The invention relates to lighting in general, and in particular, to linear luminaires.
Linear lighting is a particular type of solid-state lighting that uses light-emitting diodes (LED). In this type of lighting, a long, narrow printed circuit board (PCB) is populated with LED light engines, usually spaced at a regular pitch or spacing. The PCB may be either rigid or flexible, and other circuit components may be included on the PCB, if necessary. Depending on the type of LED light engine or engines that are used, the linear lighting may emit a single color, or may be capable of emitting multiple colors.
In combination with an appropriate power supply or driver, linear lighting is considered to be a luminaire in its own right, and it is also used as a raw material for the production of more complex luminaires, such as light-guide panels. In practice, strips of PCB may be joined together in the manufacturing process to produce linear lighting of essentially any length. Spools of linear lighting 30 meters (98 ft) in length are common, and spools of linear lighting 100 meters (328 ft) in length are commercially available.
One of the most popular ways of using linear lighting is to install it in a channel and cover it with a cover. The channel offers protection, and the cover typically acts as a diffuser, spreading the light and improving the overall appearance of the emitted light. Examples of channels used with linear lighting can be found in U.S. Pat. No. 9,279,544, the contents of which are incorporated by reference in their entirety. The typical channel for linear lighting is a single-piece extrusion, made of metal or plastic, that has a pair of sidewalls and a bottom.
One aspect of the invention relates to a linear luminaire. The linear luminaire includes a channel and a strip of linear lighting. The channel has generally H-shaped cross-section, such that a cross-member divides the channel into upper and lower compartments. The upper compartment is adapted to house the strip of linear lighting. The sidewalls of the upper compartment have structure adapted to engage a cover to cover and close the upper compartment. The cross-member may not be positioned at the vertical center of the channel, which means that the lower compartment may be shallower than the upper compartment. The lower compartment may serve as a raceway for wiring and has its own engaging structure that may, for example, be adapted to engage mounting clips and other such elements. In order to provide the maximum amount of space possible for linear lighting, end caps and other such structures may have complementary engaging structure adapted to engage the engaging structure of the lower compartment.
Another aspect of the invention relates to a cover for diffusing light emitted by linear lighting. The cover comprises an optically-transmissive material with a diffusing additive. In one embodiment, the diffusing additive is distributed uniformly within the optically-transmissive material. In order to provide more diffusion where emitted light intensity is greatest, the cover is thickest where the light intensity is expected to be greatest, and implements a gradient such that it is thinnest where the emitted light intensity is expected to be weakest. In an embodiment where the linear lighting is expected to be centered in the channel, this results in a cover-lens with a plano-convex shape. However, in at least some embodiments, the plano-convex shape of the cover-lens would undesirably cause the emitted light rays to converge. Therefore, the cover-lens may also implement Fresnel-style grooves arranged to cause the emitted light to diverge and spread, counteracting at least some of the effect of the underlying plano-convex shape.
Yet another aspect of the invention relates to methods for assembling linear luminaires, and in particular, for connecting a strip of linear lighting to power. In these methods, a strip of linear lighting is placed on a surface of a channel. Wire leads are routed through openings in the surface of the channel. The openings in the surface of the channel are aligned with connection points, such as solder pads, on the strip of linear lighting. In many cases, the surface of the channel will be a surface of an interior compartment, such as the bottom surface, and the holes in the surface of the channel will open into an adjacent compartment.
Other aspects, features, and advantages of the invention will be set forth in the description that follows.
The invention will be described with respect to the following drawing figures, in which like numerals represent like features throughout the description, and in which:
The channel 11 has a generally H-shaped cross-section, with a cross-member 16 extending generally horizontally between two sidewalls 18, 20. The cross-member 16 and sidewalls 18, 20 define two compartments in the channel 11: an upper compartment 22, in which the linear lighting 12 is installed, and a lower compartment 24. With respect to the coordinate system of
The linear lighting 12 is installed on the bottom 25 of the upper compartment 22. Typically, this is done by using a layer of pressure-sensitive adhesive on the underside of the linear lighting 12 itself, although other types of adhesives, clips, and other means of securement may be used. Much of this description will assume that the linear lighting 12 is flexible, with a PCB made, e.g., of biaxially-oriented polyethylene terephthalate (MYLAR®) or polyimide, to name a few possible materials.
Each compartment 22, 24 has sidewall features that are particularly adapted for the function of the compartment 22, 24. In particular, the upper sidewalls 26, 28 are adapted to engage and secure the cover-lens 14. The lower sidewalls 30, 32 are adapted to receive and engage mounting clips. As will be described below in more detail, the lower compartment 24 may also be used as a raceway for wiring, and the lower sidewalls 30, 32 may be adapted for that function and other functions as well.
Each lower sidewall 36, 38 has an inset rounded groove 40. As those of skill in the art will understand, the exact features of the upper sidewalls 26, 28 and lower sidewalls 30, 32 may vary from embodiment to embodiment, so long as they complement the features of the structures they are intended to engage. That said, the particular features 36, 38, 40 of the channel 11 do have certain advantages. Those advantages can be seen in
In particular, the cover-lens 14 has a top section 42 and a pair of depending legs 44, 46, one on each side. The legs 44, 46 are mirror images of one another, and the outward side 48 of each leg 44, 46 has contours that match the contours of the upper sidewalls 26, 28, particularly the projections 36 of the upper sidewalls 26, 28. When the cover-lens 14 is installed over the channel 11, the legs 44, 46 of the cover-lens 14 deflect inwardly slightly to seat the cover-lens 14.
The projections 36 and complementary shape of the outward side 48 of each leg 44, 46 of the cover-lens 14 are relatively large, using a substantial portion of the vertical height of the upper sidewalls 26, 28. The relatively large size of the complementary engaging features and the relative lack of small or intricate features may improve the manufacturability and fit of the components. The large sizes and areas of the complementary engaging components may also make it less likely that the components will spontaneously disengage. By comparison, the channels of U.S. Pat. No. 9,279,544 and their corresponding covers are relatively fine-featured with short depending legs, which means that manufacturing to the necessary tolerances can be more difficult. Additionally, it may be more difficult to achieve and maintain positive engagement with such small features.
Each endcap 50, 52 has structure that is intended to mount and secure it within the channel 11. Notably, in this embodiment, this structure does not rest within the upper compartment 22. Instead, a pair of projections 56, 58 are positioned on the endcaps 50, 52 to insert into the lower compartment 24, and have features 60 that complement and insert into the rounded grooves 40 in the lower sidewalls 30, 32. The features 60 in this case are roughly hemispherical strips that match the rounded grooves 40. In some cases, the endcaps 50, 52 may rely on a tight fit or an interference fit to stay in place; in other cases, adhesives may be used on the mating surfaces to provide additional securement.
In order to supply power, the strip of linear lighting 12 is connected to a power cable 54. The far end of the power cable 54 would be connected to a power supply, such as a driver, which is not shown in the figures. On the near side of the power cable 54, a strain relief 62, is present. (The strain relief 62 is best seen in the longitudinal cross-sectional view of
As a general matter, the strip of linear lighting 12 may accept low voltage or high voltage power. While the definitions of low voltage and high voltage may differ depending on the authority one consults, for purposes of this description, “low voltage” will refer to voltages under about 50V. If the strip of linear lighting 12 accepts high voltage power, it may have additional structure, such as an encapsulating covering, to provide electrical insulation and isolation.
The power cable 54 that is shown in the figures has two power leads, a positive lead and a minus-return. These are typically connected to the strip of linear lighting 12 by soldering to defined solder pads on the strip of linear lighting 12, although connectors may be used in some situations. As was described above, some LED light engines have multiple types of LEDs, for example, red, green, and blue, or LEDs arranged to emit different color temperatures of white light. LED light engines such as these may require multiple leads. The type of LED light engine and the type of power cable 54 are not critical to the invention. Moreover, while the term “power cable” is used here for ease in description, multi-conductor cables may carry both power and data.
As the description above thus bears out, the lower compartment 24 has several functions. First, as can be seen in several of the figures, U-shaped mounting clips 70 have upwardly-extending sidewalls with projections 72 that are complementary in shape to the rounded grooves 40 of the lower sidewalls 30, 32 and are designed to engage the lower compartment 24 to secure the channel 11 to an exterior surface. As shown, each mounting clip 70 also carries an opening 74 to secure a fastener. The fastener secures the mounting clip 70 to the exterior surface.
Additionally, as can be seen in
In some cases, the power cable 54 may traverse the lower compartment 24 and enter through an opening in the cross-member 16 and the bottom 25 and the channel 11, as shown in
“Bottom entry” of the power cable 54 has certain advantages. For example, the channel 11 can be capped with two plain endcaps 52. In this arrangement, there is no need for an endcap 50 with a strain relief. There is also no need to provide space at the end of the channel 11 for the entering power cable 54.
Channels 10 according to embodiments of the invention may be used with a variety of covers and lenses, ranging from clear and diffused covers with no lensing effects or properties to covers that have both diffusive and lensing effects. Any cover that has legs 44, 46 or other such structure that will snap into the channel 11 can be used. Moreover, while the features of the cover-lens 14 are described here relative to the channel 11, the features described here may be adapted for other types of channels.
The cover-lens 14 may be made of any suitable optical material, including glass or plastic, although plastic may be preferred in many embodiments because of its low cost and durability. Typically, a plastic would be extruded into the shape of the cover-lens 14. The plastic may be acrylic, polycarbonate, or other such plastics. The cover-lens 14 of the illustrated embodiment also has embedded diffusing material. For example, silica, fumed silica, or titanium dioxide microspheres in a base material of acrylic or polycarbonate may be particularly suitable in some embodiments. For purposes of this description, the material of the cover-lens 14 may be assumed to be polycarbonate with titanium dioxide microspheres as diffusing material.
Assuming that the linear lighting 12 is installed with the LED light engines centered in the channel 11 as shown in
The distribution of the emitted light, and thus, the thickness gradient of diffusing material necessary to produce a uniform intensity of light across the width of a cover-lens 14, will differ depending on the nature of the linear lighting 12 and its LED light engines. An LED light engine, as the term is used here, refers to one or more LEDs in a package. The package allows the light engine to be mounted on a PCB by a common technique, such as surface mounting. LED light engines are generally indicated at 80 in the views of
Depending on the nature of the light that is to be emitted, the package may be topped with a phosphor that absorbs the light emitted by the LEDs and re-emits that light in a desirable color or spectrum. In a typical commercial LED light engine intended to emit “white” light, the LEDs in question are blue-emitting LEDs, and the phosphor absorbs blue light and emits a broader spectrum of light that appears to the observer to be white light. The re-emitted light is not usually of a single color; in fact, the typical spectral power distribution of the light spans the visible light spectrum.
Most LED light engines have a natural beam width in the range of about 120°-130°, full-width, half-maximum. That beam width may vary depending on the characteristics of the package, the characteristics of the LEDs in the package, and the characteristics of the phosphor on top of the package, if any. In particular, phosphor typically varies in thickness across its diameter or width.
The resulting convexity of the cover-lens 14 would normally have the effect of converging the emitted light at some focal point in front of the cover-lens 14. However, in this embodiment, that is undesirable; rather than causing the light to converge, the goal is to spread the light evenly. Therefore, the cover-lens 14 uses Fresnel technology superimposed on the basic plano-convex curve in order to cause emitted light to diverge or, at least, to avoid convergence.
As those of skill in the art will understand, a Fresnel lens takes advantage of the fact that in a lens, light refracts only at interfaces between different materials. This means that, for purposes of basic refraction, the thickness of the lens is essentially immaterial. A Fresnel lens is thus typically thinner than a conventional lens, as it reduces the lens surface to a series of discontinuous grooves, each groove having approximately the same outer curvature as an equivalent point on a comparable lens.
In the illustrated embodiment, the cover-lens 14 is symmetrical about its centerline. In the center area, indicated by “A” in
As with the channel 11, the channel 102 has an H-shaped cross-section, with a cross-member 110 extending horizontally between two vertical sidewalls 112, 114 to divide the channel 102 into an upper compartment 116 and a lower compartment 118. In this embodiment, the upper compartment 116 is taller than the upper compartment 22 of the channel 11. However, the two compartments 116, 118 of this embodiment do not have equal sizes; that is, the cross-member 110 is not positioned at the horizontal centerline of the sidewalls 112, 114.
Each compartment 116, 118 has additional features. As can be seen in
The cover 106 for the channel 102 has similar structure to that described above, and is retained in the channel 102 by two depending legs 124, each with relatively large features. Upper portions 126 of the sidewalls 112, 114 have complementary features to engage the legs 124. In this embodiment, the legs 124 of the cover 106 do not extend down to the floor of the upper compartment 116. Instead, a pair of inwardly-extending flanges or ledges 127 positioned on each side of the channel 102 extending inwardly from respective sidewalls 112, 114 at a position a little less than halfway up the sidewalls 112, 114 of the upper compartment 116.
The cover 106 has the features described above with respect to the cover-lens 14, including diffusing material and a thickness gradient that places the thickest part of the gradient (and thus, the most diffusing material) on center, where the LED light engines 80 are. Relative to the cover-lens 14 described above, the cover 106 may have a gradient with different thicknesses to compensate for the greater distance between the linear lighting 104 and the cover 106. Additionally, as can be seen in
The arrangement of the lower compartment 118 is also similar to that described above. The lower compartment has a pair of aligned semi-circular grooves 130, one on each sidewall 112, 114, that are provided to secure a mounting clip 132 that has complementary rounded ridges 134 to engage the grooves 130. There is one particular difference, though: in the lower compartment, the lowermost portions of the sidewalls 112, 114 have inner sidewalls with an outward cant to them. These outwardly-canted sections 136 make the opening of the lower compartment 118 wider and gradually narrow (i.e., the sidewalls 112, 114 gradually thicken) away from the opening until the grooves 130 are reached. The gradual, sloped profile of the outwardly-canted sections 136 may make it easier to seat mounting clips 132 and other such elements. Among other things, the outwardly-canted sections 136 serve as camming surfaces, gradually pushing the ridges 134 inward as the clip 132 approaches the grooves 130.
In the description above, the concept of the lower compartment 118 as a raceway for wiring was described, as was the concept of bringing a power cable through the cross-member 110, rather than through an endcap 108. The luminaire 100 and its channel 102 provide additional structures and elements to facilitate this.
The linear lighting 104 is arranged, as is customary, in repeating blocks. Each repeating block includes a complete lighting circuit that will light if connected to power. All of the repeating blocks are connected electrically in parallel with one another, although they are physically in series along the length of the PCB 154. The set of solder pads 152 typically coincide with the cut points of the PCB 154—i.e., the places where one repeating block may be separated from another. Because there may be any number of repeating blocks along the length of the linear lighting 104, there are typically any number of sets of solder pads 152. In this embodiment, the PCB 154 is assumed to be thin and flexible.
While the term “solder pads” is used for convenience, it should be recognized that the solder pads 152 are electrical connection points that can be connected in any number of ways. In this case, a small hole 153 is punched or drilled in each solder pad 152, and wires 156 from the cable 150 are through-hole mounted in the holes 153 and soldered in place to make physical and electrical contact with the set of solder pads 152. In order to allow the wires 156 to reach the set of solder pads 152, corresponding holes 158 or a slot are punched or drilled in the cross-member 110 that separates the upper compartment 116 from the lower compartment 118. This is done for each wire 156 in the cable 150. Flexible PCB 156 is not typically adapted for through-hole mounting; rather, through-hole mounting is usually used only with rigid PCB. However, because the flexible PCB 156 is secured to and supported by the cross-member 110, through-hole mounting in the holes 153 is possible.
For example, in a practical embodiment, 1 mm holes 153 are punched in each solder pad 152 of a repeating block that is not the first repeating block of the linear lighting 104. Tinned wires 156 are passed through the respective holes 153 and soldered in place. A hole is then drilled or routed in the cross-member 110 under the location of the solder pads 152.
As a last step in the connecting process, the cable 150 itself is clipped into the lower compartment 118 and is supported by a strain relief clip 160 that maintains the position of the cable 150 and provides strain relief.
Between the four arms 162, a set of channel walls 166, 168 arise. The channel walls 166, 168 lie inward from the four arms 162 and are off-center. That is, the center of the channel defined by the channel walls 166, 168 is not aligned with the longitudinal centerline of the strain relief clip 160; rather, it is off to one side. The channel walls 166, 168 are parallel to each other.
As can be appreciated in
The channel walls 166, 168 define a relatively narrow channel between them that is sized for the cable 150. In this embodiment, one channel wall 166 has two projections 170, while the other channel wall 168 has a single projection 170 spaced between the two projections 170 of the other channel wall 166. The cable 150 is thus held between the three projections 170. In the illustrated embodiment, the strain relief clip 160 is made of sheet metal that is folded, stamped, and otherwise modified to have the features described. In other embodiments, the strain relief clip 160 could be molded or otherwise manufactured.
Aspects of the invention also relate to methods for installing linear lighting 104 in a channel 102 and connecting the linear lighting 104 to power. As was described briefly above, those methods may involve placing a strip of linear lighting 104 in the channel 102, typically by using pressure-sensitive adhesive on the underside of the linear lighting 104. Alignment features, like the ridges 120 in the channel 102, may be used to align the linear lighting 104 over a distance as it is applied to the channel 102. Once the linear lighting 104 is installed, the location of a set of solder pads 152 is identified, and holes are formed through the cross-member 110 and the PCB 154 at the location of the solder pads 152. The wires 156 from the cable 150 are then routed through the solder pads 152 and through-hole mounting is completed by soldering the wires 156 in place. As a final step, the cable 150 is then secured within the strain relief clip 160.
In some cases, holes may be punched in the solder pads 152 before the linear lighting 104 is laid down in the channel 102. Additionally, holes may be pre-formed or pre-drilled in specific locations in the cross-member 110 along the length of the channel 102. However, it may be easier and more accurate simply to drill holes where needed once the linear lighting 104 is laid.
It should be understood that the methods disclosed here can be used in other types of channels, including U-shaped channels. Additionally, while this description focuses on placing a strip of linear lighting 104 on the bottom surface of a compartment, in other embodiments, the strip of linear lighting 104 may be placed on any surface and the wires 156 routed from any sort of adjacent compartment.
While the invention has been described with respect to certain embodiments, the description is intended to be exemplary, rather than limiting. Modifications and changes may be made within the scope of the invention, which is defined by the appended claims.
This application is a continuation of U.S. application Ser. No. 17/130,935, filed Dec. 22, 2020, which claims priority to, and the benefit of, U.S. Provisional Patent Application No. 63/037,885, filed Jun. 11, 2020. The contents of those applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
9279544 | Dankelmann et al. | Mar 2016 | B1 |
9565769 | Dankelmann et al. | Feb 2017 | B2 |
10557600 | South | Feb 2020 | B1 |
10724720 | Heredia | Jul 2020 | B1 |
10788170 | Bryan | Sep 2020 | B1 |
20030223235 | Mohacsi et al. | Dec 2003 | A1 |
20110305024 | Chang | Dec 2011 | A1 |
20120014108 | Greenfield et al. | Jan 2012 | A1 |
20160061387 | Liang et al. | Mar 2016 | A1 |
20160169503 | Chen et al. | Jun 2016 | A1 |
20210116120 | Tan et al. | Apr 2021 | A1 |
20210215323 | Flynn et al. | Jul 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
63037885 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17130935 | Dec 2020 | US |
Child | 17201591 | US |