Perceptual Transform Coding
The coding of audio utilizes coding techniques that exploit various perceptual models of human hearing. For example, many weaker tones near strong ones are masked so they do not need to be coded. In traditional perceptual audio coding, this is exploited as adaptive quantization of different frequency data. Perceptually important frequency data are allocated more bits and thus finer quantization and vice versa.
For example, transform coding is conventionally known as an efficient scheme for the compression of audio signals. In transform coding, a block of the input audio samples is transformed (e.g., via the Modified Discrete Cosine Transform or MDCT, which is the most widely used), processed, and quantized. The quantization of the transformed coefficients is performed based on the perceptual importance (e.g. masking effects and frequency sensitivity of human hearing), such as via a scalar quantizer.
When a scalar quantizer is used, the importance is mapped to relative weighting, and the quantizer resolution (step size) for each coefficient is derived from its weight and the global resolution. The global resolution can be determined from target quality, bit rate, etc. For a given step size, each coefficient is quantized into a level which is zero or non-zero integer value.
At lower bitrates, there are typically a lot more zero level coefficients than non-zero level coefficients. They can be coded with great efficiency using run-length coding. In run-length coding, all zero-level coefficients typically are represented by a value pair consisting of a zero run (i.e., length of a run of consecutive zero-level coefficients), and level of the non-zero coefficient following the zero run. The resulting sequence is R0,L0,R1,L1 . . . , where R is zero run and L is non-zero level.
By exploiting the redundancies between R and L, it is possible to further improve the coding performance. Run-level Huffman coding is a reasonable approach to achieve it, in which R and L are combined into a 2-D array (R,L) and Huffman-coded. Because of memory restrictions, the entries in Huffman tables cannot cover all possible (R,L) combinations, which requires special handling of the outliers. A typical method used for the outliers is to embed an escape code into the Huffman tables, such that the outlier is coded by transmitting the escape code along with the independently quantized R and L.
When transform coding at low bit rates, a large number of the transform coefficients tend to be quantized to zero to achieve a high compression ratio. This could result in there being large missing portions of the spectral data in the compressed bitstream. After decoding and reconstruction of the audio, these missing spectral portions can produce an unnatural and annoying distortion in the audio. Moreover, the distortion in the audio worsens as the missing portions of spectral data become larger. Further, a lack of high frequencies due to quantization makes the decoded audio sound muffled and unpleasant.
Wide-Sense Perceptual Similarity
Perceptual coding also can be taken to a broader sense. For example, some parts of the spectrum can be coded with appropriately shaped noise. When taking this approach, the coded signal may not aim to render an exact or near exact version of the original. Rather the goal is to make it sound similar and pleasant when compared with the original. For example, a wide-sense perceptual similarity technique may code a portion of the spectrum as a scaled version of a code-vector, where the code vector may be chosen from either a fixed predetermined codebook (e.g., a noise codebook), or a codebook taken from a baseband portion of the spectrum (e.g., a baseband codebook).
All these perceptual effects can be used to reduce the bit-rate needed for coding of audio signals. This is because some frequency components do not need to be accurately represented as present in the original signal, but can be either not coded or replaced with something that gives the same perceptual effect as in the original.
In low bit rate coding, a recent trend is to exploit this wide-sense perceptual similarity and use a vector quantization (e.g., as a gain and shape code-vector) to represent the high frequency components with very few bits, e.g., 3 kbps. This can alleviate the distortion and unpleasant muffled effect from missing high frequencies and other spectral “holes.” The transform coefficients of the “spectral holes” are encoded using the vector quantization scheme. It has been shown that this approach enhances the audio quality with a small increase of bit rate.
Multi-Channel Coding
Some audio encoder/decoders also provide the capability to encode multiple channel audio. Joint coding of audio channels involves coding information from more than one channel together to reduce bitrate. For example, mid/side coding (also called M/S coding or sum-difference coding) involves performing a matrix operation on left and right stereo channels at an encoder, and sending resulting “mid” and “side” channels (normalized sum and difference channels) to a decoder. The decoder reconstructs the actual physical channels from the “mid” and “side” channels. M/S coding is lossless, allowing perfect reconstruction if no other lossy techniques (e.g., quantization) are used in the encoding process.
Intensity stereo coding is an example of a lossy joint coding technique that can be used at low bitrates. Intensity stereo coding involves summing a left and right channel at an encoder and then scaling information from the sum channel at a decoder during reconstruction of the left and right channels. Typically, intensity stereo coding is performed at higher frequencies where the artifacts introduced by this lossy technique are less noticeable.
Previous known multi-channel coding techniques had designs that were mostly practical for audio having two source channels.
The following Detailed Description concerns various audio encoding/decoding techniques and tools that provide a way to encode multi-channel audio at low bit rates. More particularly, the multi-channel coding described herein can be applied to audio systems having more than two source channels.
In basic form, an encoder encodes a subset of the physical channels from a multi-channel source (e.g., as a set of folded-down “virtual” channels that is derived from the physical channels). Additionally, the encoder encodes side information that describes the power and cross channel correlations (such as, the correlation between the physical channels, or the correlation between the physical channels and the coded channels). This enables the reconstruction by a decoder of all the physical channels from the coded channels. The coded channels and side information can be encoded using fewer bits compared to encoding all of the physical channels.
In one form of the multi-channel coding technique herein, the encoder attempts to preserve a full correlation matrix. The decoder reconstructs a set of physical channels from the coded channels using parameters that specify the correlation matrix of the original channels, or alternatively that of a transformed version of the original channels.
An alternative form of the multi-channel coding technique preserves some of the second order statistics of the cross channel correlations (e.g., power and some of the cross-correlations). In one implementation example, the decoder reconstructs physical channels from the coded channels using parameters that specify the power in the original physical channels with respect to the power in the coded channels. For better reconstruction, the encoder may encode additional parameters that specify the cross-correlation between the physical channels, or alternatively the cross-correlation between physical channels and coded channels.
In one implementation example, the encoder sends these parameters on a per band basis. It is not necessary for the parameters to be sent for every subframe of the multi-channel audio. Instead, the encoder may send the parameters once per a number N of subframes. At the decoder, the parameters for a specific intermediate subframe can be determined via interpolation from the sent parameters.
In another implementation example, the reconstruction of the physical channels by the decoder can be done from “virtual” channels that are obtained as a linear combination of the coded channels. This approach can be used to reduce channel cross-talk between certain physical channels. In one example, a 5.1 input source consisting of left (L), right (R), center (C), back-left (BL), back-right (BR) and subwoofer (S) could be encoded as two coded channels, as follows:
X=a*(L)+b*(BL)+c*(C)−d*(S)
Y=a*(R)+b*(BR)+c*(C)+d*(S)
The decoder in this example reconstructs the center channel using the sum of the two coded channels (X,Y), and uses a difference between the two coded channels to reconstruct the surround channel. This provides separation between the center and subwoofer channels. This example decoder further reconstructs the left (L) and back-left (BL) from the first coded channel (X), and reconstructs the right (R) and back-right (BR) channels from the second coded channel (Y).
This Summary is provided to introduce a selection of concepts in a simplified form that is further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Additional features and advantages of the invention will be made apparent from the following detailed description of embodiments that proceeds with reference to the accompanying drawings.
Various techniques and tools for representing, coding, and decoding audio information are described. These techniques and tools facilitate the creation, distribution, and playback of high quality audio content, even at very low bitrates.
The various techniques and tools described herein may be used independently. Some of the techniques and tools may be used in combination (e.g., in different phases of a combined encoding and/or decoding process).
Various techniques are described below with reference to flowcharts of processing acts. The various processing acts shown in the flowcharts may be consolidated into fewer acts or separated into more acts. For the sake of simplicity, the relation of acts shown in a particular flowchart to acts described elsewhere is often not shown. In many cases, the acts in a flowchart can be reordered.
Much of the detailed description addresses representing, coding, and decoding audio information. Many of the techniques and tools described herein for representing, coding, and decoding audio information can also be applied to video information, still image information, or other media information sent in single or multiple channels.
I. Computing Environment
With reference to
A computing environment may have additional features. For example, the computing environment 100 includes storage 140, one or more input devices 150, one or more output devices 160, and one or more communication connections 170. An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of the computing environment 100. Typically, operating system software (not shown) provides an operating environment for software executing in the computing environment 100 and coordinates activities of the components of the computing environment 100.
The storage 140 may be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, CDs, DVDs, or any other medium which can be used to store information and which can be accessed within the computing environment 100. The storage 140 stores instructions for the software 180.
The input device(s) 150 may be a touch input device such as a keyboard, mouse, pen, touchscreen or trackball, a voice input device, a scanning device, or another device that provides input to the computing environment 100. For audio or video, the input device(s) 150 may be a microphone, sound card, video card, TV tuner card, or similar device that accepts audio or video input in analog or digital form, or a CD or DVD that reads audio or video samples into the computing environment. The output device(s) 160 may be a display, printer, speaker, CD/DVD-writer, network adapter, or another device that provides output from the computing environment 100.
The communication connection(s) 170 enable communication over a communication medium to one or more other computing entities. The communication medium conveys information such as computer-executable instructions, audio or video information, or other data in a data signal. A modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired or wireless techniques implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.
Embodiments can be described in the general context of computer-readable media. Computer-readable media are any available media that can be accessed within a computing environment. By way of example, and not limitation, with the computing environment 100, computer-readable media include memory 120, storage 140, communication media, and combinations of any of the above.
Embodiments can be described in the general context of computer-executable instructions, such as those included in program modules, being executed in a computing environment on a target real or virtual processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Computer-executable instructions for program modules may be executed within a local or distributed computing environment.
For the sake of presentation, the detailed description uses terms like “determine,” “receive,” and “perform” to describe computer operations in a computing environment. These terms are high-level abstractions for operations performed by a computer, and should not be confused with acts performed by a human being. The actual computer operations corresponding to these terms vary depending on implementation.
II. Example Encoders and Decoders
Though the systems shown in
A. First Audio Encoder
The encoder 200 receives a time series of input audio samples 205 at some sampling depth and rate. The input audio samples 205 are for multi-channel audio (e.g., stereo) or mono audio. The encoder 200 compresses the audio samples 205 and multiplexes information produced by the various modules of the encoder 200 to output a bitstream 295 in a compression format such as a WMA format, a container format such as Advanced Streaming Format (“ASF”), or other compression or container format.
The frequency transformer 210 receives the audio samples 205 and converts them into data in the frequency (or spectral) domain. For example, the frequency transformer 210 splits the audio samples 205 of frames into sub-frame blocks, which can have variable size to allow variable temporal resolution. Blocks can overlap to reduce perceptible discontinuities between blocks that could otherwise be introduced by later quantization. The frequency transformer 210 applies to blocks a time-varying Modulated Lapped Transform (“MLT”), modulated DCT (“MDCT”), some other variety of MLT or DCT, or some other type of modulated or non-modulated, overlapped or non-overlapped frequency transform, or uses sub-band or wavelet coding. The frequency transformer 210 outputs blocks of spectral coefficient data and outputs side information such as block sizes to the multiplexer (“MUX”) 280.
For multi-channel audio data, the multi-channel transformer 220 can convert the multiple original, independently coded channels into jointly coded channels. Or, the multi-channel transformer 220 can pass the left and right channels through as independently coded channels. The multi-channel transformer 220 produces side information to the MUX 280 indicating the channel mode used. The encoder 200 can apply multi-channel rematrixing to a block of audio data after a multi-channel transform.
The perception modeler 230 models properties of the human auditory system to improve the perceived quality of the reconstructed audio signal for a given bitrate. The perception modeler 230 uses any of various auditory models and passes excitation pattern information or other information to the weighter 240. For example, an auditory model typically considers the range of human hearing and critical bands (e.g., Bark bands). Aside from range and critical bands, interactions between audio signals can dramatically affect perception. In addition, an auditory model can consider a variety of other factors relating to physical or neural aspects of human perception of sound.
The perception modeler 230 outputs information that the weighter 240 uses to shape noise in the audio data to reduce the audibility of the noise. For example, using any of various techniques, the weighter 240 generates weighting factors for quantization matrices (sometimes called masks) based upon the received information. The weighting factors for a quantization matrix include a weight for each of multiple quantization bands in the matrix, where the quantization bands are frequency ranges of frequency coefficients. Thus, the weighting factors indicate proportions at which noise/quantization error is spread across the quantization bands, thereby controlling spectral/temporal distribution of the noise/quantization error, with the goal of minimizing the audibility of the noise by putting more noise in bands where it is less audible, and vice versa.
The weighter 240 then applies the weighting factors to the data received from the multi-channel transformer 220.
The quantizer 250 quantizes the output of the weighter 240, producing quantized coefficient data to the entropy encoder 260 and side information including quantization step size to the MUX 280. In
The entropy encoder 260 losslessly compresses quantized coefficient data received from the quantizer 250, for example, performing run-level coding and vector variable length coding. The entropy encoder 260 can compute the number of bits spent encoding audio information and pass this information to the rate/quality controller 270.
The controller 270 works with the quantizer 250 to regulate the bitrate and/or quality of the output of the encoder 200. The controller 270 outputs the quantization step size to the quantizer 250 with the goal of satisfying bitrate and quality constraints.
In addition, the encoder 200 can apply noise substitution and/or band truncation to a block of audio data.
The MUX 280 multiplexes the side information received from the other modules of the audio encoder 200 along with the entropy encoded data received from the entropy encoder 260. The MUX 280 can include a virtual buffer that stores the bitstream 295 to be output by the encoder 200.
B. First Audio Decoder
The decoder 300 receives a bitstream 305 of compressed audio information including entropy encoded data as well as side information, from which the decoder 300 reconstructs audio samples 395.
The demultiplexer (“DEMUX”) 310 parses information in the bitstream 305 and sends information to the modules of the decoder 300. The DEMUX 310 includes one or more buffers to compensate for short-term variations in bitrate due to fluctuations in complexity of the audio, network jitter, and/or other factors.
The entropy decoder 320 losslessly decompresses entropy codes received from the DEMUX 310, producing quantized spectral coefficient data. The entropy decoder 320 typically applies the inverse of the entropy encoding techniques used in the encoder.
The inverse quantizer 330 receives a quantization step size from the DEMUX 310 and receives quantized spectral coefficient data from the entropy decoder 320. The inverse quantizer 330 applies the quantization step size to the quantized frequency coefficient data to partially reconstruct the frequency coefficient data, or otherwise performs inverse quantization.
From the DEMUX 310, the noise generator 340 receives information indicating which bands in a block of data are noise substituted as well as any parameters for the form of the noise. The noise generator 340 generates the patterns for the indicated bands, and passes the information to the inverse weighter 350.
The inverse weighter 350 receives the weighting factors from the DEMUX 310, patterns for any noise-substituted bands from the noise generator 340, and the partially reconstructed frequency coefficient data from the inverse quantizer 330. As necessary, the inverse weighter 350 decompresses weighting factors. The inverse weighter 350 applies the weighting factors to the partially reconstructed frequency coefficient data for bands that have not been noise substituted. The inverse weighter 350 then adds in the noise patterns received from the noise generator 340 for the noise-substituted bands.
The inverse multi-channel transformer 360 receives the reconstructed spectral coefficient data from the inverse weighter 350 and channel mode information from the DEMUX 310. If multi-channel audio is in independently coded channels, the inverse multi-channel transformer 360 passes the channels through. If multi-channel data is in jointly coded channels, the inverse multi-channel transformer 360 converts the data into independently coded channels.
The inverse frequency transformer 370 receives the spectral coefficient data output by the multi-channel transformer 360 as well as side information such as block sizes from the DEMUX 310. The inverse frequency transformer 370 applies the inverse of the frequency transform used in the encoder and outputs blocks of reconstructed audio samples 395.
C. Second Audio Encoder
With reference to
The encoder 400 selects between multiple encoding modes for the audio samples 405. In
For lossy coding of multi-channel audio data, the multi-channel pre-processor 410 optionally re-matrixes the time-domain audio samples 405. For example, the multi-channel pre-processor 410 selectively re-matrixes the audio samples 405 to drop one or more coded channels or increase inter-channel correlation in the encoder 400, yet allow reconstruction (in some form) in the decoder 500. The multi-channel pre-processor 410 may send side information such as instructions for multi-channel post-processing to the MUX 490.
The windowing module 420 partitions a frame of audio input samples 405 into sub-frame blocks (windows). The windows may have time-varying size and window shaping functions. When the encoder 400 uses lossy coding, variable-size windows allow variable temporal resolution. The windowing module 420 outputs blocks of partitioned data and outputs side information such as block sizes to the MUX 490.
In
The frequency transformer 430 receives audio samples and converts them into data in the frequency domain, applying a transform such as described above for the frequency transformer 210 of
The perception modeler 440 models properties of the human auditory system, processing audio data according to an auditory model, generally as described above with reference to the perception modeler 230 of
The weighter 442 generates weighting factors for quantization matrices based upon the information received from the perception modeler 440, generally as described above with reference to the weighter 240 of
For multi-channel audio data, the multi-channel transformer 450 may apply a multi-channel transform to take advantage of inter-channel correlation. For example, the multi-channel transformer 450 selectively and flexibly applies the multi-channel transform to some but not all of the channels and/or quantization bands in the tile. The multi-channel transformer 450 selectively uses pre-defined matrices or custom matrices, and applies efficient compression to the custom matrices. The multi-channel transformer 450 produces side information to the MUX 490 indicating, for example, the multi-channel transforms used and multi-channel transformed parts of tiles.
The quantizer 460 quantizes the output of the multi-channel transformer 450, producing quantized coefficient data to the entropy encoder 470 and side information including quantization step sizes to the MUX 490. In
The entropy encoder 470 losslessly compresses quantized coefficient data received from the quantizer 460, generally as described above with reference to the entropy encoder 260 of
The controller 480 works with the quantizer 460 to regulate the bitrate and/or quality of the output of the encoder 400. The controller 480 outputs the quantization factors to the quantizer 460 with the goal of satisfying quality and/or bitrate constraints.
The mixed/pure lossless encoder 472 and associated entropy encoder 474 compress audio data for the mixed/pure lossless coding mode. The encoder 400 uses the mixed/pure lossless coding mode for an entire sequence or switches between coding modes on a frame-by-frame, block-by-block, tile-by-tile, or other basis.
The MUX 490 multiplexes the side information received from the other modules of the audio encoder 400 along with the entropy encoded data received from the entropy encoders 470, 474. The MUX 490 includes one or more buffers for rate control or other purposes.
D. Second Audio Decoder
With reference to
The DEMUX 510 parses information in the bitstream 505 and sends information to the modules of the decoder 500. The DEMUX 510 includes one or more buffers to compensate for short-term variations in bitrate due to fluctuations in complexity of the audio, network jitter, and/or other factors.
The entropy decoder 520 losslessly decompresses entropy codes received from the DEMUX 510, typically applying the inverse of the entropy encoding techniques used in the encoder 400. When decoding data compressed in lossy coding mode, the entropy decoder 520 produces quantized spectral coefficient data.
The mixed/pure lossless decoder 522 and associated entropy decoder(s) 520 decompress losslessly encoded audio data for the mixed/pure lossless coding mode.
The tile configuration decoder 530 receives and, if necessary, decodes information indicating the patterns of tiles for frames from the DEMUX 590. The tile pattern information may be entropy encoded or otherwise parameterized. The tile configuration decoder 530 then passes tile pattern information to various other modules of the decoder 500.
The inverse multi-channel transformer 540 receives the quantized spectral coefficient data from the entropy decoder 520 as well as tile pattern information from the tile configuration decoder 530 and side information from the DEMUX 510 indicating, for example, the multi-channel transform used and transformed parts of tiles. Using this information, the inverse multi-channel transformer 540 decompresses the transform matrix as necessary, and selectively and flexibly applies one or more inverse multi-channel transforms to the audio data.
The inverse quantizer/weighter 550 receives information such as tile and channel quantization factors as well as quantization matrices from the DEMUX 510 and receives quantized spectral coefficient data from the inverse multi-channel transformer 540. The inverse quantizer/weighter 550 decompresses the received weighting factor information as necessary. The quantizer/weighter 550 then performs the inverse quantization and weighting.
The inverse frequency transformer 560 receives the spectral coefficient data output by the inverse quantizer/weighter 550 as well as side information from the DEMUX 510 and tile pattern information from the tile configuration decoder 530. The inverse frequency transformer 570 applies the inverse of the frequency transform used in the encoder and outputs blocks to the overlapper/adder 570.
In addition to receiving tile pattern information from the tile configuration decoder 530, the overlapper/adder 570 receives decoded information from the inverse frequency transformer 560 and/or mixed/pure lossless decoder 522. The overlapper/adder 570 overlaps and adds audio data as necessary and interleaves frames or other sequences of audio data encoded with different modes.
The multi-channel post-processor 580 optionally re-matrixes the time-domain audio samples output by the overlapper/adder 570. For bitstream-controlled post-processing, the post-processing transform matrices vary over time and are signaled or included in the bitstream 505.
III. Overview of Multi-Channel Processing
This section is an overview of some multi-channel processing techniques used in some encoders and decoders, including multi-channel pre-processing techniques, flexible multi-channel transform techniques, and multi-channel post-processing techniques.
A. Multi-Channel Pre-Processing
Some encoders perform multi-channel pre-processing on input audio samples in the time domain.
In traditional encoders, when there are N source audio channels as input, the number of output channels produced by the encoder is also N. The number of coded channels may correspond one-to-one with the source channels, or the coded channels may be multi-channel transform-coded channels. When the coding complexity of the source makes compression difficult or when the encoder buffer is full, however, the encoder may alter or drop (i.e., not code) one or more of the original input audio channels or multi-channel transform-coded channels. This can be done to reduce coding complexity and improve the overall perceived quality of the audio. For quality-driven pre-processing, an encoder may perform multi-channel pre-processing in reaction to measured audio quality so as to smoothly control overall audio quality and/or channel separation.
For example, an encoder may alter a multi-channel audio image to make one or more channels less critical so that the channels are dropped at the encoder yet reconstructed at a decoder as “virtual” or uncoded channels. This helps to avoid the need for outright deletion of channels or severe quantization, which can have a dramatic effect on quality.
An encoder can indicate to the decoder what action to take when the number of coded channels is less than the number of channels for output. Then, a multi-channel post-processing transform can be used in a decoder to create virtual channels. For example, an encoder (through a bitstream) can instruct a decoder to create a virtual center by averaging decoded left and right channels. Later multi-channel transformations may exploit redundancy between averaged back left and back right channels (without post-processing), or an encoder may instruct a decoder to perform some multi-channel post-processing for back left and right channels. Or, an encoder can signal to a decoder to perform multi-channel post-processing for another purpose.
The output is then fed to the rest of the encoder, which, in addition to any other processing that the encoder may perform, encodes (720) the data using techniques described with reference to
A syntax used by an encoder and decoder may allow description of general or pre-defined post-processing multi-channel transform matrices, which can vary or be turned on/off on a frame-to-frame basis. An encoder can use this flexibility to limit stereo/surround image impairments, trading off channel separation for better overall quality in certain circumstances by artificially increasing inter-channel correlation. Alternatively, a decoder and encoder can use another syntax for multi-channel pre- and post-processing, for example, one that allows changes in transform matrices on a basis other than frame-to-frame.
B. Flexible Multi-Channel Transforms
Some encoders can perform flexible multi-channel transforms that effectively take advantage of inter-channel correlation. Corresponding decoders can perform corresponding inverse multi-channel transforms.
For example, an encoder can position a multi-channel transform after perceptual weighting (and the decoder can position the inverse multi-channel transform before inverse weighting) such that a cross-channel leaked signal is controlled, measurable, and has a spectrum like the original signal. An encoder can apply weighting factors to multi-channel audio in the frequency domain (e.g., both weighting factors and per-channel quantization step modifiers) before multi-channel transforms. An encoder can perform one or more multi-channel transforms on weighted audio data, and quantize multi-channel transformed audio data.
A decoder can collect samples from multiple channels at a particular frequency index into a vector and perform an inverse multi-channel transform to generate the output. Subsequently, a decoder can inverse quantize and inverse weight the multi-channel audio, coloring the output of the inverse multi-channel transform with mask(s). Thus, leakage that occurs across channels (due to quantization) can be spectrally shaped so that the leaked signal's audibility is measurable and controllable, and the leakage of other channels in a given reconstructed channel is spectrally shaped like the original uncorrupted signal of the given channel.
An encoder can group channels for multi-channel transforms to limit which channels get transformed together. For example, an encoder can determine which channels within a tile correlate and group the correlated channels. An encoder can consider pair-wise correlations between signals of channels as well as correlations between bands, or other and/or additional factors when grouping channels for multi-channel transformation. For example, an encoder can compute pair-wise correlations between signals in channels and then group channels accordingly. A channel that is not pair-wise correlated with any of the channels in a group may still be compatible with that group. For channels that are incompatible with a group, an encoder can check compatibility at band level and adjust one or more groups of channels accordingly. An encoder can identify channels that are compatible with a group in some bands, but incompatible in some other bands. Turning off a transform at incompatible bands can improve correlation among bands that actually get multi-channel transform coded and improve coding efficiency. Channels in a channel group need not be contiguous. A single tile may include multiple channel groups, and each channel group may have a different associated multi-channel transform. After deciding which channels are compatible, an encoder can put channel group information into a bitstream. A decoder can then retrieve and process the information from the bitstream.
An encoder can selectively turn multi-channel transforms on or off at the frequency band level to control which bands are transformed together. In this way, an encoder can selectively exclude bands that are not compatible in multi-channel transforms. When a multi-channel transform is turned off for a particular band, an encoder can use the identity transform for that band, passing through the data at that band without altering it. The number of frequency bands relates to the sampling frequency of the audio data and the tile size. In general, the higher the sampling frequency or larger the tile size, the greater the number of frequency bands. An encoder can selectively turn multi-channel transforms on or off at the frequency band level for channels of a channel group of a tile. A decoder can retrieve band on/off information for a multi-channel transform for a channel group of a tile from a bitstream according to a particular bitstream syntax.
An encoder can use hierarchical multi-channel transforms to limit computational complexity, especially in the decoder. With a hierarchical transform, an encoder can split an overall transformation into multiple stages, reducing the computational complexity of individual stages and in some cases reducing the amount of information needed to specify multi-channel transforms. Using this cascaded structure, an encoder can emulate the larger overall transform with smaller transforms, up to some accuracy. A decoder can then perform a corresponding hierarchical inverse transform. An encoder may combine frequency band on/off information for the multiple multi-channel transforms. A decoder can retrieve information for a hierarchy of multi-channel transforms for channel groups from a bitstream according to a particular bitstream syntax.
An encoder can use pre-defined multi-channel transform matrices to reduce the bitrate used to specify transform matrices. An encoder can select from among multiple available pre-defined matrix types and signal the selected matrix in the bitstream. Some types of matrices may require no additional signaling in the bitstream. Others may require additional specification. A decoder can retrieve the information indicating the matrix type and (if necessary) the additional information specifying the matrix.
An encoder can compute and apply quantization matrices for channels of tiles, per-channel quantization step modifiers, and overall quantization tile factors. This allows an encoder to shape noise according to an auditory model, balance noise between channels, and control overall distortion. A corresponding decoder can decode apply overall quantization tile factors, per-channel quantization step modifiers, and quantization matrices for channels of tiles, and can combine inverse quantization and inverse weighting steps
C. Multi-Channel Post-Processing
Some decoders perform multi-channel post-processing on reconstructed audio samples in the time domain.
For example, the number of decoded channels may be less than the number of channels for output (e.g., because the encoder did not code one or more input channels). If so, a multi-channel post-processing transform can be used to create one or more “virtual” channels based on actual data in the decoded channels. If the number of decoded channels equals the number of output channels, the post-processing transform can be used for arbitrary spatial rotation of the presentation, remapping of output channels between speaker positions, or other spatial or special effects. If the number of decoded channels is greater than the number of output channels (e.g., playing surround sound audio on stereo equipment), a post-processing transform can be used to “fold-down” channels. Transform matrices for these scenarios and applications can be provided or signaled by the encoder.
The decoder then performs (820) multi-channel post-processing on the time-domain multi-channel audio data. When the encoder produces a number of coded channels and the decoder outputs a larger number of channels, the post-processing involves a general transform to produce the larger number of output channels from the smaller number of coded channels. For example, the decoder takes co-located (in time) samples, one from each of the reconstructed coded channels, then pads any channels that are missing (i.e., the channels dropped by the encoder) with zeros. The decoder multiplies the samples with a general post-processing transform matrix.
The general post-processing transform matrix can be a matrix with pre-determined elements, or it can be a general matrix with elements specified by the encoder. The encoder signals the decoder to use a pre-determined matrix (e.g., with one or more flag bits) or sends the elements of a general matrix to the decoder, or the decoder may be configured to always use the same general post-processing transform matrix. For additional flexibility, the multi-channel post-processing can be turned on/off on a frame-by-frame or other basis (in which case, the decoder may use an identity matrix to leave channels unaltered).
IV. Channel Extension Processing for Multi-Channel Audio
In a typical coding scheme for coding a multi-channel source, a time-to-frequency transformation using a transform such as a modulated lapped transform (“MLT”) or discrete cosine transform (“DCT”) is performed at an encoder, with a corresponding inverse transform at the decoder. MLT or DCT coefficients for some of the channels are grouped together into a channel group and a linear transform is applied across the channels to obtain the channels that are to be coded. If the left and right channels of a stereo source are correlated, they can be coded using a sum-difference transform (also called M/S or mid/side coding). This removes correlation between the two channels, resulting in fewer bits needed to code them. However, at low bitrates, the difference channel may not be coded (resulting in loss of stereo image), or quality may suffer from heavy quantization of both channels.
Instead of coding sum and difference channels for channel groups (e.g., left/right pairs, front left/front right pairs, back left/back right pairs, or other groups), a desirable alternative to these typical joint coding schemes (e.g., mid/side coding, intensity stereo coding, etc.) is to code one or more combined channels (which may be sums of channels, a principal major component after applying a de-correlating transform, or some other combined channel) along with additional parameters to describe the cross-channel correlation and power of the respective physical channels and allow reconstruction of the physical channels that maintains the cross-channel correlation and power of the respective physical channels. In other words, second order statistics of the physical channels are maintained. Such processing can be referred to as channel extension processing.
For example, using complex transforms allows channel reconstruction that maintains cross-channel correlation and power of the respective channels. For a narrowband signal approximation, maintaining second-order statistics is sufficient to provide a reconstruction that maintains the power and phase of individual channels, without sending explicit correlation coefficient information or phase information.
The channel extension processing represents uncoded channels as modified versions of coded channels. Channels to be coded can be actual, physical channels or transformed versions of physical channels (using, for example, a linear transform applied to each sample). For example, the channel extension processing allows reconstruction of plural physical channels using one coded channel and plural parameters. In one implementation, the parameters include ratios of power (also referred to as intensity or energy) between two physical channels and a coded channel on a per-band basis. For example, to code a signal having left (L) and right (R) stereo channels, the power ratios are L/M and R/M, where M is the power of the coded channel (the “sum” or “mono” channel), L is the power of left channel, and R is the power of the right channel. Although channel extension coding can be used for all frequency ranges, this is not required. For example, for lower frequencies an encoder can code both channels of a channel transform (e.g., using sum and difference), while for higher frequencies an encoder can code the sum channel and plural parameters.
The channel extension processing can significantly reduce the bitrate needed to code a multi-channel source. The parameters for modifying the channels take up a small portion of the total bitrate, leaving more bitrate for coding combined channels. For example, for a two channel source, if coding the parameters takes 10% of the available bitrate, 90% of the bits can be used to code the combined channel. In many cases, this is a significant savings over coding both channels, even after accounting for cross-channel dependencies.
Channels can be reconstructed at a reconstructed channel/coded channel ratio other than the 2:1 ratio described above. For example, a decoder can reconstruct left and right channels and a center channel from a single coded channel. Other arrangements also are possible. Further, the parameters can be defined different ways. For example, the parameters may be defined on some basis other than a per-band basis.
A. Complex Transforms and Scale/Shape Parameters
In one prior approach to channel extension processing, an encoder forms a combined channel and provides parameters to a decoder for reconstruction of the channels that were used to form the combined channel. A decoder derives complex spectral coefficients (each having a real component and an imaginary component) for the combined channel using a forward complex time-frequency transform. Then, to reconstruct physical channels from the combined channel, the decoder scales the complex coefficients using the parameters provided by the encoder. For example, the decoder derives scale factors from the parameters provided by the encoder and uses them to scale the complex coefficients. The combined channel is often a sum channel (sometimes referred to as a mono channel) but also may be another combination of physical channels. The combined channel may be a difference channel (e.g., the difference between left and right channels) in cases where physical channels are out of phase and summing the channels would cause them to cancel each other out.
For example, the encoder sends a sum channel for left and right physical channels and plural parameters to a decoder which may include one or more complex parameters. (Complex parameters are derived in some way from one or more complex numbers, although a complex parameter sent by an encoder (e.g., a ratio that involves an imaginary number and a real number) may not itself be a complex number.) The encoder also may send only real parameters from which the decoder can derive complex scale factors for scaling spectral coefficients. (The encoder typically does not use a complex transform to encode the combined channel itself. Instead, the encoder can use any of several encoding techniques to encode the combined channel.)
After a time-to-frequency transform at an encoder, the spectrum of each channel is usually divided into sub-bands. In the channel extension coding technique, an encoder can determine different parameters for different frequency sub-bands, and a decoder can scale coefficients in a band of the combined channel for the respective band in the reconstructed channel using one or more parameters provided by the encoder. In a coding arrangement where left and right channels are to be reconstructed from one coded channel, each coefficient in the sub-band for each of the left and right channels is represented by a scaled version of a sub-band in the coded channel.
For example,
In one implementation, each sub-band in each of the left and right channels has a scale parameter and a shape parameter. The shape parameter may be determined by the encoder and sent to the decoder, or the shape parameter may be assumed by taking spectral coefficients in the same location as those being coded. The encoder represents all the frequencies in one channel using scaled version of the spectrum from one or more of the coded channels. A complex transform (having a real number component and an imaginary number component) is used, so that cross-channel second-order statistics of the channels can be maintained for each sub-band. Because coded channels are a linear transform of actual channels, parameters do not need to be sent for all channels. For example, if P channels are coded using N channels (where N<P), then parameters do not need to be sent for all P channels. More information on scale and shape parameters is provided below in Section V.
The parameters may change over time as the power ratios between the physical channels and the combined channel change. Accordingly, the parameters for the frequency bands in a frame may be determined on a frame by frame basis or some other basis. The parameters for a current band in a current frame are differentially coded based on parameters from other frequency bands and/or other frames in described embodiments.
The decoder performs a forward complex transform to derive the complex spectral coefficients of the combined channel. It then uses the parameters sent in the bitstream (such as power ratios and an imaginary-to-real ratio for the cross-correlation or a normalized correlation matrix) to scale the spectral coefficients. The output of the complex scaling is sent to the post processing filter. The output of this filter is scaled and added to reconstruct the physical channels.
Channel extension coding need not be performed for all frequency bands or for all time blocks. For example, channel extension coding can be adaptively switched on or off on a per band basis, a per block basis, or some other basis. In this way, an encoder can choose to perform this processing when it is efficient or otherwise beneficial to do so. The remaining bands or blocks can be processed by traditional channel decorrelation, without decorrelation, or using other methods.
The achievable complex scale factors in described embodiments are limited to values within certain bounds. For example, described embodiments encode parameters in the log domain, and the values are bound by the amount of possible cross-correlation between channels.
The channels that can be reconstructed from the combined channel using complex transforms are not limited to left and right channel pairs, nor are combined channels limited to combinations of left and right channels. For example, combined channels may represent two, three or more physical channels. The channels reconstructed from combined channels may be groups such as back-left/back-right, back-left/left, back-right/right, left/center, right/center, and left/center/right. Other groups also are possible. The reconstructed channels may all be reconstructed using complex transforms, or some channels may be reconstructed using complex transforms while others are not.
B. Interpolation of Parameters
An encoder can choose anchor points at which to determine explicit parameters and interpolate parameters between the anchor points. The amount of time between anchor points and the number of anchor points may be fixed or vary depending on content and/or encoder-side decisions. When an anchor point is selected at time t, the encoder can use that anchor point for all frequency bands in the spectrum. Alternatively, the encoder can select anchor points at different times for different frequency bands.
C. Detailed Explanation
A general linear channel transform can be written as Y=AX, where X is a set of L vectors of coefficients from P channels (a P×L dimensional matrix), A is a P×P channel transform matrix, and Y is the set of L transformed vectors from the P channels that are to be coded (a P×L dimensional matrix). L (the vector dimension) is the band size for a given subframe on which the linear channel transform algorithm operates. If an encoder codes a subset N of the P channels in Y, this can be expressed as Z=BX, where the vector Z is an N×L matrix, and B is a N×P matrix formed by taking N rows of matrix Y corresponding to the N channels which are to be coded. Reconstruction from the N channels involves another matrix multiplication with a matrix C after coding the vector Z to obtain W=CQ(Z), where Q represents quantization of the vector Z. Substituting for Z gives the equation W=CQ(BX). Assuming quantization noise is negligible, W=CBX. C can be appropriately chosen to maintain cross-channel second-order statistics between the vector X and W. In equation form, this can be represented as WW*=CBXX*B*C*=XX*, where XX* is a symmetric P×P matrix.
Since XX* is a symmetric P×P matrix, there are P(P+1)/2 degrees of freedom in the matrix. If N>=(P+1)/2, then it may be possible to come up with a P×N matrix C such that the equation is satisfied. If N<(P+1)/2, then more information is needed to solve this. If that is the case, complex transforms can be used to come up with other solutions which satisfy some portion of the constraint.
For example, if X is a complex vector and C is a complex matrix, we can try to find C such that Re(CBXX*B*C*)=Re(XX*). According to this equation, for an appropriate complex matrix C the real portion of the symmetric matrix XX* is equal to the real portion of the symmetric matrix product CBXX*B*C*.
For the case where M=2 and N=1, then, BXX*B* is simply a real scalar (L×1) matrix, referred to as α. We solve for the equations shown in
Using the constraint shown in
Thus, when the encoder sends the magnitude of the complex scale factors, the decoder is able to reconstruct two individual channels which maintain cross-channel second order characteristics of the original, physical channels, and the two reconstructed channels maintain the proper phase of the coded channel.
In Example 1, although the imaginary portion of the cross-channel second-order statistics is solved for (as shown in
Suppose that in addition to the current signal from the previous analysis (W0 and W1 for the two channels, respectively), the decoder has the effect signal—a processed version of both the channels available (W0F and W1F, respectively), as shown in
In Example 1, it was determined that the complex constants C0 and C1 can be chosen to match the real portion of the cross-channel second-order statistics by sending two parameters (e.g., left-to-mono (L/M) and right-to-mono (R/M) power ratios). If another parameter is sent by the encoder, then the entire cross-channel second-order statistics of a multi-channel source can be maintained.
For example, the encoder can send an additional, complex parameter that represents the imaginary-to-real ratio of the cross-correlation between the two channels to maintain the entire cross-channel second-order statistics of a two-channel source. Suppose that the correlation matrix is given by RXX, as defined in
and assume W0F and W1F have the same power as and are uncorrelated to W0 and W1 respectively, the reconstruction procedure in
Due to the relationship between |C0| and |C1|, they cannot possess independent values. Hence, the encoder quantizes them jointly or conditionally. This applies to both Examples 1 and 2.
Other parameterizations are also possible, such as by sending from the encoder to the decoder a normalized version of the power matrix directly where we can normalize by the geometric mean of the powers, as shown in
Another parameterization is possible to represent U and Λ directly. It can be shown that U can be factorized into a series of Givens rotations. Each Givens rotation can be represented by an angle. The encoder transmits the Givens rotation angles and the Eigenvalues.
Also, both parameterizations can incorporate any additional arbitrary pre-rotation V and still produce the same correlation matrix since VV*=I, where I stands for the identity matrix. That is, the relationship shown in
Once the matrix shown in
The all-pass filter can be represented as a cascade of other all-pass filters. Depending on the amount of reverberation needed to accurately model the source, the output from any of the all-pass filters can be taken. This parameter can also be sent on either a band, subframe, or source basis. For example, the output of the first, second, or third stage in the all-pass filter cascade can be taken.
By taking the output of the filter, scaling it and adding it back to the original reconstruction, the decoder is able to maintain the cross-channel second-order statistics. Although the analysis makes certain assumptions on the power and the correlation structure on the effect signal, such assumptions are not always perfectly met in practice. Further processing and better approximation can be used to refine these assumptions. For example, if the filtered signals have a power which is larger than desired, the filtered signal can be scaled as shown in
There can sometimes be cases when the signal in the two physical channels being combined is out of phase, and thus if sum coding is being used, the matrix will be singular. In such cases, the maximum norm of the matrix can be limited. This parameter (a threshold) to limit the maximum scaling of the matrix can also be sent in the bitstream on a band, subframe, or source basis.
As in Example 1, the analysis in this Example assumes that B0=B1=β. However, the same algebra principles can be used for any transform to obtain similar results.
V. Multi-Channel Extension Coding/Decoding with More Than Two Source Channels
The channel extension processing described above codes a multi-channel sound source by coding a subset of the channels, along with parameters from which the decoder can reproduce a normalized version of a channel correlation matrix. Using the channel correlation matrix, the decoder process reconstructs the remaining channels from the coded subset of the channels. The channel extension coding described in previous sections has its most practical application to audio systems with two source channels.
In accordance with a multi-channel extension coding/decoding technique described in this section, multi-channel extension coding techniques are described that can be practically applied to systems with more than two channels. The description presents two implementation examples: one that attempts to preserve the full correlation matrix, and a second that preserves some second order statistics of the correlation matrix.
With reference to
Y0=AX
The coded channel coefficients are then coded 3430 and multiplexed 3440 with side information specifying the cross-channel correlations (correlation parameters 3436) into the bitstream 3445 that is sent to the decoder. The coding 3430 of the coefficients can optionally use the above described frequency extension coding in the coding and/or reconstruction domains and may be further coded using another channel transform matrix. The channel transform matrix A is not necessarily a square matrix. The channel transform matrix A is formed by taking the first M rows of a matrix B, which is an N×N square matrix. Thus, the components of Y0 are the first M components of a vector Z, where the vector Z is related to the source channels by the matrix B, as follows.
Z=BX
The vector Y0 has fewer components than X. The goal of the following multi-channel extension coding/decoding techniques is to reconstruct X in such a way that the second order statistics (such as power and cross-correlations) of X are maintained for each band of frequencies.
A. Preserving Full Correlation Matrix
In a general case implementation of the multi-channel coding technique, the encoder 3400 can send sufficient information in the correlation parameters 3436 for the decoder to construct a full power correlation matrix for each band. The channel power cross-correlation matrix generally has the form of:
Notice, that the components of the matrix on the upper right half above the diagonal (E(X02) through E(XN2)) mirror those at the bottom left half of the matrix.
With reference to
With knowledge of the correlation matrix E[XX*], the decoder forms a linear transform C 3535 using the inverse KLT of the vector Y and the forward KLT of the vector X. Using the linear transform C 3535, the decoder reconstructs 3540 the multi-channel audio (vector {circumflex over (X)}) from the vector Y, as per the relation {circumflex over (X)}=CY. When such linear transform is used for the reconstruction, then E[XX*]=E[{circumflex over (X)}{circumflex over (X)}*], if C=UXDX1/2DY−1/2U*Y, where E[XX*]=UXDXU*X and E[YY*]=UYDYU*Y. This factorization can be done using standard eigenvalues/eigenvector decomposition. A low power decoder can simply use the magnitude of the complex matrix C, and just use real number operations instead of complex number operations.
In this general case, the encoder 3400 therefore sends information detailing the power correlation matrix for X as the correlation parameters 3516. The decoder 3500 then computes 3530 the power correlation matrix of Y to find the linear transform C 3535 for the reconstruction 3540. If the decoder knows the linear transformations A and B, discussed above, then it can compute the correlation matrix of the vector Y by simply using the correlation matrix of the vector X because the decoder then knows that E[Y0Y*0]=AE[XX*]A*. This reduces the decoder complexity for computing the correlation matrix of Y.
After the reconstruction vector {circumflex over (X)} is calculated, the decoder then applies the inverse time-frequency transform 3550 on the reconstructed coefficients 3545 (vector {circumflex over (X)}) to reconstruct the time domain samples of the multi-channel audio 3555.
As an alternative to sending the entire correlation matrix for X as the correlation parameters 3436, the encoder 3400 (
With reference to
On the other hand, if the vector Y has a spherical power correlation matrix (cI) to begin with, then the decoder need not compute the correlation matrix. Instead, the encoder can send a normalized version of the correlation matrix for Z. The encoder just sends E[ZZ*]/c for the partial power correlation matrix 3616. It can be shown that the top left M×M quadrant of this matrix will be the identity matrix which does not need to be sent to the decoder. The decoder reconstructs 3650 the multi-channel vector ({circumflex over (X)}) as {circumflex over (X)}=B−1{circumflex over (Z)}=B−1UZDZ1/2/√{square root over (c)}Y, which requires a single eigenvalues/eigenvector decomposition of the normalized correlation matrix for Z.
B. Preserving Partial Correlation Matrix
Although the general case implementation shown in
Assuming that the quantization noise is small, the decoder decodes 3710 the coded channels vector Y0 3715 from the bitstream 3445, and from this constructs an N dimensional vector, W (virtual channel vector) 3725, using a linear transform D 3720 (an N×M dimensional matrix) as per the relation, W=DY, which is known to both the encoder and decoder. This transform is used to create the virtual channels from which the individual channels {circumflex over (X)} are to be reconstructed. Each component of the vector X is now reconstructed using a single component of the vector W 3725 to preserve the power and the cross correlation with respect to either the corresponding component in the vector W or some other component in the vector X. The reconstruction 3750 of the ith physical channel can be done using the formula:
{circumflex over (X)}i=aWi+bWi⊥,
where Wi⊥3735 is a decorrelated 3730 version of Wi (that is it has the same power as Wi, but is decorrelated from it). There are many ways known in the art to create such a decorrelated signal.
The decoder attempts to preserve the power of the physical channel (E[XiX*i]) and the cross-correlation between the physical channel and the virtual channel used to reconstruct it (E[XiW*i]). Thus, we have
The physical channels can be reconstructed at the decoder, if the following parameters 3716 describing the power of the physical channel and the cross-correlation between the physical channel and the coded channel are sent as additional parameters to the decoder:
The parameters 3745 for reconstruction can now be calculated from the received power and correlation parameters 3716 as:
The angle of b can be chosen as the same as that of βi.
In the above formulation, if we intend to only preserve the power in the reconstructed physical channel (e.g.: for the LFE channel), only αi, needs to be sent, and βi, can be assumed to be zero. Similarly, in order to reduce the number of parameters being sent, only the magnitude of βi, can be sent and the angle can be assumed to be zero.
The number of parameters 3716 to be sent to the decoder can be reduced by one, if the encoder scales the physical channels so as to impose the one of the following constraints on αi:
Σαi2=1
or
Παi2=1
If the encoder scales the input so that either of the above conditions are met, then αi for one of the physical channels need not be sent, and can be computed implicitly by the decoder. This scaling makes the coded channels preserve the power in the original physical channels in some sense.
At the decoder, the reconstruction 3750 is normally done using Wi, and its decorrelated version Wi⊥, i.e.,
{circumflex over (X)}i=aWi+bWi⊥
{circumflex over (X)}i=αiβiWi+αi√{square root over (1−|βi|2)}Wi⊥
In order to reduce cross-talk between channels, instead of decorrelating Wi, the reverb can be applied to the first component of {circumflex over (X)}i in the equation above, i.e.,
Ui=αiβiWi
where λi is the scale factor used to adjust the power in the decorrelated signal to prevent post-echo, and the scale factor for the reverb channel has been adjusted assuming that the power in the reverb component Ui⊥ is approximately equal to αi2|βi|2E[WiW*i]. In the case it is much larger, then λi is used to scale it down. To do this, the decoder measures the power from the output of the decorrelated signal and then matches it with the expected power. If it is larger than some expected threshold T times the expected power (E[Ui⊥Ui⊥*]>Tαi2|βi|2E[WiW*i]), the output from the reverb filter is further scaled down. This gives the following scale factor for λi.
Decoder complexity could potentially be reduced by not having the decoder compute the power at the output of the reverb filter and the virtual channel, and instead have the encoder compute the value of λi, and modify αi and βi that are sent to the decoder to account for this. That is find parameters such that a=a′ and b′=bλi. This gives the following modifications to the parameters.
However, this approach has one potential issue. The values for these parameters preferably are not sent every frame, and instead are sent only once every N frames, from which the decoder interpolates these values for the intermediate frames. Interpolating the parameters gives fairly accurate values of the original parameters for every frame. However, interpolation of the modified parameters may not yield as good results since the scale factor adjustment is dependent upon the power of the decorrelated signal for a given frame.
Instead of sending the cross-correlation between the physical channel and the coded channel, one can also send the cross-correlation between physical channels if the physical channels are being reconstructed from the same Wi, for example,
where Xi and Xj are two physical channels that contribute to the coded channel Yi. In this case, the two physical channels can be reconstructed so as to maintain the cross-correlation between the physical channels, in the following manner:
Solving for just the magnitudes, we get
a2+d2=αi2
b2+d2=αj2
ab−d2=|δij|,
where, δij=γijαiαj. This gives,
The phase of the cross correlation can be maintained by setting the phase difference between the two rows of the transform matrix to be equal to angle of γij.
In view of the many possible embodiments to which the principles of our invention may be applied, we claim as our invention all such embodiments as may come within the scope and spirit of the following claims and equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
3684838 | Kahn | Aug 1972 | A |
4538234 | Honda et al. | Aug 1985 | A |
4713776 | Araseki | Dec 1987 | A |
4776014 | Zinser | Oct 1988 | A |
4922537 | Frederiksen | May 1990 | A |
4949383 | Koh et al. | Aug 1990 | A |
5040217 | Brandenburg et al. | Aug 1991 | A |
5079547 | Fuchigama et al. | Jan 1992 | A |
5115240 | Fujiwara et al. | May 1992 | A |
5142656 | Fielder et al. | Aug 1992 | A |
5185800 | Mahieux | Feb 1993 | A |
5199078 | Orglmeister | Mar 1993 | A |
5222189 | Fielder | Jun 1993 | A |
5260980 | Akagiri et al. | Nov 1993 | A |
5285498 | Johnston | Feb 1994 | A |
5295203 | Krause et al. | Mar 1994 | A |
5297236 | Antill et al. | Mar 1994 | A |
5357594 | Fielder | Oct 1994 | A |
5369724 | Lim | Nov 1994 | A |
5388181 | Anderson et al. | Feb 1995 | A |
5394473 | Davidson | Feb 1995 | A |
5438643 | Akagiri et al. | Aug 1995 | A |
5455874 | Ormsby et al. | Oct 1995 | A |
5471558 | Tsutsui | Nov 1995 | A |
5479562 | Fielder et al. | Dec 1995 | A |
5491754 | Jot et al. | Feb 1996 | A |
5539829 | Lokhoff et al. | Jul 1996 | A |
5559900 | Jayant et al. | Sep 1996 | A |
5574824 | Slyh et al. | Nov 1996 | A |
5581653 | Todd | Dec 1996 | A |
5627938 | Johnston | May 1997 | A |
5640486 | Lim | Jun 1997 | A |
5654702 | Ran | Aug 1997 | A |
5661755 | Van De Kerkhof et al. | Aug 1997 | A |
5682461 | Silzle et al. | Oct 1997 | A |
5686964 | Tabatabai et al. | Nov 1997 | A |
5737720 | Miyamori et al. | Apr 1998 | A |
5752225 | Fielder | May 1998 | A |
5777678 | Ogata et al. | Jul 1998 | A |
5812971 | Herre | Sep 1998 | A |
5819214 | Suzuki et al. | Oct 1998 | A |
5842160 | Zinser | Nov 1998 | A |
5845243 | Smart et al. | Dec 1998 | A |
5852806 | Johnston et al. | Dec 1998 | A |
5870480 | Griesinger | Feb 1999 | A |
5886276 | Levine et al. | Mar 1999 | A |
5956674 | Smyth et al. | Sep 1999 | A |
5974380 | Smyth et al. | Oct 1999 | A |
5995151 | Naveen et al. | Nov 1999 | A |
6021386 | Davis et al. | Feb 2000 | A |
6029126 | Malvar | Feb 2000 | A |
6058362 | Malvar | May 2000 | A |
6115688 | Brandenburg et al. | Sep 2000 | A |
6115689 | Malvar | Sep 2000 | A |
6122607 | Ekudden et al. | Sep 2000 | A |
6182034 | Malvar | Jan 2001 | B1 |
6226616 | You et al. | May 2001 | B1 |
6230124 | Maeda | May 2001 | B1 |
6240380 | Malvar | May 2001 | B1 |
6266003 | Hoek | Jul 2001 | B1 |
6341165 | Gbur et al. | Jan 2002 | B1 |
6393392 | Minde | May 2002 | B1 |
6424939 | Herre et al. | Jul 2002 | B1 |
6449596 | Ejima | Sep 2002 | B1 |
6498865 | Brailean et al. | Dec 2002 | B1 |
6601032 | Surucu | Jul 2003 | B1 |
6680972 | Liljeryd | Jan 2004 | B1 |
6708145 | Liljeryd et al. | Mar 2004 | B1 |
6735567 | Gao et al. | May 2004 | B2 |
6760698 | Gao | Jul 2004 | B2 |
6766293 | Herre | Jul 2004 | B1 |
6771723 | Davis et al. | Aug 2004 | B1 |
6771777 | Gbur et al. | Aug 2004 | B1 |
6778709 | Taubman | Aug 2004 | B1 |
6804643 | Kiss | Oct 2004 | B1 |
6836739 | Sato | Dec 2004 | B2 |
6879265 | Sato | Apr 2005 | B2 |
6882731 | Irwan et al. | Apr 2005 | B2 |
6934677 | Chen et al. | Aug 2005 | B2 |
6999512 | Yoo et al. | Feb 2006 | B2 |
7003467 | Smith et al. | Feb 2006 | B1 |
7010041 | Graziani et al. | Mar 2006 | B2 |
7043423 | Vinton et al. | May 2006 | B2 |
7062445 | Kadatch | Jun 2006 | B2 |
7107211 | Griesinger | Sep 2006 | B2 |
7146315 | Balan et al. | Dec 2006 | B2 |
7174135 | Sluijter et al. | Feb 2007 | B2 |
7177808 | Yantorno et al. | Feb 2007 | B2 |
7193538 | Craven et al. | Mar 2007 | B2 |
7240001 | Chen et al. | Jul 2007 | B2 |
7310598 | Mikhael et al. | Dec 2007 | B1 |
7394903 | Herre et al. | Jul 2008 | B2 |
7400651 | Sato | Jul 2008 | B2 |
7447631 | Truman et al. | Nov 2008 | B2 |
7460990 | Mehrotra et al. | Dec 2008 | B2 |
7536021 | Dickins et al. | May 2009 | B2 |
7548852 | Den Brinker et al. | Jun 2009 | B2 |
7562021 | Mehrotra et al. | Jul 2009 | B2 |
7630882 | Mehrotra et al. | Dec 2009 | B2 |
7647222 | Dimkovic et al. | Jan 2010 | B2 |
7689427 | Vasilache | Mar 2010 | B2 |
7761290 | Koishida et al. | Jul 2010 | B2 |
7885819 | Koishida et al. | Feb 2011 | B2 |
8046214 | Mehrotra et al. | Oct 2011 | B2 |
20010017941 | Chaddha | Aug 2001 | A1 |
20020051482 | Lomp | May 2002 | A1 |
20020135577 | Kase et al. | Sep 2002 | A1 |
20030093271 | Tsushima et al. | May 2003 | A1 |
20030115041 | Chen et al. | Jun 2003 | A1 |
20030115042 | Chen et al. | Jun 2003 | A1 |
20030115050 | Chen et al. | Jun 2003 | A1 |
20030115051 | Chen et al. | Jun 2003 | A1 |
20030115052 | Chen et al. | Jun 2003 | A1 |
20030187634 | Li | Oct 2003 | A1 |
20030193900 | Zhang et al. | Oct 2003 | A1 |
20030233234 | Truman et al. | Dec 2003 | A1 |
20030233236 | Davidson et al. | Dec 2003 | A1 |
20030236072 | Thomson | Dec 2003 | A1 |
20030236580 | Wilson et al. | Dec 2003 | A1 |
20040044527 | Thumpudi et al. | Mar 2004 | A1 |
20040049379 | Thumpudi et al. | Mar 2004 | A1 |
20040059581 | Kirovski et al. | Mar 2004 | A1 |
20040068399 | Ding | Apr 2004 | A1 |
20040101048 | Paris | May 2004 | A1 |
20040114687 | Ferris et al. | Jun 2004 | A1 |
20040133423 | Crockett | Jul 2004 | A1 |
20040165737 | Monro | Aug 2004 | A1 |
20040243397 | Averty et al. | Dec 2004 | A1 |
20040267543 | Ojanpera | Dec 2004 | A1 |
20050021328 | Van De Kerkhof et al. | Jan 2005 | A1 |
20050065780 | Wiser et al. | Mar 2005 | A1 |
20050074127 | Herre et al. | Apr 2005 | A1 |
20050108007 | Bessette et al. | May 2005 | A1 |
20050149322 | Bruhn et al. | Jul 2005 | A1 |
20050159941 | Kolesnik et al. | Jul 2005 | A1 |
20050165611 | Mehrotra et al. | Jul 2005 | A1 |
20050195981 | Faller et al. | Sep 2005 | A1 |
20060002547 | Stokes et al. | Jan 2006 | A1 |
20060004566 | Oh et al. | Jan 2006 | A1 |
20060025991 | Kim | Feb 2006 | A1 |
20060074642 | You | Apr 2006 | A1 |
20060095269 | Smith et al. | May 2006 | A1 |
20060106597 | Stein | May 2006 | A1 |
20060126705 | Bachl et al. | Jun 2006 | A1 |
20060140412 | Villemoes et al. | Jun 2006 | A1 |
20070016406 | Thumpudi et al. | Jan 2007 | A1 |
20070016415 | Thumpudi et al. | Jan 2007 | A1 |
20070016427 | Thumpudi et al. | Jan 2007 | A1 |
20070036360 | Breebaart | Feb 2007 | A1 |
20070063877 | Shmunk et al. | Mar 2007 | A1 |
20070071116 | Oshikiri | Mar 2007 | A1 |
20070094027 | Vasilache | Apr 2007 | A1 |
20070127733 | Henn et al. | Jun 2007 | A1 |
20070172071 | Mehrotra et al. | Jul 2007 | A1 |
20070174062 | Mehrotra et al. | Jul 2007 | A1 |
20070174063 | Mehrotra et al. | Jul 2007 | A1 |
20070269063 | Goodwin et al. | Nov 2007 | A1 |
20080027711 | Rajendran et al. | Jan 2008 | A1 |
20080052068 | Aguilar et al. | Feb 2008 | A1 |
20080312758 | Koishida et al. | Dec 2008 | A1 |
20080312759 | Koishida et al. | Dec 2008 | A1 |
20080319739 | Mehrotra et al. | Dec 2008 | A1 |
20090006103 | Koishida et al. | Jan 2009 | A1 |
20090083046 | Mehrotra et al. | Mar 2009 | A1 |
20090112606 | Mehrotra et al. | Apr 2009 | A1 |
20110196684 | Koishida et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
0610975 | Aug 1994 | EP |
0663740 | Jul 1995 | EP |
0910927 | Apr 1999 | EP |
0931386 | Jul 1999 | EP |
1175030 | Jan 2002 | EP |
1396841 | Mar 2004 | EP |
1783745 | May 2007 | EP |
06-118995 | Apr 1994 | JP |
HEI 8-248997 | Sep 1996 | JP |
HEI 9-101798 | Apr 1997 | JP |
2000-515266 | Nov 2000 | JP |
2001-521648 | Nov 2001 | JP |
2001-356788 | Dec 2001 | JP |
2002-041089 | Feb 2002 | JP |
2002-073096 | Mar 2002 | JP |
2002-132298 | May 2002 | JP |
2002-175092 | Jun 2002 | JP |
2005-173607 | Jun 2005 | JP |
WO 9009022 | Aug 1990 | WO |
WO 9009064 | Aug 1990 | WO |
WO 9116769 | Oct 1991 | WO |
WO 9857436 | Dec 1998 | WO |
WO 9904505 | Jan 1999 | WO |
WO 9904505 | Jan 1999 | WO |
WO 0197212 | Dec 2001 | WO |
WO 0243054 | May 2002 | WO |
WO 03003345 | Jan 2003 | WO |
WO 2005040749 | May 2005 | WO |
WO 2007011749 | Jan 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090112606 A1 | Apr 2009 | US |