Various embodiments of the invention relates to securing impedance spectrographic characterizations of a material under test, and the design of apparatuses having various conducting electrode configurations for use with electromagnetic impedance spectrographic measurement devices to secure the data for the application of the disclosed method, along with those particular apparatuses. The design of the conducting electrode configurations is applicable to any material that can be penetrated by the electrodes. While the primary example of the disclosure is wet concrete, the approach is also applicable to other materials such as tobacco, grains, wood chips, and saw dust.
The majority of transportation infrastructure, e.g., in the United States, including bridges, pavements and runways, tunnels, ports and harbor structures, and parking structures, has ordinary Portland cement (OPC) concrete as its major structural component. High-rise buildings, industrial structures, energy structures (e.g., nuclear power plants, dams, and wind mill foundations) also use significant amounts of concrete, which is the second most used material by humans in terms of volume, after water. The advances in materials science and the technology of OPC concrete over the past few years have brought in revolutionary changes in design and construction.
The advent of high-performance and self-consolidating concretes containing several mineral/chemical admixtures has improved the fresh and hardened concrete properties. However, several areas of concern still exist, especially with respect to adequate characterization of the material (e.g., concrete) for quality control/quality assurance and acceptance criteria when delivered. In addition, novel concretes, such as pervious and roller-compacted concretes are increasingly being used for specific applications. Currently, there exist no quantitative field measurement method to characterize the material prior to its placement to certify the acceptance criteria specified by the designer and its performance prediction. Quality control of concrete in the fresh state is still being ascertained using the slump test (according to American Society for Testing and Materials (ASTM) C143), which is a subjective qualitative test and does not provide a reliable quantification of the state of the material.
Aspects of the invention include methods, apparatus, and systems to secure electromagnetic impedance characteristics of selected volumes of materials under test (MUT).
Embodiments include systems, apparatuses and related methods. In various embodiments, the systems can include an apparatus having various electrode sensor arrays configured to communicate with various materials under test (MUT). The system(s) can include: a signal generator operably connected with the array of electrodes, the signal generator for transmitting oscillating electromagnetic field signals through the array of electrodes at a range of selected frequencies; a signal detector operably connected to the array of electrodes, the array of electrodes in communication with the material under test; a signal comparator operably connected to the signal generator and the signal detector; and at least one computing device operably connected with the signal comparator. The at least one computing device is configured to determine the electromagnetic impedance characteristics of selected volumes of the MUT. The at least one computing device may also be configured to correlate the electromagnetic impedance characteristics of selected volumes of the MUT to physical properties of those volumes. The at least one computing device may also provide output to a user in various formats, and/or transfer data files to another computer by various means.
The methods, systems and various embodiments of the electrode sensor arrays presented in this disclosure provide improvements over conventional approaches by securing electromagnetic impedance spectrographic characteristic of the MUT which may then correlate the impedance characteristics to physical properties of the MUT.
According to various embodiments shown and described herein, electromagnetic impedance spectrographic characteristics of the MUT can be obtained by forming electrically non-conductive or electrically conductive communication (contact) between an electrode sensor array placed proximate the MUT.
As noted herein, some embodiments described herein can include systems, apparatuses and/or methods configured to determine characteristics of concrete, e.g., fresh concrete. However, it is understood that various embodiments are configured to determine characteristics of a variety of distinct materials other than concrete. As noted above, OPC concrete is a prevalent material in the construction of numerous types of structures. Various embodiments described herein can overcome the current lack of quantitative methods for the adequate characterization of material (e.g., concrete) for quality control/quality assurance, and acceptance criteria. In addition, the approaches described herein also apply to other concretes such as pervious (porous) and/or compacted concretes, which are increasingly being used for specific applications, to assure that the material meets the acceptance criteria specified by the designer and its performance prediction. Further, the methods described may be applied to other materials into which electrodes may be inserted, either destructively or non-destructively, such as grains, wood chips, tobacco bales, slurries and other such materials.
The ultimate condition of the concrete can be highly dependent on its state at the time of delivery as reflected by the amount of free water and the degree of hydration. Accurate and quantitative descriptions of these concrete properties in the fresh state can be critical to strategize decisions related to opening a structure to service, condition assessment, prescribing the extent of repair or the repair schedule, and predicting structural service-life. The ability to provide these and other information of concrete and other MUTs is one objective of the various embodiments presented herein.
A first aspect includes a method of characterizing select volumes of a material under test (MUT) using electromagnetic impedance spectroscopy. The method can include: measuring the complex impedance of volumes of the MUT with an electrode array in electrically conducting or non-conducting communication with the MUT; and applying correlation algorithms to relate the measured complex impedance of one of the volumes of the MUT to physical properties of interest in the MUT. In the case of fresh concrete, the physical properties of interest can include the amount of free water and/or the amount of water that has been hydrated, which is the chemical reaction where the free water combines with the anhydrous cement. For special purposed concretes, such as pervious concrete, the degree of porosity may also be characterized.
A second aspect includes a system including: a set of electrodes for communicating with a subsurface below a surface of a MUT; a signal generator operably connected with the set of electrodes; and at least one computing device operably connected with the signal generator and the set of electrodes, the at least one computing device configured to: instruct the signal generator to transmit electromagnetic signals over a range of frequencies from the set of electrodes to the subsurface; obtain a set of return electromagnetic signals from the set of electrodes after the transmitting of the electromagnetic signals; and determine a characteristic of at least a portion of the subsurface of the MUT based upon the set of return electromagnetic signals (e.g., combining the set of return electromagnetic signals).
A third aspect includes a method of characterizing select volumes within the subsurface of an MUT using a plurality of electrode pairs, the method including: instructing a signal generator to transmit electromagnetic signals over a range of frequencies from the plurality of electrode pairs through the subsurface of the MUT; obtaining a set of return signals from the plurality of electrode pairs after the transmitting of the electromagnetic signals; and determining a characteristic of the subsurface of the MUT based upon the set of return signals (e.g., combining the set of return signals).
A fourth aspect includes a computer program product having program code stored on a computer readable storage medium, which when executed by at least one computing device coupled to a signal generator and a set of electrodes, causes the at least one computing device to execute a method of characterizing a select volume of a MUT by performing actions including: instructing the signal generator to transmit electromagnetic signals over a range of frequencies from the set of electrodes through the select volume of the MUT; obtaining a set of return signals from the set of electrodes after the transmitting of the electromagnetic signals; and determining a characteristic of a select volume of the MUT based upon the return signals (e.g., combining the set of return signals).
A fifth aspect includes a method of characterizing select volumes of a material under test (MUT) using at least one electrode pair, the method including: inserting the at least one electrode pair through a surface of the MUT to reach a subsurface volume of the MUT; instructing a signal generator to transmit a set of spectrographic signals from a transmitting electrode in the at least one electrode pair, through the subsurface volume of the MUT; obtaining a return set of spectrographic signals from the at least one electrode pair after the transmitting of the set of spectrographic signals; and determining, from the return spectrographic signal, a physical characteristic of the subsurface volume of the MUT.
The following description expands on and improves the methodology disclosed in conventional approaches to convert the measured impedance in volumes of a material under test (MUT) into physical properties of interest. According to various embodiments, a MUT can include any material capable of being characterized via one or more approaches shown and/or described herein. In various embodiments, a MUT includes any material into which the electrode array (e.g., one or more electrodes) may be inserted either destructively or non-destructively. One aspect of the disclosure focuses on material(s) into which the electrode array may penetrate into the MUT in a non-destructive manner. These materials can include powders, liquids and slurries, e.g., concrete. In various embodiments, an MUT may include an organic material such as a soil, or a biological material such as fluids, etc. An MUT can include synthetic, composite and/or other blended/modified materials. An MUT can also include elemental materials, as well as materials including impurities. It is understood that the teachings described according to the various embodiments herein can be applied to any MUT described herein, as well as other materials that can be characterized according to the approaches of the various embodiments.
As noted herein, various embodiments are directed to methods of quantitative characterization of concrete properties in the fresh state and other materials into which the electrodes may be inserted.
The issue of providing a quantitative means for testing the quality of concrete as it is delivered to a construction site may be important because of the extensive roll concrete plays in all types of infrastructure. The current method of testing for the strength of concrete is based upon ASTM Standards C31 and C39. Typically, out of five truck loads averaging 10 cubic yards of concrete (a total of 1,350 cubic feet), five samples in 6-inch by 12-inch cylinders (a total of 0.65 cubic feet), as shown in
The objective of various methods presented herein is to provide a means to quantitatively define the quality of each delivery of concrete as it is delivered. These methods are also applicable to other materials into which the electrodes may be inserted, either destructively or non-destructively.
The use of electromagnetic tomographic and spectrographic measurement devices have been identified in US Patent Application Publication 2013/0307564 and U.S. Provisional Patent Application No. 61/703,488 (each of which is hereby incorporated by reference in its entirety) to locate specified volumes within a material under test and to characterize that volume based upon its electromagnetic characteristics. However, once the basic approaches are disclosed, other applications may be identified and implemented based primarily on changes in the design of the electrode array combined with the previously disclosed art. The ability to change the application or improve on previously disclosed applications also provides the ability to secure data such that the electromagnetic characteristics of specific computational volumes may be readily determined from the electromagnetic properties of measured volumes.
An apparatus including of a sensor array having an electrode allows for securing of data for the computation of electromagnetic characteristic of a volume within the MUT which may then be related to some physical parameter of the MUT. This has been presented in conventional approaches. However, specific to various embodiments described herein,
In order to apply the method to secure the impedance data of a measured volume, the inventors have implemented various designs and measuring strategies to obtain accurate data and secure that data in an efficient and timely manner. The methods, systems and apparatuses used by the inventors are the subject of the disclosure herein.
In the following description, reference is made to the accompanying drawings that form a part thereof, and in which is shown by way of illustration specific exemplary embodiments in which the present teachings may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present teachings and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present teachings. The following description is, therefore, merely exemplary.
Illustrations with respect to one or more implementations, alterations and/or modifications can be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” The term “at least one of” is used to mean one or more of the listed items can be selected.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of embodiments are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as “less than 10” can assume negative values, e.g., −1, −2, −3, −10, −20, −30, etc.
Prior art exists that applies electromagnetic impedance to characterize the properties of various materials using electrodes placed on the surface of an MUT. U.S. Pat. Nos. 5,900,736; 6,400,161; 6,414,497; and 6,677,763 (each of which is hereby incorporated by reference in its entirety) present a two-electrode sensor array as a means to evaluate the density of asphalt using electromagnetic impedance characteristics of the asphalt. These conventional approaches do not use any spectrographic or tomographic approaches, but illustrate two-electrode geometries for use with electromagnetic impedance measuring devices. U.S. Pat. No. 7,219,021 (hereby incorporated by reference in its entirety) presents the use of electromagnetic impedance spectroscopy to evaluate the density and moisture of soils with an electrode geometry similar to that in U.S. Pat. Nos. 5,900,736 and 6,414,497. These electrode arrays are in non-conductive communication with the MUT. US Patent Publication 2013/0307564 and U.S. Provisional Patent Application No. 61/703,488 (each of which is hereby incorporated by reference in its entirety) present two different methods of evaluating a MUT with impedance spectroscopy and impedance tomography with linear electrode arrays in conductive or non-conductive communication with the MUT. U.S. Provisional Patent Application No. 61/906,664 (which is hereby incorporated by reference in its entirety), presents alternate configurations for obtaining electromagnetic tomographic and spectrographic impedance measurements from the surface of the MUT, and converting those measurements into physical parameters.
However, these conventional approaches require that surface of the MUT is solid and dry enough to support the electrode array, or that the electrode array may be positioned at a controlled height above the surface of the MUT. One issue with materials that are wet, such as wet concrete or wet soils, is that anything in direct contact with the surface can result in water being wicked out of the material to form a layer of free water at the surface. Regardless, if the electrode array is in non-conducting or conducting contact, a layer of free water between the electrode array and the MUT could short out the electromagnetic wave field, reducing the chance of obtaining meaningful information about the MUT.
The method and the various embodiments of the electrode sensor arrays presented according to the disclosure provide various improvements over the prior art, particularly where the MUT is not a solid and/or dry material, or located in a position in which the spacing between the electrode array and the MUT may not be controlled. The current disclosure presents methods, systems and computer programs to secure electromagnetic impedance spectrographic characteristics of selected volumes of the MUT, which may then correlate the impedance characteristics to physical properties of the selected volumes of the MUT.
As described in U.S. Provisional Patent Application No. 61/703,488, a schematic depiction of an impedance measuring system is shown in
In this example shown in
In this example of the prior art, the objective is to characterize the different volumes using a combination of electromagnetic impedance tomography and spectroscopy from the surface of the MUT 150. In contrast, as described herein, various embodiments herein use only electromagnetic impedance spectroscopy, with electrodes in electrical or non-electrical contact with the MUT 150, and located below the surface of the MUT 150.
According to various embodiments, electrodes are inserted into the MUT 150 in order to determine characteristics of that MUT 150. This insertion of the electrodes may result in destructive penetration into the MUT 150 but, in the case of wet or fresh concrete and similar materials, there is nominal permanent deformation of the MUT 150 at best. Referring to
In the discussion of the measurements and interpreting aspects of the complex impedance, it may be beneficial to define terms that may be calculated from the output of an electromagnetic measurement device which are the magnitude of the power difference between the transmitted signal and the signal that is transmitted through the MUT, m, and the phase angle, φ, shift between the transmitted signal and the signal transmitted through the MUT. Impedance (Z) is represented mathematically as a complex relation consisting of a real part, resistance, and an imaginary part, reactance:
Z=R+iX;
Z=the complex value of Impedance;
R=m*cos φ;the Resistance;
X=m*sin φ;the Reactance;
Resistance, R, is a material's opposition to the flow of electric current;
Reactance, X, is a material's opposition to alternating current due to capacitance (capacitive reactance) and/or inductance (inductive reactance);
Admittance (Y) is a complex quantity which is the inverse of Impedance, and results in the definition of the terms of Conductance and Susceptance:
Y=1/Z=G+iB;
Susceptance (B) is a complementary representation of the reactance in the term admittance and is defined mathematically as:
B=−X/(R2+X2);
The Susceptance may be computed from the measured properties as follows:
B=the Susceptance=−sin φ/m;
The Conductance (G) may be computed from the measured properties as follows:
G=the Conductance=cos φ/m.
In the description of the various embodiments, the value of the impedance, Z, will be used in the explanations pertaining to the measurements made in an MUT (e.g., MUT 150) and the computation of impedance and MUT physical properties. However, a value of the resistance, reactance, admittance, conductance, or susceptance may replace impedance in any of the examples below.
In various embodiments, the electrode array 200 shown in
As noted herein with respect to various embodiments, the electrodes may be positioned either in electrical conducting contact or in electrical non-conducting contact with the MUT 150. In various embodiments, the segmented electrodes 303 illustrated in
It is also noted that the electrodes 203, 303 in various embodiments must not have any sharp points at their active tips (e.g., for entry into the MUT 150). Whether the end of the electrodes 203, 303 are transmitting, as in
An alternative embodiment could include more than two electrode probes. Shown in the top-down schematic view in
Referring back to
The cross-section shapes of the electrodes used in the illustrations in
As described herein, various aspects can include computer implemented methods, systems and computer program products for performing a series of functions. In some cases, as shown in
As used herein, a “voxel” is fraction of a three-dimensional space, that is, a volumetric pixel or volume element that represents a value on a regular grid in three-dimensional space. In some cases, a voxel is known as a three-dimensional equivalent of a pixel (two-dimensional element). Various approaches described allow for determining a physical property of a sub-voxel or a number of sub-voxels of the MUT. In various embodiments, a number of measurements of the physical property(ies) of interest are measured by conventional means and correlated with the measured variations of the measured complex impedance using the arrays/systems/approaches described herein. In various embodiments, the number of measurements can be sufficiently large such that the resulting correlation is statistically significant. The measurements may also be made over a range of frequencies. Further embodiments include a method of developing an algorithm to correlate the physical property to the measured impedance, which may use any number of well known correlation methods such as analysis of variations (ANOVA), neural networks, and multiple regressions. A determination as to which process, impedance characteristic and frequency may ensure that the best fit may be made by selection of the one that provides the most statistically significant results.
Based upon, for example, a known strength and frequency of the transmitted spectrographic signal(s), a configuration of transmitting/receiving electrodes, a strength/frequency of the return spectrographic signal(s), as well as a type of the MUT 150 (e.g., a general composition, known material properties, and/or a depth of penetration), various embodiments include determining characteristics (e.g., density, composition/sub-composition, etc.) of a portion (e.g., volume, sub-volume) of the MUT 150.
For example, referring back to the system 100 of
Process P100: securing instructions as to the number of selected volumes and electrode pairs from which data are to be obtained, the frequency ranges to be covered, and characteristics of the MUT 150 to be determined and the processing algorithm for the MUT 150, based upon a type of the MUT 150.
P101: instructing a signal generator 405 (e.g., substantially similar to DDS 105) to transmit spectrographic signals over the selected frequency range to the electrode array 403 (e.g., electrodes 203 or electrodes 303) and through the MUT 150;
Process P102: obtaining the return spectrographic signal from the electrode array 403 (e.g., first electrode in either pair 203 or 303);
Process P103: checking to determine if the electrode sampling is complete, and if not, repeating P101 and P102 for any remaining electrode pairs (e.g., pairs E2/E4 shown in
Process P104: applying the results of the spectrographic signals from each electrode pair(s) to determine a physical characteristic(s) of the selected volume(s) of the MUT 150.
It is understood that process P104 may be performed after P102, in the case that multiple electrode pairs (e.g., E1/E3 and E2/E4) have been sampled. In various embodiments, for example, as shown in
Returning to
The computer system 402 is shown including the computing device 407, which can include a processing component 404 (e.g., one or more processors), a storage component 406 (e.g., a storage hierarchy), an input/output (I/O) component 408 (e.g., one or more I/O interfaces and/or devices), and a communications pathway 410. In general, the processing component 404 executes program code, such as the MUT characterization system 418, which is at least partially fixed in the storage component 406. While executing program code, the processing component 404 can process data, which can result in reading and/or writing transformed data from/to the storage component 406 and/or the I/O component 408 for further processing. The pathway 410 provides a communications link between each of the components in the computer system 402. The I/O component 408 can comprise one or more human I/O devices, which enable a user (e.g., a human and/or computerized user) 412 to interact with the computer system 402 and/or one or more communications devices to enable the system user 412 to communicate with the computer system 402 using any type of communications link. To this extent, the MUT characterization system 418 can manage a set of interfaces (e.g., graphical user interface(s), application program interface, etc.) that enable human and/or system users 412 to interact with the MUT characterization system 418. Further, the MUT characterization system 418 can manage (e.g., store, retrieve, create, manipulate, organize, present, etc.) data, such as measured sensor data 460 and/or computed characterization data 462 using any solution. It is understood that the sensor data 460 can include data obtained by the electrode array (e.g., pair(s)) 403 about the MUT 150. Computed characterization data 462 can include one or more physical characteristic of the MUT 150. The MUT characterization system 418 can additionally communicate with signal generator/analyzer 403, user 412 and/or display 409, e.g., via wireless and/or hardwired means.
In any event, the computer system 402 can comprise one or more general purpose computing articles of manufacture (e.g., computing devices) capable of executing program code, such as the MUT characterization system 418, installed thereon. As used herein, it is understood that “program code” means any collection of instructions, in any language, code or notation, that cause a computing device having an information processing capability to perform a particular function either directly or after any combination of the following: (a) conversion to another language, code or notation; (b) reproduction in a different material form; and/or (c) decompression. To this extent, the MUT characterization system 418 can be embodied as any combination of system software and/or application software. It is further understood that the MUT characterization system 418 can be implemented in a cloud-based computing environment, where one or more processes are performed at distinct computing devices (e.g., a plurality of computing devices 407), where one or more of those distinct computing devices may contain only some of the components shown and described with respect to the computing device 407 of
Further, the MUT characterization system 418 can be implemented using a set of modules 432. In this case, a module 432 can enable the computer system 402 to perform a set of tasks used by the MUT characterization system 418, and can be separately developed and/or implemented apart from other portions of the MUT characterization system 418. As used herein, the term “component” means any configuration of hardware, with or without software, which implements the functionality described in conjunction therewith using any solution, while the term “module” means program code that enables the computer system 402 to implement the functionality described in conjunction therewith using any solution. When fixed in a storage component 406 of a computer system 402 that includes a processing component 404, a module is a substantial portion of a component that implements the functionality. Regardless, it is understood that two or more components, modules, and/or systems may share some/all of their respective hardware and/or software. Further, it is understood that some of the functionality discussed herein may not be implemented or additional functionality may be included as part of the computer system 402.
When the computer system 402 comprises multiple computing devices, each computing device may have only a portion of MUT characterization system 418 fixed thereon (e.g., one or more modules 432). However, it is understood that the computer system 402 and MUT characterization system 418 are only representative of various possible equivalent computer systems that may perform a process described herein. To this extent, in other embodiments, the functionality provided by the computer system 402 and MUT characterization system 418 can be at least partially implemented by one or more computing devices that include any combination of general and/or specific purpose hardware with or without program code. In each embodiment, the hardware and program code, if included, can be created using standard engineering and programming techniques, respectively.
Regardless, when the computer system 402 includes multiple computing devices, the computing devices can communicate over any type of communications link. Further, while performing a process described herein, the computer system 402 can communicate with one or more other computer systems using any type of communications link. In either case, the communications link can comprise any combination of various types of wired and/or wireless links; comprise any combination of one or more types of networks; and/or utilize any combination of various types of transmission techniques and protocols.
The computer system 402 can obtain or provide data, such as sensor data 460 and/or computed physical characterization data 462 using any solution. The computer system 402 can generate sensor data 460 and/or computed characterization data 462, from one or more data stores, receive sensor data 260 and/or computed characterization data 462, from another system such as the electrode array 403, signal generator/analyzer 405, user 412 and/or display 409, send sensor data 460 and/or computed characterization data 462 to another system, etc.
While shown and described herein as a method and system for characterizing an MUT, it is understood that aspects of the invention further provide various alternative embodiments. For example, in one embodiment, the invention provides a computer program fixed in at least one computer-readable medium, which when executed, enables a computer system to detect and characterize at least a portion of an MUT. To this extent, the computer-readable medium includes program code, such as the MUT characterization system 418 (
In another embodiment, the invention provides a method of providing a copy of program code, such as the MUT characterization system 418 (
In still another embodiment, the invention provides a method of generating a system for characterizing an MUT. In this case, a computer system, such as the computer system 402 (
In any case, the technical effect of the invention, including, e.g., the MUT characterization system 418, is to control operation of an electrode array 403, signal generator/analyzer 405, user 412 and/or display 409 to characterize at least a portion of an MUT 150 in one of the various manners described and illustrated herein.
According to various embodiments described herein, additional methods, systems and computer program products are disclosed to characterize one or more select volumes of a MUT. For example, one method (with reference to
A) inserting the at least one electrode pair 403 (203, 303) through a surface of the MUT 150 to reach a subsurface volume of the MUT (e.g., 304A, 304B,
B) instructing a signal generator 405 to transmit a set of spectrographic signals from a transmitting electrode 203, 303 in the at least one electrode pair, through the subsurface volume of the MUT 150;
C) obtaining a return set of spectrographic signals from the at least one electrode pair 403 (200, 303) after the transmitting of the set of spectrographic signals; and
D) determining, from the return spectrographic signal, a physical characteristic of the subsurface volume of the MUT (e.g., 304A, 304B,
In various embodiments, the return spectrographic signal includes complex impedance data about the subsurface volume (e.g., 304A, 304B,
In various embodiments, in process (C), the obtaining of the return set of spectrographic signals includes receiving, at a receiving electrode 203, 303 in the at least one electrode pair, the set of spectrographic signals from the transmitting electrode 203, 303 after passing through the subsurface volume of the MUT (e.g., 304A, 304B,
In various embodiments, as described herein, the at least one electrode pair includes a plurality of electrode pairs.
According to various embodiments, an additional method of characterizing at least one subsurface volume of a material under test (MUT) using electromagnetic impedance spectroscopy is disclosed. This method can include:
i) Measuring a complex impedance about the at least one subsurface volume of the MUT over a range of frequencies with an electrode pair inserted into and in electromagnetic communication with the MUT; and
ii) Applying an algorithm to correlate aspects of the measured complex impedance to physical characteristics of the MUT.
In some cases, the electrode pair are in electrically conductive contact with the MUT. In other cases, the electrode pair are in electrically non-conductive contact with the MUT. According to various embodiments, the electrode pair does not transmit an electromagnetic field through an upper surface of the MUT. According to various embodiments, the base of each electrode in the electrode pair is rounded. In some cases, each electrode in the electrode pair has a cross section including one of: a circular cross-section, an elliptical cross-section or a rounded rectangular cross-section. According to various embodiments, the area of each electrode in the electrode pair is substantially uniform along a length of each electrode.
In some cases, the at least one electrode pair includes a plurality of electrode pairs, and each electrode pair is operated over a frequency range sequentially. In other particular cases, where the at least one electrode pair includes a plurality of electrode pairs, each electrode pair can be operated simultaneously over a frequency range, with the frequency of each electrode pair operating at a different frequency than the other electrode pairs at any given time.
In various embodiments, components described as being “coupled” to one another can be joined along one or more interfaces. In some embodiments, these interfaces can include junctions between distinct components, and in other cases, these interfaces can include a solidly and/or integrally formed interconnection. That is, in some cases, components that are “coupled” to one another can be simultaneously formed to define a single continuous member. However, in other embodiments, these coupled components can be formed as separate members and be subsequently joined through known processes (e.g., fastening, ultrasonic welding, bonding).
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application claims priority to U.S. Provisional Application No. 69/039,204, filed on Aug. 19, 2014, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62039204 | Aug 2014 | US |