Channel frequency spreading device and method for CDMA system, and mobile communication system

Information

  • Patent Grant
  • 10715269
  • Patent Number
    10,715,269
  • Date Filed
    Wednesday, December 26, 2018
    6 years ago
  • Date Issued
    Tuesday, July 14, 2020
    4 years ago
  • Inventors
    • Zhang; Weiguo
    • Yan; Jiawei
  • Original Assignees
  • Examiners
    • Divecha; Nishant
    Agents
    • Hemisphere Law, PLLC
    • Ma; Zhigang
Abstract
The present invention discloses a channel frequency spreading device for a CDMA system, including: an orthogonal sequence generating module, configured to generate orthogonal sequence sets; a storage module, connected to the orthogonal sequence generating module, and configured to store the orthogonal sequence sets; a control module, connected to the storage module, and configured to read available orthogonal sequences in the orthogonal sequence sets when receiving a user request control signal; and a channel machine, connected to the control module, and configured to receive user request data, and perform frequency spreading on the user request data according to the available orthogonal sequences and then output. The channel frequency spreading device for a CDMA system can improve the number of the sequences allocated by the cell, and solve the problem that the excessive users cannot communicate normally.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to the field of wireless communication technologies, and in particular to a channel frequency spreading device and method for a CDMA system and a mobile communication system.


2. Description of Related Art

The design of CDMA (Code Division Multiple Access) systems is generally based on the use of 2m-long (binary) orthogonal sequences (code words). Even if there are 2m code words in the entire space, it is difficult to find a type of large cardinal sequence subsets of which the sequences are orthogonal to each other. These sequence subsets are randomly allocated to the users of a cell, and a unique sequence is allocated to each user from such subset. As a standard regular hexagonal cellular network, in order to prevent the interference from neighboring cells, a standard requirement is that the sequences in any cell must be orthogonal to the sequences in the neighboring cells. In addition, the correlation values of the sequences within any given cell and the non-neighboring cells should be sufficiently small and within the interval [2m/2,2(m+2)/2]. One of the most common methods of constructing a frequency spreading code sequence in these systems is to utilize a Hadamard matrix set with limited correlation values.


In one configuration in the prior art, referring to “W.-G. Zhang, C.-L. Xie, and E. Pasalic, “Large Sets of Orthogonal Sequences Suitable for Applications in CDMA Systems,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3757-3767, June 2016, such method generates a large type of sequence sets consisting of a series of sequences orthogonal to each other (in each set). Most sequence sets are also orthogonal to each other. The method firstly covers the parity of m, and secondly avoids such a difficult combination problem of allocating the orthogonal sequence sets to the same cell and guaranteeing the orthogonality of neighboring cells. The implemented number of the users per cell is 2m−2. However, the number of sequences allocated by the cell and obtained by the constructing method of the prior art is relatively small, the interference between the cells is stronger, and normal communication by a larger number of users cannot be satisfied.


SUMMARY OF THE INVENTION

In order to solve the above problems in the prior art, the present invention provides a channel frequency spreading device and method for a CDMA system and a mobile communication system, which are capable of improving user capacity and have strong anti-interference ability.


A channel frequency spreading device for a CDMA system, includes an orthogonal sequence generating module, configured (i.e., structured and arranged) to generate an orthogonal sequence sets; a storage module, connected to the orthogonal sequence generating module, and configured to store the orthogonal sequence sets; a control module, connected to the storage module, and configured to read available orthogonal sequences in the stored orthogonal sequence sets when receiving a user request control signal; and a channel machine, connected to the control module, and configured to receive user request data, and perform frequency spreading on the user request data according to the available orthogonal sequences and then output.


In an embodiment, the orthogonal sequence generating module includes a vector semi-bent generating unit, an orthogonal sequence set constructing unit, and an orthogonal sequence set allocating unit. The vector semi-bent generating unit is configured to select an m-input and k-output vector semi-bent function. The orthogonal sequence set constructing unit is configured to construct 3×2k orthogonal sequence sets by using the vector semi-bent function, such that in the orthogonal sequence sets, a number of sequences of each of 2k orthogonal sequence sets is 2m−1, and a number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2. The orthogonal sequence set allocating unit is configured to arrange cells for the orthogonal sequence sets according to a predetermined method, so that sequences in each of the cells are orthogonal with one another, and sequence sets of neighboring ones of the cells are orthogonal with each other. m and k are both positive integers and m=2k+2.


In an embodiment, an orthogonal multiplexing distance of the neighboring ones of the cells is √{square root over (21)}.


In an embodiment, the orthogonal sequence set constructing unit further includes a semi-bent function generating subunit, a Hadamard matrix generating subunit, and an orthogonal sequence set generating subunit. The semi-bent function generating subunit is configured to obtain 2k semi-bent functions according to the vector semi-bent function. The Hadamard matrix generating subunit is configured to select a 2m×2m dimensional Hadamard matrix and divide the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein a number of sequences of the first subsequence set is 2m−1, and a number of sequences of each of the second subsequence set and the third subsequence set is 2m−2. The orthogonal sequence set generating subunit is configured to multiply corresponding bits of each of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence set individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein a number of sequences of each of the first orthogonal sequence sets is 2m−1, and a number of sequences of each of the second orthogonal sequence sets as well as a number of each of the third orthogonal sequence sets is 2m−2.


A channel frequency spreading method for a CDMA system, including: S1, generating orthogonal sequence sets; S2, storing the orthogonal sequence sets; S3, reading available orthogonal sequences in the stored orthogonal sequence sets when a user request control signal is received; and S4, receiving user request data, and performing frequency spreading on the user request data according to the available orthogonal sequences and then outputting.


In an embodiment, the step S1 further includes: S11, selecting an m-input and k-output vector semi-bent function, where m and k are positive integers, and m=2k+2; S12, constructing, by using the vector semi-bent function, 3×2k orthogonal sequence sets, wherein in the orthogonal sequence sets, a number of sequences of each of 2k orthogonal sequence sets is 2m−1, and a number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2; and S13, arranging cells for the orthogonal sequence sets according to a predetermined rule, so that sequences in each of the cells are orthogonal with one another, and sequence sets of neighboring ones of the cells are orthogonal with each other.


In an embodiment, the step S12 further includes: S121, obtaining 2k semi-bent functions according to the vector semi-bent function; S122, selecting a 2m×2m dimensional Hadamard matrix and dividing the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein a number of sequences of the first subsequence set is 2m−1, and a number of sequences of each of the second subsequence set and the third subsequence set is 2m−2; and S123, multiplying corresponding bits of each of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence set individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein a number of sequences of each of the first orthogonal sequence sets is 2m−1, and a number of sequences of each of the second orthogonal sequence sets as well as a number of sequences of each of the third orthogonal sequence sets is 2m−2.


In an embodiment, an orthogonal multiplexing distance of neighboring ones of the cells is √{square root over (21)}.


A mobile communication system, including: a base station controller, configured for generating orthogonal sequences, and allocating orthogonal sequence resources to base stations in a cellular network according to a predetermined method; and a plurality of base stations, arranged to form the cellular network and configured for allocating channels according to the orthogonal sequence resources, and sending communication data by the channels.


In an embodiment, the base station includes: a base station transceiver and an antenna, wherein the transceiver is configured for converting the communication data into a radio frequency signal and then sending out by the antenna or for converting a radio frequency signal received by the antenna into communication data.


In an embodiment, the base station controller configured for generating orthogonal sequences is concretely configured for: selecting an m-input and k-output vector semi-bent function, where m and k are positive integers, and m=2k+2; and constructing, by using the vector semi-bent function, 3×2k orthogonal sequence sets, wherein in the orthogonal sequence sets, a number of sequences of each of 2k orthogonal sequence sets is 2m−1, and a number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2.


In an embodiment, constructing, by using the vector semi-bent function, 3×2k orthogonal sequence sets includes: obtaining 2k semi-bent functions according to the vector semi-bent function; selecting a 2m×2m dimensional Hadamard matrix and dividing the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein a number of sequences of the first subsequence set is 2m−1, and a number of sequences of each of the second subsequence set and the third subsequence set is 2m−2; and multiplying corresponding bits of each of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence sets individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein a number of sequences of each of the first orthogonal sequence sets is 2m−1, and a number of sequences of each of the second orthogonal sequence sets as well as a number of sequences of each of the third orthogonal sequence sets is 2m−2.


In an embodiment, the predetermined method comprises: causing sequences in each of the cells to be orthogonal with one another, and sequence sets of neighboring ones of the cells to be orthogonal with each other.


In an embodiment, an orthogonal multiplexing distance of the neighboring ones of the cells is √{square root over (21)}.


The channel frequency spreading device/method for a CDMA system according to the present invention selects specific input and output, and constructs a corresponding number of orthogonal sequence sets by using a semi-bent function, so as to improve the number of the sequences allocated to the cell, and solve the problem that the excessive users cannot communicate normally.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of modules of a channel frequency spreading device for a CDMA system according to an embodiment of the present invention.



FIG. 2 is a block diagram of an orthogonal sequence generating module of a channel frequency spreading device for a CDMA system according to an embodiment of the present invention.



FIG. 3 is a flowchart of a channel frequency spreading method for a CDMA system according to an embodiment of the present invention.



FIG. 4 is a flowchart of a method for generating orthogonal sequence sets according to an embodiment of the present invention.



FIG. 5 is an allocation schematic diagram of a regular hexagonal network according to a specific embodiment of the present invention.



FIG. 6 is a block diagram of modules of a mobile communication system according to an embodiment of the present invention.



FIG. 7 is a flowchart of generating an orthogonal sequence according to an embodiment of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In the following, with reference to accompanying drawings of embodiments of the invention, technical solutions in the embodiments of the invention will be clearly and completely described. Apparently, the embodiments of the invention described below only are a part of embodiments of the invention, but not all embodiments. Based on the described embodiments of the invention, all other embodiments obtained by ordinary skill in the art without creative effort belong to the scope of protection of the invention.


Embodiment 1

Referring to FIG. 1, FIG. 1 is a block diagram of modules of a channel frequency spreading device for a CDMA system according to an embodiment of the present invention, which includes: an orthogonal sequence generating module 1, configured to generate orthogonal sequence sets; a storage module 2, connected to the orthogonal sequence generating module 1, configured to store the orthogonal sequence sets; a control module 3, connected to the storage module 2, and configured to read available orthogonal sequences in the orthogonal sequence sets when receiving a user request control signal; and a channel machine 4, connected to the control module 3, and configured to receive user request data, and perform frequency spreading on the user request data according to the available orthogonal sequences and then output.


In a specific embodiment, referring to FIG. 2, FIG. 2 is a block diagram of an orthogonal sequence generating module of a channel frequency spreading device for a CDMA system according to an embodiment of the present invention. The orthogonal sequence generating module 1 includes a vector semi-bent generating unit 11, an orthogonal sequence set constructing unit 12, and an orthogonal sequence set allocating unit 13.


The vector semi-bent generating unit 11 is configured to select an m-input and k-output vector semi-bent function.


The orthogonal sequence set constructing unit 12 is configured to construct 3×2k orthogonal sequence sets by using the vector semi-bent function, such that in the orthogonal sequence sets, the number of sequences of each of 2k orthogonal sequence sets is 2m−1, and the number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2.


The orthogonal sequence set allocating unit 13 is configured to arrange cells for the orthogonal sequence sets according to a predetermined algorithm/method, so that the sequences in each of the cells are orthogonal with one another, and the sequence sets of neighboring cells are orthogonal with each other.


m and k are both positive integers and m=2k+2


In a specific embodiment, an orthogonal multiplexing distance of the neighboring cells √{square root over (21)}.


In a specific embodiment, the orthogonal sequence set constructing unit further includes: a semi-bent function generating subunit, a Hadamard matrix generating subunit, and an orthogonal sequence set generating subunit.


The semi-bent function generating subunit is configured to obtain 2k semi-bent functions according to the vector semi-bent function.


The Hadamard matrix generating subunit is configured to select a 2m×2m dimensional Hadamard matrix and divide the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein the number of sequences of the first subsequence set is 2m−1, and the number of sequences of each of the second subsequence set and the third subsequence set is 2m−2.


The orthogonal sequence set generating subunit is configured to multiply corresponding bits of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence sets individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein the number of sequences of each of the first orthogonal sequence sets is 2m−1, and the number of sequences of each of the second orthogonal sequence sets as well as the number of sequences of each of the third orthogonal sequence sets is 2m−2.


The channel frequency spreading device for a CDMA system according to the present invention selects specific input and output, and constructs a corresponding number of orthogonal sequence sets by using a semi-bent function, so as to improve the number of the sequences allocated to the cell, and solve the problem that the excessive users cannot communicate normally.


Embodiment 2

Referring to FIG. 3, FIG. 3 is a flowchart of a channel frequency spreading method for a CDMA system according to an embodiment of the present invention, which includes: S1, generating orthogonal sequence sets; S2, storing the orthogonal sequence sets; S3, when a user request control signal is received, reading available orthogonal sequences in the stored orthogonal sequence sets; and S4, receiving user request data, and performing frequency spreading on the user request data according to the available orthogonal sequences and then outputting.


In order to better illustrate the method provided by the present invention, the technical background of the present invention will be firstly described as follows. At first, some concepts and tools related to a Boolean function and the sequence will be introduced.


F2m is set to an m-dimensional vector space, F2m is a finite field on GF(2), then the m-elementary Boolean function ƒ(x) is represented as a mapping of some F2m to F2. Herein, x=(x1, . . . , xm)∈F2m. Bm is set to represent a set of all m-elementary Boolean functions. The present invention replaces the addition operation in F2m and F2m with “+” and Σi. Any Boolean function f∈Bm can be represented by its algebraic regular type:











f


(


x
1

,





,

x
m


)


=




b


F
2
m






λ
b



(




i
=
1

m



x
i

b
i



)




,




(
1
)








wherein λb∈F2, b=(b1, . . . , bm)∈F2m. The algebra degree of ƒ(x) is the minimum value of wt(b) enabling λb≠0, and is recorded as deg(f), wherein wt(b) is the Hamming weight of b. When deg(ƒ)=1, ƒ is called an affine function.


For a=(a1, . . . , am)∈F2m, b=(b1, . . . , bm)∈F2m. Then the inner product of a and b is defined as:











a
·
b

=




i
=
1

m




a
i



b
i




,




(
2
)








wherein the addition is mod 2 operation.


Any linear function on F2m can be defined by an inner product ω·x, wherein ω=(ω1, . . . , ωm), x=(x1, . . . , xm)∈F2m. Each ω distinguishes different linear functions. A set containing all m-elementary linear functions is defined as Lm, thus Lm={ω·x|ω∈F2m}.


Bm is set to represent a set of all m-elementary Boolean functions. For any f∈Bm, the Walsh spectrum thereof is defined as follows:











W
f



(
ω
)


=




x


F
2
m







(

-
1

)



f


(
x
)


+

ω
·
x



.






(
3
)







supp(ƒ)={x∈F2m|ƒ(x)=1} is defined as a support set for the function ƒ. If the numbers of 0 and 1 in the truth table of the m-elementary function f∈Bm are equal, it is called the balance function, i.e., # supp(ƒ)=2m−1 or: Wƒ(0m)=0 (4), wherein 0m represents an m-long 0 vector.


The sequence of function f∈Bm is a N=m-long (1,−1) sequence, and defined as: ƒ=((−1)ƒ(0, . . . , 0,0),(−1)ƒ(0, . . . , 0,1), . . . , (−1)ƒ(1, . . . , 1,1))(5).


The inner product of vectors ƒ1=(u1, . . . , uN) and ƒ2=(v1, . . . , vN) is expressed as ƒ1, ƒ2, defined as












f
_

1

·


f
_

2


=




i
=
1

N




u
i




v
i

.







(
6
)







Thus it can be obtained that Wƒ(ω)=ƒ·l, wherein l=ω·x.


A 2m×2m Hadamard matrix Hm is defined as: H0=(1),








H
m

=

(




H

m
-
1





H

m
-
1







H

m
-
1





-

H

m
-
1






)


,





m=1, 2, . . . (7).


rj, 0≤j≤2m−1 is set to the jth column of Hm, then rj is a linear sequence, i.e., the set H={rj|0≤j≤2m−1} (8) is a Hadamard sequence set, H={l|l∈Lm} (9).


According to the above solution, the present invention gives the following definitions.


Definition 1: ƒ12∈Bm is set. If












f
_

1

·


f
_

2


=





x


F
2
m






(

-
1

)




f
1



(
x
)


+


f
2



(
x
)





=
0





(
10
)








is satisfied, ƒ1 and ƒ2 are orthogonal, which is expressed as ƒ1ƒ2.


S={ƒii∈Bm, i=1, 2, . . . , κ} (11) is set.


If ƒi of the set S are orthogonal pairwise, S is called the orthogonal sequence set with the base custom character. S1 and S2 are set to orthogonal sequence sets, for any ƒ1∈S, ƒ2∈S, ƒ1, ƒ2=0 always, then, S1 and S2 are called to be orthogonal, which is expressed as S1⊥S2.


The invention derives the following properties of the orthogonal sequence.


Lemma 1: ƒ12∈Bm is set. Then ƒ1ƒ2 if and only if Wƒ12(0m)=0.


For any two different linear functions l,l′∈Lm, Wl+l′(0m)=0, then ll′ is always true, that is, H is an orthogonal sequence set.


Definition 2: if for any α∈F2m, Wƒ(α)∈{0, ±2λ}, wherein λ≥m/2 is a positive integer, then such function is called the Plateaued function. When λ≥└(m+2)/2┘, the function is called the semi-bent function. If ƒ is a Plateaued function (semi-bent function), ƒ is called a Plateaued sequence (semi-bent sequence).


The Maiorana-McFarland type function is defined as follows.


Definition 3: for any positive integer, m=s+t, and a Maiorana-McFarland function is defined as: ƒ(y,x)=ϕ(y)·x⊕g(y), y∈F2s, x∈F2t (12), wherein ϕ is random mapping of F2s to F2t and g∈Bs.


When s≤t and ϕ is single set, then the Maiorana-McFarland type function is the Plateaued function. In particular, when s=t and ϕ is bijective, then the Maiorana-McFarland type of the bent function is obtained.


Definition 4: an m variable-elementary t-dimensional vector function is a mapping function F: F2mcustom characterF2t, or it can also be a t-elementary Boolean function set F(x)=(ƒ1, . . . , ƒt). If any non-zero linear combination of component functions ƒ1, . . . , ƒt is a three-value Plateaued Boolean function of which the spectral value is derived from {0,±λ}, F is called a vector Plateaued function. When λ=└(m+2)/2┘. F is called the vector semi-bent function. If any non-zero linear combination of component functions ƒ1, . . . , ƒt is a binary bent function of which the spectral value is derived from {±2m/2}, then F is called a vector bent function, wherein m is an even number and t≤m/2.


Based on the above definitions of the present invention, continuing to refer to FIG. 4, FIG. 4 is a flowchart of a method for generating orthogonal sequence sets according to an embodiment of the present invention, which includes: S11, selecting an m-input and k-output vector semi-bent function, wherein m and k are positive integers, and m=2k+2; S12, constructing, by using the vector semi-bent function, 3×2k orthogonal sequence sets, wherein in the orthogonal sequence sets, the number of sequences of each of 2k orthogonal sequence sets is 2m−1, and the number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2; and S13, arranging cells for the orthogonal sequence sets according to a predetermined algorithm, so that the sequences in each of the cells are orthogonal with one another, and the sequence sets of neighboring cells are orthogonal with each other.


In a specific embodiment, the S12 includes the following steps.


S121, 2k semi-bent functions are obtained according to the vector semi-bent function.


Specifically, in order to increase the number of cell users, m and k are set to two positive integers, m=2k+2 and k≥2. γ is set to the primitive element of F2k, and {1,γ, . . . , γk−1} is a group of polynomial bases of F2k on F2. Isomorphic mapping π:F2kcustom characterF2k is defined, and π(b1+b2γ+ . . . +bkγk−1)=(b1,b2, . . . , bk) (13).


For i=1, . . . , k, bijective ϕi:F2k→F2k is defined as:








ϕ
i



(
y
)


=

{





0
k

,




y
=

0
k








π


(

γ


[
y
]

+
i


)


,




y


F
2

k
*












(14).


[y] is defined as integer representation of y.


y,x∈F2k,z∈F22 is set, for i=1, . . . , k, define a series of Boolean functions ƒi:F2m→F2 is defined, ƒi(y,x,z)=ϕi(y)·x (15).


The vector Boolean function F:F2mcustom characterF2k is defined as: F(x)=(ƒ1, . . . , ƒk) (16).


S122, a 2m×2m dimensional Hadamard matrix is selected and the Hadamard matrix is divided into a first subsequence set, a second subsequence set, and a third subsequence set, wherein the number of sequences of the first subsequence set is 2m−1, and the number of sequences of each of the second subsequence set and the third subsequence set is 2m−2.


Specifically, for any c=(c1, . . . , ck)∈F2k*, ƒc(y,x,z)=c·F(y,x,z)=c1ƒ1+ . . . +ckƒk (17) is set.


For any fixed δ∈F22, Lδ={(β,α,δ)·(y,x,z)|β,α∈F2k)} (18) is defined.


T0=L00∪L11, T1=L01 and T2=L10 are set.


S123, corresponding bits of the 2k semi-bent functions are multiplied by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence set individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein the number of sequences of each of the first orthogonal sequence sets is 2m−1, and the number of sequences of each of the second orthogonal sequence sets as well as the number of sequences of each of the third orthogonal sequence sets is 2m−2.


Specifically, 3·2k disjoint sequence sets are constructed as follows: Sc,i={ƒc+l|l∈Ti}, c∈F2k, i∈{0,1,2} (19).


The Sc,0 sequence has 2m−1 users, and the remaining sequences have 2m−2 users.


The channel frequency spreading method for a CDMA system according to the present invention selects specific input and output, and constructs a corresponding number of orthogonal sequence sets by using a semi-bent function, so as to improve the number of the sequences allocated to the cell, and solve the problem that the excessive users cannot communicate normally.


In order to more clearly illustrate the constructing process of the present invention, the present invention provides the following proof process.


m=2k+2 is set, for any c∈F2k, i∈{0,1,2}, the sequence set Sc,i is set as defined in equation (19), then: i) for any c∈F2k, |Sc,0|=2m−1, and |Sc,1|=|Sc,2|=2m−2; Ii) for any c∈F2k*, i∈{0,1,2}, and Sc,i is an orthogonal semi-bent sequence set; and Iii) for any c,c′∈F2k, i,i′∈{0,1, 2}, and Sc,i⊥Sc′,i′ if and only if i≠i′.


Firstly, it is noted that |Lδ|=22k=2m−2, indicating that i) is true.


Secondly, for ii), for any c=(c1, . . . , ck)∈F2k*, and (β,α,δ)∈F2k×F2k×F22,












W

f
c




(

β
,
α
,
δ

)


=






(

y
,
x
,
z

)



F
2
m






(

-
1

)




f
c



(

y
,
x
,
z

)


+

β
·
y

+

α
·
x

+

δ
·
z




==




z


F
2
2







(

-
1

)


δ
·
z







y


F
2
k







(

-
1

)


β
·
y







x


F
2
k






(

-
1

)





ϕ
c



(
y
)


·
x

+

α
·
x










,




(
20
)







wherein







ϕ
c



(
y
)



=




i
=
1

k




c
i





ϕ
i



(
y
)


.















Due to











ϕ
c



(
y
)


=

{






0
k

,




y
=

0
k








π


(

γ


[
y
]

+

i
c



)


,




y


F
2

k
*











and






(
21
)








ϕ
c



(
y
)


=

{






0
k

,




y
=

0
k








π


(

γ


[
y
]

+

i
c



)


,




y


F
2

k
*






,






(
22
)








for y∈F2k*, when







π


(




i
=
1

k




c
i



γ


[
y
]

+
i




)


=

π


(

γ


[
y
]

+

i
c



)







is true, when γ is the primitive element of F2k, there exists only one 0≤ic≤2k−2, so that γic=c·(1, . . . , γk−1). It can be known that ϕc(y) is a permutation of F2k. Therefore, there exists only one unique y∈F2k, enabling ϕc(y)=α, which indicates that for any y∈F2k,













x


F
2
k






(

-
1

)





ϕ
c



(
y
)


·
x

+

α
·
x




=

{






±

2
k


,






ϕ
c

-
1




(
α
)


=
y






0
,



Other



.






(
23
)







For any β,α∈F2k,













y


F
2
k







(

-
1

)


β
·
y







x


F
2
k






(

-
1

)





ϕ
c



(
y
)


·
x

+

α
·
x






=

±


2
k

.






(
24
)







In addition,













z


F
2
2






(

-
1

)


δ
·
z



=

{





4
,




δ
=
0






0
,



Other



.






(
25
)







For any c∈F2k*,











W

f
c




(

β
,
α
,
δ

)


=

{





0
,




δ

0







±

2

k
+
2



,



Other



.






(
26
)







When k=(m−2)/2, F is a vector semi-bent function.


Again, for iii), ƒc+l∈Sc,i and ƒc′+l′∈Sc′,i′ are set, wherein l∈Ti, l′∈Ti′.


In order to analyze the orthogonality between ƒc+l and ƒc′+l′, it is considered that h=(ƒc+l)+(ƒc′+l′)=ƒc+c′+(l+l′) (27), wherein l+l′∈Ti⊕Ti′.










f
c



(

y
,
x
,
z

)


+


f

c





(

y
,
x
,
z

)



=





i
=
1

k




(


c
i

+

c

i




)




ϕ


(
y
)


·
x



=


f

c
+

c






(

y
,
x
,
z

)




,





so that the equation ƒcc′c+c′ can be easily obtained from formula (21).


By equation (26), Wh(0m)=0 if and only if l+l′∉L00. It can be known from Table 1 that L00∩(Ti⊕Ti′)=Ø if and only if i≠i′. This means Sc,i⊥Sc′,j′ if and only if i≠i′.









TABLE 1







operation ⊕ of Ti, i = 0, 1, 2













T0
T1
T2







T0
L00 ∪ L11
L01 ∪ L10
L01 ∪ L10



T1
L01 ∪ L10
L00
L11



T2
L01 ∪ L10
L11
L00










Embodiment 3

The following example gives the distribution of orthogonal sequence Sc,i when m=8, and Sc,0 is equivalent to that the cell has larger user number 2m−1.


m=8 and k=3 are set, according to the embodiment 2, 3×23=24 disjoint orthogonal semi-bent sequences can be generated, Sc,i={ƒc+l|l∈Ti}, c∈F23, i∈{0,1,2}, (28).


The sequence Sc,0 has 2m−1=128 users, the remaining sequences have 64 users, and the above sequences are sorted in the cells. Referring to FIG. 5. FIG. 5 is an allocation schematic diagram of a regular hexagonal network according to a specific embodiment of the present invention. According to the distribution in FIG. 5, the reusable distance (also referred to as orthogonal multiplexing distance) is D=√{square root over (21)}. The cells with 2m−1 users are marked with a larger font. It is noted that each cell is surrounded by 6 small cells, and each small cell is surrounded by 3 large cells and 3 small cells. In addition, seen from certain column, the two adjacent cells with 2m−1 users are separated by two cells with 2m−2 users, which indicates that one third of the cells in the network are large cells with 2m−1 users. Referring to FIG. 5, for example, S000,0 and S001,0 in the same column are separated by two cells S000,1 and S000,2.


The channel frequency spreading device for a CDMA system according to the present invention selects specific input and output, and constructs a corresponding number of orthogonal sequence sets by using a semi-bent function, so as to improve the number of the sequences allocated by the cell, and solve the problem that the excessive users cannot communicate normally.


Embodiment 4

Referring to FIG. 6, FIG. 6 is a block diagram of modules of a mobile communication system according to an embodiment of the present invention, which includes: a base station controller 5, configured for generating orthogonal sequences, and allocate orthogonal sequences to base stations in a cellular network according to a predetermined method; and a plurality of base stations 6, arranged to form the cellular network, and configured for allocating channels according to the orthogonal sequences. The predetermined method/algorithm includes: causing sequences in each of cells to be orthogonal with one another, and the sequence sets of neighboring ones of the cells to be orthogonal with each other. An orthogonal multiplexing distance of the neighboring ones of the cells is √{square root over (21)}.


In a specific embodiment, the base station includes: a base station transceiver and an antenna. The transceiver is configured for converting the communication data into a radio frequency signal and then sending by the antenna or for converting a radio frequency signal received by the antenna into communication data.


Based on the above definition of embodiment 2, referring to FIG. 7, FIG. 7 is a flowchart of generating orthogonal sequences according to an embodiment of the present invention, which includes: selecting an m-input and k-output vector semi-bent function, wherein m and k are positive integers, and m=2k+2; and constructing, by using the vector semi-bent function, 3×2k orthogonal sequence sets, wherein in the orthogonal sequence sets, the number of sequences of each of 2k orthogonal sequence sets is 2m−1, and the number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2.


In a specific embodiment, constructing 3×2k orthogonal sequence sets by using the vector semi-bent function includes: obtaining 2k semi-bent functions according to the vector semi-bent function; selecting a 2m×2m dimensional Hadamard matrix and dividing the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein the number of sequences of the first subsequence set is 2m−1, and the number of sequences of each of the second subsequence set and the third subsequence set is 2m−2; and multiplying corresponding bits of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence set individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein the number of sequences of each of the first orthogonal sequence sets is 2m−1, and the number of sequences of each of the second orthogonal sequence sets as well as the number of sequences of each of the third orthogonal sequence sets is 2m−2.


The mobile communication system according to the present invention selects specific input and output, and constructs a corresponding number of orthogonal sequence sets by using a semi-bent function, so as to improve the number of the sequences allocated to the cell, and solve the problem that the excessive users cannot communicate normally.


While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.

Claims
  • 1. A channel frequency-spreading device for a code division multiple access (CDMA) system, comprising: a processor;a memory coupled to the processor and configured to store instructions, wherein the processor, when executing the instructions, is configured to:generate orthogonal sequence sets, wherein generating the orthogonal sequence sets further comprises: select an m-input and k-output vector semi-bent function, where m and k are both positive integers and m=2k+2;obtain 2k semi-bent functions according to the vector semi-bent function;construct 3×2k orthogonal sequence sets by using the vector semi-bent function, such that in the orthogonal sequence sets, a number of sequences of each of 2k orthogonal sequence sets is 2m−1, and a number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2; andarrange cells for the orthogonal sequence sets according to a predetermined rule, so that sequences in each of the cells are orthogonal with one another, and sequence sets of neighboring ones of the cells are orthogonal with each other;store the orthogonal sequence sets in storage memory;read available orthogonal sequences from the stored orthogonal sequence sets when receiving a user request control signal; andreceive user request data;perform frequency spreading on the user request data according to the available orthogonal sequences; andoutput frequency spread user request data for transmission.
  • 2. The channel frequency-spreading device for a CDMA system according to claim 1, wherein an orthogonal multiplexing distance of the neighboring ones of the cells is √{square root over (21)}.
  • 3. The channel frequency-spreading device for a CDMA system according to claim 1, wherein the instruction for further cause the processor to: select a 2m×2m dimensional Hadamard matrix and divide the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein a number of sequences of the first subsequence set is 2m−1, and a number of sequences of each of the second subsequence set and the third subsequence set is 2m−2 andmultiply corresponding bits of each of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence set individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein a number of sequences of each of the first orthogonal sequence sets is 2m−1, and a number of sequences of each of the second orthogonal sequence sets as well as a number of each of the third orthogonal sequence sets is 2m−2.
  • 4. A channel frequency spreading method for a CDMA system, comprising: generating orthogonal sequence sets, wherein generating the orthogonal sequence sets further comprises: selecting an m-input and k-output vector semi-bent function, where m and k are both positive integers and m=2k+2;obtaining 2k semi-bent functions according to the vector semi-bent function;constructing 3×2k orthogonal sequence sets by using the vector semi-bent function, such that in the orthogonal sequence sets, a number of sequences of each of 2k orthogonal sequence sets is 2 m−1, and a number of sequences of each of 2k+1 orthogonal sequence sets is 2 m−2; andarranging cells for the orthogonal sequence sets according to a predetermined rule, so that sequences in each of the cells are orthogonal with one another, and sequence sets of neighboring ones of the cells are orthogonal with each other;storing the orthogonal sequence sets in storage memory;reading available orthogonal sequences from the stored orthogonal sequence sets when receiving a user request control signal; andreceiving user request data;performing frequency spreading on the user request data according to the available orthogonal sequences; andoutputting frequency spread user request data for transmission.
  • 5. The channel frequency spreading method for a CDMA system according to claim 4, wherein the step of constructing 3×2k orthogonal sequence sets further comprises:selecting a 2m×2m dimensional Hadamard matrix and divide the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein a number of sequences of the first subsequence set is 2 m−1, and a number of sequences of each of the second subsequence set and the third subsequence set is 2m−2; andmultiplying corresponding bits of each of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence set individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein a number of sequences of each of the first orthogonal sequence sets is 2m−1, and a number of sequences of each of the second orthogonal sequence sets as well as a number of each of the third orthogonal sequence sets is 2m−2.
  • 6. The channel frequency spreading method for a CDMA system according to claim 4, wherein an orthogonal multiplexing distance of the neighboring ones of the cells is √{square root over (21)}.
  • 7. A mobile communication system, comprising: a plurality of base stations arranged to form a cellular network, wherein each base station comprises a base station controller, a base station transceiver and an antenna, wherein the transceiver is configured to convert the communication data into a radio frequency signal and transmit using the antenna or to converting a radio frequency signal received by the antenna into communication data;wherein the base station controller is configured to:generate orthogonal sequence sets and assign each sequence of the sequence set to each of the plurality of base stations according to a predetermined method, wherein each of the plurality of base station allocates channels according to the orthogonal sequences, wherein generating the orthogonal sequence sets further comprises: selecting an m-input and k-output vector semi-bent function, where m and k are both positive integers and m=2k+2;obtaining 2k semi-bent functions according to the vector semi-bent function;constructing 3×2k orthogonal sequence sets by using the vector semi-bent function, such that in the orthogonal sequence sets, a number of sequences of each of 2k orthogonal sequence sets is 2m−1, and a number of sequences of each of 2k+1 orthogonal sequence sets is 2m−2; andarranging cells for the orthogonal sequence sets according to a predetermined rule, so that sequences in each of the cells are orthogonal with one another, and sequence sets of neighboring ones of the cells are orthogonal with each other;storing the orthogonal sequence sets in storage memory;reading available orthogonal sequences from the stored orthogonal sequence sets when receiving a user request control signal; andreceiving user request data;performing frequency spreading on the user request data according to the available orthogonal sequences; andoutputting frequency spread user request data for transmission.
  • 8. The mobile communication system according to claim 7, wherein constructing 3×2k orthogonal sequence sets further comprises:selecting a 2m×2m dimensional Hadamard matrix and divide the Hadamard matrix into a first subsequence set, a second subsequence set, and a third subsequence set, wherein a number of sequences of the first subsequence set is 2m−1, and a number of sequences of each of the second subsequence set and the third subsequence set is 2m−2; andmultiplying corresponding bits of each of the 2k semi-bent functions by corresponding bits of the first subsequence set, corresponding bits of the second subsequence set, and corresponding bits of the third subsequence set individually to obtain 2k first orthogonal sequence sets, 2k second orthogonal sequence sets, and 2k third orthogonal sequence sets, wherein a number of sequences of each of the first orthogonal sequence sets is 2m−1, and a number of sequences of each of the second orthogonal sequence sets as well as a number of each of the third orthogonal sequence sets is 2m−2.
  • 9. The mobile communication system according to claim 7, wherein an orthogonal multiplexing distance of the neighboring ones of the cells is √{square root over (21)}.
Priority Claims (2)
Number Date Country Kind
2017 1 1448149 Dec 2017 CN national
2017 1 1449702 Dec 2017 CN national
US Referenced Citations (9)
Number Name Date Kind
5550809 Bottomley Aug 1996 A
6611494 Ovalekar Aug 2003 B1
6680928 Dent Jan 2004 B1
8004959 Dent Aug 2011 B2
20060126491 Ro Jun 2006 A1
20070287465 Hyon Dec 2007 A1
20090129259 Malladi May 2009 A1
20120008617 Tsai Jan 2012 A1
20180279294 Gao Sep 2018 A1
Non-Patent Literature Citations (1)
Entry
A Whitepaper: “Large Sets of Orthogonal Sequences Suitable for Applications in CDMA Systems” by Zhang et al. Dated: May 17, 2016.
Related Publications (1)
Number Date Country
20190222344 A1 Jul 2019 US
Continuations (1)
Number Date Country
Parent PCT/CN2018/113802 Nov 2018 US
Child 16233048 US