al. | May 1997 | A |
5636230 | Marturano et al. | Jun 1997 | A |
5644576 | Bauchot et al. | Jul 1997 | A |
5651009 | Perreault et al. | Jul 1997 | A |
5694389 | Seki et al. | Dec 1997 | A |
5706348 | Gray et al. | Jan 1998 | A |
5717689 | Ayanoglu | Feb 1998 | A |
5732113 | Schmidl et al. | Mar 1998 | A |
5737330 | Fulthorp et al. | Apr 1998 | A |
5745769 | Choi | Apr 1998 | A |
5757766 | Sugita | May 1998 | A |
5757770 | Lagoutte et al. | May 1998 | A |
5764931 | Schmahl et al. | Jun 1998 | A |
5771235 | Tang et al. | Jun 1998 | A |
5787071 | Basso et al. | Jul 1998 | A |
5790541 | Patrick et al. | Aug 1998 | A |
5793307 | Perrault et al. | Aug 1998 | A |
5799033 | Baggen | Aug 1998 | A |
5812599 | Van Kerckhove | Sep 1998 | A |
5818821 | Schurig | Oct 1998 | A |
5818826 | Gfeller et al. | Oct 1998 | A |
5825807 | Kumar | Oct 1998 | A |
5828293 | Rickard | Oct 1998 | A |
5828677 | Sayeed et al. | Oct 1998 | A |
5841778 | Shaffer et al. | Nov 1998 | A |
5841873 | Lockhart et al. | Nov 1998 | A |
5884040 | Chung | Mar 1999 | A |
5886993 | Ruszczyk et al. | Mar 1999 | A |
5892769 | Lee | Apr 1999 | A |
5896561 | Schrader et al. | Apr 1999 | A |
5903614 | Suzuki et al. | May 1999 | A |
5914932 | Suzuki et al. | Jun 1999 | A |
5914959 | Marchetto et al. | Jun 1999 | A |
5940399 | Weizman | Aug 1999 | A |
5940438 | Poon et al. | Aug 1999 | A |
5948060 | Gregg et al. | Sep 1999 | A |
5956338 | Ghaibeh | Sep 1999 | A |
5966412 | Ramaswamy | Oct 1999 | A |
5970062 | Bauchot | Oct 1999 | A |
5987011 | Toh | Nov 1999 | A |
6005894 | Kumar | Dec 1999 | A |
6006017 | Joshi et al. | Dec 1999 | A |
6041063 | Povlsen et al. | Mar 2000 | A |
6041358 | Huang et al. | Mar 2000 | A |
6044154 | Kelly | Mar 2000 | A |
6044482 | Wong | Mar 2000 | A |
6052377 | Ohmi et al. | Apr 2000 | A |
6076115 | Sambamurthy et al. | Jun 2000 | A |
6092214 | Quoc et al. | Jul 2000 | A |
6097703 | Larsen et al. | Aug 2000 | A |
6098179 | Harter, Jr. | Aug 2000 | A |
6108713 | Sambamurthy et al. | Aug 2000 | A |
6115429 | Huang | Sep 2000 | A |
6125150 | Wesel et al. | Sep 2000 | A |
6130887 | Dutta | Oct 2000 | A |
6130894 | Ojard et al. | Oct 2000 | A |
6151296 | Vijayan et al. | Nov 2000 | A |
6169744 | Grabelsky et al. | Jan 2001 | B1 |
6182147 | Farinacci | Jan 2001 | B1 |
6188717 | Kaiser et al. | Feb 2001 | B1 |
6192397 | Thompson | Feb 2001 | B1 |
6202082 | Tomizawa et al. | Mar 2001 | B1 |
6215792 | Abi-Nassif | Apr 2001 | B1 |
6216244 | Myers et al. | Apr 2001 | B1 |
6222851 | Petry | Apr 2001 | B1 |
6243386 | Chan et al. | Jun 2001 | B1 |
6243449 | Margulis et al. | Jun 2001 | B1 |
6246770 | Stratton et al. | Jun 2001 | B1 |
6252849 | Rom et al. | Jun 2001 | B1 |
6259696 | Yazaki et al. | Jul 2001 | B1 |
6263445 | Blumenau | Jul 2001 | B1 |
6278685 | Yonge, III et al. | Aug 2001 | B1 |
6278716 | Rubenstein et al. | Aug 2001 | B1 |
6279716 | Kayatani et al. | Aug 2001 | B1 |
6289000 | Yonge, III | Sep 2001 | B1 |
6295296 | Tappan | Sep 2001 | B1 |
6334185 | Hansson et al. | Dec 2001 | B1 |
6343083 | Mendelson et al. | Jan 2002 | B1 |
6363052 | Hosein | Mar 2002 | B1 |
6370156 | Spruyt et al. | Apr 2002 | B2 |
6385672 | Wang et al. | May 2002 | B1 |
6393051 | Koizumi et al. | May 2002 | B1 |
6397368 | Yonge, III et al. | May 2002 | B1 |
6421725 | Vermilyea et al. | Jul 2002 | B1 |
6430192 | Creedon et al. | Aug 2002 | B1 |
6430661 | Larson et al. | Aug 2002 | B1 |
6434153 | Yazaki et al. | Aug 2002 | B1 |
6442129 | Yonge, III et al. | Aug 2002 | B1 |
6456649 | Isaksson et al. | Sep 2002 | B1 |
6466580 | Leung | Oct 2002 | B1 |
6469992 | Schieder | Oct 2002 | B1 |
6473435 | Zhou et al. | Oct 2002 | B1 |
6480489 | Muller et al. | Nov 2002 | B1 |
6487212 | Erimli et al. | Nov 2002 | B1 |
6501760 | Ohba et al. | Dec 2002 | B1 |
6519263 | Huth | Feb 2003 | B1 |
6526451 | Kasper | Feb 2003 | B2 |
6538985 | Petry et al. | Mar 2003 | B1 |
6553534 | Yonge, III et al. | Apr 2003 | B2 |
6567914 | Just et al. | May 2003 | B1 |
6654410 | Tzannes | Nov 2003 | B2 |
6667991 | Tzannes | Dec 2003 | B1 |
6671284 | Yonge, III et al. | Dec 2003 | B1 |
6747976 | Bensaou et al. | Jun 2004 | B1 |
6778507 | Jalali | Aug 2004 | B1 |
6985534 | Meister | Jan 2006 | B1 |
7298691 | Yonge, III et al. | Nov 2007 | B1 |
7369579 | Logvinov et al. | May 2008 | B2 |
20010012319 | Foley | Aug 2001 | A1 |
20010043576 | Terry | Nov 2001 | A1 |
20010048692 | Karner | Dec 2001 | A1 |
20020012320 | Ogier et al. | Jan 2002 | A1 |
20020042836 | Mallory | Apr 2002 | A1 |
20020048368 | Gardner | Apr 2002 | A1 |
20020065047 | Moose | May 2002 | A1 |
20020191533 | Chini et al. | Dec 2002 | A1 |
20030006883 | Kim et al. | Jan 2003 | A1 |
20030079169 | Ho et al. | Apr 2003 | A1 |
20030174664 | Benveniste | Sep 2003 | A1 |
20030217182 | Liu et al. | Nov 2003 | A1 |
20040001499 | Patella et al. | Jan 2004 | A1 |
20040070912 | Kopp | Apr 2004 | A1 |
20050114904 | Monk et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
3413144 | Oct 1985 | DE |
9840970 | Sep 1998 | WO |
9857439 | Dec 1998 | WO |
9857440 | Dec 1998 | WO |
WO0072495 | Nov 2000 | WO |
0141341 | Jun 2001 | WO |
0241598 | May 2002 | WO |
0251089 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050190785 A1 | Sep 2005 | US |