This invention relates generally to warming blankets. More particularly, the invention relates to warming blankets including channeled areas for accepting heat and/or sensor wires. These channeled areas are bounded by welded zones disposed in a pattern across the warming blanket. A method of forming such a warming blanket is also provided.
Warming blankets with channels are well known in the art and are available from a variety of sources. Many of these blankets are formed by weaving two layers of cloth simultaneously, creating a blanket with a pattern of channels for accepting a heat and/or sensor wire. A limitation of the prior process is that interweaving of fabric layers does not allow for the incorporation of additional layers of material such as batting for thermal insulation. Moreover, interweaving of layers to form the channels necessitates the use of woven cloth which limits design options and which may increase cost and weight. Accordingly, the need exists for an improved channeled warming blanket that avoids these limitations.
The present invention provides advantages or alternatives over the prior art by providing a warming blanket shell having multiple layers on each side welded together with ultrasonic seams to create channels through which wires for resistive heating can be placed. The wires are arranged between two opposing non-woven layers, thereby creating a low friction, low stretch channel for the wire.
According to one aspect of the invention a warming blanket shell is provided having two opposing interior layers of non-woven fabric with layers of decorative fabric disposed on each outer surface of these non-woven layers and ultrasonic weld seams joining the non-woven layers together. The ultrasonic weld seams extend in a pattern to define channels to accept heat and/or sensor wires. Optionally, a layer of high loft batting may be disposed between at least one non-woven layer and a decorative fabric outer layer. The warming blanket shell may be produced in roll form for use with automated wiring equipment.
According to another aspect of the invention a method of producing a composite warming blanket shell is provided. The method utilizes a series of rotating anvils that interact with an array of cooperating ultrasonic horns to create a pattern of ultrasonic seams, thereby forming channels which can accept heat and/or sensor wire.
The present invention will now be described by way of example only, with reference to the accompanying drawings which constitute a part of the specification herein and in which:
Exemplary embodiments of the invention will now by described by reference to the drawings wherein like elements are designated by corresponding reference number throughout the various views. In
As shown, the exterior is preferably defined by a first decorative shell fabric layer 14 and a second decorative shell fabric layer 14′. The shell fabric can be a warp knit, circular knit, nap knit micro-denier, woven, non-woven, needle punch construction formed from suitable ultrasonically fusible fibrous materials including polyester, polypropylene or the like. Although the weight can vary over a wide range, the amount of material affects the ultrasonic welding speed and efficiency. The preferable mass per unit area for the decorative shell fabric layer is in the range from about 2.5 oz/yd2 to about 6.0 oz/yd2.
According to one contemplated embodiment, a layer 12 may also be present between one or both decorative shell fabric layers 14 and 14′ and the corresponding inner layers 10 and 10′. In the illustrated embodiment, the layered composite comprises one layer 12 situated between the inner side of the outer shell fabric layer 14 and the outer side of the adjacent inner layer 10. Layer 12 can be a batting layer of relatively high loft material for thermal insulation. In this particular example, the outer shell fabric layer 14 defines the top of the blanket 8 so that the batting traps the heat generated and radiates such heat downwards towards the user. Furthermore, the batting is particularly useful in creating both a three-dimensional structure to the final composite and in masking the tactile perception of the heating wires by the user. The batting is preferably a polyester resin-bond with a loft of between 0.125 inches and 0.50 inches. It should have adequate wash stability, and should not contribute to the overall flammability of the composite.
As previously indicated and according to a contemplated practice, the warming blanket 8 is further defined by a plurality of ultrasonic seams which create welded areas 16 (
By way of example only, and not limitation
The anvils can be computer controlled to create a pre-determined pattern with a repeat length that is programmable into the controller. Thus, conventional warming blanket design which necessitates channel termination prior to reaching the edge of the blanket shell to allow for normal electrical connections is easily achieved. Blankets of any length can be produced, and blankets of different lengths can be produced on the same equipment with only minor changes to the program. In addition, the anvils 26 are attached to a frame 28 (shown in
This method of production allows the blanket composite to be manufactured in roll form, thus avoiding the costly and labor intensive cut and sew steps required with the production of individual blankets. Moreover, automated wiring equipment can only be employed if the composite is in roll form.
As a variation of the described method, it is contemplated that the first and second non-woven layers may be ultrasonically welded to form channels for heat/sensor wires. Subsequently, the first and second outer decorative fabric layers may be attached to the fused non-woven layers by any attachment means available to those in the art including sewn seams, adhesion or the like.
The inventive concepts may be further understood by reference to the following non-limiting example.
A composite is formed with a 4.5 oz/yd2 napped circular knit fabric, a layer of 1.75 oz/yd2 polyester batting (0.25 inch loft), two layers of 1.1 oz/yd2 polyester spun-bond non-woven, and another layer of the 4.5 oz/yd2 napped circular knit polyester. The composite is welded together in a pattern such as that displayed in
This application claims the benefit of and priority from U.S. Provisional patent application Ser. No. 60/643,354, filed on Jan. 12, 2005 the contents of which are hereby incorporated by reference in their entirety as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
60643354 | Jan 2005 | US |