A direct Sequence Spread Spectrum (DSSS) system is inherently capable of supporting multi-cell and multi-user access applications through the use of orthogonal spreading codes. The initial access of the physical channel and frequency planning are relatively easier because of interference averaging in a DSSS system. It has been widely used in some existing wireless networks. However, a DSSS system using orthogonal spreading codes, may suffer severely from the loss of orthogonally in a broadband environment due to multi-path propagation effects, which results in low spectral efficiency.
In broadband wireless communications, Multi-Carrier (MC) technology is drawing more and more attention because of its capability. An MC system such as an Orthogonal Frequency Division Multiplexing (OFDM) system is capable of supporting broadband applications with higher spectral efficiency. An MC system mitigates the adverse effects of multi-path propagation in wireless environments by using cyclic prefixes to extend the signal period as the data is multiplexed on orthogonal sub-carriers. In effect, it converts a frequency selective channel into a number of parallel flat fading channels which can be easily equalized with simple one-tap equalizers. The modulator and the demodulator can be executed efficiently via the fast Fourier transform (FFT) with much lower cost. However, MC systems are vulnerable while operating in multi-user and multi-cell environments.
A broadband wireless communication system where both the Multi-Carrier (MC) and direct Sequence Spread Spectrum (DSSS) signals are intentionally overlaid together in both time and frequency domains is described. The system takes advantage of both MC and DSSS techniques to mitigate their weaknesses. The MC signal is used to carry broadband data signal for its high spectral efficiency, while the DSSS signal is used for special purpose processing, such as initial random access, channel probing, and short messaging, in which signal properties such as simplicity, self synchronization, and performance under severe interference are of concern. In the embodiments of this invention both the MC and the DSSS signals are distinguishable in normal operations and the interference between the overlaid signals is insufficient to degrade the expected performance of either signal.
Unlike a typical CDMA system where the signals are designed to be orthogonal in the code domain or an OFDM system where the signals are designed to be orthogonal in frequency domain, the embodiments of this invention overlay the MC signal, which is transmitted without or with very low spreading, and the DSSS signal, which is transmitted at a power level lower than that of the MC signal.
In accordance with aspects of certain embodiments of this invention, the MC signal is modulated on subcarriers in the frequency domain while the DSSS signal is modulated by the information bits or symbols in the time domain. In some cases the information bits modulating the DSSS sequence are always one.
This invention further provides apparatus and means to implement the mentioned processes and methods in a broadband wireless multi-access and/or multi-cell network, using advanced techniques such as transmit power control, spreading signal design, and iterative cancellation.
The mentioned MC system can be of any special format such as OFDM or Multi-Carrier Code Division Multiple Access (MC-CDMA). The presented methods and apparatus can be applied to downlink, uplink, or both, where the duplexing technique can be either Time Division Duplexing (TDD) or Frequency Division Duplexing (FDD).
Various embodiments of the invention are described to provide specific details for thorough understanding and enablement; however, the aspects of the invention may be practiced without such details. In some instances, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the essential matters.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “above,” “below” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
The physical media resource (e.g., radio or cable) in a multi-carrier communication system can be divided in both the frequency and time domains. This canonical division provides a high flexibility and fine granularity for resource sharing.
The basic structure of a multi-carrier signal in the frequency domain is made up of subcarriers. Within a particular spectral band or channel, there are a fixed number of subcarriers. There are three types of subcarriers:
1. Data subcarriers, which contain information data;
2. Pilot subcarriers, whose phases and amplitudes are predetermined and made known to all receivers and which are employed for assisting system functions such as estimation of system parameters; and
3. Silent subcarriers, which have no energy and are used for guard bands and DC carrier.
An OFDM system is used in the system as a special case of an MC system. The system parameters for the uplink under consideration are listed in Table 1.
In another embodiment, the MC signal is modulated on subcarriers in the frequency domain while the DSSS signal is modulated in either the time domain or the frequency domain. In one embodiment the modulation symbol on the DSSS sequence is one and the sequence is unmodulated.
A digital attenuator (G1) is used for the DSSS signal to adjust its transmitted signal level relative to the MC signal. The two signals are overlaid in the digital domain before converting to a composite analog signal. A second analog variable gain (G2) is used subsequent to the D/A converter 830 to further control the power level of the transmitted signal. When the MC signal is not present, both G1 and G2 will be applied to the DSSS signal to provide sufficient transmission dynamic range. G2 can be realized in multiple circuit stages.
In one embodiment a rake receiver is used in the DSSS receiver 920 to improve its performance in a multi-path environment. In another embodiment, the MC signal is processed as if no DSSS signal is present. In yet another embodiment, advanced interference cancellation techniques can be applied to the composite signal to cancel the DSSS signal from the composite signal thus maintaining almost the same MC performance.
The transmitted composite signal for user i can be represented by:
si(t)=Gi,2 * [Gi,1*si,SS(t)(+bi*si,MC(t(] (1)
where bi is 0 when there is no MC signal and is 1 when an MC signal is present. Similarly, Gi,1 is 0 when there is no DSSS signal and varies depending on the power setting of the DSSS signal relative to the MC signal when a DSSS signal is present. Gi,2 is used to control the total transmission power for user i. The received signal can be represented by:
where M is the total number of mobile station actively communicating with the current base station, N is the Gaussian noise, and I is the total interference from all the mobile stations in current and other base stations.
Denoting the received power of the MC signal as PMC and the received power of the DSSS signal as PSS, the signal to interference and noise ratio (SINR) for the MC signal is:
SINRMC=PMC/(N+I) (3)
when the DSSS signal is not present; and is
SINR′MC=PMC/(N+I+PSS) (4)
when the DSSS signal is present. The system is designed such that the SINR′MC meets the SINR requirement for the MC signal and its performance is not compromised in spite of interference from the overlaid DSSS signal.
In one embodiment, the DSSS signal is power controlled such that PSS is well below the noise level, N.
On the other hand, the SINR for the DSSS signal is
SINRSS=PSS/(N+I+PMC) (5)
Denoting the spreading factor for the DSSS signal as KSF, the effective SINR for one symbol after despreading is:
SINR′SS=PSS*KSF/(N+I+PMC) (6)
SINR′SS must be high enough to meet the performance requirement when detecting or decoding the information conveyed in the DSSS signal. In one embodiment, KSF is chosen to be 1000, so that the DSSS signal is boosted with 30 dB spreading gain after despreading.
As discussed above, one design issue is to minimize the power of the DSSS signal to reduce its interference with the MC data signal. In one embodiment, the initial power setting of a mobile station, TMS_tx (in dBm), is set based on path loss, Lpath (in dB), and the desired received power level at the base station, PBS_rx_des (in dBm),
TMS_tx=PBS_rx_des+Lpath−C1−C2 (7)
C1 (in dB) is set to a proper value so that the SINR of the MC as specified in equation (4) meets its requirement. C2 (in dB) is an adjustment to compensate for the power control inaccuracy. Open loop power control inaccuracy is mainly caused by a discrepancy between an estimated path loss by the mobile station and the actual path loss.
In one embodiment, C1 is set to 9 dB for MC using QPSK modulation with ½ error control coding or 15 dB for MC using 16 QAM modulation with ½ error control coding. C2 is set to 10 dB or 2 dB depending on whether the mobile station is under open loop power control or closed loop power control. Power control for the DSSS signal also eases the spectrum mask requirement for the DSSS signal because the DSSS signal level is much lower than that of the MC signal.
With total power offset of C1+C2 subtracted from an initial transmission power of the DSSS signal, the spreading factor of the DSSS signal needs to be set high enough (e.g., 512 (27 dB) or higher) so that the DSSS signal can be detected in normal conditions. This requires a sufficient number of bits of the A/D converter at the base station, for example, 12 bits.
In one embodiment, the D/A converter at the mobile station uses 12 bits, among which 8 bits are targeted for the MC signal (assuming 3 bits are reserved for MC peak to average consideration). Thus, there are enough bits left for the DSSS signal even with significant attenuation relative to the MC signal.
In one embodiment, the base station employs interference cancellation techniques to cancel the DSSS interference to the MC signal.
DSSS sequences are chosen to have good autocorrelation and cross-correlation properties (i.e., with high peak to sidelobe ratio). In one embodiment, pulse-shaping is applied to restrict the spectrum mask of DSSS signals and to reduce impacts on the MC signals in the frequency domain. For example, the transmitter pulse-shaping filter applied to the DSSS signal can be a root-raised cosine (RRC) with roll-off factor □ in the frequency domain. The impulse response of the chip impulse filter RC0(t) is
where Tc is the chip duration.
In another embodiment, Golay complementary sequences, Reed-Muller codes, or the codes designed with similar construction methods may be used to control the PAR of DSSS sequences in the frequency domain, thereby limiting the interference of DSSS signals to MC signals, which are demodulated in the frequency domain. In one embodiment, guard periods are added to the DSSS signal which overlaps with one MC symbol, as shown by DSSS signal #p 1308 in
Within MC subcarriers, the control subcarriers are more important than the data subcarriers and may need to have a better protection in the overlay system.
In the initial random access of a multi-carrier multiple access system, a mobile station cannot transmit directly onto the control subchannel because its transmission time and power have not been aligned with other mobile stations. When this mobile station powers up or wakes up from a sleep mode, it first listens to a base station broadcasting channel and finds an available random access DSSS channel. It then sends an initial random access signal over the DSSS channel with a certain signature code or sequence that is designated to the corresponding base station and is broadcasted to all the mobile stations by each base station.
The initial access DSSS signal arrives at the base station together with MC signals from other mobile stations, each carrying data and control information. The initial power level of the DSSS signal is based on the open power loop control settings. A sufficient guard period is reserved in the DSSS signal to account for initial time alignment uncertainty, as shown in
If the base station successfully detects the DSSS signal, it sends the acknowledgement (ACK) carrying information such as a signature or other unique mobile station identifier and power and time adjustments of the mobile on the downlink control channel in the next available timeslot. The mobile station whose transmission signature matches that of the acknowledgement then moves to the designated uplink MC control channel using the assigned time and power values and further completes the message transmission.
If no feedback is received at the mobile station after a pre-defined number of slots, it assumes that the access slot was not detected by the base station, and will ramp up the transmission power of the DSSS signal by one step and re-transmit it, until it reaches the maximum allowable transmit signal power or the maximum retry times. In one embodiment, the power ramping step of the mobile station is set to be 1 dB or 2 dB which is configured by the base station on the downlink broadcasting channel. The maximum allowable transmit signal power and the retry times are also controlled by the base station depending on the uplink modulation/coding scheme and available access channels. During the initial random access, the DSSS signal can also be used for channel probing and short messaging.
In one embodiment of the invention, the DSSS signal is used to assist estimation of channel characteristics. In this case, the mobile station is already synchronized in time and frequency with the base station, and its transmission of the MC signal is under closed-loop power control with the base station.
When closed loop power control is used, the initial power settings will be much more accurate than by using open loop power control alone. Thus, the margin reserved for power control inaccuracy can be reduced to a much smaller value. Furthermore, a bigger spreading factor can be used since no data information needs to be conveyed in the DSSS signal. This leaves a dynamic range large enough for detecting multi-path peaks from the output of the match filter or correlator, thereby generating a better channel profile. When and how often a mobile station should send the DSSS signal for channel probing is configurable by the network or the mobile station.
In one embodiment, the base station dictates the mobile station to transmit the channel probing DSSS when it needs an update of the mobile station's channel characteristics. In another embodiment, the base station polls the mobile station during its silent period and gets an update of the mobile station's information such as transmission timing and power from the probing DSSS signal. In yet another embodiment, the channel profile information is used by the base station to determine the proper modulation/coding and pilot pattern. In yet another embodiment, the channel profile information is used for advanced antenna techniques such as beamforming. In one embodiment, channel probing with the DSSS signaling is performed without close loop power control or time synchronization.
In one embodiment of the invention, the DSSS signal is used to carry short messages. In this case, the mobile station is already synchronized in time and frequency with the base station, and its transmission of a MC signal is also under closed-loop power control with the base station. As shown in
The above detailed description of the embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above or to the particular field of usage mentioned in this disclosure. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. Also, the teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
All of the above patents and applications and other references, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the invention.
Changes can be made to the invention in light of the above “Detailed Description.” While the above description details certain embodiments of the invention and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Therefore, implementation details may vary considerably while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated.
In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the invention under the claims.
While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.
This application is continuation of U.S. patent application Ser. No. 17/092,786 filed Nov. 9, 2020, which issued on Jun. 21, 2022 as U.S. Pat. No. 11,368,347, which is a continuation of U.S. patent application Ser. No. 16/908,067, filed Jun. 22, 2020, which issued on Nov. 3, 2020 as U.S. Pat. No. 10,826,740, which are continuations of U.S. patent application Ser. No. 16/902,740, filed Jun. 16, 2020 which issued on Nov. 10, 2020 as U.S. Pat. No. 10,833,908 and U.S. patent application Ser. No. 15/953,950, filed Apr. 16, 2018, which issued on Sep. 8, 2020 as U.S. Pat. No. 10,771,302, which is continuation of U.S. patent application Ser. No. 14/321,615, filed Jul. 1, 2014, which issued on Apr. 17, 2018 as U.S. Pat. No. 9,948,488, which is a continuation application of U.S. patent application Ser. No. 13/861,942, filed Apr. 12, 2013, which issued on Jul. 1, 2014 as U.S. Pat. No. 8,767,522, which is a continuation application of U.S. patent application Ser. No. 13/347,644, filed Jan. 10, 2012, which issued on Apr. 23, 2013 as U.S. Pat. No. 8,428,009, which is a continuation application of U.S. patent application Ser. No. 12/975,226, filed Dec. 21, 2010, which issued on Jan. 10, 2012 as U.S. Pat. No. 8,094,611, which is a continuation of U.S. patent application Ser. No. 10/583,229, filed Aug. 27, 2008, which issued on Jan. 4, 2011 as U.S. Pat. No. 7,864,725, which is the National Stage Application of International Application No. PCT/US2005/003518, filed Jan. 27, 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/540,586, filed on Jan. 30, 2004, and of U.S. Provisional Patent Application No. 60/540,032, filed on Jan. 29, 2004, which is/are incorporated by reference as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
3488445 | Chang | Jan 1970 | A |
5430760 | Dent | Jul 1995 | A |
5471647 | Gerlach et al. | Nov 1995 | A |
5519730 | Jasper et al. | May 1996 | A |
5596329 | Searle et al. | Jan 1997 | A |
5825807 | Kumar | Oct 1998 | A |
5828650 | Malkamaki et al. | Oct 1998 | A |
5867478 | Baum et al. | Feb 1999 | A |
5898338 | Proctor et al. | Apr 1999 | A |
5909436 | Engstrom et al. | Jun 1999 | A |
5929704 | Proctor, Jr. et al. | Jul 1999 | A |
6078216 | Proctor, Jr. | Jun 2000 | A |
6088347 | Minn et al. | Jul 2000 | A |
6091702 | Saiki | Jul 2000 | A |
6101179 | Soliman | Aug 2000 | A |
6141393 | Thomas et al. | Oct 2000 | A |
6141546 | Thomas | Oct 2000 | A |
6175550 | van Nee | Jan 2001 | B1 |
6188717 | Kaiser | Feb 2001 | B1 |
6320897 | Fattouche et al. | Nov 2001 | B1 |
6381229 | Narvinger et al. | Apr 2002 | B1 |
6434364 | O'Riordain | Aug 2002 | B1 |
6480558 | Ottosson et al. | Nov 2002 | B1 |
6483814 | Hsu et al. | Nov 2002 | B1 |
6501788 | Wang et al. | Dec 2002 | B1 |
6510133 | Uesugi | Jan 2003 | B1 |
6515960 | Usui et al. | Feb 2003 | B1 |
6560209 | Alamouti et al. | May 2003 | B1 |
6567383 | Bohnke | May 2003 | B1 |
6574267 | Kanterakis et al. | Jun 2003 | B1 |
6600772 | Zeira et al. | Jul 2003 | B1 |
6611507 | Hottinen et al. | Aug 2003 | B1 |
6643281 | Ryan | Nov 2003 | B1 |
6680928 | Dent | Jan 2004 | B1 |
6711120 | Laroia et al. | Mar 2004 | B1 |
6714511 | Sudo et al. | Mar 2004 | B1 |
6731673 | Kotov et al. | May 2004 | B1 |
6741578 | Moon et al. | May 2004 | B1 |
6771706 | Ling et al. | Aug 2004 | B2 |
6839876 | Tong et al. | Jan 2005 | B1 |
6847678 | Berezdivin et al. | Jan 2005 | B2 |
6850481 | Wu et al. | Feb 2005 | B2 |
6882619 | Gerakoulis | Apr 2005 | B1 |
6922388 | Laroia et al. | Jul 2005 | B1 |
6928062 | Krishnan et al. | Aug 2005 | B2 |
6937642 | Hirata | Aug 2005 | B2 |
6940827 | Li et al. | Sep 2005 | B2 |
6992621 | Casas et al. | Jan 2006 | B2 |
6999467 | Krauss et al. | Feb 2006 | B2 |
7012882 | Wang et al. | Mar 2006 | B2 |
7035663 | Linebarger et al. | Apr 2006 | B1 |
7039001 | Krishnan et al. | May 2006 | B2 |
7042858 | Ma et al. | May 2006 | B1 |
7054664 | Nagaraj | May 2006 | B2 |
7062002 | Michel et al. | Jun 2006 | B1 |
7088782 | Mody et al. | Aug 2006 | B2 |
7099269 | van Nee | Aug 2006 | B2 |
7120395 | Tong et al. | Oct 2006 | B2 |
7123934 | Linebarger et al. | Oct 2006 | B1 |
7126996 | Classon et al. | Oct 2006 | B2 |
7133352 | Hadad | Nov 2006 | B1 |
7145940 | Gore et al. | Dec 2006 | B2 |
7149239 | Hudson | Dec 2006 | B2 |
7161985 | Dostert et al. | Jan 2007 | B2 |
7161987 | Webster et al. | Jan 2007 | B2 |
7218666 | Baum et al. | May 2007 | B2 |
7221645 | Wang et al. | May 2007 | B2 |
7236452 | Maeda et al. | Jun 2007 | B2 |
7242720 | Sugiyama et al. | Jul 2007 | B2 |
7242722 | Krauss et al. | Jul 2007 | B2 |
7242955 | Frank et al. | Jul 2007 | B2 |
7248559 | Ma et al. | Jul 2007 | B2 |
7254196 | Kriedte et al. | Aug 2007 | B2 |
7260054 | Olszewski | Aug 2007 | B2 |
7263058 | Joo | Aug 2007 | B2 |
7274652 | Webster et al. | Sep 2007 | B1 |
7280467 | Smee et al. | Oct 2007 | B2 |
7283498 | Ro et al. | Oct 2007 | B2 |
7289834 | Sun et al. | Oct 2007 | B2 |
7298722 | Sudo | Nov 2007 | B2 |
7304939 | Steer et al. | Dec 2007 | B2 |
7317931 | Guo | Jan 2008 | B2 |
7319660 | Kim et al. | Jan 2008 | B2 |
7324434 | Sawahashi et al. | Jan 2008 | B2 |
7342974 | Chiou | Mar 2008 | B2 |
7386055 | Morita et al. | Jun 2008 | B2 |
7403556 | Kao et al. | Jul 2008 | B2 |
7411897 | Yoo et al. | Aug 2008 | B2 |
7418042 | Choi et al. | Aug 2008 | B2 |
7420915 | Murakami et al. | Sep 2008 | B2 |
7426232 | Matsuoka et al. | Sep 2008 | B2 |
7443829 | Rizvi et al. | Oct 2008 | B2 |
7471667 | Hirsch et al. | Dec 2008 | B2 |
7508798 | Tong et al. | Mar 2009 | B2 |
7512086 | Choi et al. | Mar 2009 | B2 |
7512409 | Hadad | Mar 2009 | B1 |
7548506 | Ma et al. | Jun 2009 | B2 |
7548527 | Hamalainen et al. | Jun 2009 | B2 |
7551546 | Ma et al. | Jun 2009 | B2 |
7555268 | Trachewsky et al. | Jun 2009 | B2 |
7567624 | Schmidl et al. | Jul 2009 | B1 |
7602696 | Rhodes | Oct 2009 | B2 |
7639660 | Kim et al. | Dec 2009 | B2 |
7640373 | Cudak et al. | Dec 2009 | B2 |
7646747 | Atarashi et al. | Jan 2010 | B2 |
7650152 | Li et al. | Jan 2010 | B2 |
7664533 | Logothetis et al. | Feb 2010 | B2 |
7693032 | Li et al. | Apr 2010 | B2 |
7724720 | Korpela et al. | May 2010 | B2 |
7738437 | Ma et al. | Jun 2010 | B2 |
7764593 | Kim et al. | Jul 2010 | B2 |
7782750 | Yamaura et al. | Aug 2010 | B2 |
7787514 | Shattil | Aug 2010 | B2 |
7826471 | Wilson et al. | Nov 2010 | B2 |
7852746 | Jalali | Dec 2010 | B2 |
7864725 | Li et al. | Jan 2011 | B2 |
7873009 | Larsson et al. | Jan 2011 | B2 |
7873021 | Petre et al. | Jan 2011 | B2 |
7876716 | Sudo | Jan 2011 | B2 |
7907592 | Han et al. | Mar 2011 | B2 |
7920503 | Lim et al. | Apr 2011 | B2 |
7986742 | Ketchum et al. | Jul 2011 | B2 |
8009660 | Li et al. | Aug 2011 | B2 |
8089887 | Lippman et al. | Jan 2012 | B2 |
8094611 | Li et al. | Jan 2012 | B2 |
8098751 | Shattil et al. | Jan 2012 | B2 |
8102832 | Agrawal et al. | Jan 2012 | B2 |
8159932 | Hart et al. | Apr 2012 | B1 |
8169944 | Walton et al. | May 2012 | B2 |
8199632 | Geile et al. | Jun 2012 | B2 |
8213994 | Cave et al. | Jul 2012 | B2 |
8218609 | Walton et al. | Jul 2012 | B2 |
8320301 | Walton et al. | Nov 2012 | B2 |
8363691 | Hasegawa et al. | Jan 2013 | B2 |
8427936 | Walton et al. | Apr 2013 | B2 |
8428009 | Li et al. | Apr 2013 | B2 |
8428594 | Laroia et al. | Apr 2013 | B2 |
8432891 | Li et al. | Apr 2013 | B2 |
8467366 | Li et al. | Jun 2013 | B2 |
8553595 | Laroia et al. | Oct 2013 | B2 |
8553822 | Gore et al. | Oct 2013 | B2 |
8767522 | Li et al. | Jul 2014 | B2 |
8842657 | Walton et al. | Sep 2014 | B2 |
9125202 | Wilson et al. | Sep 2015 | B2 |
9473269 | Walton et al. | Oct 2016 | B2 |
10638468 | Nelson et al. | Apr 2020 | B2 |
10742358 | Walton et al. | Aug 2020 | B2 |
20010021182 | Wakutsu | Sep 2001 | A1 |
20020003774 | Wang et al. | Jan 2002 | A1 |
20020086708 | Teo et al. | Jul 2002 | A1 |
20020118783 | Cripps et al. | Aug 2002 | A1 |
20020126650 | Hall et al. | Sep 2002 | A1 |
20020136176 | Abeta et al. | Sep 2002 | A1 |
20020141483 | Doetsch et al. | Oct 2002 | A1 |
20020154705 | Walton et al. | Oct 2002 | A1 |
20020159414 | Kanemoto et al. | Oct 2002 | A1 |
20020159422 | Li | Oct 2002 | A1 |
20020159537 | Crilly, Jr. | Oct 2002 | A1 |
20020163879 | Li et al. | Nov 2002 | A1 |
20020172308 | Harel et al. | Nov 2002 | A1 |
20020181509 | Mody et al. | Dec 2002 | A1 |
20030072254 | Ma et al. | Apr 2003 | A1 |
20030072255 | Ma et al. | Apr 2003 | A1 |
20030072395 | Jia et al. | Apr 2003 | A1 |
20030076812 | Benedittis | Apr 2003 | A1 |
20030078024 | Magee et al. | Apr 2003 | A1 |
20030081538 | Walton et al. | May 2003 | A1 |
20030156570 | Alamouti et al. | Aug 2003 | A1 |
20030179776 | Sumasu et al. | Sep 2003 | A1 |
20030193889 | Jacobsen | Oct 2003 | A1 |
20030227888 | Abrishamkar et al. | Dec 2003 | A1 |
20040001429 | Ma et al. | Jan 2004 | A1 |
20040066283 | Manis | Apr 2004 | A1 |
20040066754 | Hottinen | Apr 2004 | A1 |
20040081123 | Krishnan et al. | Apr 2004 | A1 |
20040081131 | Walton et al. | Apr 2004 | A1 |
20040082356 | Walton et al. | Apr 2004 | A1 |
20040085946 | Morita et al. | May 2004 | A1 |
20040095902 | Laroia et al. | May 2004 | A1 |
20040109432 | Laroia et al. | Jun 2004 | A1 |
20040114504 | Jung et al. | Jun 2004 | A1 |
20040125869 | May et al. | Jul 2004 | A1 |
20040128605 | Sibecas et al. | Jul 2004 | A1 |
20040131007 | Smee et al. | Jul 2004 | A1 |
20040131011 | Sandell et al. | Jul 2004 | A1 |
20040136464 | Suh et al. | Jul 2004 | A1 |
20040141481 | Lee et al. | Jul 2004 | A1 |
20040152418 | Sinha | Aug 2004 | A1 |
20040156328 | Walton et al. | Aug 2004 | A1 |
20040160921 | Kaipainen et al. | Aug 2004 | A1 |
20040166886 | Laroia et al. | Aug 2004 | A1 |
20040171357 | Lobinger | Sep 2004 | A1 |
20040174845 | Koo et al. | Sep 2004 | A1 |
20040179627 | Ketchum et al. | Sep 2004 | A1 |
20040190598 | Seki et al. | Sep 2004 | A1 |
20040190640 | Dubuc et al. | Sep 2004 | A1 |
20040203468 | Dent et al. | Oct 2004 | A1 |
20040218523 | Varshney et al. | Nov 2004 | A1 |
20040228267 | Agrawal | Nov 2004 | A1 |
20040228269 | Balakrishnan et al. | Nov 2004 | A1 |
20040228270 | Chen et al. | Nov 2004 | A1 |
20040264600 | Kao et al. | Dec 2004 | A1 |
20050030886 | Wu et al. | Feb 2005 | A1 |
20050063298 | Ling et al. | Mar 2005 | A1 |
20050070285 | Goransson | Mar 2005 | A1 |
20050075125 | Bada et al. | Apr 2005 | A1 |
20050085265 | Laroia et al. | Apr 2005 | A1 |
20050111397 | Attar et al. | May 2005 | A1 |
20050120097 | Walton et al. | Jun 2005 | A1 |
20050122928 | Vijayan et al. | Jun 2005 | A1 |
20050135291 | Ketchum et al. | Jun 2005 | A1 |
20050157637 | Feng et al. | Jul 2005 | A1 |
20050157678 | Mantha et al. | Jul 2005 | A1 |
20050157801 | Gore et al. | Jul 2005 | A1 |
20050163082 | Sudo | Jul 2005 | A1 |
20050163238 | Fujii | Jul 2005 | A1 |
20050163258 | Gore et al. | Jul 2005 | A1 |
20050163262 | Gupta | Jul 2005 | A1 |
20050163265 | Gupta | Jul 2005 | A1 |
20050289256 | Cudak et al. | Dec 2005 | A1 |
20060034163 | Gore et al. | Feb 2006 | A1 |
20060039331 | Abeta et al. | Feb 2006 | A1 |
20060114812 | Kim et al. | Jun 2006 | A1 |
20060114815 | Hasegawa | Jun 2006 | A1 |
20060146867 | Lee et al. | Jul 2006 | A1 |
20060245409 | Korpela | Nov 2006 | A1 |
20070053280 | Uesugi | Mar 2007 | A1 |
20070133386 | Kim et al. | Jun 2007 | A1 |
20070211786 | Shattil | Sep 2007 | A1 |
20070263667 | Dubuc et al. | Nov 2007 | A1 |
20080107192 | Mukkavilli et al. | May 2008 | A1 |
20080304551 | Li et al. | Dec 2008 | A1 |
20110211617 | Li et al. | Sep 2011 | A1 |
20110299474 | Li et al. | Dec 2011 | A1 |
20110317671 | Walton et al. | Dec 2011 | A1 |
20120106513 | Li et al. | May 2012 | A1 |
20130242937 | Li et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1407745 | Apr 2003 | CN |
1445949 | Oct 2003 | CN |
1452326 | Oct 2003 | CN |
11061687 | Dec 2000 | EP |
1117188 | Jul 2001 | EP |
1137211 | Sep 2001 | EP |
1148673 | Oct 2001 | EP |
1276288 | Jan 2003 | EP |
1324510 | Jul 2003 | EP |
1367741 | Dec 2003 | EP |
1635494 | Mar 2006 | EP |
1204224 | Apr 2006 | EP |
1650891 | Apr 2006 | EP |
09-233047 | Sep 1997 | JP |
10-210002 | Aug 1998 | JP |
2003259414 | Sep 2003 | JP |
2001-0083789 | Sep 2001 | KR |
2003-0060892 | Jul 2003 | KR |
20030058589 | Jul 2003 | KR |
2009-0040929 | Apr 2009 | KR |
199837638 | Aug 1998 | WO |
1999060729 | Nov 1999 | WO |
2000032000 | Jun 2000 | WO |
20010899097 | Nov 2001 | WO |
2002049385 | Nov 2002 | WO |
2002031991 | May 2003 | WO |
2003058881 | Jul 2003 | WO |
2003055254 | Sep 2003 | WO |
2004049618 | Jun 2004 | WO |
2004056022 | Jul 2004 | WO |
2004073276 | Aug 2004 | WO |
2005022792 | Mar 2005 | WO |
2005041448 | May 2005 | WO |
2005060195 | Jun 2005 | WO |
Entry |
---|
Baxley et al., “Power Savings Analysis of Peak-to-Average Power Ratio Reduction in OFDM,” IEEE Transactions on Consumer Electronics, vol. 50, No. 3 (Aug. 2004). |
Definition of “guard band,” McGraw Hill Dictionary of Scientific and Technical Terms, 6th edition (2003). |
Dell Inc. et al., v. Neo Wireless LLC, Declaration of Craig Bishop, Inter Partes Review of U.S. Pat. No. 8,467,366 and U.S. Pat. No. 10,833,908 (Sep. 2, 2021). |
Dell Inc. et al., v. Neo Wireless LLC, Declaration of Dr. Matthew Valenti, Inter Partes Review of U.S. Pat. No. 10,833,908 (Dec. 6, 2021). |
Dell Inc. et al., v. Neo Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,833,908 pursuant to 35 U.S.C. §§ 311-319, 37 C.F.R. § 42 (Dec. 14, 2021). |
ETSI Special Mobile Group (SMG) Report of UMTS 30.06 V3.0.0; Universal Mobile Telecommunications System (UMTS); UMTS Terrestrial Radio Acces (UTRA); Concept evaluation (UMTS 30.06 version 3.0.0), TR 101 146V3.0.0 (Dec. 1997). |
European Telecommunications Standards Institute, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television, ETSI EN 300 744 V1.5.1 (Jun. 2004). |
Examination Report, European Application No. 05711777.2, dated Oct. 29, 2012, 6 pages. |
Examination Report, European Application No. 05712825.8, dated Aug. 16, 2012, 6 pages. |
Extended European Search Report received for counterpart European Patent Application No. 18196596.3, dated Feb. 20, 2019 (8 pages). |
Guo et al., “Reducing Peak-to-Average Power Ratio in OFDM Systems by Adaptive Dynamic Range Companding,” 2002 World Wireless Congress, San Francisco, CA (2002). |
Hayes, “T1P1—Wireless/Mobile Services and Systems Technical Sub-Committee,” IMT—2000 Radio Transmission Technology Candidate, T1P1.1/98-081R1 (Jun. 12, 1998). |
IEEE Standard for Local and metropolitan area networks; Part 16: Air Interface for Fixed Broadband Wireless Access Systems—Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz, IEEE Std. 802.16a-2003 (Apr. 1, 2003). |
International Search Report and Written Opinion for International Application No. PCT/US05/01939, dated Apr. 26, 2005, 7 pages. |
International Search Report and Written Opinion; International Patent Application No. PCT/US05/03518; Filed Jan. 27, 2005; Applicant: Waltical Solutions, Inc.; dated May 23, 2005; 8 pages. |
Koffman et al., “Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16,” IEEE Communications Magazine, pp. 96-103 (Apr. 2002). |
Neo Wireless LLC v. American Honda Motor Co., Inc. et al., and Neo Wireless LLC v. Nissan North America Inc. et al., Defendants Honda and Nissan's Motion to Dismiss Plaintiff's Claims of Willful and Induced Patent Infringement, Civil Action Nos. 2:22-cv-11403-TGB and Civil Action Nos. 2:22-cv-11405-TGB (Aug. 10, 2022). |
Neo Wireless LLC v. American Honda Motor Co., Inc. et al., Defendants' Motion to Dismiss Plaintiff's Complaint, Civil Action No. 2:22-cv-01824-EAS-KAJ (Jun. 21, 2022). |
Neo Wireless LLC v. American Honda Motor Co., Inc. et al., Plaintiff NEO Wireless LLC's Complaint for Patent Infringement, United States District Court for the Southern District of Ohio Eastern Division at Columbus, Case No. 2:22-cv-01824-EAS-KAJ (Mar. 29, 2022). |
Neo Wireless LLC v. American Honda Motor Co., Inc. et al., Plaintiff NEO Wireless, LLC's First Amended Complaint for Patent Infringement, Civil Action No. 2:22-cv-11403-TGB (Jul. 20, 2022). |
Neo Wireless LLC v. Apple Inc., Apple Inc's Answer to Plaintiff's First Amended Complaint, Civil Action No. 6:21-cv-00026-ADA (Jun. 17, 2021). |
Neo Wireless LLC v. Apple Inc., Plaintiff's First Amended Complaint, Civil Action No. 6:21-cv-0026 (Apr. 28, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Declaration of Roger Fulgham in Support of Defendants' Opening Claim Construction, Civil Action No. 6:21-cv-0024 (Oct. 28, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Declaration of James Proctor in Support of Defendants' Opening Claim Construction Brief, Civil Action No. 6:21-cv-0024 (Oct. 27, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Declaration of William Alberth in Support of Neo Wireless's Responsive Claim Construction Brief, Civil Action No. 6:21-cv-0024 (Nov. 18, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Defendant's Answer, Affirmative Defenses, and Counterclaims to Plaintiff's First Amended Complaint, Civil Action No. 6:21-cv-0024 (Jun. 18, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Defendants' Opening Claim Construction Brief, Civil Action No. 6:21-cv-0024 (Oct. 28, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Defendants' Reply Claim Construction Brief, Civil Action No. 6:21-cv-0024 (Dec. 2, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Joint Claim Construction Statement, Civil Action No. 6:21-cv-0024 (Dec. 21, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Neo Wireless's Answer to Dell's Counterclaims, Civil Action No. 6:21-cv-0024 (Jul. 9, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Plaintiff Neo Wireless LLC's Claim Construction Sur Reply Brief, Civil Action No. 6:21-cv-0024 (Dec. 16, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Plaintiff Neo Wireless LLC's Responsive Claim Construction Brief, Civil Action No. 6:21-cv-0024 (Nov. 18, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Plaintiff Neo Wireless LLC's Response to Defendants' Supplemental Claim Construction Brief, C.A. No. 1:22-cv-60-DAE (Jun. 8, 2022). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Stipulated Constructions, Civil Action No. 6:21-cv-0024 (Oct. 27, 2021). |
Neo Wireless LLC v. Dell Technologies Inc. et al., Supplemental Declaration of James Proctor in Support of Defendants' Reply Claim Construction Brief, Civil Action No. 6:21-cv-0024 (Dec. 2, 2021). |
Neo Wireless LLC v. Dell Technologies, Inc. et al., Plaintiff's First Amended Complaint, Civil Action No. 6:21-cv-0024 (Apr. 28, 2021). |
Neo Wireless LLC v. FCA US, LLC, Plaintiff Neo Wireless LLC's Complaint for Patent Infringement, Civil Action No. 3:22-cv-01252 (Jul. 15, 2022). |
Neo Wireless LLC v. Ford Motor Company, Ford Motor Company's Motion to Dismiss, Civil Action No. 4:22-va-00210-GAF (Jun. 21, 2022). |
NEO Wireless LLC v. Ford Motor Company, Plaintiff NEO Wireless LLC's Complaint for Patent Infringement, United States District Court for the Western District of Missouri Western Division, Case No. 4:22-cv-00210-GAF (Mar. 29, 2022). |
NEO Wireless LLC v. Ford Motor Company, Plaintiff NEO Wireless, LLC's First Amended Complaint for Patent Infringement, Civil Action No. 2:22-cv-11402-TGB (Jul. 20, 2022). |
Neo Wireless LLC v. General Motors Company et al., Defendants General Motor Company and General Motors LLC's Answer to Complaint, Civil Action No. 2:22-cv-0094-JRG-RSP (Jun. 21, 2022). |
NEO Wireless Llc v. General Motors Company et al., Plaintiff NEO Wireless LLC's Complaint for Patent Infringement, United States District Court for the Eastern District of Texas Marshall Division, Case No. 2:22-cv-00094 (Mar. 29, 2022). |
NEO Wireless LLC v. General Motors Company et al., Plaintiff NEO Wireless, LLC's First Amended Complaint for Patent Infringement, Civil Action No. 2:22-cv-11407-TGB (Jul. 20, 2022). |
Neo Wireless LLC v. LG Electrincs Inc., Defendant LG's Answer to Plaintiff's First Amended Complaint, Civil Action No. 6:21-cv-00025-ADA (Jun. 17, 2021). |
Neo Wireless LLC v. LG Electronics, Inc. et al., Plaintiff's First Amended Complaint, Civil Action No. 6:21-cv-0025 (Apr. 28, 2021). |
Neo Wireless LLC v. Mercedes-Benz USA, LLC, Plaintiff Neo Wireless LLC's Complaint for Patent Infringement, Civil Action No. 3:22-cv-00780 (Jul. 15, 2022). |
Neo Wireless LLC v. Nissan North America Inc. et al., Defendants' Motion to Dismiss the Complaint Pursuant to Rule 12(b)(6), Civil Action No. 3:22-cv-00220 (Jun. 21, 2022). |
NEO Wireless LLC v. Nissan North America Inc. et al., Plaintiff NEO Wireless LLC's Complaint for Patent Infringement, United States District Court for the Middle District of Tennessee Nashville Division, Case No. 3:22-cv-00220 (Mar. 29, 2022). |
Neo Wireless LLC v. Nissan North America Inc. et al., Plaintiff NEO Wireless, LLC's First Amended Complaint for Patent Infringement, Civil Action No. 2:22-cv-11405-TGB (Jul. 20, 2022). |
Neo Wireless LLC v. Tesla Inc., Defendant Tesla, Inc.'s Answer to Complaint, Civil Action No. 2:22-cv-0095-JRG-RSP (Jun. 21, 2022). |
NEO Wireless LLC v. Tesla Inc., Plaintiff NEO Wireless LLC's Complaint for Patent Infringement, United States District Court for the Eastern District of Texas Marshall Division, Case No. 2:22-cv-00095 (Mar. 29, 2022). |
NEO Wireless LLC v. Tesla Inc., Plaintiff' NEO Wireless, LLC's First Amended Complaint for Patent Infringement, Civil Action No. 2:22-cv-11408-TGB (Jul. 20, 2022). |
NEO Wireless LLC v. Toyota Motor Corporation et al., Plaintiff NEO Wireless, LLC's First Amended Complaint for Patent Infringement, Civil Action No. 2:22-cv-00093-JRG-RSP (Jun. 24, 2022). |
NEO Wireless LLC v. Toyota Motor North America, Inc. et al., Plaintiff NEO Wireless LLC's Complaint for Patent Infringement, United States District Court for the Eastern District of Texas Marshall Division, Case No. 2:22-cv-00093 (Mar. 29, 2022). |
Neo Wireless LLC v. Volkswagen Group of America, Inc. et al., Defendants Volkswagen Group of America, Inc. and Volkswagen Group of America Chattanooga Operations, LLC's Motion to Dismiss Pursuant to Federal Rule of Civil Procedure 12(b)(6), Civil Action No. 2:22-cv-11404-TGB (Aug. 10, 2022). |
NEO Wireless LLC v. Volkswagen Group of America, Inc. et al., Plaintiff NEO Wireless, LLC's First Amended Complaint for Patent Infringement, Civil Action No. 2:22-cv-11404-TGB (Jul. 20, 2022). |
NEO Wireless LLC v. Volkswagen Group of America, Inc., et al., Plaintiff NEO Wireless LLC's Complaint for Patent Infringement, United States District Court for the Eastern District of Tennessee Chattanooga District, Case No. 1:22-cv-00076 (Mar. 29, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Dell, Inc. et al., Civil Action No. 6:21-cv-0024 (Apr. 28, 2021). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. American Honda Motor Co., Inc. et al., Civil Action No. 2:22-cv-11403-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Volkswagen Group of America, Inc. et al., Civil Action No. 2:22-cv-11404-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Nissan North America Inc. et al., Civil Action No. 2:22-cv-11405-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Toyota Motor Corporation et al., Civil Action No. 2:22-cv-00093-JRG-RSP (Jun. 24, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. General Motor Company et al., Civil Action No. 2:22-cv-11407-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Tesla Inc., Civil Action No. 2:22-cv-11408-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Ford Motor Company, Civil Action No. 2:22-cv-11402-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's Complaint for Patent Infringement, Neo Wireless, LLC v. Mercedes-Benz USA, LLC, Civil Action No. 3:22-cv-00780 (Jul. 15, 2022). |
Neo Wireless LLC, Claim Chart—Claim 11 of U.S. Pat. No. 10,833,908, submitted with Plaintiff's Complaint for Patent Infringement, Neo Wireless, LLC v. FCA US, LLC, Civil Action No. 3:22-cv-00780 (Jul. 15, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. American Honda Motor Co., Inc. et al., Civil Action No. 2:22-cv-11403-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Volkswagen Group of America, Inc. et al., Civil Action No. 2:22-cv-11404-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Nissan North America Inc. et al., Civil Action No. 2:22-cv-11405-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Toyota Motor Corporation et al., Civil Action No. 2:22-cv-00093-JRG-RSP (Jun. 24, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. General Motor Company et al., Civil Action No. 2:22-cv-11407-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Tesla Inc., Civil Action No. 2:22-cv-11408-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's First Amended Complaint, Neo Wireless LLC v. Ford Motor Company, Civil Action No. 2:22-cv-11402-TGB (Jul. 20, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's Complaint for Patent Infringement, Neo Wireless, LLC v. Mercedes-Benz USA, LLC, Civil Action No. 3:22-cv-00780 (Jul. 15, 2022). |
Neo Wireless LLC, Claim Chart—Claim 23 of U.S. Pat. No. 10,771,302, submitted with Plaintiff's Complaint for Patent Infringement, Neo Wireless, LLC v. FCA US, LLC, Civil Action No. 3:22-cv-00780 (Jul. 15, 2022). |
Neo Wireless, LLC v. Dell Technologies Inc. et al., Defendants' Supplemental Claim Construction Brief, Civil Action No. 1:22-cv-00060-DAE (May 18, 2022). |
Notice of Allowance, U.S. Appl. No. 13/347,644, dated Mar. 7, 2013, 17 pages. |
Notice of Allowance, U.S. Appl. No. 13/861,942, dated May 16, 14, 14 pages. |
Panta et al., “Use of Peak-to-Average Power Reduction Technique in HIPERLAN2 and its Performance in a Fading Channel.” Proc. 6th International Symposium on DSP for Communication Systems, pp. 113-117, (2002). |
Prasad, “Chapter 6—The Peak Power Problem,” in OFDM for Wireless Communications Systems, Artech House (2004). |
Proakis et al., Digital Signal Processing Principles, Algorithms, and Applications, pp. 5-16, Prentice Hall, 3rd edition (1996). |
Sklar, Digital Communications, Fundamentals and Applications, 2nd edition, Prentice Hall PTR, pp. 7-9 (2001). |
Supplementary European Search Report, European Application No. 05711777, dated May 7, 2012, 6 pages. |
Supplementary European Search Report, European Application No. 05712825, dated Mar. 26, 2012, 4 pages. |
Tufvesson et al. “OFDM Time and Frequency Synchronization by Spread Spectrum Pilot Technique,” Communication Theory Mini-Conference, Vancouver, B.C., Canada, Jun. 6-10, 1999, pp. 115-119. |
Universal Mobile Telecommunications System (UMTS); UMTS Terrestrial Radio Acces (UTRA); Concept evaluation (UMTS 30.06 version 3.0.0), TR 101 146 V3.0.0 (Dec. 1997). |
Van Nee et al., OFDM for Wireless Multimedia Communications, Artech House (2000). |
You et al., “A Simple Construction of OFDM-CDMA Signals with Low Peak-to-Average Power Ratio,” IEEE Transactions on Broadcasting, vol. 49, No. 4 (Dec. 2003). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to WO 2003/003634, submitted as Exhibit F-07 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for US Pat. No. 10,771,302 to US 2003/0179776, submitted as Exhibit F-08 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for US Pat. No. 10,771,302 to U.S. Pat. No. 7,508,798, submitted as Exhibit F-09 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0081131, submitted as Exhibit F-10 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-Md-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to IEEE Std 802.16a-2003 and IEEE Std 802.16/2001, submitted as Exhibit F-11 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-Md-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to IEEE Std 802.11a-1999 (R2003), submitted as Exhibit E-01 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-Md-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to IEEE Std 802.16a-2003, submitted as Exhibit E-02 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to US 2004/0179627, submitted as Exhibit E-03 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to US 2002/0086708, submitted as Exhibit E-04 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to 3GPP TR 25.892 V0.5.2, submitted as Exhibit E-05 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-Md-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to WO 2004/049618, submitted as Exhibit E-06 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to U.S. Pat. No. 8,428,594, submitted as Exhibit E-07 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to US 2004/0095902, submitted as Exhibit E-08 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to US 2003/0072255, submitted as Exhibit E-09 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re Neo Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,965,512 to U.S. Pat. No. 8,320,301, submitted as Exhibit E-06 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Ansi/IEEE Std 802.11, 1999 Edition (Aug. 20, 1999). |
Johnston et al., “Peering Into the WiMAX Spec: Part 1,” EE Times (Jan. 20, 2004) available at www.eetimes.com/designline/wireless-and-networking-designline. |
Kaiser et al., “A Flexible Spread-Spectrum Multi-Carrier Multiple-Access System for Multi-Media Applications,” Proceedings of PIMRC, vol. 1, pp. 100-104 (1997). |
Kaitz et al., “Channel Estimation and feedback report for OFDM AAS,” IEEE 802.16d-04/06 (Jan. 12, 2004). |
Kim et al., “A Preamble-Based Cell Searching Technique for Ofdm Cellular Systems,” IEEE 58th Vehicular Technology Conference, vol. 4, pp. 2471-2475 (2003). |
Lee, “OFDMA Uplink Ranging for IEEE 802.16e Using Modified Generalized Chirp-Like Polyphase Sequences,” 1st IEEE and Ifip International Conference in Central Asia on Internet (2005). |
Li et al., “A Novel Broadband Wireless OFDMA Scheme for Downlink in Cellular Communications,” Samsung Advanced Institute of Technology (2003). |
Marks, “IEEE Standard 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access,” IEEE C802.16-02/05 (Jun. 4, 2002). |
Muquet et al., “OFDM with Trailing Zeros Versus OFDM with Cyclic Prefix: Links, Comparisons and Application to the Hiperlan/2 System,” IEEE International Conference on Communications, vol. 2, pp. 1049-1053 (2000). |
Natarajan et al., “Introducing Novel FDD and FDM in MC-CDMA to Enhance Performance,” IEEE Radio and Wireless Conference, pp. 29-32 (2000). |
Nortel Networks et al., “Stand-alone DSCH, proposed text for inclusion in TR 25.848 v0.4.0,” TSG-RAN Working Group1 meeting #19, TSGR1#19(01)0293, Las Vegas, USA (Feb. 27-Mar. 3, 2001). |
Popovic, “Generalized Chirp-Like Polyphase Sequences with Optimum Correlation Properties,” IEEE Transactions on Information Theory, vol. 38, No. 4, pp. 1406-1409 (Jul. 1992). |
Saltzberg, “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology. Vol. COM-15, No. 6, p. 805 (1967). |
Supplement to IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, High-speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11-1999 (1999). |
Supplement to IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and area metropolitan area networks—Specific requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification; High-speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999 (1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (FDD) (Release 6),” 3GPP TS 25.211 V6.0.0 (Dec. 2003). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Beamforming Enhancements (Release 5),” 3G TR 25.887 V1.0.0 (Dec. 2001). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Feasibility Study for OFDM for UTRAN enhancement,” 3GPP TR 25.892 V0.5.2 (Dec. 2003). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (FDD) (Release 6),” 3GPP TS 25.211 V6.3.0 (Dec. 2004). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Beamforming Enhancements (Release 5),” 3G TR 25.887 V6.0.0 (Mar. 2004). |
Tobagi, “Multiaccess Protocols in Packet Communication Systems,” IEEE Transactions on Communications, vol. COM-28, No. 4 (Apr. 1980). |
Tufvesson et al., Pilot Assisted Channel Estimation for OFDM in Mobile Cellular Systems, IEEE 47th Vehicular Technology Conference (1997). |
Usuda et al., “Optimizing the Number of Dedicated Pilot Symbols for Forward Link in W-CDMA Systems,” IEEE Vehicular Technology Conference Proceedings, vol. 3, pp. 2118-2122 (2000). |
Van Nee et al., “Reducing the Peak-to-Average Power Ratio of OFDM,” IEEE Vehicular Technology Conference, vol. 3, pp. 2072-2076 (1998). |
Van Nee, “OFDM Codes for Peak-to-Average Power Reduction and Error Correction,” Proceedings of GLOBECOM, vol. 1, pp. 740-744 (1996). |
Volkswagen Group of America, Inc. v. Neo Wireless LLC, Declaration of Dr. Paul Min in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,965,512, IPR2022-01539 (Sep. 15, 2022). |
Volkswagen Group of America, Inc. v. Neo Wireless LLC, Declaration of Dr. Paul Min in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,771,302, IPR2022-01538 (Sep. 15, 2022). |
Volkswagen Group of America, Inc. v. Neo Wireless LLC, Declaration of Leonard J. Cimini, Jr., Ph.D., IPR2023-00086 (Oct. 27, 2022). |
Volkswagen Group of America, Inc. v. Neo Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,833,908, IPR2023-00086 (Oct. 28, 2022). |
Volkswagen Group of America, Inc., v. Neo Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,965,512, Case IPR2022-01539 (Sep. 15, 2022). |
Wahlqvist et al., “Time Synchronization in the Uplink of an OFDM System,” Proceedings of Vehicular Technology Conference, vol. 3, pp. 1569-1573 (Apr. 1996). |
Wavecom, “Different pilots shape distribution for OFDM blocks,” 3GPP TSG-RAN-1 Meeting #33, R1-030679, New York, USA (Aug. 25-29, 2003). |
Wavecom, “Some elements on Ofdm Ue complexity,” 3GPP TSG-RAN-1 Meeting #34, R1-031091, Seoul, Korea (Sep. 6-10, 2003). |
Wavecom, “Text proposal on different pilots distribution for OFDM blocks,” 3GPP TSG-RAN Meeting #35, R1-031188, Lisbon, Portugal (200). |
Li et al., “Bit-Interleaved Coded Modulation with Iterative Decoding and 8PSK Signaling,” IEEE Transactions on Communications, vol. 50., No. 8 (Aug. 2002). |
Neo Wireless, LLCv. FCA US, LLC, Defendant FCA US LLC's First Amended Answer and Defenses to Neo Wireless LLC's Complaint, 2:22-cv-11770-TGB (Dec. 16, 2022) (In re Neo Wireless LLC Patent Litig, 2:22- MD-03034-TGB). |
Neo Wireless, LLC v. Ford Motor Company, Ford Motor Company's Amended Answer to First Amended Complaint for Patent Infringement, 2:22-cv-11402-TGB (Dec. 16, 2022) (In re Neo Wireless LLC Patent Litig, 2:22-MD-03034-TGB). |
Neo Wireless, LLC v. General Motors Company et al., The General Motors Defendants First Amended Answer to Complaint, 2:22-CV-11407-TGB (Dec. 16, 2022) (In re Neo Wireless LLC Patent Litig, 2:22- MD-03034-TGB). |
Neo Wireless, LLC v. Mercedes-Benz USA, LLC, Defendant Mercedes-Benz USA's First Amended Partial Answer to Plaintiff Neo Wireless LLC's Complaint for Patent Infringement, 2:22-CV-11769-TGB (Dec. 16, 2022) (In re Neo Wireless LLC Patent Litig, 2:22-MD-03034-TGB). |
Neo Wireless, LLC v. Tesla, Inc., Tesla's Amended Answer to Complaint, 2:22-CV-11408-TGB (Dec. 16, 2022) (In re Neo Wireless LLC Patent Litig, 2:22-MD-03034-TGB). |
Neo Wireless, LLC v. Toyota Motor Corporation et al., Defendants' First Amended Answer and Affirmative Defenses to Plaintiff's First Amended Complaint for Patent Infringement, No. 2:22-cv-11406-TGB (Dec. 16, 2022) (In re Neo Wireless LLC Patent Litig, 2:22-MD-03034-TGB). |
U.S. Appl. No. 60/538,210, filed Jan. 21, 2004, Gore et al. |
U.S. Appl. No. 60/532,791, filed Dec. 23, 2003, Nanda et al. |
U.S. Appl. No. 60/441,105, filed Jan. 21, 2003, Ma et al. |
U.S. Appl. No. 60/438,601, filed Jan. 7, 2003, Smee et al. |
U.S. Appl. No. 60/432,440, filed Dec. 10, 2002, Walton et al. |
U.S. Appl. No. 60/429,081, filed Nov. 26, 2002, Kriedte et al. |
U.S. Appl. No. 60/422,368, filed Oct. 29, 2002, Krishnan et al. |
U.S. Appl. No. 60/422,362, filed Oct. 29, 2002, Kadous et al. |
U.S. Appl. No. 60/421,309, filed Oct. 25, 2002, Walton et al. |
U.S. Appl. No. 60/391,624, filed Jun. 27, 2002, Ma et al. |
Alastalo et al., “Performance of Smart Antennas and Pcf,” IEEE 802.11-00/269 (Sep. 2000). |
Alcatel et al., “Proposed WID for Improvement of support of existing Beam-forming techniques,” 3GPP Tsg Ran Meeting #21, RP-030556, Frankfurt, Germany (Sep. 16-19, 2003). |
Anderson, Fixed Broadband Wireless System Design, excerpts, Wiley (2003). |
ANSI/IEEE Std 802.11, 1999 Edition (R2003), Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (Reaffirmed Jun. 12, 2003). |
Bahai et al., Multi-Carrier Communications Theory and Applications of OFDM, excerpts, Springer Science (2004). |
Benyamin-Seeyar et al., “SC-FDE PHY Layer System Proposal for Sub 11 GHz BWA (An OFDM Compatible Solution),” IEEE 802.16.3c-01/32 (Mar. 2001). |
Chheda, “A Comparison Between Synchronous CDMA and Orthogonal Frequency Division Multiplexing (OFDM) for Fixed Broadband Wireless Access,” Master's Thesis, Virginia Polytechnic Institute (Apr. 15, 2002). |
Chouly et al., “Orthogonal Multicarrier Techniques Applied to Direct Sequence Spread Spectrum CDMA Systems,” Proceedings of IEEE Global Telecommunications Conference (1993). |
Davis et al., “Peak-to-Mean Power Control in OFDM, Golay Complementary Sequences, and Reed-Muller Codes,” IEEE Transactions on Information Theory, vol. 45, No. 7, pp. 2397-2417 (Nov. 1999). |
Dell Inc. et al., v. Neo Wireless LLC, Decision Denying Institution of Inter Partes Review, IPR2022-00277, U.S. Pat. No. 10,833,908 (Jun. 21, 2022). |
Dell Inc. et al., v. Neo Wireless LLC, Patent Owner's Preliminary Response, IPR2022-00277, U.S. Pat. No. 10,833,908 (Mar. 23, 2022). |
European Telecommunication Standards Institute, “Broadband Radio Access Networks (Bran); Hiperlan Type 2; System Overview,” ETSI TR 101 683 V1.1.1 (Dec. 2000). |
European Telecommunication Standards Institute, “Broadband Radio Access Networks (Bran); Hiperlan Type 2; Physical (PHY) layer,” ETSI TS 101 475 V1.2.2 (Feb. 2001). |
European Telecommunication Standards Institute, “Broadband Radio Access Networks (Bran); Hiperlan Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions,” ETSI TS 101 761-1 V1.3.1 (Dec. 2001). |
European Telecommunication Standards Institute, “Broadband Radio Access Networks (Bran); Hiperlan Type 2; Data Link Control (DLC) Layer; Part 2: Radio Link Control (RLC) sublayer,” ETSI TS 101 761-2 V1.1.1 (Apr. 2000). |
European Telecommunication Standards Institute, “Digital Cellular Telecommunications System (Phase 2+); Physical Layer on the Radio Path; General Description (3GPP TS 45.001 version 5.7.0 Release 5),” ETSI TS 145 001 V5.7.0 (Nov. 2003). |
European Telecommunication Standards Institute, “Terrestrial Trunked Radio (TETRA); Packet Data Optimized (PDO); Part 2: Air Interface (AI),” ETS 300 393-2 (Apr. 1999). |
Farnham, “An Asynchronous Time Division Multiplexing—Multiple Access Protocol for Indoor Wireless Multi-service Networks,” Proceedings of the ICUPC 97, vol. 2, pp. 918-922 (1997). |
Fazel, “Narrow-Band Interference Rejection in Orthogonal Multi-carrier Spread-Spectrum Communications,” Proceedings of the 3rd International Conference on Universal Personal Communications, pp. 46-40 (1994). |
Fu et al., “Initial Uplink Synchronization and Power Control (Ranging Process) for OFDMA Systems,” Proceedings of the IEEE Globecom, vol. 6, pp. 3999-4003 (2004). |
Gatherer et al., The Application of Programmable DSPs in Mobile Communications, John Wiley & Sons, Ltd. (2002). |
Gibson, The Mobile Communications Handbook, CRC Press LLC, Second ed. (1999). |
Hara et al., Multicarrier Techniques for 4G Mobile Communications, excerpts, Artech House (2003). |
Heiskala et al., OFDM Wireless LANs: A Theoretical and Practical Guide, (2002). |
IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band, IEEE 802.11g-2003 (Jun. 27, 2003). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0131007, submitted as Exhibit F-06 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22- MD-03034-TGB (Nov. 16, 2022). |
IEEE Standard for Local and metropolitan area networks; Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; IEEE Std 802.16-2001 (Apr. 8, 2002). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart to U.S. Pat. No. 2003/0125040, submitted as Exhibit C-06 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to IEEE Std. 802.16: A Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access, submitted as Exhibit B-01 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 5,909,436, submitted as Exhibit B-02 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22- MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to HIPERLAN Type 2 Specification, submitted as Exhibit B-03 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to Johnston, “Peering Into the WiMAX Spec: Part 1,” submitted as Exhibit B-04 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to Kaiser et al., “A Flexible Spread-Spectrum Multi-Carrier Multiple-Access System for Multi-Media Applications,” submitted as Exhibit B-05 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 7,738,437, submitted as Exhibit B-06 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22- MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to US 2005/0157678, submitted as Exhibit B-07 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22- MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to Wahlqvist, “Time Synchronization in the Uplink of an OFDM System,” submitted as Exhibit B-08 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to US 2004/0081131, submitted as Exhibit B-09 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 9,473,269, submitted as Exhibit B-10 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, Llc Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 8,169,944, submitted as Exhibit B-11 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to IEEE Std. 802.16a-2003, submitted as Exhibit B-12 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to US 2003/0076812, submitted as Exhibit B-13 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to KR 2003-058589, submitted as Exhibit B-14 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 7,551,546, submitted as Exhibit B-15 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 8,320,301, submitted as Exhibit B-16 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 202/0172308, submitted as Exhibit F-02 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to U.S. Pat. No. 5,867,478, submitted as Exhibit F-01 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0179627, submitted as Exhibit F-03 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0081123, submitted as Exhibit F-04 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
In Re NEO Wireless, LLC Patent Litigation, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0001429, submitted as Exhibit F-05 to Defendants' Preliminary Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (Nov. 16, 2022). |
Ye, “Comments related to using the TG1 Mac for TG3 purposes,” IEEE 802.16.1c-00/13 (Oct. 30, 2000). |
Zheng et al., “A Novel Uplink Channel Estimation in OFDM-CDMA Systems,” IEEE Transactions on Consumer Electronics, vol. 50, No. 1, pp. 125-129 (Feb. 2004). |
Unified Patents, Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to JP 2003-259414, PATROLL Winning Submission (Jun. 7, 2023). |
Unified Patents, Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to U.S. Pat. No. 7,242,720, PATROLL Winning Submission (Jun. 1, 2023). |
Volkswagen Group of America, Inc. v. Neo Wireless LLC, Decision Denying Institution of Inter Partes Review, U.S. Pat. No. 10,833,908, IPR2023-00086 (Jun. 16, 2023). |
American Honda Motor Company, Inc., v. NEO Wireless LLC, Declaration of Dr. R. Michael Buehrer, Case PR2023-00797 (Mar. 29, 2023). |
American Honda Motor Company, Inc., v. NEO Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,866,908, Case IPR2023-00794 (Mar. 30, 2023). |
American Honda Motor Company, Inc., v. NEO Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,771,302, Case IPR2023-00797 (Mar. 30, 2023). |
Ford Motor Company, v. NEO Wireless LLC, Declaration of Todor Cooklev in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,866,908, Case IPR2023-00765 (Mar. 24, 2023). |
Ford Motor Company, v. NEO Wireless LLC, Declaration of Todor Cooklev in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,965,512, Case IPR2023-00764 (Mar. 24, 2023). |
Ford Motor Company, v. Neo Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,866,908, Case IPR2023-00765 (Mar. 28, 2023). |
General Motors LLC et al. v. NEO Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,965,512, Case IPR 2023-00961 (Jun. 2, 2023). |
In Re NEO Wireless, LLC Patent Litig., Declaration of Dr. Robert Akl, D. Sc., in Support of Defendants' Responsive Claim Construction Brief, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22- MD-03034-TGB (Mar. 15, 2023). |
In Re NEO Wireless, LLC Patent Litig., Declaration of William Alberth in Support of Neo Wireless's Opening Claim Construction Brief, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Feb. 16, 2023). |
In Re NEO Wireless, LLC Patent Litig., Declaration of William Alberth in Support of NEO Wireless's Reply Claim Construction Brief, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Mar. 30, 2023). |
In Re NEO Wireless, LLC Patent Litig., Defendants' Preliminary Non-Infringement Contentions, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (May 31, 2023). |
In Re NEO Wireless, LLC Patent Litig., Defendants' Proposed Interpretations, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Dec. 30, 2022). |
In Re NEO Wireless, LLC Patent Litig., Defendants' Responsive Claim Construction Brief, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Mar. 16, 2023). |
In Re NEO Wireless, LLC Patent Litig., Defendants' Supplemental Invalidity and Unenforceability Contentions, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litig., Joint Claim Construction Statement, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Jan. 18, 2023). |
In Re NEO Wireless, LLC Patent Litig., Neo Wireless, LLC's Answer to Ford Motor Company's Counterclaims, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Jan. 7, 2023). |
In Re NEO Wireless, LLC Patent Litig., Neo Wireless, LLC's Comments on the Defendants' First Technology Tutorial, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Jan. 30, 2023). |
In Re NEO Wireless, LLC Patent Litig., Plaintiff NEO Wireless, LLC's Disclosure of Proposed Interpretations and Evidence of Disputed Claim Terms, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Dec. 30, 2022). |
In Re NEO Wireless, LLC Patent Litig., Plaintiff Neo Wireless, LLC's Opening Claim Construction Brief, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Feb. 16, 2023). |
In Re NEO Wireless, LLC Patent Litig., Plaintiff NEO Wireless, LLC's Reply Claim Construction Brief, U.S. District Court for the Eastern District of Michigan, Southern Division, 2:22-MD-03034-TGB (Mar. 30, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 5,909,436, submitted as Exhibit B-02 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to HIPERLAN Type 2 Specification, submitted as Exhibit B-03 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to Kaiser et al., “A Flexible Spread-Spectrum Multi-Carrier Multiple-Access System for Multi-Media Applications,” submitted as Exhibit B-05 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to US 2004/0081131, submitted as Exhibit B-09 to Defendants' Supplemental Patent Invalidity and Jnenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to IEEE Std. 802.16a-2003, submitted as Exhibit B-12 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to KR 2003-058589, submitted as Exhibit B-14 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 7,551,546, submitted as Exhibit B-15 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,833,908 to U.S. Pat. No. 8,320,301, submitted as Exhibit B-16 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
Kitroser et al., “IEEE 802.16e Mobility System Perspective,” IEEE C802.16e-03/06 (Jan. 10, 2003). |
Leiba et al., “802.16.a Ofdma Phy suitability for mobile applications,” IEEE C802.16sgm-02/23 (Sep. 19, 2002). |
Mercedes-Benz USA, LLC v. NEO Wireless LLC, Decision Granting Institution of Inter Partes Review of U.S. Pat. No. 10,965,512, Case IPR 2023-00079 (May 5, 2023). |
Mercedes-Benz USA, LLC v. NEO Wireless LLC, Declaration of Mr. Bruce McNair in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,965,512, Case IPR 2023-00079 (Oct. 10, 2022). |
Mercedes-Benz USA, LLC v. Neo Wireless LLC, Declaration of William P. Alberth Jr., Case IPR 2023-00079 (Feb. 15, 2023). |
Mercedes-Benz USA, LLC v. Neo Wireless LLC, Patent Owner's Preliminary Response, Case IPR 2023-00079 (Feb. 15, 2023). |
Mercedes-Benz USA, LLC v. NEO Wireless LLC, Petition for Inter Partes Review of U.S. Pat. No. 10,965,512, Case IPR 2023-00079 (Oct. 19, 2022). |
Third Generation Partnership Project 2, “cdma2000 High Rate Packet Data Air Interface Specification,” 3GPP2 C.S0024, Version 4.0 (Oct. 25, 2002). |
Volkswagen Group of America, Inc. v. NEO Wireless LLC, Decision Granting Institution of Inter Partes Review, IPR2022-01539 (May 2, 2023). |
Volkswagen Group of America, Inc. V. NEO Wireless LLC, Declaration of Leonard J. Cimini, Jr, Ph.D., Case IPR2023-00426, U.S. Pat. No. 8,467,366 (Jan. 17, 2023). |
Volkswagen Group of America, Inc. V. NEO Wireless LLC, Declaration of William P. Alberth, Jr., Case PR 2023-00086, U.S. Pat. No. 10,833,908 (Mar. 21, 2023). |
Volkswagen Group of America, Inc. V. NEO Wireless LLC, Patent Owner's Preliminary Response, Case PR 2023-00086, U.S. Pat. No. 10,833,908 (Mar. 21, 2023). |
Volkswagen Group of America, Inc. v. Neo Wireless LLC, Patent Owner's Preliminary Response, PR2022-01539 (Feb. 8, 2023). |
Volkswagen Group of America, Inc., v. NEO Wireless LLC, Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 10,771,302, Case IPR2022-01538 (May 5, 2023). |
Volkswagen Group of America, Inc., v. NEO Wireless LLC, Declaration of William P. Alberth, Jr., Case PR2022-01538 (Feb. 8, 2023). |
Volkswagen Group of America, Inc., v. NEO Wireless LLC, Declaration of William P. Alberth, Jr., Case PR2022-01539 (Feb. 8, 2023). |
Volkswagen Group of America, Inc., v. NEO Wireless LLC, Patent Owner's Preliminary Response, Case PR2022-01538 (Feb. 8, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 202/0172308, submitted as Exhibit F-02 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0179627, submitted as Exhibit F-03 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0081123, submitted as Exhibit F-04 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0001429, submitted as Exhibit F-05 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
In Re NEO Wireless, LLC Patent Litigation, Supplemental Patent Invalidity Claim Chart for U.S. Pat. No. 10,771,302 to US 2004/0131007, submitted as Exhibit F-06 to Defendants' Supplemental Patent Invalidity and Unenforceability Contentions, 2:22-MD-03034-TGB (May 1, 2023). |
American Honda Motor Co., Inc. v. NEO Wireless, LLC, Patent Owner's Preliminary Response, IPR U.S. Pat. No. 10,833,908 (Jul. 13, 2023). |
Ford Motor Company v. NEO Wireless, LLC, Decision Granting Institution of Inter Partes Review, IPR 2023-00764, U.S. Pat. No. 10,965,512 (Jul. 17, 2023). |
Ford Motor Company v. NEO Wireless, LLC, Patent Owner's Preliminary Response, IPR 2023-00764, U.S. Pat. No. 10,965,512 (Jul. 6, 2023). |
Ford Motor Company v. NEO Wireless, LLC, Patent Owner's Preliminary Response, Ipr 2023-00765, U.S. Pat. No. 10,833,908 (Jul. 6, 2023). |
Volkswagen Group of America, Inc., v. NEO Wireless LLC, Petitioner's Request for Rehearing of the Decision Denying Institution of Inter Partes Review, Ipr 2023-00086, U.S, Pat. No. 10,833,908 (Jul. 17, 2023). |
Number | Date | Country | |
---|---|---|---|
20220352922 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
60540586 | Jan 2004 | US | |
60540032 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17092786 | Nov 2020 | US |
Child | 17845702 | US | |
Parent | 16908067 | Jun 2020 | US |
Child | 17092786 | US | |
Parent | 16902740 | Jun 2020 | US |
Child | 16908067 | US | |
Parent | 15953950 | Apr 2018 | US |
Child | 16908067 | Jun 2020 | US |
Parent | 15953950 | Apr 2018 | US |
Child | 16902740 | Jun 2020 | US |
Parent | 14321615 | Jul 2014 | US |
Child | 15953950 | US | |
Parent | 13861942 | Apr 2013 | US |
Child | 14321615 | US | |
Parent | 13347644 | Jan 2012 | US |
Child | 13861942 | US | |
Parent | 12975226 | Dec 2010 | US |
Child | 13347644 | US | |
Parent | 10583229 | US | |
Child | 12975226 | US |