The present invention relates generally to information networks and specifically to transmitting information such as media information over communication lines such as coaxial cable (hereinafter “coax”), thereby to form a communications network.
Home networking over coax is a known technology which has vast commercial potential.
Home network technologies having packet aggregation functionality are known generally. The Multimedia over Coax Alliance (MoCA™), at its website mocalliance.org, provides an example of a suitable specification (MoCA 1.0) for networking of digital video and entertainment through existing coaxial cable in the home which has been distributed to an open membership. Packet aggregation functionality is not provided.
Home networking over coax taps into the vast amounts of unused bandwidth available on the in-home coax. More than 70% of homes in the United States have coax already installed into the home infrastructure. Many have existing coax in one or more primary entertainment consumption locations such as family rooms, media rooms and master bedrooms—ideal for deploying networks. Home networking technology allows homeowners to utilize this infrastructure as a networking system and to deliver other entertainment and information programming with high QoS (Quality of Service).
The technology underlying home networking over coax provides high speed (270 mbps), high QoS, and the innate security of a shielded, wired connection combined with state of the art packet-level encryption. Coax is designed for carrying high bandwidth video. Today, it is regularly used to securely deliver millions of dollars of pay per view and premium video content on a daily basis. Home networking over coax can also be used as a backbone for multiple wireless access points used to extend the reach of wireless network throughout a consumer's entire home.
Home networking over coax provides a consistent, high throughput, high quality connection through the existing coaxial cables to the places where the video devices currently reside in the home without affecting the existing analog or digital services present on the cable. Home networking over coax provides a primary link for digital entertainment, and may also act in concert with other wired and wireless networks to extend the entertainment experience throughout the home.
Currently, home networking over coax works with access technologies such as ADSL and VDSL services or Fiber to the Home (FTTH), that typically enter the home on a twisted pair or on an optical fiber, operating in a frequency band from a few hundred kilohertz to 8.5 MHz for ADSL and 12 MHZ for VDSL. As services reach the home via xDSL or FTTH, they may be routed via home networking over coax technology and the in-home coax to the video devices. Cable functionalities, such as video, voice and Internet access, may be provided to homes, via coaxial cable, by cable operators, and use coaxial cables running within the homes to reach individual cable service consuming devices locating in various rooms within the home. Typically, home networking over coax type functionalities run in parallel with the cable functionalities, on different frequencies.
The coax infrastructure inside the house typically includes coaxial wires and splitters. Splitters used in homes typically have one input and two or more outputs and are designed to transfer signals from input to outputs in the forward direction, or from outputs to input in the backward direction and to isolate splitter outputs and prevent signals from flowing room/outlet to room/outlet. Isolation is useful in order to a) reduce interference from other devices and b) maximize power transfer from Point Of Entry (POE) to outlets for best TV reception.
The MoCA technology is specifically designed to go backwards through splitters (insertion) and go from splitter output to output (isolation). All outlets in a house can be reached from each other by a single “isolation jump” and a number of “insertion jumps”. Typically isolation jumps have an attenuation of 5 to 40 dB and each insertion jump attenuates approximately 3 dB. MoCA has a dynamic range in excess of 55 dB while supporting 200 Mbps throughput. Therefore MoCA can work effectively through a significant number of splitters.
MoCA is a managed network unlike some other home networking technologies. It is specifically designed to support streaming video without packet loss providing very high video quality between outlets.
Digital cable programming is delivered with threshold Packet Error Rate (PER) of below 1e-6. The home network should preferably have similar or better performance so as not to degrade viewing.
Later versions of the MoCA specification may require or permit that a MoCA device transmit and receive on more than one channel. For the purposes of this application the term “channel” should be understood to refer to an operational frequency upon which a MoCA network can operate.
A system and/or method channel assessment in a communications network, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
The objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
Apparatus and methods for channel assessment in a communication network are provided. In some embodiments, the apparatus and methods may move a node from a first channel to a second channel to assess performance of the node on the second channel. The performance may be dependent on noisiness of the node on the second channel.
Some embodiments may involve “Another Channel Assessment,” which is a procedure that allows nodes to move to another channel for interference detection or expected performance assessments.
A channel assessment operation (“CAO”) may be triggered by an application that is external to a network controller (“NC”). The CAO may be managed and scheduled by the NC. The NC may gather channel assessment results. In certain embodiments, the CAO may be identified in a Media Access Plan (“MAP”) as a link state.
The channel assessment results may include information regarding noise conditions on each node input and full mesh rate for each node on each channel. The channel assessment results may also provide an estimation of the achievable capacity in the assessed channel.
The channel assessment results may be accessible by a higher layer application. The results may include for each node and channel information regarding noise measured or estimated for each channel at each of the nodes. The information may include MoCA Probe0 information. MoCA Probe-0 information corresponds to a period of time on the network when none of the nodes transmit information. It is a silent probe and, to reiterate, all nodes in the network preferably do not transmit during this silent probe. Rather, it is a period of time in which each node measures the existing noise on the network from the respective node's perspective.
The higher layer application may decide whether to initiate a transfer from one channel to another channel. The higher layer application may assess the whole band—i.e., each operational frequency available to the network—to determine an optimal channel for the implementation of the higher layer application's network. Once channel assessment results are available for the application, it may decide to move the network to another channel. Illustrative reasons to move the network to another channel include:
1. The performance on the current channel is not sufficient to provide the required throughput due to either large attenuations or some RF ingress interference.
2. Moving the network to another channel is required to improve the performance further or reduce aggregated transmission power by moving to a channel that has better noise and attenuation conditions.
3. A new node that joined the network reduces significantly the network aggregated throughput, or is creating some unusable channels.
Illustrative embodiments of apparatus and methods in accordance with the principles of the invention will now be described with reference to the accompanying drawings, which form a part hereof. It is to be understood that other embodiments may be utilized and structural, functional and procedural modifications may be made without departing from the scope and spirit of the present invention.
As will be appreciated by one of skill in the art, the invention described herein may be embodied in whole or in part as a method, a data processing system, or a computer program product. Accordingly, the invention may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software, hardware and any other suitable approach or apparatus.
Furthermore, such aspects may take the form of a computer program product stored by one or more computer-readable storage media having computer-readable program code, or instructions, embodied in or on the storage media. Any suitable computer readable storage media may be utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices, and/or any combination thereof. In addition, various signals representing data or events as described herein may be transferred between a source and a destination in the form of electromagnetic waves traveling through signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space).
For the sake of clarity, the foregoing description, including specific examples of parameter values provided, is sometimes specific to certain protocols such as those identified with the name MoCA™ and/or Ethernet protocols. However, this is not intended to be limiting and the invention may be suitably generalized to other protocols and/or other packet protocols. The use of terms that may be specific to a particular protocol such as that identified by the name MoCA™ or Ethernet to describe a particular feature or embodiment is not intended to limit the scope of that feature or embodiment to that protocol specifically; instead the terms are used generally and are each intended to include parallel and similar terms defined under other protocols.
It is appreciated that software components of the present invention including programs and data may, if desired, be implemented in ROM (read only memory) form including CD-ROMs, EPROMs and EEPROMs, or may be stored in any other suitable computer-readable medium such as but not limited to disks of various kinds, cards of various kinds and RAMs. Components described herein as software may, alternatively, be implemented wholly or partly in hardware, if desired, using conventional techniques.
Features of the present invention which are described in the context of separate embodiments may be provided in combination in a single embodiment. Conversely, features of the invention which are described for brevity in the context of a single embodiment may be provided separately or in any suitable subcombination.
As will be appreciated by one of skill in the art, the invention described herein may be embodied in whole or in part as a method, a data processing system, chip, component or device, or a computer program product. Accordingly, the invention may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software, hardware and any other suitable approach or apparatus.
The invention may be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, mobile phones and/or other personal digital assistants (“PDAs”), multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like. In a distributed computing environment, devices that perform the same or similar function may be viewed as being part of a “module” even if the devices are separate (whether local or remote) from each other.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules may include routines, programs, objects, components, data structures, etc., that perform particular tasks or store or process data structures, objects and other data types. The invention may also be practiced in distributed computing environments where tasks are performed by separate (local or remote) processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
Processes in accordance with the principles of the invention may include one or more features of the process illustrated in
Type 0 probe is a time period in which all nodes of a network, and in some embodiments a subset of the network, are quiet. Type 0 probe may be used for detecting the existence of interference or another network (Beacon detecting) by the assessing node.
In some embodiments, a channel assessment operation may proceed as follows:
(1) NC selects a channel for assessment;
(2) NC allocates a “Probe-0” operation for all nodes or a list of nodes;
(3) All nodes that participated in (2) send Probe 0 report message to the NC;
(4) NC may select a node to be a “CAO node” (based on the reported Probe-0 results) and a list of nodes that may or must participate in the CAO signal exchange, or go back to (1);
(5) Selected nodes move to the selected channel to perform CAO Probe 1 where the CAO transmits Probe 1 message to all other nodes;
(6) NC selects the next node to be the CAO node and the process in (4) and (5) is repeated;
(7) All nodes that participated in the CAO process send their calculated full mesh rate (“FMR”) on the assessed channel to the NC, using CAO probe 1 report; and
(8) NC may select another channel for assessment and go back to (1).
In some embodiments, the following factors may be considered in connection with a transition from one channel to another channel:
1. NC MUST allocate a Transition Time for a node to move to another channel (Tlo ˜100 uSec).
2. During this time transmission on the current channel can continue.
3. After Tlo and until the allocated time for the Probe0 operation and Type I Probe operation NC should preferably not allocate any transmission opportunity on the current channel.
4. One CAO step should preferably follow a full link maintenance operation (“LMO”) procedure.
In some embodiments, messages may be used in connection with channel assessment. Illustrative messages include:
1. “Probe_0_for_channel_Assessment_Report”
NC may use this command to schedule a node to send a Probe 0 report on the assessed channel.
2. “FMR_for_channel_Assessment_Report”
NC may use this command to schedule a node to send a Full Mesh Rates per the assessed channel.
Table 1 shows illustrative link state fields and other associated fields within a MAP frame to indicate a CAO State.
In some embodiments, a process to move to another channel may be initiated by the NC. The NC may remain NC on the other channel. Each node may set its LoF to the selected channel's frequency. Each node may use a random backoff to start admission to the new channel. A move to another channel may interrupt network operation and should not be done frequently.
Table 2 shows an illustrative Type 0 Probe report request format.
Table 3 shows an illustrative Type 0 Probe Report Frame Format.
Table 4 shows an illustrative New Probe subtype for Type 0 Probe.
All bits in the RESERVED fields in the syntax should preferably be set to 0.
One of ordinary skill in the art will appreciate that the steps shown and described herein may be performed in other than the recited order and that one or more steps illustrated may be optional. The methods of the above-referenced embodiments may involve the use of any suitable elements, steps, computer-executable instructions, or computer-readable data structures. In this regard, other embodiments are disclosed herein as well that can be partially or wholly implemented on a computer-readable medium, for example, by storing computer-executable instructions or modules or by utilizing computer-readable data structures.
Thus, systems and methods for channel assessment have been provided. Persons skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration rather than of limitation.
This application is a continuation of U.S. patent application Ser. No. 12/748,625, filed Mar. 29, 2010, entitled “Channel Assessment in an Information Network,” which claims priority to U.S. Provisional Application No. 61/167,255, filed on Apr. 7, 2009, entitled “Channel Assessment in an Information Network,” both of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3836888 | Boenke et al. | Sep 1974 | A |
4413229 | Grant | Nov 1983 | A |
4536875 | Kume et al. | Aug 1985 | A |
4608685 | Jain et al. | Aug 1986 | A |
4893326 | Duran et al. | Jan 1990 | A |
5052029 | James et al. | Sep 1991 | A |
5170415 | Yoshida et al. | Dec 1992 | A |
5343240 | Yu | Aug 1994 | A |
5421030 | Baran | May 1995 | A |
5440335 | Beveridge | Aug 1995 | A |
5570355 | Dail et al. | Oct 1996 | A |
5638374 | Heath | Jun 1997 | A |
5671220 | Tonomura | Sep 1997 | A |
5796739 | Kim et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5805591 | Naboulsi et al. | Sep 1998 | A |
5805806 | McArthur | Sep 1998 | A |
5815662 | Ong | Sep 1998 | A |
5822677 | Peyrovian | Oct 1998 | A |
5822678 | Evanyk | Oct 1998 | A |
5845190 | Bushue et al. | Dec 1998 | A |
5850400 | Eames et al. | Dec 1998 | A |
5854887 | Kindell et al. | Dec 1998 | A |
5856975 | Rostoker et al. | Jan 1999 | A |
5877821 | Newlin et al. | Mar 1999 | A |
5886732 | Humpleman | Mar 1999 | A |
5896556 | Moreland et al. | Apr 1999 | A |
5917624 | Wagner | Jun 1999 | A |
5930493 | Ottesen et al. | Jul 1999 | A |
5963844 | Dail | Oct 1999 | A |
5982784 | Bell | Nov 1999 | A |
6009465 | Decker et al. | Dec 1999 | A |
6028860 | Laubach et al. | Feb 2000 | A |
6055242 | Doshi et al. | Apr 2000 | A |
6069588 | O'Neill, Jr. | May 2000 | A |
6081519 | Petler | Jun 2000 | A |
6081533 | Laubach et al. | Jun 2000 | A |
6111911 | Sanderford, Jr. et al. | Aug 2000 | A |
6118762 | Nomura et al. | Sep 2000 | A |
6157645 | Shobatake | Dec 2000 | A |
6167120 | Kikinis | Dec 2000 | A |
6192070 | Poon et al. | Feb 2001 | B1 |
6219409 | Smith et al. | Apr 2001 | B1 |
6229818 | Bell | May 2001 | B1 |
6234413 | Greaney | May 2001 | B1 |
6304552 | Chapman et al. | Oct 2001 | B1 |
6307862 | Silverman | Oct 2001 | B1 |
6434151 | Caves et al. | Aug 2002 | B1 |
6466651 | Dailey | Oct 2002 | B1 |
6481013 | Dinwiddie et al. | Nov 2002 | B1 |
6526070 | Bernath et al. | Feb 2003 | B1 |
6553586 | Lin | Apr 2003 | B1 |
6563829 | Lyles et al. | May 2003 | B1 |
6567654 | Coronel Arredondo et al. | May 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6622304 | Carhart | Sep 2003 | B1 |
6637030 | Klein | Oct 2003 | B1 |
6650624 | Quigley et al. | Nov 2003 | B1 |
6745392 | Basawapatna et al. | Jun 2004 | B1 |
6763032 | Rabenko et al. | Jul 2004 | B1 |
6785296 | Bell | Aug 2004 | B1 |
6816500 | Mannette et al. | Nov 2004 | B1 |
6831899 | Roy | Dec 2004 | B1 |
6836515 | Kay et al. | Dec 2004 | B1 |
6859899 | Shalvi et al. | Feb 2005 | B2 |
6862270 | Ho | Mar 2005 | B1 |
6877043 | Mallory et al. | Apr 2005 | B2 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6898210 | Cheng et al. | May 2005 | B1 |
6930989 | Jones, IV et al. | Aug 2005 | B1 |
6940833 | Jonas et al. | Sep 2005 | B2 |
6950399 | Bushmitch et al. | Sep 2005 | B1 |
6961314 | Quigley et al. | Nov 2005 | B1 |
6985437 | Vogel | Jan 2006 | B1 |
6996198 | Cvetkovic | Feb 2006 | B2 |
7035270 | Moore, Jr. et al. | Apr 2006 | B2 |
7065779 | Crocker et al. | Jun 2006 | B1 |
7089580 | Vogel et al. | Aug 2006 | B1 |
7116685 | Brown et al. | Oct 2006 | B2 |
7127734 | Amit | Oct 2006 | B1 |
7133697 | Judd et al. | Nov 2006 | B2 |
7142553 | Ojard et al. | Nov 2006 | B1 |
7146632 | Miller | Dec 2006 | B2 |
7149220 | Beukema et al. | Dec 2006 | B2 |
7194041 | Kadous | Mar 2007 | B2 |
7292527 | Zhou et al. | Nov 2007 | B2 |
7296083 | Barham et al. | Nov 2007 | B2 |
7327754 | Mills et al. | Feb 2008 | B2 |
7372853 | Sharma et al. | May 2008 | B2 |
7460543 | Malik et al. | Dec 2008 | B2 |
7487532 | Robertson et al. | Feb 2009 | B2 |
7532642 | Peacock | May 2009 | B1 |
7532693 | Narasimhan | May 2009 | B1 |
7555064 | Beadle | Jun 2009 | B2 |
7574615 | Weng et al. | Aug 2009 | B2 |
7606256 | Vitebsky et al. | Oct 2009 | B2 |
7652527 | Ido et al. | Jan 2010 | B2 |
7653164 | Lin et al. | Jan 2010 | B2 |
7664065 | Lu | Feb 2010 | B2 |
7675970 | Nemiroff et al. | Mar 2010 | B2 |
7783259 | Dessert et al. | Aug 2010 | B2 |
7860092 | Yoon et al. | Dec 2010 | B2 |
7916756 | Atsumi et al. | Mar 2011 | B2 |
8184550 | Beck et al. | May 2012 | B2 |
20010001833 | Ravenscroft et al. | May 2001 | A1 |
20010039660 | Vasilevsky et al. | Nov 2001 | A1 |
20020010562 | Schleiss et al. | Jan 2002 | A1 |
20020021465 | Moore et al. | Feb 2002 | A1 |
20020059623 | Rodriguez et al. | May 2002 | A1 |
20020059634 | Terry et al. | May 2002 | A1 |
20020069417 | Kliger et al. | Jun 2002 | A1 |
20020078247 | Lu et al. | Jun 2002 | A1 |
20020078249 | Lu et al. | Jun 2002 | A1 |
20020097821 | Hebron et al. | Jul 2002 | A1 |
20020105970 | Shvodian | Aug 2002 | A1 |
20020136231 | Leatherbury et al. | Sep 2002 | A1 |
20020141347 | Harp et al. | Oct 2002 | A1 |
20020150155 | Florentin et al. | Oct 2002 | A1 |
20020166124 | Gurantz et al. | Nov 2002 | A1 |
20020174423 | Fifield et al. | Nov 2002 | A1 |
20020194605 | Cohen et al. | Dec 2002 | A1 |
20030013453 | Lavaud et al. | Jan 2003 | A1 |
20030016751 | Vetro et al. | Jan 2003 | A1 |
20030022683 | Beckmann et al. | Jan 2003 | A1 |
20030060207 | Sugaya et al. | Mar 2003 | A1 |
20030063563 | Kowalski | Apr 2003 | A1 |
20030066082 | Kliger et al. | Apr 2003 | A1 |
20030099253 | Kim | May 2003 | A1 |
20030152059 | Odman | Aug 2003 | A1 |
20030169769 | Ho et al. | Sep 2003 | A1 |
20030193619 | Farrand | Oct 2003 | A1 |
20030198244 | Ho et al. | Oct 2003 | A1 |
20040004934 | Zhu et al. | Jan 2004 | A1 |
20040037366 | Crawford | Feb 2004 | A1 |
20040047284 | Eidson | Mar 2004 | A1 |
20040107445 | Amit | Jun 2004 | A1 |
20040163120 | Rabenko et al. | Aug 2004 | A1 |
20040172658 | Rakib et al. | Sep 2004 | A1 |
20040177381 | Kliger et al. | Sep 2004 | A1 |
20040224715 | Rosenlof et al. | Nov 2004 | A1 |
20040258062 | Narvaez | Dec 2004 | A1 |
20050015703 | Terry et al. | Jan 2005 | A1 |
20050097196 | Wronski et al. | May 2005 | A1 |
20050152350 | Sung et al. | Jul 2005 | A1 |
20050152359 | Giesberts et al. | Jul 2005 | A1 |
20050175027 | Miller et al. | Aug 2005 | A1 |
20050204066 | Cohen et al. | Sep 2005 | A9 |
20050213405 | Stopler | Sep 2005 | A1 |
20060059400 | Clark et al. | Mar 2006 | A1 |
20060062250 | Payne | Mar 2006 | A1 |
20060078001 | Chandra et al. | Apr 2006 | A1 |
20060104201 | Sundberg et al. | May 2006 | A1 |
20060256799 | Eng | Nov 2006 | A1 |
20060256818 | Shvodian et al. | Nov 2006 | A1 |
20060268934 | Shimizu et al. | Nov 2006 | A1 |
20060280194 | Jang et al. | Dec 2006 | A1 |
20070025317 | Bolinth et al. | Feb 2007 | A1 |
20070040947 | Koga | Feb 2007 | A1 |
20070127373 | Ho et al. | Jun 2007 | A1 |
20070160213 | Un et al. | Jul 2007 | A1 |
20070171919 | Godman et al. | Jul 2007 | A1 |
20070183786 | Hinosugi et al. | Aug 2007 | A1 |
20070206551 | Moorti et al. | Sep 2007 | A1 |
20070217436 | Markley et al. | Sep 2007 | A1 |
20070253379 | Kumar et al. | Nov 2007 | A1 |
20070286121 | Kolakowski et al. | Dec 2007 | A1 |
20080037487 | Li et al. | Feb 2008 | A1 |
20080037589 | Kliger et al. | Feb 2008 | A1 |
20080080369 | Sumioka et al. | Apr 2008 | A1 |
20080089268 | Kinder et al. | Apr 2008 | A1 |
20080117919 | Kliger et al. | May 2008 | A1 |
20080117929 | Kliger et al. | May 2008 | A1 |
20080130779 | Levi et al. | Jun 2008 | A1 |
20080178229 | Kliger et al. | Jul 2008 | A1 |
20080189431 | Hyslop et al. | Aug 2008 | A1 |
20080212591 | Wu et al. | Sep 2008 | A1 |
20080219371 | Hong | Sep 2008 | A1 |
20080225832 | Kaplan et al. | Sep 2008 | A1 |
20080238016 | Chen et al. | Oct 2008 | A1 |
20080259957 | Kliger et al. | Oct 2008 | A1 |
20080271094 | Kliger et al. | Oct 2008 | A1 |
20080273591 | Brooks et al. | Nov 2008 | A1 |
20080279219 | Wu et al. | Nov 2008 | A1 |
20080298241 | Ohana et al. | Dec 2008 | A1 |
20090010263 | Ma et al. | Jan 2009 | A1 |
20090063878 | Schmidt et al. | Mar 2009 | A1 |
20090092154 | Malik et al. | Apr 2009 | A1 |
20090106801 | Horii | Apr 2009 | A1 |
20090122901 | Choi et al. | May 2009 | A1 |
20090165070 | McMullin et al. | Jun 2009 | A1 |
20090217325 | Kliger et al. | Aug 2009 | A1 |
20090252172 | Hare | Oct 2009 | A1 |
20090254794 | Malik et al. | Oct 2009 | A1 |
20090257483 | French et al. | Oct 2009 | A1 |
20090279643 | Shusterman | Nov 2009 | A1 |
20090285212 | Chu et al. | Nov 2009 | A1 |
20090296578 | Bernard et al. | Dec 2009 | A1 |
20090316589 | Shafeeu | Dec 2009 | A1 |
20100031297 | Klein et al. | Feb 2010 | A1 |
20100080312 | Moffatt et al. | Apr 2010 | A1 |
20100094995 | Barr | Apr 2010 | A1 |
20100150016 | Barr | Jun 2010 | A1 |
20100158013 | Kliger et al. | Jun 2010 | A1 |
20100158015 | Wu | Jun 2010 | A1 |
20100158021 | Kliger et al. | Jun 2010 | A1 |
20100158022 | Kliger et al. | Jun 2010 | A1 |
20100162329 | Ford et al. | Jun 2010 | A1 |
20100174824 | Aloni et al. | Jul 2010 | A1 |
20100185731 | Wu | Jul 2010 | A1 |
20100185759 | Wu | Jul 2010 | A1 |
20100238932 | Kliger et al. | Sep 2010 | A1 |
20100246586 | Ohana et al. | Sep 2010 | A1 |
20100254402 | Kliger et al. | Oct 2010 | A1 |
20100281195 | Daniel et al. | Nov 2010 | A1 |
20100284474 | Kliger et al. | Nov 2010 | A1 |
20100290461 | Kliger et al. | Nov 2010 | A1 |
20100322134 | Wu | Dec 2010 | A1 |
20110013633 | Klein et al. | Jan 2011 | A1 |
20110080850 | Klein et al. | Apr 2011 | A1 |
20110205891 | Kliger et al. | Aug 2011 | A1 |
20110206042 | Tarrab et al. | Aug 2011 | A1 |
20110310907 | Klein et al. | Dec 2011 | A1 |
20120093244 | Levi et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1422043 | Jun 2003 | CN |
1588827 | Mar 2005 | CN |
0385695 | Sep 1990 | EP |
0622926 | Nov 1994 | EP |
1501326 | Jan 2005 | EP |
60160231 | Aug 1985 | JP |
WO-9827748 | Jun 1998 | WO |
WO-9831133 | Jul 1998 | WO |
WO-9935753 | Jul 1999 | WO |
WO-9946734 | Sep 1999 | WO |
WO-0031725 | Jun 2000 | WO |
WO-0055843 | Sep 2000 | WO |
WO-0180030 | Oct 2001 | WO |
WO-0219623 | Mar 2002 | WO |
Entry |
---|
Niemietz, “Mask (computing)”, Mar. 17, 2008, Wikipedia, all pages. |
Number | Date | Country | |
---|---|---|---|
20140146698 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61167255 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12748625 | Mar 2010 | US |
Child | 14102390 | US |