This description relates to channel assignment in wireless communication.
Cellular wireless communications systems are designed to serve many access terminals distributed in a large geographic area by dividing the area into cells. At or near the center of each cell, a base transceiver station is located to serve access terminals (e.g., cellular telephones, laptops, PDAs) located in the cell. Each cell is often further divided into sectors by using multiple sectorized antennas. In each cell, a radio node at the base transceiver station serves one or more sectors and communicates with multiple access terminals in its cell. A radio node can generally support a certain amount of traffic in each sector for a particular bandwidth and it is often desirable to monitor the level of traffic in a sector in order to ensure that the sector is not becoming overloaded. Furthermore, it is often desirable to reduce delays in the flow of the traffic between the access terminals and the radio node, especially when the traffic includes delay-sensitive data, such as Voice over IP (VoIP) data.
In general, in one aspect, the invention features a method and a computer program for assigning, to an access terminal, frequency channels for communication between the access terminal and a radio node of a radio access network based on a strength of a signal determined for the access terminal.
In another aspect, the invention features an apparatus including a radio network controller to assign, to an access terminal, channels facilitating communication between the access terminal and a radio node based on a signal strength (e.g., a signal-to-noise (SNR) ratio) determined for the access terminal.
Implementations may include one or more of the following. The signal strength for the access terminal may be monitored while communication (e.g., a transfer of voice over IP packets) is facilitated between the access terminal and the radio node over the channels; and the number of channels may be adjusted in response to detecting a change in the signal strength. Each of the channels may include a forward link for transmitting data from the radio node to the access terminal and a reverse link for transmitting data from the access terminal to the radio node. A number of channels assigned may be based on a comparison of the signal strength to a predetermined threshold. The signal strength may be determined based on a signal (e.g., a route update message signal) sent from the access terminal to the radio node. The signal strength may also be determined based from a data rate value sent from the access terminal to the radio node, the rate being proportional to a signal strength. Furthermore, the radio network controller may unassign and assign channels to the access terminal based on changes in the data rate value. The assigning may comply with one or more of: a 1×Evolution-Data Optimized (EV-DO) protocol, a 3×EV-DO protocol, an N×EV-DO protocol, and a IS856-Rev-B protocol.
Advantages that can be seen in particular implementations of the invention include one or more of the following. The number of channels providing communication between an access terminal and one or more radio nodes are assigned to the access terminal based upon the signal-to-noise ratio (SNR) of the access terminal. Access terminals with higher SNRs are assigned fewer channels while access terminals with lower SNRs are assigned more channels. The assignment of channels based on SNRs of the access terminals reduces the average delay of traffic over an access network and enables the network to simultaneously support a greater number of access terminals. Furthermore, by maintaining only those channels that are required to limit transmission delay to an acceptable level (e.g., as specified by a particular application, for instance VoIP), power and communication resources are conserved at the access terminals and at the radio nodes serving the access terminals.
Other features and advantages will be apparent from the description and from the claims.
Referring to
The RAN 100, which may cover a large service area, includes one or more Access Sub-Networks (ASNs), e.g., ASN 102, each anchored by a radio network controller (RNC) 108, communicating with several radio nodes (RNs) 104a-104c using a private or public IP backhaul network 106. Each of the radio nodes 104a-104c may support multiple sectors, with each sector covering a certain cell area around one of the radio nodes 104a-104c.
An access sub-network 102 is connected over a public or private IP network 110 to one or more Packet Data Serving Nodes (PDSNs), e.g., PDSN 112. The packet data serving node 112, in turn, receives and transmits data packets (e.g., voice over IP packets) to a server 116 using the Internet 114. In some implementations, the functions of a packet data serving node 112 and radio network controller 108 are combined into a single device.
The access terminal 118a is in communication with the radio node 104a using an air link 120a, the access terminal 118b is in communication with both radio nodes 104a and 104b via an air link 120b, and the access terminal 118c is communication with the radio node 104c via an air link 120c. Examples of access terminals 118a-b include laptops, mobile telephones, personal data assistants (PDA), and other mobile or stationary electronic devices.
The air links 120a-c each comprises one or more channels. A channel includes a frequency band used by the RAN 100 to send data to the Access terminal (the forward link or downlink), and a different frequency band used by the Access Terminal to send data to the Access network (the reverse link or uplink). These frequency bands may be referred to as “carriers”. Depending on the technology used, the number of forward links and reverse links could be different for a given channel.
The number of channels assigned to each of the access terminals 118a-c may be different and vary over time.
In some embodiments, communication between an access terminal (e.g., access terminal 118a) and a radio node (e.g., radio node 104a) is confined to a specific pair of forward and reverse links (referred to as “symmetric pairs”) such that any feedback associated with a forward link of a symmetric pair must be carried on its associated reverse link and vice versa. For example, a symmetric pair may consist of the forward and reverse links belonging each of the channels 1-5. In embodiments in which the forward and reverse link pairs of channels 1-3 are symmetric, communications generated at either the access terminal 118a or the radio node 104a in response to information carried by channel 1 are transmitted only through channel 1. Similarly, communications associated with channel 2 are confined to channel 2, and communications associated with channel 3 are confined to channel 3. Alternatively, a symmetric pair may consist of forward and reverse links belonging to different channels. For example, a symmetric pair may include forward link 1 of channel 1 and reverse link 2 of channel 2.
In some embodiments, communication between an access terminal and a radio node is not confined to any specific pair of forward and reverse links. In these embodiments, feedback associated with information carried by a specific forward link (or reverse link) may be transmitted over any reverse link (or forward link) including one that may belong to a different channel or one that is connected to a different radio node. For example, feedback generated in response to information transmitted from the access terminal 118b to the radio node 104a over reverse link 4 may be sent to the access terminal 118b from the radio node 104b over forward link 5.
In some embodiments, the number of forward links and the number of reverse links assigned to each of the access terminals 118 may not be equal. For example, the access terminal 118a may have three forward links and only one reverse link. In these embodiments, the channels 1-5 include either a forward link or a reverse link.
The radio network controller 108 determines the number of channels to assign to each of the access terminals 118a-b for communicating with one or more of the radio nodes 104a-c and schedules the transmission of data over the channels. Generally, the overall quality of service experienced by a user at one of the access terminals 118a-b depends on the throughput of data transmission between the access terminal and the radio node(s) servicing the access terminal. Increasing the number of channels assigned to the access terminal increases the throughput of data transmission between the RAN 100 and that access terminal. For applications that are delay-sensitive, it is desirable to maintain a sufficient level of throughput between each of the access terminals 118 and the RAN 100.
As an example, VoIP applications have strict delay requirements. The average bit-rate of VoIP traffic is approximately 4.5 Kbps to 8 Kbps, depending on the codec. To ensure a satisfactory user-experience, the end-to-end delay of a voice message from the speaker's mouth to the listener's ear should be less than 250 ms. This results in the condition that the delay in transmission of VoIP data packets over an air link in the forward direction (e.g., one of air links 120a-b) should be no more than approximately 120 milliseconds (msec). In general, the smaller the delay, the better is the voice quality as perceived by the user. In the N×EV-DO protocol, data is transmitted over the forward links using a time-division-multiplexed modulation scheme. Since N×EV-DO is a time-division-multiplexed system in the forward-link, it has limited ability to deliver data to multiple users in parallel. Thus, the delay in the delivery of VoIP packets over a forward-link depends, at least in part, on the quality of the signal as measured by the access terminal receiving the signal from the RAN 100, and the load on the RAN 100 (i.e., the number of access terminals being supported by the RAN 100).
One approach to improving throughput involves assigning to each of the access terminals 118a-c as many channels as the N×EV-DO communication protocol permits. In applying this approach to a 3×EV-DO communication protocol, the radio network controller 108 assigns three distinct channels, each formed by a pair of forward and reverse links, to each of the access terminals 118a-c. In this approach, each of the access terminals 118a-c uses energy to maintain reverse links on all three channels, which can drain the access terminal's power supply. Furthermore, the total number of access terminals that can be supported by the RAN 100 is limited by the capability of the most-loaded reverse link frequency band. Each reverse link maintained by a radio node delivers power to the radio node. Therefore, as more users connect to the radio node using the maximum number of reverse links, the power delivered to the radio node increases considerably. At a certain point, the power coming into the radio nodes 104a-c is too high; as a result, the system is no longer able accommodate additional users. Assigning the maximum number of forward links to an access terminal may be considered unnecessary and wasteful of forward-link resources when the access terminal has sufficient signal-to-noise ration (SNR) to provide the same or similar throughput using less than the maximum number of forward links.
Another approach involves assigning channels to the access terminals 118a-b based on the quality of the signal received by each of the access terminals 118a-b. In this approach, access terminals receiving signals from the RAN 100 with a lower SNR are assigned a larger number of channels than access terminals receiving signals from the RAN 100 with a higher SNR.
Applying the model 140 to a 3×EV-DO scheme yields a SNR range having three regions defined by SNR thresholds S1 and S2. In this scheme, the radio network controller 108 assigns one link to access terminals reporting SNRs that are greater than S2, two links to access terminals reporting SNRs that are between S1 and S2, and three links to access terminals reporting SNRs that are less than S1.
The thresholds S1 to SN of the model 140 are computed from algorithms that determine a range of SNR that is sufficient to provide a required throughput for a given bit-rate or range of bit-rates and a given number of channels. In some embodiments, the thresholds S1 to SN may be derived from experimental data (one example of which is provided below). The model 140, which includes the thresholds S1 to SN and the rules for assigning channels based on the thresholds S1 to SN, is stored in the radio network controller 108. The model 140 may be represented by various forms, examples of which include: a chart, graph, table, and computer instructions (e.g., if/then statements).
The radio network controller 108 sets (162) an index number i equal to the maximum number of channels permitted by the N×EV-DO protocol. In this case, the maximum number is N. In embodiments implementing a 3×EV-DO protocol, N is equal to three, so the radio network controller 108 sets the index i equal to three.
When the access terminal 118a is requesting a new connection, it reports an SNR value to the RAN 100. In some embodiments, the access terminal 118a receives a pilot signal sent from the RAN 100 and reports the strength of the received pilot signal to the RAN 100 in a Route Update message. The Route Update message may also include the relative signal strengths of multiple pilot signals received by the access terminal 118a. Based on the pilot signal strength(s) reported by the access terminal 118a, the radio network controller 108 determines (164) the SNR of the access terminal 118a on all the applicable forward links. The radio network controller 108 compares (166) the maximum SNR value to the largest SNR threshold (i.e., threshold SN) of the model 140 shown in
Once the connection between the access terminal 118a and the radio access network 100 has been established, the radio network controller 108 continuously monitors the SNR of the access terminal 118a. In some embodiments, the access terminal 108 updates the radio network controller 108 with an SNR value approximately 100 times per second. When implementing the N×EV-DO communication standard, the radio network controller 108 monitors data rate control (DRC) values reported by the access terminal 118a over its reverse links. A DRC value includes the rate at which the access terminal 118a desires to receive data and is generally proportional to the strength of the signals the access terminal 118a is receiving from the radio node 104a. From the DRC value, the radio network controller 108 determines the SNR of the access terminal 118a. The radio network controller 108 compares the most recently received DRC value with previously received DRC values to determine whether the SNR at the access terminal 118a is increased or decreased. The radio network controller 108 may assign additional channels to the access terminal 118a if the SNR has decreased or remove channels if the SNR has increased.
In some embodiments, the radio network controller 108 determines how many channels to add or remove based upon the magnitude of change in the SNR. For example, if the magnitude is greater than a predefined value, the radio network controller 108 either adds or removes a number of channels corresponding to the predefined value. In some embodiments, the radio network controller 108 determines the number of channels corresponding to the most current SNR value using the model 140 of
If the access network senses a need to change the number of forward-links assigned to a specific AT, it could ask the access terminal to send SNR information periodically corresponding to all the candidate forward links. In an N×EVDO system, the access network could trigger this by sending a RouteUpdateRequest message to the access terminal.
In some implementations, the process 160 is modified such that the SNR value is first compared to the lowest threshold S1 and subsequently compared to higher thresholds. In some implementations, algorithms other than process 160 may be used to determine the region in which the SNR value lies.
In the context of the 3×-EV-DO communication protocol, the following simulations compare the average forward-link scheduling delay of a first channel assignment scheme, in which channels are assigned to access terminals based on their SNRs in accordance with the model 140 shown in
When performing the simulations, a number of assumptions were made. At the system level, these include a 2.0 GHz frequency of operation, a cell-to-cell distance of 2 km, a maximum path loss of 138 dB, a 3GPP2 mixed speed distribution, 3× independent carries, and 120 access terminals. The radio nodes were implemented on a scheduler provided by QualComm, Inc. Other assumptions include each access terminal having one VoIP flow and dual receive antennas.
When assigning carriers using the process 190 of
The plot 220 of
The simulations show that the average forward-link scheduling delay with the optimal second scheduling scheme, where the channel assignment is based on the signal to noise ratio of each access terminal is comparable to the first scheduling scheme, where every access terminal has exactly three carriers. Accordingly, the second scheme has almost no penalty in terms of scheduling delays. Since the average number of channels per access terminal is less than three in the second scheme, each reverse link channel supports fewer users and consequently, the rise-over-thermal (ROT) (i.e., the ratio of total power received by a radio node from a sector to a baseline thermal noise) is lower in the second scheme than in the first scheme. As indicated by the lower ROT associated with the second scheme, to support the same amount of users, a RAN implementing the second scheme is subjected to less power than the same RAN implementing the first scheme. Furthermore, since each access terminal has to transmit on a lower number of frequencies, it has to spend less power to maintain the connection, and thus its battery life can be prolonged. In other words, the simulations show that a RAN implementing the second scheme can support more users with less traffic delay than the same RAN implementing the first scheme.
Although the techniques described above employ the N×EV-DO air interface standard, the techniques are also applicable to other CDMA and non-CDMA air interface technologies. Although some of the above examples describe determining the SNR of an access terminal from the signal strength of a pilot signal as it is received by the access terminal, other attributes of the pilot signal, such as phase or time delay, or attributes of other signals sent from the RAN to the access terminal can also be used to determine the SNR of the access terminal. In addition, the RAN can compute the SNR of the access terminal by measuring various attributes of signals sent from the access terminal to the radio node. Examples of these attributes include signal strength, signal delay, phase, and power. In some examples, the computation of SNR can be performed at either or both of the access terminal and the radio node and then reported directly to the radio network controller or any other suitable location.
Furthermore, the number of channels assigned to an access terminal may be based on metrics other than SNR that are derived from (1) attributes of signals sent from the radio node to the access terminal, (2) attributes of signals sent from the access terminal to the radio node, or (3) from combinations of (1) and (2).
The techniques described above can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The techniques can be implemented as a computer program product, i.e., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
Method steps of the techniques described herein can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.
Other embodiments are within the scope of the following claims. For example, the computations described can be performed at one or more of the radio nodes 140a-c, at the radio network controller 108, or at other elements of the RAN 100.
Number | Name | Date | Kind |
---|---|---|---|
4736453 | Schloemer | Apr 1988 | A |
5828963 | Grandhi et al. | Oct 1998 | A |
6023622 | Plaschke et al. | Feb 2000 | A |
6122514 | Spaur et al. | Sep 2000 | A |
6272124 | Ahn et al. | Aug 2001 | B1 |
6512752 | H'mimy et al. | Jan 2003 | B1 |
6711144 | Kim et al. | Mar 2004 | B1 |
6731618 | Chung et al. | May 2004 | B1 |
6741862 | Chung et al. | May 2004 | B2 |
6781999 | Eyuboglu et al. | Aug 2004 | B2 |
6975604 | Ishida et al. | Dec 2005 | B1 |
7170871 | Eyuboglu et al. | Jan 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7242958 | Chung et al. | Jul 2007 | B2 |
7257376 | Reudink | Aug 2007 | B2 |
7277446 | Abi-Nassif et al. | Oct 2007 | B1 |
7299278 | Ch'ng | Nov 2007 | B2 |
7453860 | Hogberg et al. | Nov 2008 | B2 |
20020173323 | Tateson | Nov 2002 | A1 |
20020187799 | Haartsen | Dec 2002 | A1 |
20020196749 | Eyuboglu et al. | Dec 2002 | A1 |
20030100311 | Chung et al. | May 2003 | A1 |
20040171401 | Balachandran et al. | Sep 2004 | A1 |
20050207267 | Birmingham et al. | Sep 2005 | A1 |
20050207441 | Onggosanusi et al. | Sep 2005 | A1 |
20050213555 | Eyuboglu et al. | Sep 2005 | A1 |
20050243749 | Mehrabanzad et al. | Nov 2005 | A1 |
20050245279 | Mehrabanzad et al. | Nov 2005 | A1 |
20060067422 | Chung | Mar 2006 | A1 |
20060067451 | Pollman et al. | Mar 2006 | A1 |
20060126509 | Abi-Nassif et al. | Jun 2006 | A1 |
20060159045 | Ananthaiyer et al. | Jul 2006 | A1 |
20060240782 | Pollman et al. | Oct 2006 | A1 |
20060291420 | Ng | Dec 2006 | A1 |
20060294241 | Cherian et al. | Dec 2006 | A1 |
20070026884 | Rao | Feb 2007 | A1 |
20070058628 | Rao et al. | Mar 2007 | A1 |
20070077948 | Sharma et al. | Apr 2007 | A1 |
20070097916 | Eyuboglu et al. | May 2007 | A1 |
20070115896 | To et al. | May 2007 | A1 |
20070140172 | Garg et al. | Jun 2007 | A1 |
20070140184 | Garg et al. | Jun 2007 | A1 |
20070140185 | Garg et al. | Jun 2007 | A1 |
20070140218 | Nair et al. | Jun 2007 | A1 |
20070155329 | Mehrabanzad et al. | Jul 2007 | A1 |
20070220573 | Chiussi et al. | Sep 2007 | A1 |
20070230419 | Raman et al. | Oct 2007 | A1 |
20070238442 | Mate et al. | Oct 2007 | A1 |
20070238476 | Raman et al. | Oct 2007 | A1 |
20070242648 | Garg et al. | Oct 2007 | A1 |
20070248042 | Harikumar et al. | Oct 2007 | A1 |
20080003988 | Richardson | Jan 2008 | A1 |
20080013488 | Garg et al. | Jan 2008 | A1 |
20080062925 | Mate et al. | Mar 2008 | A1 |
20080065752 | Ch'ng et al. | Mar 2008 | A1 |
20080069020 | Richardson | Mar 2008 | A1 |
20080069028 | Richardson | Mar 2008 | A1 |
20080076398 | Mate et al. | Mar 2008 | A1 |
20080117842 | Rao | May 2008 | A1 |
20080119172 | Rao et al. | May 2008 | A1 |
20080120417 | Harikumar et al. | May 2008 | A1 |
20080139203 | Ng et al. | Jun 2008 | A1 |
20080146232 | Knisely | Jun 2008 | A1 |
20080151843 | Valmikam et al. | Jun 2008 | A1 |
20080159236 | Ch'ng et al. | Jul 2008 | A1 |
20080162924 | Chinitz et al. | Jul 2008 | A1 |
20080162926 | Xiong et al. | Jul 2008 | A1 |
20080253550 | Ch'ng et al. | Oct 2008 | A1 |
20080254792 | Ch'ng | Oct 2008 | A1 |
20090034440 | Samar et al. | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20070248042 A1 | Oct 2007 | US |