This invention relates generally to warming blankets. More particularly, the invention relates to warming blankets including channeled areas for accepting elongate heating and sensor elements. The heating and sensor elements are discrete from one another such that the sensor elements measure the bulk blanket temperature for regulated feedback control of the heating elements. Methods for forming the warming blanket and arranging the heating and sensor elements are also provided.
Warming blankets with channels are well known in the art and are available from a variety of sources. Many of these blankets are formed by weaving two layers of cloth simultaneously thereby creating a blanket with a pattern of channels, in which are disposed a single unitary elongate element which incorporates both heating and sensing functions. In the construction of warming blankets it is well known to use wrapped wire constructions in which complementary heating and sensing wires are wrapped around a structural core such as an elongate polymeric fiber or the like. In prior known constructions of this type the heating and sensor wires are disposed within a common insulated covering forming a unitary elongate structure which is then threaded in a desired pattern through channels at the interior of the blanket. The wires may be wrapped concentrically with an insulating sleeve between the wires such as disclosed in U.S. Pat. No. 6,153,856 or in a co-axial arrangement such as disclosed in U.S. Pat. No. 5,861,610 to Weiss. It is also known to use double wrapped wires with either a meltdown layer or temperature coefficient material between the two wires such as described in U.S. Pat. No. 4,742,212 to Ishii. In all of these constructions the heating wire and the sensor wire are ultimately disposed within a common elongate structure surrounded by a common outer insulating sleeve.
In operation of the dual wire constructions, an electrical current is passed through the heating and sensor wires causing the heating wire to increase in temperature. The electrical properties of the sensor wire change with temperature in a predetermined manner. Thus, by monitoring the applied current and voltage across the sensor wire, the temperature of the sensor wire can be determined. Based on the temperature of the sensor wire, the current to the heating wire can then be increased or decreased so as to raise or lower the temperature of the blanket as desired. While such dual wire constructions provide a degree of temperature control under steady state conditions, it has been found that it is difficult to hold the blanket at a substantially steady temperature when the room temperature undergoes a dramatic change. The current applicants hypothesize that such difficulty is due to the overpowering influence of the heating element on the sensor wire housed within the common sleeve structure.
It has been proposed to use a single wire wrapped around a textile core and covered by an insulating sleeve to carry out both the heating and sensing functions. For example, U.S. Pat. No. 6,222,162 to Keane discloses a copper cadmium alloy wire wrapped around a textile core and insulated to form an elongate structure. The insulated structure is channeled into a blanket shell and used for both heating and sensing. It has been found that such single wire constructions may give rise to difficulties in temperature regulation leading to the undesirable possibility of overheating.
It has also been proposed to utilize separate heating and sensing elements arranged in different patterns within the blanket. By way of example, such techniques are disclosed in U.S. Pat. No. 6,768,086 to Sullivan et al., the contents of which are incorporated herein by reference. While such practices may provide the benefit of measuring temperature over an extended area, incorporating the advocated multiple wiring patterns may give rise to an undesirable level of complexity. In particular, the use of distinct complex patterns for the heating and sensor wires may make it difficult to insert and maintain the wires in the desired orientation.
The present invention provides advantages and/or alternatives over the prior art by providing a warming blanket incorporating substantially discrete elongate heating and sensing elements arranged in a substantially similar pattern within the blanket interior.
According to one contemplated practice the heating elements and sensing elements each incorporate one or more conductive metallic wires such as insulated copper wire or the like in wrapped relation around a core of polymeric fiber or the like with an insulating jacket surrounding the core and wrapped wire. The discrete elongate heating elements and sensing elements are threaded through common channels at the interior of the blanket in a common pattern such that the heating elements and sensing elements run in substantially parallel relation to one another.
According to another contemplated practice the heating elements and sensing elements each incorporate one or more conductive metallic wires such as insulated copper wire or the like in wrapped relation around a core of polymeric fiber or the like with an insulating jacket surrounding the core and wrapped wire. The discrete elongate heating elements and sensing elements are threaded through parallel channels at the interior of the blanket in a pattern such that channel walls separate the heating elements and sensing elements over at least a portion of the pattern.
The present invention will now be described by way of example only, with reference to the accompanying drawings which constitute a part of the specification herein and in which:
Exemplary embodiments of the invention will now by described by reference to the drawings wherein like elements are designated by corresponding reference number throughout the various views. All referenced patent documents are hereby incorporated by reference as if fully set forth herein. Referring now to the figures, in
One practice for forming a potentially desirable shell structure incorporating ultrasonic seams is illustrated in
In the illustrated practice, a batting layer 18 is delivered to the outside of one or both of the non-woven layers with decorative shell fabrics 20 and 20′ on either side of the entire composite to provide a decorative exterior. It is contemplated that the shell fabrics are preferably warp knit, circular knit, nap knit micro-denier, woven, non-woven or needle punch construction formed from suitable ultrasonically fusible fibrous materials including polyester, polypropylene or the like. Although the weight can vary over a wide range, the amount of material affects the ultrasonic welding speed and efficiency. The preferable mass per unit area for the decorative shell fabric layer is in the range from about 2.5 oz/yd2 to about 6.0 oz/yd2. The batting layer 18 is preferably a relatively high loft material for thermal insulation. In this particular example, the outer shell fabric layer 20 defines the top of the blanket so that the batting traps the heat generated and radiates such heat downwards towards the user. Furthermore, the batting is particularly useful in creating both a three-dimensional structure to the final composite and in masking the tactile perception of the heating wires by the user. The batting is preferably a polyester resin-bond with a loft of between 0.125 inches and 0.50 inches. It should have adequate wash stability, and should not contribute to the overall flammability of the composite.
In the illustrated process the layers proceed through a gap between an array of ultrasonic horns 24 and a series of rotating anvils 26. One anvil wheel is provided for each channel boundary and the anvils can be individually actuated in an up and down motion. When an anvil is in the “up” position, the horns direct the relatively high frequency ultrasonic vibration onto the fabric layers held in close proximity by the supporting rotating anvils causing localized frictional heating along a narrow, relatively continuous band and concomitant welding to form a seam. When the anvil is in the “down” position, the fabric layers pass through with no welding occurring. In order to promote flexibility the anvil wheels preferably apply a brick or dot pattern or the like in a manner as will be well known to those of skill in the art.
In the event that the process of
Of course, it is to be understood that the described practice and resulting structures are exemplary and explanatory only and are susceptible to numerous variants. Thus, while such practices and structures may be desirable, the invention is in no way limited to such particular embodiments. By way of example only, according to one contemplated variation the inner layers 16, 16′ may be ultrasonically welded to form channels for heat/sensor wires. Subsequently, the outer decorative fabric layers 20, 20′ may be attached to the fused non-woven layers by any attachment means available to those in the art.
It is also contemplated that ultrasonic seaming may be eliminated entirely or partially such that at least a portion of the seam structures 14 are formed from techniques such as interweaving, sewn seams, adhesives and the like. Of course, to any extent that ultrasonic welding is eliminated, the need to select materials suitable for such welding techniques is likewise eliminated. It is also contemplated that the inner layers 16, 16′ and/or the batting layer 18 may be eliminated or replaced with other suitable materials if desired.
Regardless of the formation technique or layer pattern utilized, the resulting shell structure 10 is preferably characterized by a predefined pattern of channels through which elongate heating and sensor elements may be threaded. A first exemplary arrangement of channels containing a patterned arrangement of elongate heating and sensor elements is illustrated in
A second exemplary arrangement of channels containing a patterned arrangement of elongate heating and sensor elements is illustrated in
Although they perform different functions, the elongate heating element and the elongate sensing element may be of substantially similar construction. By way of example only, and not limitation, constructions for such elongate elements are illustrated in
In the construction illustrated in
As illustrated in
As previously indicated, in the present invention the elongate heating element 30, 130 and elongate sensing element 32, 132 are substantially discrete from one another rather than being contained within a common elongate structure. However, they are nonetheless arranged in a common pattern in substantially parallel relation to one another within the blanket. The use of such discrete heating and sensing elements arranged in common patterns with one another has been shown to provide a dramatically improved ability to maintain a steady state temperature within the blanket as the room temperature changes.
In order to demonstrate the benefits of the present invention, temperature data was collected on blankets with different wiring arrangements within a temperature controlled room. The test blankets were identical to one another in all respects except for the wiring. The test blankets were set at an initial setting and left at that setting throughout the test. The room temperature was cycled from an initial set point of 75 degrees Fahrenheit. The first hour was at 75 degrees Fahrenheit, the next hour the room temperature was reduced to 65 degrees Fahrenheit, then increased back to 75 degrees Fahrenheit, and finally increased to 85 degrees Fahrenheit. Blanket temperature was measured throughout the test to see how well the blanket sensed the room temperature and then responded. The test samples were: (1) a commercial warming blanket having a heating and sensor wire arranged in a common sleeve running in a sinusoidal pattern, (2) a warming blanket that is believed to be formed according to the teachings in U.S. Pat. No. 6,686,561, (3) a warming blanket incorporating separate discrete elongate heating and sensing elements arranged through common interior channels in a pattern as shown in
Performance was evaluated based on the deviation of the blanket temperature from the initial set point of 75 degrees Fahrenheit. A perfect blanket would have the same temperature regardless of what the room temperature was resulting in a value of zero deviation. A blanket with poor temperature control would substantially follow room temperature and have approximately the same value of deviation as the room.
While the present invention has been illustrated and described in relation to certain potentially preferred embodiments and practices, it is to be understood that the illustrated and described embodiments and practices are illustrative only and that the present invention is in no event to be limited thereto. Rather, it is fully contemplated that modifications and variations to the present invention will no doubt occur to those of skill in the art upon reading the above description and/or through practice of the invention. It is therefore intended that the present invention shall extend to all such modifications and variations as may incorporate the broad aspects of the present invention within the full spirit and scope of the invention.
This application claims the benefit of and priority from U.S. Provisional Application 60/643,354, filed on Jan. 12, 2005 the contents of which are hereby incorporated by reference in their entirety as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4031352 | Oosterberg | Jun 1977 | A |
4058704 | Shimizu | Nov 1977 | A |
4061827 | Gould | Dec 1977 | A |
4198562 | Mills et al. | Apr 1980 | A |
4485296 | Ueda et al. | Nov 1984 | A |
4577094 | Mills | Mar 1986 | A |
4598195 | Matsuo | Jul 1986 | A |
4607154 | Mills | Aug 1986 | A |
4633062 | Nishida et al. | Dec 1986 | A |
4656334 | Endo et al. | Apr 1987 | A |
4677281 | Mills | Jun 1987 | A |
4855572 | Wallgren et al. | Aug 1989 | A |
5422462 | Kishimoto | Jun 1995 | A |
5484983 | Roell | Jan 1996 | A |
5581192 | Shea et al. | Dec 1996 | A |
5776609 | McCullough | Jul 1998 | A |
5804291 | Fraser, Jr. | Sep 1998 | A |
5824996 | Kochman et al. | Oct 1998 | A |
5837164 | Zhao | Nov 1998 | A |
5861610 | Weiss | Jan 1999 | A |
5902518 | Khazai et al. | May 1999 | A |
5916506 | Breznak et al. | Jun 1999 | A |
5952099 | Asher et al. | Sep 1999 | A |
5968854 | Akopian et al. | Oct 1999 | A |
5972499 | Rodriguez et al. | Oct 1999 | A |
6080690 | Lebby et al. | Jun 2000 | A |
6090313 | Zhao | Jul 2000 | A |
6093908 | Haag | Jul 2000 | A |
6160246 | Rock et al. | Dec 2000 | A |
6172344 | Gordon et al. | Jan 2001 | B1 |
6174825 | Dutt | Jan 2001 | B1 |
6215111 | Rock et al. | Apr 2001 | B1 |
6229123 | Kochman et al. | May 2001 | B1 |
6242094 | Breznak et al. | Jun 2001 | B1 |
6288372 | Sandberg et al. | Sep 2001 | B1 |
6310332 | Gerrard | Oct 2001 | B1 |
6381482 | Jayaraman et al. | Apr 2002 | B1 |
6497951 | DeAngelis et al. | Dec 2002 | B1 |
6680117 | DeAngelis et al. | Jan 2004 | B1 |
6713733 | Kochman et al. | Mar 2004 | B1 |
6756572 | Lee | Jun 2004 | B1 |
6768086 | Sullivan et al. | Jul 2004 | B1 |
6770854 | Keane | Aug 2004 | B1 |
6786086 | Hashem | Sep 2004 | B1 |
20010025846 | Kochman et al. | Oct 2001 | A1 |
20020137831 | Horibe et al. | Sep 2002 | A1 |
20030015285 | Iwamoto et al. | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
60643354 | Jan 2005 | US |