Characterizing Gastro-Intestinal Disease

Information

  • Patent Application
  • 20140148357
  • Publication Number
    20140148357
  • Date Filed
    November 25, 2013
    10 years ago
  • Date Published
    May 29, 2014
    10 years ago
Abstract
A method for characterizing a gastro-intestinal disease in a subject involves comparing ratios of expression levels of genes in a biological sample from a subject to references, wherein the gastro-intestinal disease is characterized based on a difference in the ratios of the expression values of genes in the biological sample from the subject as compared to the references.
Description
TECHNICAL FIELD

The presently-disclosed subject matter relates to the characterization of gastro-intestinal (GI) diseases in a subject, including diagnosis of GI diseases and exclusion of a diagnosis of GI diseases.


INTRODUCTION

Inflammatory bowel diseases (IBD), Crohn's disease (CD), Celiac's disease (CeD), and ulcerative colitis (UC) are chronic relapsing remitting inflammatory conditions affecting the gastrointestinal tract, primarily the small intestine and colon [1]. CD is most frequently diagnosed in patients in their 20s and UC in their 30s; however, the diagnosis can be made at any age [2]. IBD diagnosis is often straightforward, as disease can be seen by endoscopy or imaging modalities. However, diagnosis can be difficult as patients may experience symptoms consistent with IBD but ultimately have other diagnoses including functional gastrointestinal disorders such as irritable bowel syndrome (IBS) [3-6]. Patients with IBS can have symptoms very similar to those with IBD. IBD can be limited to difficult to evaluate areas of the GI tract such as isolated small bowel disease. Also, within IBD, differentiating between CD and UC can be difficult, especially within patients with severe inflammatory activity, often termed indeterminate colitis [7]. When the clinical presentation is severe and an operation including colectomy is indicated, differentiating CD and UC is imperative, as ileal pouch-anal anastomosis (IPAA) is generally contraindicated in CD due to high morbidity [8].


Developing biomarkers that can be easily obtained and allow for the correct diagnosis early into evaluation can avoid costly interventions that expose patients to multiple unnecessary procedures. Blood markers for both IBD and IBS have been sought for decades. For IBD, perinuclear antineutrophil cytoplasmic antibody (p-ANCA) and anti-Saccharomyces cerevisiae antibody (ASCA) have been reported to be markers for UC and CD, respectively. However, p-ANCA is also detected in 10-40% of patients with CD and ASCA is detected in 6-14% of patients with UC [1]. Other markers increased in subjects with CD include antibodies to (a) Escherichia coli outer membrane porin C (Omp-C), (b) protein from Pseudomonas fluorescens [9] and (c) flagellin c-BIR1 (anti-CBIR1) [10], but these markers remain insensitive. In patients with indeterminate colitis, those with one or more positive antibodies, including ANCA, ASCA, 12 (antibody to Pseudomonas fluorescens), and Omp-C, have significantly higher post-operative complications [11]. Other inflammatory biomarkers such as C-reactive protein, fecal calprotectin, and fecal lactoferrin differentiate IBD from other gastrointestinal disorders such as IBS [5], but tests do not differentiate among various types of inflammatory colitides [12].


Therefore, improved tests that can effectively, efficiently, and noninvasively characterize GI diseases are needed, including tests to diagnose GI diseases and/or to exclude a diagnosis of a GI disease.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are used, and the accompanying drawings of which:



FIG. 1 includes gene-expression profiles in multiple gastrointestinal disorders. Expression levels of 44 target genes were determined by quantitative RT-PCR and normalized to expression of GAPDH. Expression levels of 25 genes are shown; expression levels of the remainder were not statistically different between CTRL and any disease cohort. Results are expressed as transcript levels of individual genes relative to transcript levels of GAPDH using the formula: 2(GAPDH Ct-target gene Ct). Genes are identified that showed statistically significant (p-value <0.05 after Bonferroni's correction) increased or decreased expression in individual disease cohorts relative to CTRL subjects.



FIG. 2 includes a discrimination of IBD from CTRL and IBS from CTRL using the ratioscore system. (A) Ability of a single ratio, PGK1/POU6F1, to discriminate IBD and CTRL subjects. (B) The most discriminatory 25 gene-expression ratios were identified to segregate IBD and CTRL subjects. The ratioscore system was applied to combine ratio performance into a single discriminator. (C) Ability of a single ratio, PGK1/POU6F1, to discriminate IBS and CTRL subjects. (D) The most discriminatory 19 gene-expression ratios were identified to segregate IBS and CTRL subjects. The ratioscore system was applied to combine ratio performance into a single discriminator * indicates ratios found in both IBD:CTRL and IBS:CTRL comparisons.



FIG. 3 includes a discrimination of IBD from IBS using the ratioscore system. (A) Ability of a single ratio, HRAS/TBP, to discriminate IBD and IBS subjects. (B) The most discriminatory 25 gene-expression ratios were identified to segregate IBD and IBS subjects. The ratioscore system was applied to combine ratio performance into a single discriminator.



FIG. 4 includes a discrimination of UC from CD using the ratioscore system. (A) Ability of a single ratio, POU6F1/ANAPC1, to discriminate UC and CD subjects. (B) The most discriminatory 20 gene-expression ratios were identified to segregate UC and CD subjects. The ratioscore system was applied to combine ratio performance into a single discriminator.



FIG. 5 includes ROC curves derived from SVM #2 method, wherein sensitivity, specificity, and AUC were determined using the Mathematica program for the following comparisons: IBD:CTRL, IBS:CTRL, IBD:IBS, and CD:UC.



FIG. 6 includes proposed tiered analyses to discriminate subjects with IBD or IBS and, if positive for IBD, to discriminate between CD and UC.



FIG. 7 is a flow chart of the processing of the data and creation of the classifiers.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

The details of one or more embodiments of the presently-disclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom. In case of conflict, the specification of this document, including definitions, will control.


The presently-disclosed subject matter includes methods, devices, and kits useful for characterizing an auto-immune disease in a subject and, more particularly, for characterizing gastro-intestinal (GI) diseases in a subject. In some embodiments, the method involves providing a biological sample from the subject; determining expression values of at least two genes in the biological sample; calculating one or more ratios of the expression values of the at least two genes; and comparing each ratios to a reference, wherein the GI disease(s) is characterized based on a difference in the ratios of the expression values of the at least two genes in the biological sample from the subject as compared to the references. In some embodiments, the biological sample is blood obtained from the subject or another biological sample containing a cell obtained from the subject, e.g., a subject suspected of having a GI disease. The method can be used, in some embodiments, to diagnose the subject with a GI disease. In some embodiments, the method can be used to exclude the subject from a diagnosis of GI disease.


The method can be used, in some embodiments, to diagnose the subject with a GI disease that is either an inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). In some embodiments, the method can be used to exclude the subject from a diagnosis of an IBD. In some embodiments, the method can be used to exclude the subject from a diagnosis of an IBD and to diagnose the subject with IBS. In some embodiments, the method can be used to exclude the subject from a diagnosis of IBS. In some embodiments, the method can be used to exclude the subject from a diagnosis of IBS and to diagnose the subject with an IBD.


The method can be used, in some embodiments, to diagnose the subject with a GI disease that is either Crohn's disease (CD) or ulcerative colitis (UC). In some embodiments, the subject is one who has received a diagnosis of IBD. In some embodiments, the method can be used to exclude the subject from a diagnosis of CD. In some embodiments, the method can be used to exclude the subject from a diagnosis of CD and to diagnose the subject with UC. In some embodiments, the method can be used to exclude the subject from a diagnosis of UC. In some embodiments, the method can be used to exclude the subject from a diagnosis of UC and to diagnose the subject with CD.


Methods of the presently-disclosed methods include determining expression values of genes in biological samples. As such, nucleic acid molecules or nucleotides are relevant to the disclosed subject matter. Nucleotides or genes, the expression of which is desired to be determined for characterizing an auto-immune disease, include, but are not limited to those identified in Table A, the isolated nucleic acid molecules of any one of SEQ ID NOs: 1-47, fragments of the isolated nucleic acid molecules of any one of SEQ ID NOs: 1-47 where detection of such fragments are indicative of expression of an associated gene, e.g., as identified in Table A, complementary nucleic acid molecules, isolated nucleic acid molecules capable of hybridizing to any one of the SEQ ID NOs: 1-47 under conditions disclosed herein, and corresponding RNA and/or DNA molecules.


As used herein, “nucleic acid” and “nucleic acid molecule” refer to any of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. The term “isolated”, when used in the context of an isolated DNA molecule or an isolated polypeptide, is a DNA molecule or polypeptide that, by the hand of man, exists apart from its native environment and is therefore not a product of nature.


Unless otherwise indicated, a particular nucleotide sequence also implicitly encompasses complementary sequences, subsequences, elongated sequences, as well as the sequence explicitly indicated. The terms “nucleic acid molecule” or “nucleotide sequence” can also be used in place of “gene”, “cDNA”, or “mRNA”. Nucleic acids can be derived from any source, including any organism. In one embodiment, a nucleic acid is derived from a biological sample isolated from a subject.


The terms “complementary” and “complementary sequences”, as used herein, refer to two nucleotide sequences that comprise antiparallel nucleotide sequences capable of pairing with one another upon formation of hydrogen bonds between base pairs. As used herein, the term “complementary sequences” means nucleotide sequences which are substantially complementary, as can be assessed by the same nucleotide comparison set forth herein, or is defined as being capable of hybridizing to the nucleic acid segment in question under conditions such as those described herein. In one embodiment, a complementary sequence is at least 80% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 85% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 90% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 95% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 98% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 99% complementary to the nucleotide sequence with which is it capable of pairing. In still another embodiment, a complementary sequence is at 100% complementary to the nucleotide sequence with which is it capable of pairing. A particular example of a complementary nucleic acid segment is an antisense oligonucleotide.


“Stringent hybridization conditions” in the context of nucleic acid hybridization experiments are both sequence- and environment-dependent. Longer sequences hybridize specifically at higher temperatures. Generally, highly stringent hybridization and wash conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Very stringent conditions are selected to be equal to the Tm for a particular probe. Typically, under “stringent conditions” a probe hybridizes specifically to its target sequence, but to no other sequences. An extensive guide to the hybridization of nucleic acids is found in Tijssen 1993, which is incorporated herein by this reference. In general, a signal to noise ratio of 2-fold (or higher) than that observed for a negative control probe in a same hybridization assay indicates detection of specific or substantial hybridization.


It is understood that in order to determine a gene expression level by hybridization, a full-length cDNA need not be employed. To determine the expression level of a gene represented by one of SEQ ID NOs: 1-47, any representative fragment or subsequence of the sequences set forth in SEQ ID NOs: 1-47 can be employed in conjunction with the hybridization conditions disclosed herein. As a result, a nucleic acid sequence used to assay a gene expression level can comprise sequences corresponding to the open reading frame (or a portion thereof), the 5′ untranslated region, and/or the 3′ untranslated region. It is understood that any nucleic acid sequence that allows the expression level of a reference gene to be specifically determined can be employed with the methods and compositions of the presently disclosed subject matter.


As used herein, the terms “corresponding to” and “representing”, “represented by” and grammatical derivatives thereof, when used in the context of a nucleic acid sequence corresponding to or representing a gene, refers to a nucleic acid sequence that results from transcription, reverse transcription, or replication from a particular genetic locus, gene, or gene product (for example, an mRNA). In other words, a partial cDNA, or full-length cDNA corresponding to a particular reference gene is a nucleic acid sequence that one of ordinary skill in the art would recognize as being a product of either transcription or replication of that reference gene (for example, a product produced by transcription of the reference gene). One of ordinary skill in the art would understand that the partial cDNA, or full-length cDNA itself is produced by in vitro manipulation to convert the mRNA into a cDNA, for example by reverse transcription of an isolated RNA molecule that was transcribed from the reference gene. One of ordinary skill in the art will also understand that the product of a reverse transcription is a double-stranded DNA molecule, and that a given strand of that double-stranded molecule can embody either the coding strand or the non-coding strand of the gene. The sequences presented in the Sequence Listing are single-stranded, however, and it is to be understood that the presently claimed subject matter is intended to encompass the genes represented by the sequences presented in SEQ ID NOs: 1-47, including the specific sequences set forth as well as the reverse/complement of each of these sequences.


The term “gene expression” generally refers to the cellular processes by which a biologically active polypeptide is produced from a DNA sequence. Generally, gene expression comprises the processes of transcription and translation, along with those modifications that normally occur in the cell to modify the newly translated protein to an active form and to direct it to its proper subcellular or extracellular location.


The terms “gene expression level” and “expression level” as used herein refer to an amount of gene-specific RNA or polypeptide that is present in a biological sample. When used in relation to an RNA molecule, the term “abundance” can be used interchangeably with the terms “gene expression level” and “expression level”.


Determination of expression levels of genes of interest can be achieved using any technique known the skilled artisan. For example, in some embodiments, RNA can be purified from the biological sample, converted to the more-stable complementary DNA (cDNA), before the gene expression products of genes of interest are detected. As will be recognized by the skilled artisan, where amplification of the sample is desired, polymerase chain reaction amplification can be employed. Determining the expression levels can be achieved, for example, using reverse transcription-polymerase chain reaction (RT-PCR), microarray analysis, or other techniques known to the skilled artisan.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, or 47 genes represented by SEQ ID NOs: 1-47. In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A.









TABLE A







Genes















SEQ


Gene


ABI Assay
ID


Abbreviation
Gene
NCBI Ref. No.
Number:
NO:














ABR
active BCR-related gene, transcript
NM_001159746.1
Hs00254300_m1
1



variant 3


ACTB
actin, beta
NM_001101.3
Hs99999903_m1
2


ACYR1A
ARP1 actin-related protein 1
NM_005736.3
Hs00194913_m1
3



homolog A, centractin alpha (yeast)


ADAMTSL4
ADAMTS-like 4 (ADAMTSL4),
NM_019032.4
Hs00296775_m1
4



transcript variant 1


ANAPC1
anaphase promoting complex
NM_022662.2
Hs00224096_m1
5



subunit 1


APOBEC3F
apolipoprotein B mRNA editing
NM_145298.5
Hs00272529_m1
6



enzyme, catalytic polypeptide-like



3F


ASL
argininosuccinate lyase
NM_001024943.1
Hs00163695_m1
7


B2M
beta-2-microglobulin
NM_004048.2
Hs99999907_m1
8


BRCA1
breast cancer 1, early onset
NR_027676.1
Hs00173237_m1
9



(BRCA1), transcript variant 6, non-



coding RNA


CD55
CD55 molecule, decay accelerating
NM_000574.3
Hs00167090_m1
10



factor for complement (Cromer



blood group), transcript variant 1


CDH1
cadherin 1, type 1, E-cadherin
NM_004360.3
Hs00170423_m1
11



(epithelial)


CDKN1B
cyclin-dependent kinase inhibitor
NM_004064.3
Hs00153277_m1
12



1B (p27, Kip1)


CHEK2
checkpoint kinase 2 (CHEK2),
NM_001005735.1
Hs00200485_m1
13



transcript variant 3


CSF3R
colony stimulating factor 3 receptor
NM_156039.3
Hs00167918_m1
14



(granulocyte), transcript variant 3


CTSS
cathepsin S, transcript variant 1
NM_004079.4
Hs00175403_m1
15


EPHX2
epoxide hydrolase 2, cytoplasmic
NM_001979.4
Hs00157403_m1
16


EXT2
exostosin 2, transcript variant 2
NM_207122.1
Hs00181158_m1
17


FOS
FBJ murine osteosarcoma viral
NM_005252.3
Hs00170630_m1
18



oncogene homolog


FOSL1
FOS-like antigen 1
NM_005438.3
Hs00759776_s1
19


FOXN3
forkhead box N3, transcript variant 1
NM_001085471.1
Hs00231993_m1
20


GAPDH-1
glyceraldehyde-3-phosphate
NM_002046.3
Hs99999905_m1
21



dehydrogenase


GAPDH-2
glyceraldehyde-3-phosphate
NM_002046.3
Hs99999905_m1
22



dehydrogenase


GATA3
GATA binding protein 3
NM_001002295.1
Hs00231122_m1
23


GNB5
guanine nucleotide binding protein
NM_006578.3
Hs00275095_m1
24



(G protein), beta 5, transcript

and



variant 1

Hs01034253_m1


GSTM4
glutathione S-transferase mu 4,
NM_147148.2
Hs00426432_m1
25



transcript variant 2


HLA-DRA
major histocompatibility complex,
NM_019111.4
Hs00219575_m1
26



class II, DR alpha


HRAS
v-Ha-ras Harvey rat sarcoma viral
NM_001130442.1
Hs00610483_m1
27



oncogene homolog (HRAS),



transcript variant 3


IFI27
interferon, alpha-inducible protein
NM_001130080.1
Hs00271467_m1
28



27 (IFI27), transcript variant 1


IL11RA
interleukin 11 receptor, alpha,
NM_001142784.1
Hs00234415_m1
29



transcript variant 3


JUN
jun proto-oncogene
NM_002228.3
Hs00277190_s1
30


KRAS
v-Ki-ras2 Kirsten rat sarcoma viral
NM_004985.3
Hs00270666_m1
31



oncogene homolog, transcript



variant b


LEPREL4
leprecan-like 4
NM_006455.2
Hs00197668_m1
32


LLGL2
lethal giant larvae homolog 2
NM_001015002.1
Hs00189729_m1
33



(Drosophila), transcript variant 2


NRAS
neuroblastoma RAS viral (v-ras)
NM_002524.4
Hs00180035_m1
34



oncogene homolog


OAS1
2′-5′-oligoadenylate synthetase 1,
NM_001032409.1
Hs00242943_m1
35



40/46 kDa, transcript variant 3,


ORC1
origin recognition complex, subunit
NM_001190819.1
Hs00172751_m1
36



1 (ORC1), transcript variant 3


PGK1
phosphoglycerate kinase 1
NM_000291.3
Hs99999906_m1
37


PMAIP1
phorbol-12-myristate-13-acetate-
NM_021127.2
Hs00560402_m1
38



induced protein 1


POU6F1
POU class 6 homeobox 1,
NR_026893.1
Hs00231276_m1
39



transcript variant 2


RANGAP1
Ran GTPase activating protein 1
NM_002883.2
Hs00610049_m1
40


SPIB
Spi-B transcription factor (Spi-
NM_003121.3
Hs00162150_m1
41



1/PU.1 related)


TAF11
TAF11 RNA polymerase II, TATA
NM_005643.2
Hs00194573_m1
42



box binding protein (TBP)-



associated factor, 28 kDa


TBP
TATA box binding protein,
NM_001172085.1
Hs00427620_m1
43



transcript variant 2


TGFBR2
transforming growth factor, beta
NM_001024847.2
Hs00559661_m1
44



receptor II (70/80 kDa), transcript



variant 1


TP53
tumor protein p53 (TP53),
NM_001126113.1
Hs00153340_m1
45



transcript variant 4


TP53-2
tumor protein p53 (TP53),
NM_001126112.1
Hs01034253_m1
46



transcript variant 2


TXK
TXK tyrosine kinase
NM_003328.2
Hs00177433_m1
47


IL11R1









In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ABR, ACTB, ACTR1A, EXT2, KRAS, LLGL2, NRAS, PGK1, and POU6F1.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ACTR1A, CD55, HRAS, IL11RA, JUN, PGK1, POU6F1, TAF11, TBP, and TP53.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ABR, CD55, CTSS, GAPDH, HLA-DRA, HRAS, JUN, OAS1, ORC1L, and TBP.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ANAPC1, CDH1, EXT2, GAPDH, GNB5, NRAS, ORC1L, POU6F1, TBP, and TP53.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


As used herein, a “ratio” or “expression ratio” is the expression value of a first biomarker (numerator) divided by the expression value of a second biomarker (denominator), e.g., Gene A/Gene B. As such, once the expression levels of at least two genes are determined, a ratio can be calculated. Ratios can be calculated using expression levels of genes in a biological sample obtained from a subject. In some embodiments, a reference can be a ratio calculated using expression levels of genes from another source. As such, the term “subject ratio” can used herein to refer to a ratio calculated using expression values of a gene pair in a biological sample obtained from a subject, while the term “reference ratio” can be used to refer to a ratio of the same biomarker pair in a reference sample, which serves as a reference to which the subject ratio is compared.









TABLE B







Ratios










IBD vs. CTRL
IBS vs. Control
IBD vs. IBS
CD vs. UC


Expression Ratios
Expression Ratios
Expression Ratios
Expression Ratios


Numerator/
Numerator/
Numerator/
Numerator/


Denominator
Denominator
Denominator
Denominator





PGK1/POU6F1
PGK1/POU6F1*
HRAS/GAPDH
POU6F1/ANAPC1


PGK1/EXT2
PGK1/ACTR1A*
HRAS/TBP
POU6F1/GAPDH


PGK1/ACTR1A
PGK1/TBP
HRAS/HLA-DRA
POU6F1/TBP


PGK1/NRAS
JUN/TBP*
HRAS/ORC1L
POU6F1/GNB5


ABR/LLGL2
JUN/CD55
ABR/OAS1
POU6F1/ORC1L


KRAS/LLGL2
IL11RA/TBP*
ABR/JUN
POU6F1/TP53


ACTB/LLGL2
TAF11/TP53
ABR/CTSS
GAPDH/CDH1


NRAS/LLGL2
HRAS/TP53
ABR/CD55
NRAS/EXT2


GAPDH/ANAPC1
ORC1L/TP53
CDH1/PGK1
ORC1L/APOBEC3F


GAPDH/TP53
KRAS/APOBEC3F
CDH1/CTSS
SC65/ORC1L


GAPDH/GSTM4
KRAS/ADAMTSL4
PGK1/TBP
GATA3/TP53


B2M/TP53
ASL/ANAPC1
ACTR1A/ORC1L
ASL/LLGL2


B2M/APOBEC3F
GSTM4/TBP
TP53/SPIB
JUN/GAPDH


IL11RA/TBP
ABR/ANAPC1
TP53/EXT2
ADAMTSL4/KRAS


IL11RA/FOS
LLGL2/IL11RA
APOBEC3F/TAF11
APOBEC3F/GAPDH


KRAS/ANAPC1
KRAS/TBP
ADAMTSL4/ORC1L
CHEK2/GNB5


KRAS/CHEK2
CSF3R/TGFBR2
CDKN1B/PMAIP1
CDH1/GAPDH


JUN/TBP
GSTM4/OAS1
IL11RA/TBP
LLGL2/CDH1


JUN/SPIB
TXK/NRAS
JUN/TBP
IL11RA/PMAIP1


NRAS/SC65

SC65/PGK1
OAS1/IFI27


ABR/CDH1

CSF3R/HLA-DRA


HLA-DRA/ASL

ACTB/FOS


EPHX2/OAS1

ASL/GAPDH


GSTM4/TP53

GATA3/TP53


LLGL2/CDH1

GNB5/JUN









In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios of expression levels of genes corresponding to those set forth in Table A, wherein each ratio is calculated by dividing the expression level of a first gene in Table A by the expression level of a second gene in Table A.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, or 89 ratios set forth in Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 1 (IBD vs. CTRL) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 ratios set forth in Column 1 (IBD vs. Control) of Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 2 (IBS v. Control) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 ratios set forth in Column 2 (IBS v. Control) of Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 3 (IBD vs. IBS) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 ratios set forth in Column 3 (IBD vs. IBS) of Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 4 (CD vs. UC) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 ratios set forth in Column 4 (CD vs. UC) of Table B.


Various references are appropriate for use in connection with the presently-disclosed subject matter, with non-limiting examples described herein. In some embodiments, the reference comprises a reference ratio calculated using of the expression level of two genes in a biological sample taken from one or more individuals, which two genes are the same two genes used to calculate the subject ratio. The expression levels of genes in biological samples from one or more individuals can be a expression levels from a reference group or comparator group.


In some embodiments, a “comparator group” or “reference group” includes individuals having a common characterization, for example, healthy control individuals, individuals who have been diagnosed with a condition often confused with an auto-immune disease of interest in the context of clinical diagnosis, individuals who have been diagnosed with an auto-immune disease of interest, or individuals who have another common characterization of interest. Expression values of biomarkers obtained from biological samples of individuals in a comparator group can be used to calculate reference ratios. Data associated with one or more comparator groups can be stored, for example, in a database that can be accessed when practicing a method in accordance with the presently-disclosed subject matter.


With reference to Table B, for example, ratios-of-interest are provided for use with a healthy control comparator group (CTRL, column 1 and column 2) or a comparator group of individuals having IBS or IBD (column 3), or having CD or UC (column 4). Examples of comparator groups relevant to characterization of a GI disease include, but are not limited to: healthy control (CTRL), irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD), Crohn's disease (CD), Celiac's disease (CeD), and ulcerative colitis (UC). Because a comparator group can include data from multiple individuals, as will be recognized by one of ordinary skill in the art, it is expected that the expression values of biomarkers in biological samples obtained from different individuals in the same comparator group might differ. As such, identification of a reference ratio for a particular gene pair can be made with reference to a “threshold reference ratio” for the gene pair within the comparator group. In some embodiments, for example, the threshold expression ratio could be a median, an average, a value based on statistical analysis of the distribution of ratios of expression levels of the gene pair within the comparator group, or another threshold value, e.g., top value in the group, second highest value in the group, third highest value in the group, etc.


In some embodiments, the reference comprises a reference ratio calculated using a standard sample containing standard biomarker amounts, which can be analyzed in the same manner or even concurrently with the biological sample. In some embodiments, the reference comprises ratio values, such as standard threshold values. Such values can be published in a format useful for the practitioner, such as in a list, table, database, or incorporated into a software or system for use in connection with the presently-disclosed subject matter. Such values can in some cases be based, for example, on information obtained from a comparator group.


Ratios of interest, or ratios of gene pairs that are useful for characterizing GI diseases, have the ability to distinguish groups, e.g., IBD group and health control group, IBS group and health control group, IBD group and IBS group, CD group and UC group. Table B includes examples of ratios of interest for IBD vs. healthy control (CTRL), IBS vs. healthy control, IBD vs. IBS, and CD vs. UC. In this regard, an auto-immune disease can be characterized based on a difference in the ratios of the expression values of at least two genes in a biological sample from the subject as compared to a reference ratio.


In some embodiments, it can be useful to compare one or more subject ratios to one or more first reference ratios, e.g., from a first comparator group, and also to compare the one or more subject ratios to one or more second reference ratios, e.g., from a second comparator group. Such a multi-tiered approach can improve the efficacy of the characterization of GI diseases, as will be explained further in the Examples section.


Characterizing can include providing a diagnosis, prognosis, and/or theragnosis of an auto-immune disease in a subject.


“Making a diagnosis” or “diagnosing,” as used herein, are further inclusive of making a prognosis, which can provide for predicting a clinical outcome (with or without medical treatment), selecting an appropriate treatment (or whether treatment would be effective), or monitoring a potential auto-immune disease, based on calculated ratios of expression levels of genes. Diagnostic testing that involves treatment, such as treatment monitoring or decision making can be referred to as “theranosis.” Further, in some embodiments of the presently disclosed subject matter, multiple determinations of ratios of expression levels of genes over time can be made to facilitate diagnosis (including prognosis), evaluating treatment efficacy, and/or progression of a potential auto-immune disease or auto-immune disease. A temporal change in one or more ratios can be used to predict a clinical outcome, monitor the progression of the condition, and/or efficacy of administered therapies. In such an embodiment for example, one could observe a change in a particular ratio in a biological sample over time during the progression of a condition and/or during the course of a therapy.


The presently disclosed subject matter further provides in some embodiments a method for theranostic testing, such as evaluating progression of a condition and/or treatment efficacy in a subject. In some embodiments, the method comprises providing a series of biological samples over a time period from the subject; determining expression values of at least two genes in each of the biological samples; calculating one or more ratios of the expression values of the at least two genes for each of the biological samples; and determining any measurable change in the ratios in each of the biological samples from the series to thereby evaluate progression of the condition and/or treatment efficacy.


Any changes in the ratios, and changes in the ratios relative to references, over the time period can be used to make a diagnosis, predict clinical outcome, determine whether to initiate or continue the therapy, and whether a current therapy is effectively.


The phrase “determining the prognosis” as used herein refers to methods by which the skilled artisan can predict the course or outcome of a condition in a subject. The term “prognosis” can refer to the ability to predict the course or outcome of a condition with up to 100% accuracy, or predict that a given course or outcome is more or less likely to occur based on the ratios of expression values of genes of interest. The term “prognosis” can also refer to an increased probability that a certain course or outcome will occur; that is, that a course or outcome is more likely to occur in a subject when compared to individuals in a comparator group. For example, in individuals exhibiting subject ratios-of-interest that are higher than reference ratio-of-interest, the chance of a given outcome (e.g., a GI disease diagnosis) may be very high. In certain embodiments, a prognosis is about a 5% chance of a given expected outcome, about a 7% chance, about a 10% chance, about a 12% chance, about a 15% chance, about a 20% chance, about a 25% chance, about a 30% chance, about a 40% chance, about a 50% chance, about a 60% chance, about a 75% chance, about a 90% chance, or about a 95% chance.


The skilled artisan will understand that associating a prognostic indicator with a predisposition to an adverse outcome can be performed using statistical analysis. For example, subject ratios that are higher than reference ratios in some embodiments can signal that a subject is more likely to suffer from an auto-immune disease than subjects with ratios that are substantially equal to reference ratios, as determined by a level of statistical significance. Statistical significance is often determined by comparing two or more populations, and determining a confidence interval and/or a p value. See, e.g., Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York, 1983, incorporated herein by reference in its entirety. Exemplary confidence intervals of the present subject matter are 90%, 95%, 97.5%, 98%, 99%, 99.5%, 99.9% and 99.99%, while exemplary p values are 0.1, 0.05, 0.025, 0.02, 0.01, 0.005, 0.001, and 0.0001. When performing multiple statistical tests, p values can be corrected for multiple comparisons using techniques known in the art.


Further with respect to the methods of the presently disclosed subject matter, a preferred subject is a vertebrate subject. A preferred vertebrate is warm-blooded; a preferred warm-blooded vertebrate is a mammal. A mammal is most preferably a human. As used herein, the term “subject” includes both human and animal subjects. Thus, veterinary therapeutic uses are provided in accordance with the presently disclosed subject matter.


As such, the presently disclosed subject matter provides for the diagnosis of mammals such as humans, as well as those mammals of importance due to being endangered, such as Siberian tigers; of economic importance, such as animals raised on farms for consumption by humans; and/or animals of social importance to humans, such as animals kept as pets or in zoos. Examples of such animals include but are not limited to: carnivores such as cats and dogs; swine, including pigs, hogs, and wild boars; ruminants and/or ungulates such as cattle, oxen, sheep, giraffes, deer, goats, bison, and camels; and horses. Also provided is the treatment of birds, including the treatment of those kinds of birds that are endangered and/or kept in zoos, as well as fowl, and more particularly domesticated fowl, i.e., poultry, such as turkeys, chickens, ducks, geese, guinea fowl, and the like, as they are also of economic importance to humans. Thus, also provided is the treatment of livestock, including, but not limited to, domesticated swine, ruminants, ungulates, horses (including race horses), poultry, and the like.


The presently-disclosed subject matter further includes kits and devices useful for detecting and/or determining expression levels of at least two genes in a biological sample.


The kits of the presently-disclosed subject matter can include primer pairs for determining expression levels of at least two genes, which can be useful for calculating ratios as disclosed herein. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes corresponding to those set forth in Table A. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A.


In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ABR, ACTB, ACTR1A, EXT2, KRAS, LLGL2, NRAS, PGK1, and POU6F1. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ACTR1A, CD55, HRAS, IL11RA, JUN, PGK1, POU6F1, TAF11, TBP, and TP53. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ABR, CD55, CTSS, GAPDH, HLA-DRA, HRAS, JUN, OAS1, ORC1L, and TBP. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ANAPC1, CDH1, EXT2, GAPDH, GNB5, NRAS, ORC1L, POU6F1, TBP, and TP53. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


The devices of the presently-disclosed subject matter can include a probe for selectively binding each of at least two gene expression products to detect at least two genes, which can be useful for determining expression levels of the genes and for calculating ratios as disclosed herein. Such probes can selectively bind the gene products, for example, by hybridization of the probe and a nucleotide gene product. In some embodiments, the device includes probes for detecting each of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least two genes corresponding to those set forth in Table A. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A.


In some embodiments, the device includes probes for detecting each of the genes corresponding to ABR, ACTB, ACTR1A, EXT2, KRAS, LLGL2, NRAS, PGK1, and POU6F1. In some embodiments, the device includes probes for detecting each of the genes corresponding to ACTR1A, CD55, HRAS, IL11RA, JUN, PGK1, POU6F1, TAF11, TBP, and TP53. In some embodiments, the device includes probes for detecting each of the genes corresponding to ABR, CD55, CTSS, GAPDH, HLA-DRA, HRAS, JUN, OAS1, ORC1L, and TBP. In some embodiments, the device includes probes for detecting each of the genes corresponding to ANAPC1, CDH1, EXT2, GAPDH, GNB5, NRAS, ORC1L, POU6F1, TBP, and TP53. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


Some of the gene sequences disclosed herein are cross-referenced to GENBANK® accession numbers. The sequences cross-referenced in the GENBANK® database are expressly incorporated by reference as are equivalent and related sequences present in GENBANK® or other public databases. Also expressly incorporated herein by reference are all annotations present in the GENBANK® database associated with the sequences disclosed herein. Unless otherwise indicated or apparent, the references to the GENBANK® database are references to the most recent version of the database, as of the filing date of this Application.


While the terms used herein are believed to be well understood by one of ordinary skill in the art, definitions are set forth to facilitate explanation of the presently-disclosed subject matter.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presently-disclosed subject matter, representative methods, devices, and materials are now described.


Following long-standing patent law convention, the terms “a”, “an”, and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a cell” includes a plurality of such cells, and so forth.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.


As used herein, the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.


As used herein, ranges can be expressed as from “about” one particular value, and/or to “about” another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


The presently-disclosed subject matter is further illustrated by the following specific but non-limiting examples. The following examples may include compilations of data that are representative of data gathered at various times during the course of development and experimentation related to the present invention.


EXAMPLES

Inflammatory bowel diseases, ulcerative colitis and Crohn's disease are considered to be of autoimmune origin, but the etiology of irritable bowel syndrome remains elusive. Furthermore, classifying patients into irritable bowel syndrome and inflammatory bowel diseases can be difficult without invasive testing and holds important treatment implications. Our aim was to assess the ability of gene expression profiling in blood to differentiate among these subject groups.


It is generally thought that different profiles of biomarkers could provide useful information to guide clinical decision-making; from diagnosis to choice of optimal therapies and in some cases these biomarker profiles are being implemented in clinical practice [3,12-24]. Searches for optimal biomarker profiles can be achieved using clustering methods e.g., heirarchical clustering, K-means clustering, which depend upon the general ability to find common features across a sample population or forms of linear discriminate analysis, which depend upon the ability to find linear combinations of features that have the ability to separate two or more classes. The former method is a common method to analyze large numbers of features, such as microarray data whereas the latter is a more common method for analysis of smaller numbers of features. Both methods are suitable for further analyses using machine learning methods such as support vector machines, logistic regression, principal components analysis or prediction analysis for microarrays. Using a form of linear discriminant analysis, we have attempted to employ mRNA transcript profiles to distinguish between subjects with multiple sclerosis and other comparator groups [25,26]. Our results clearly demonstrate that mRNA transcript profiling has the capacity to distinguish between MS, even early in the disease process, and homogeneous comparator groups, such as healthy subjects (CTRL), or subjects with clinically related diseases such as neuromyelitis optica or transverse myelitis. Thus, these binary comparisons can produce a test of exclusion of multiple sclerosis. Here, we applied this approach to IBD and IBS. Our results demonstrate that distinct mRNA profiles accurately discriminate IBD from CTRL, IBS from CTRL, IBD from IBS, and CD from UC with high degrees of sensitivity and specificity. We propose these approaches may provide useful guides for clinical decision-making.


Methods


Transcript levels of a total of 45 genes in blood were determined by quantitative real-time polymerase chain reaction (RT-PCR). We applied three separate analytic approaches; one utilized a scoring system derived from combinations of ratios of expression levels of two genes and two different support vector machines.


Human Subjects


Blood samples collected in PAXgene tubes were obtained from CTRL, IBS, CeD, CD or UC subjects. Diagnosis of IBD, both CD and UC, was made by colonoscopy or sigmoidoscopy and tissue biopsy to localize inflammation to all layers of the intestinal wall (CD) or only the inner lining layer (UC). Diagnosis of IBS was made by the absence of pathologic damage in the colon after examination by colonoscopy or sigmoidoscopy. Inclusion criteria were diagnosis by a gastro-intestinal specialist using these methods. Age, race and gender were not statistically different among the different study groups. Time of blood draw, for example, morning/afternoon clinics, was also not statistically significant among the different study groups. Relevant institutional review board approval was obtained from all participating sites.


mRNA Transcript Determination


Total RNA was purified using Qiagen's RNA isolation kits using standard protocols and was reverse-transcribed using poly-A primers uisng Superscript III (Invitrogen, Carlsbad, Calif., USA). A TaqMan Low Density Array (TLDA) was designed to analyze expression levels of 44 target genes and of four housekeeping genes in 300 ng cDNA. The gene probes on the TLDA plate were: ABR, ACTB, ACTR1A, ADAMTSL4, ANAPC1, APOBEC3F, ASL, B2M, BRCA1, CD55, CDH1, CDKN1B, CHEK2, CSF3R, CTSS, EPHX2, EXT2, FOS, FOSL1, GAPDH, GATA3, GNB5-1, GNB5-1, GSTM4, HLA-DRA, HRAS, IFI27, IL11RA, JUN, KRAS, LEPREL4, LLGL2, NRAS, OAS1, ORC1L, PGK1, PMAIP1, POU6F1, RANGAP1, SC65, SPIB, TAF11, TBP, TGFBR2, TP53-1 TP53-2, TXK. GNB5-1 and -2 and TP53-1 and -2 interrogate different exon-intron junctions. [26]. Inclusion of the specific gene targets was based upon the following criteria: (a) previous studies demonstrating differential expression among control and multiple autoimmune diseases, (b) protein products possess known inflammatory functions, (c) expression levels change in response to pro-inflammatory stimuli (cytokines), and/or (d) protein products have known roles in cell cycle progression and/or apoptosis. Patient diagnosis was blinded for all experimental procedures. Relative expression levels were determined directly from the observed threshold cycle (CT). Linear expression levels were determined using the formula, 240-CT.


Ratioscore and Support Vector Machine (SVM) Methods


Principal Component Analysis (PCA) was applied directly to the normalized gene expression data using MATLAB's Bioinformatics Toolkit (The MathWorks, Inc.) and other techniques to identfiy a lower dimensional space of gene expressions that could be used to classify controls from cases. The results were disappointing and we concluded that looking at ratios of the gene expression data may be a more productive approach. The computational algorithm and permutation testing strategy employed to identify discriminatory combinations of ratios to create the ratioscore (our terminology) have been previously described [26]. For completeness, we summarize the algorithm used in the Ratioscore Method below. Let D denote the set of gene-expression levels associated with the disease group and Cdenote the set of gene-expression levels associated with the control group. The algorithm searches for the “best” set of gene ratios that partitions D and C:

    • 80% of the control and disease groups are randomly selected. Gene-expression level ratios are formed for elements in D and C. For each ratio, the number of elements in the disease group that are larger than the largest ratio in the control group is computed. The top 500 ratios that separate elements in D and C are saved. This calculation is repeated 200 times resulting in a set of 200 subsets of ratios (each subset having 500 ratios).
    • The 500 subsets are then processed looking for the smallest number of ratios, R={r1, r2, . . . , rn}, that produce the maximum of separation of D and C. Associate with each of the ratios in R, there are threshold values, T={t1, t2, . . . , tn}, which correspond to the highest value in the control group for each of the ratios in R.
    • For each member of the disease group D, the ratios in R are computed, {a1, a2, . . . , an}. If ai≧ti, then we assign the ratio a 1; otherwise, it is assigned a 0. In this way, we generate an n-tuple of 1's and 0's for each member of D. For example, if n=6, then a typical 6-tuple would be {1, 1, 0, 0, 1, 0}. This would mean that this individual in the disease group would have 3 ratios that exceed the corresponding ratios in the control group.
    • Lastly, the percentage of members in the disease group that have nonzero n-tuples is calculated. The larger the percentage, the better the separation of D and C.


The algorithm allows one to identify the smallest number of ratios that partitions the case and control groups.


Two support vector machines (SVM) were independently created and trained using ratios identified by the Ratioscore Method. The first SVM was coded in Mathematica (Wolfram Research, Inc.) and the second SVM employed LS-SVMLab software (http://www.esat.kuleuven.be/sista/lssvmab). We decided to use the two independently developed SVM since the choice of kernels, optimization algorithms, and the training algorithms can produce differing results. There was little difference in the performance of the two machines when classifying the different case—control combinations. To confirm the results of the Ratioscore Method and the SVM approaches, logistic regression was employed to separate to the case and control sets using the gene ratios. Its performance was in line with the other two approaches and hence, we have chosen not to report these results.


Statistical Analysis


The Welch's-corrected T-test not assuming equal variances was employed to calculate p-values in two-way comparisons. Fisher's exact test was employed to calculate p-values in 2 by 2 comparisons. The Bonferroni's method was employed to correct for multiple testing [27].


Results


All methods discriminated different subject cohorts, irritable bowel syndrome from control, inflammatory bowel disease from control, irritable bowel syndrome from inflammatory bowel disease, and ulcerative colitis from Crohn's disease, with high degrees of sensitivity and specificity.


Gene-Expression Patterns in Distinct Gastrointestinal Diseases


CTRL, IBD (CD and UC), IBS subjects were recruited from multiple sites within the United States. Demographic characteristics of the different gastrointestinal disease cohorts were not statistically different from the CTRL cohort (Table 1). We measured expression patterns of a common set of genes assayed using a common platform in CTRL and subjects with different gastrointestinal conditions, CD and UC, IBS, and CeD. Genes for analysis were selected from prior microarray studies [20,26]. Gene transcript levels were determined by quantitative RT-PCR and normalized to GAPDH transcript levels. We employed a heatmap to depict those genes differentially expressed in individual subject cohorts relative to the CTRL cohort, p-value <0.05 (after Bonferroni correction for multiple testing; see FIG. 1 with red=over-expressed gene, green=under-expressed gene). Ratios of transcript levels of individual genes in the indicated disease cohorts relative to GAPDH were calculated and depicted within each box. Each disease exhibited an underlying unique pattern of gene-expression. However, these profiles were sufficiently overlapping to prohibit accurate discrimination of one disease from another disease using the expression profile alone. For example, while PGK1 was over-expressed in all four conditions, ABR, ACTR1A, EXT2, HRAS, and KRAS were over-expressed in CeD and IBS but not CD and UC. Similarly, APOBEC3F, ASL, and SPIB were under-expressed in CD and UC, but not CeD and IBS. Other genes, ANAPC1, RANGAP1, and TP53, were only under-expressed in CD. Certain genes, e.g., APOBEC3F, ASL, GNB5, SPIB, were only under-expressed relative to the CTRL cohort, while other genes, e.g., ACTB, GATA3, HRAS, and LLGL2, were under-expressed in specific disease cohorts relative to CTRL but over-expressed in other disease cohorts relative to CTRL. Thus, each gene was differentially expressed in at least one disease cohort relative to CTRL. However, each individual disease cohort did not possess a unique expression profile distinguishing it from all other disease cohorts. For these reasons, we decided to look at other separation techniques.









TABLE 1







Demographic characteristics of the different subject populations
















AGE

GENDER

ETHNICITY




#
yrs
P*
(% F)
P
(% C/AA/As/H)
P


















IBD
97
40 ± 9 
NS
62
NS
92/5/0/1
NS


CD
46
38 ± 10
NS
63
NS
91/4/0/0
NS


UC
40
41 ± 8 
NS
59
NS
93/5/0/2
NS


IBS
44
43 ± 10
NS
79
NS
90/7/0/3
NS


CeD
16
44 ± 12
NS
69
NS
100/0/0/0 
NS


CTRL
113
41 ± 11

67

89/9/0/2





*P calculated by Student T-test (Age) or Fisher's exact test, NS: p-value > 0.05



C, Caucasian; AA, African American; As, Asian; H, Hispanic







Discrimination of IBD or IBS from CTRL Based Upon Gene-Expression Ratios


Initially, we employed standard methods of microarray analyses including unsupervised heirarchical clustering, supervised heirarchical clustering, and principal components analysis using the TIGR microarray software Multiexperiment Viewer to segregate patient groups. After normalization to GAPDH, gene expression data from IBD samples or IBS samples and CTRL samples were analyzed using unsupervised and supervised heirarchical clustering using all genes or only those genes whose expression was statistically significant using the supervised T-test. We found that unsupervised heirarchical clustering segregated 72% of IBD samples in one major branch and 28% of IBD samples in the second major branch. Similarly, 36% of CTRL samples were segregated into the branch with most of the IBD samples while 64% of CTRL samples were segregated into the alternate branch. Comparison of IBS and CTRL using unsupervised heirarchical clustering also did not produce the desired level of discrimination between case and control cohorts. Supervised heirarchical clustering and principal components analysis produced a similar low level of overall accuracy.


For these reasons, we turned to a type of linear discriminant analysis classifier (Ratioscore Method) that we employed previously to discriminate subjects with multiple sclerosis from different control cohorts. We employed a search algorithm to identify those ratios of gene-expression levels in which the greatest number of subjects in the test group possessed a ratio value greater than the highest ratio value in the comparator group. We employed a second algorithm to perform permutation testing of one subject group to identify the optimum set of discriminatory ratios. CeD was excluded from this analysis due to the low number of cases in this cohort. Examination of expression levels of ratios of genes rather than individual genes offered the following advantages. First, ratios normalized for differences in mRNA or cDNA template quantity and quality among different samples. Second, ratios obviated the need for inclusion of a housekeeping genes in the analysis and the assumption that expression levels of housekeeping genes did not vary among different subject populations. Third, comparisons of ratios or combinations of ratios may more accurately identify cellular phenotypes that may contribute to disease. For example, a ratio containing one gene in the numerator that is over-expressed in the case cohort relative to the control cohort and one gene in the denominator that is under-expressed in the case cohort relative to the control cohort should produce a greater ratio value difference between individuals in the two cohorts than a single expression value. Fourth, ANAPC1, RANGAP1, and LEPREL4 genes encode unique proteins and each participates in mitosis [28-33]. Thus, a defect in expression of any one of these genes could produce a common cellular phenotype; a defect in mitosis, and for example, one subject with a given disease may exhibit a deficiency in expression of ANAPC1 while a second individual with the same disease may exhibit a deficiency in expression of RANGAP1 and a third with the same disease may exhibit a defect in LEPREL4 expression levels. Any of these defects has the potential to produce a common cellular phenotype. Our approach makes it possible to capture each subject as positive for a given disease. We refer to this as the Ratioscore Method.


We applied this approach to determine how accurately it would distinguish subjects with IBD or IBS from CTRL. First, we identified ratios capable of discriminating IBD subjects from CTRL. Second, we applied a re-sampling permutation testing strategy to identify ratios that consistently displayed high discriminatory power. Third, we identified the smallest number of ratios producing the greatest discrimination between two comparator groups. The single ratio with the greatest discriminatory power was PGK 1/POU6F1 (FIG. 2A). Using this ratio, 30% of IBD subjects achieved a ratioscore value higher than all CTRL subjects and were awarded one point. A combination of 25 ratios produced a scoring panel where 100% of CTRL subjects achieved a score of 0 and 94% of IBD subjects achieved a ratio ≧1 (FIG. 2B). Thus, we conclude that gene-expression ratios we identified accurately distinguished IBD subjects from CTRL.


We continued our analysis to determine how well IBS and CTRL cohorts were differentiated. Interestingly, the optimum ratio that distinguished the IBD cohort from the CTRL cohort, PGK1/POU6F1, was also the optimum ratio that distinguished the IBS cohort from the CTRL cohort (FIG. 2C). We identified a total of 19 ratios that, in combination, produced a point system whereby 100% of CTRL subjects achieved a score of 0 and 90% of IBS subjects achieved a ratio ≧1 (FIG. 2D). Thus, even though IBS is generally considered not to be an inflammatory disease, we conclude our approach accurately distinguishes these subjects from the CTRL group.


IBS-IBD Discrimination Based Upon the Ratioscore Method


Next, we assessed our ability to distinguish IBS and IBD cohorts. The optimum ratio we identified was HRAS/TBP, p-value <0.0001 (FIG. 3A). We identified a total of 25 ratios that, combined, produced a ratioscore whereby 100% of IBD subjects achieved a score of 0 and 92% of IBS subjects were awarded a ratio ≧1 (FIG. 3B). Thus, we conclude that the ratioscore method was capable of discriminating between subjects with IBD and subjects with IBS.


UC-CD Discrimination Disease Based Upon the Ratioscore Method


Finally, we determined if our approach accurately discriminated between the two inflammatory bowel diseases, UC and CD. The optimum ratio was POU6F1/ANAPC1, p-value=0.003 (FIG. 4A). We identified a total of 20 ratios that, in combination, produced a point system that awarded 100% of UC subjects a score of 0 and 98% of subjects with CD a ratio ≧1 (FIG. 4B). Thus, the Ratioscore Method accurately discriminated between the two major subclasses: IBD:UC and IBD:CD.


Disease Discrimination Based Upon the SVM Method


Support Vector Machines (SVM) were also employed to classify the data into two distinct groups. The inputs for the SVM were the same ratios used to calculate the ratioscores. For example, when separating IBS patients from CTRL subjects, the same 19 ratios of normalized gene-expression ratios employed to compute the ratioscore were used as input to the SVM. In the SVM calculations, we chose the radial basis kernel (RBK) to perform the kernel trick. This kernel contains a fitting parameter β. We also used the “soft margin” approach to the fitting of the hyper-surface that separates the two groups (cases and controls). This introduced a second fitting parameter C. Programs written in Mathematica (Wolfram Research, Inc.) were created and random training subsets of the two groups were chosen to find the parameters, β and C. Each training subset consisted of 60% of the total dataset. The values of the two fitting parameters that produced the smallest number of incorrect cases and controls were used to define the SVM. This SVM analysis also accurately discriminated the different subject groups: (i) IBD and CTRL, (ii) IBS and CTRL, (iii) IBD and IBS, and (iv) CD and UC (Table 2).









TABLE 2







Case/Control discrimination by support vector machines (SVM #1)











Training set
Case
CTRL













Comparison
Total #
% of total
TP #
FN #
TN #
FP #
















IBD* vs. CTRL
209
60
95
1
100
13


IBD* vs. CTRL
160
60
47
0
96
17


IBD* vs. IBS
143
60
45
2
86
10


CD* vs. UC
85
60
45
2
31
7





*Case cohort



TP = true positive, FN = false negative, TN = true negative, FP = false positive







A second SVM was also employed using LS-SVMLab software (http://www.esat.kuleuven.ac.be/sista/lssvmlab) to validate the SVM created with Mathematica. The procedure for training the SVM followed the following algorithm:

    • X (X=50%, 60%, and 80%) was randomly selected from the total set of data and used to train the SVM.
    • On the selected training set, L-fold cross-validation was performed. In this type of training a certain fraction of the training set was omitted from training and the remaining portion of the partial training set was used to estimate the parameters of the SVM. This was repeated L times. We used L=10. At the completion of the training, a composite estimate for the parameters was obtained.
    • Once the SVM was trained on X % of the total data, the SVM was applied to the total data set.


Numbers of correct and incorrect classifications were tabulated for total sets (training and validation), training sets and validation sets (Table 3). Overall accuracy in the training sets was greater than overall accuracy of the validation sets. The different training sessions did not produce much variation in the overall accuracy of the corresponding validation sets. Using the above algorithm, two different kernels, a polynomial kernel and Radial Basis Function (RBF) kernel, were used to create different machines. Overall, the SVM with the RBF kernels performed somewhat better than the polynomial kernels.









TABLE 3







Overall accuracy in total, training and validation sets by SVM #2 method










TOTAL SET
TRAINING SET
VALIDATION SET



















Tc*
Ti†
TOTAL‡
% I§
Tc
Ti
TOTAL
% I
Tc
Ti
TOTAL
% I











80% IBS-C (RBF kernel)



















152
8
160
5
124
3
127
2
28
4
33
12








80% IBD-C (RBF kernel)



















207
2
209
1
160
0
166
0
41
2
43
4








80% IBD-IBS (RBF kernel)



















139
4
143
3
111
1
113
1
27
3
30
10








60% CD-UC (RBF kernel)



















77
7
85
9
47
4
51
8
31
3
34
11








60% IBS-C (polynomial)



















150
10
160
6
91
4
95
4
59
6
65
9








60% IBD-C (polynomial)



















195
14
209
7
88
7
95
7
107
7
114
6








60% IBD-IBS (polynomial)



















124
19
143
13
78
8
85
8
46
11
58
19








60% CD-UC (polynomial)



















76
9
85
10
47
4
50
8
30
5
35
14





*Tc, total number correct in designated set


†Ti, total number incorrect in designated set


‡Total, total number of cases and controls analyzed in designated set



§% I, incorrect percentage of case: control calls in designated set







This second SVM was used to discriminate between the different subject groups, IBD and CTRL, IBS and CTRL, IBD and IBS, and CD and UC producing levels of sensitivity and specificity comparable to the Ratioscore Method or the first SVM method (Table 4). We determined receiver operating characteristic (ROC) curves from data produced by the second SVM method. The area-under-the-curve (AUC) for each comparison exceeded 0.96 (FIG. 5). The IBD:CTRL comparison produced the greatest overall accuracy (AUC of 0.997). Thus, a tiered approach, using either ratioscore or SVM analysis, can be employed to segregate between IBD and IBS, first, followed by segregation between CD and UC if a subject is IBD positive. This approach produced high levels of sensitivity and specificity at both tiers of the analysis (FIG. 6).









TABLE 4







Sensitivity and specificity produced


by Ratioscore and two SVM methods











Ratioscore
SVM#1*
SVM#2*














sensi-
speci-
sensi-
speci-
sensi-
speci-


Method
tivity
ficity
tivity
ficity
tivity
ficity





IBD vs. CTRL
0.94
1.00
0.97
0.94
0.99
0.97


IBS vs. CTRL
0.91
1.00
1.00
0.68
0.85
0.99


IBD vs. IBS
0.93
1.00
0.97
0.91
0.92
0.98


CD vs. UC
0.98
1.00
0.94
0.85
0.89
0.92





*Training set = 80% of total


**Training set = 60% of total


Sensitivity = # true positives/(# true positives + # false negatives)


Specificity = # true negatives/(# true negatives + # false positives)






In the above discussion, two support vector machines were independently created and trained using the ratios identified by the Ratioscore Method. There was little difference in the performance of the two machines when used to classify the different case—control combinations. One advantage of the SVM-based approach is that it can be used to classify more than two groups. As an example of classification into three groups, we considered data for UC (N=40), CD (N=46), and CTRL (N=113). Using gene ratios determined by comparing CTRL (controls) to UC+CD (cases), the SVM identified 99.8% of CTRL, 72.5% of UC, and 56.5% of the CD. Hence, the performance of the tertiary classification was not as accurate as the binary classifications. However, the tertiary classification was improved by using a different set of gene ratios, e.g., the union of the set from CTRL vs. CD, CTRL vs. UC, and CD vs. UC. In this case, the SVM identified 99.1% of CTRL, 100% of UC, and 84.8% of CD. One factor that may contribute to this increased accuracy is that the number of gene ratios used in the training of the SVM was increased from 23 ratios to 49 thus introducing additional parameters into the SVM structure.


Discussion


IBS and IBD can exhibit overlapping clinical symptoms making diagnosis difficult without invasive procedures [4,12,34]. Therapy and medication for IBS and IBD are vastly different and incorrect diagnosis and treatment plans have significant consequences. Differentiation between UC and CD can also be difficult, having important implications when considering medical and operative treatment options. For example, ASCA and p-ANCA have clinical utility in diagnosing IBD. ASCA IgA is found in 35-50% of patients with CD but <1% of patients with UC. ASCA IgG is found in 50-80% of patients with CD but only 20% of patients with UC. In contrast, atypical p-ANCA is found in 70% of UC patients but only 20% of CD patients [19]. Here, we describe a relatively non-invasive procedure capable of accurately discriminating between (a) IBS and IBD, and (b) the two forms of IBD, UC and CD, using three independent methods based upon transcript levels in blood of a discrete set of genes. Each method employs the same input, which are multiple ratios of expression levels of two genes. The analytic methods, ratioscore, two SVM methods, and logistic regression, produce similar levels of overall accuracy determined by ROC curves which exceed 95%. We have summarized the overall process of going from the raw samples to classification in FIG. 7.


In contrast, biomarkers for IBS are non-existent and diagnosis largely depends upon the absence of pathological findings in the colon. Previously identified experimental biomarkers to distinguish UC and CD clearly do not perform with the same degree of accuracy as experimental approaches described here. Thus, we propose these gene expression ratio tests using the Ratioscore Method, SVM, or logistic regression for analysis represent simple non-invasive tests that could accurately classify patients to IBS or IBD catagories and IBD patients to UC or CD categories even without colonoscopy or sigmoidoscopy and tissue biopsy.


UC and CD are chronic inflammatory autoimmune diseases. Using various strategies, numerous studies have identified unique gene-expression signatures in blood or peripheral blood mononuclear cells (PBMC) associated with different autoimmune diseases [22]. Some are unique to a single autoimmune disease, some discriminate between two autoimmune diseases and some are shared among multiple autoimmune diseases. Thus perhaps it is not too surprising that we could employ a similar strategy to identify gene-expression signatures capable of discriminating the two forms of IBD, UC and CD, or IBD from CTRL or IBD from IBS. Somewhat surprising is that IBS can be readily distinguished from CTRL. IBS is a disorder whose etiology and pathogenic mechanisms are incompletely understood [4]. Our results clearly demonstrate that IBS possesses an underlying gene-expression signature. One possibility is that IBS possesses an unrecognized mucosal pathology sensed by the immune system and expressed by changes in transcript levels of specific genes. Another possibility is that IBS generates expression of cytokines, chemokines, adhesion molecules, neurotransmitters or other mediators read by the immune system. In support of this notion, over-expression of PGK1 is associated with IBS, CeD, CD, and UC and PGK1 is known to be induced by hypoxia and may be induced by other forms of stress, inflammation or generalized mucosal irritation [35]. Further, ABR, ACTR1A, EXT2, HRAS, and KRAS are over-expressed in both IBS and CeD but not CD and UC. In contrast, APOBEC3F, ASL and SPIB are under-expressed in CD and UC, but not IBS and CeD. Thus, the IBS gene-expression signature is more similar to the CeD gene-expression signature and the UC signature is more similar to the CD signature. It is uncertain if this suggests that IBS may bear additional relationships to CeD. An improved understanding of mechanisms producing differences in levels of specific gene transcripts in IBS may further our understanding of the pathogenesis of IBS.


CONCLUSIONS

Limitations to our study include selection of patients with pre-existing diagnoses of IBS and IBD, as this may not completely represent patients in the general population in whom these tests may be performed. However, in other studies we have shown that subjects with clinically isolated syndrome, a precursor of multiple sclerosis, who progress to a diagnosis of multiple sclerosis score positive in ratioscore- or SVM-based analyses, similar to those described here. This may suggest that subjects with initial clinical symptoms associated with IBD or IBS, CD or UC, may be discriminated by this approach. Future longitudinal approaches are planned to evaluate utility of these tests. Additional methods, such as analysis of gene-expression ratios in multi-dimensional space rather than binary space may improve the diagnostic capabilities of these tests. We employed three independent approaches to evaluate the ability of gene-expression ratios to discriminate subjects with gastro-intestinal diseases with overlapping clinical symptoms and each produced high degrees of specificity and sensitivity. Thus, these minimally invasive tests may assist in excluding or establishing a diagnosis of IBS or IBD, CD or UC.


Throughout this document, various references are mentioned. All such references are incorporated herein by reference, including the references set forth in the following list:


REFERENCES



  • 1. Vasiliauskas E: Recent advances in the diagnosis and classification of inflammatory bowel disease. Curr Gastroenterol Rep 2003, 5:493-500.

  • 2. Loftus E V, Sandborn E J: Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am 2002, 31:1-20.

  • 3. Ray S, Britschgi M, Herbert C, et al: Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med 2007, 13:1359-1362.

  • 4. Torpy J M, Golub R M: JAMA patient page. Irritable bowel syndrome. JAMA 2011, 306:1501.

  • 5. Schoepfer A M, Trummler M, Seeholzer P, et al: Discriminating IBD from IBS: comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm Bowel Dis 2008, 14:32-39.

  • 6. Hammerle C W, Crowe S E: When to reconsider the diagnosis of irritable bowel syndrome. Gastroenterol Clin North Am 2011, 40:291-307. vii.

  • 7. Geboes K, Colombel J F, Greenstein A, et al: Indeterminate colitis: a review of the concept—what's in a name? Inflamm Bowel Dis 2008, 14:850-857.

  • 8. Tekkis P P, Heriot A G, Smith O, et al: Long-term outcomes of restorative proctocolectomy for Crohn's disease and indeterminate colitis. Colorectal Dis 2005, 7:218-223.

  • 9. Landers C J, Cohavy O, Misra R, et al: Selected loss of tolerance evidenced by Crohn's disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002, 123:689-699.

  • 10. Targan S R, Landers C J, Yang H, et al: Antibodies to CBir 1 flagellin define a unique response that is associated independently with complicated Crohn's disease. Gastroenterology 2005, 128:2020-2028.

  • 11. Hui T, Landers C, Vasiliauskas E, et al: Serologic responses in indeterminate colitis patients before ileal pouch-anal anastomosis may determine those at risk for continuous pouch inflammation. Dis Colon Rectum 2005, 48:1254-1262.

  • 12. Tamboli C P, Doman D B, Patel A: Current and future role of biomarkers in Crohn's disease risk assessment and treatment. Clin Exp Gastroenterol 2001, 4:127-140.

  • 13. Barrett J C, Hansoul S, Nicolae D, et al: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008, 40:955-962.

  • 14. Burczynski M E, Dorner A J: Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 2006, 7:187-202.

  • 15. Burczynski M E, Peterson R L, Twine N C, et al: Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 2006, 8:51-61.

  • 16. Franke A, Balschun T, Sina C, et al: Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet 2010, 42:292-294.

  • 17. Harris V K, Sadiq S A: Disease biomarkers: Potential for use in therapeutic decision making. Mol Diagn Ther 2009, 13:225-244.

  • 18. Hugot J P, Chamaillard M, Zouali H, et al: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001, 411:599-603.

  • 19. Jaskowski T D, Litwin C M, Hill H R: Analysis of serum antibodies in patients suspected of having inflammatory bowel disease. Clin Vaccine Immunol 2006, 13:655-660.

  • 20. Maas K, Chan S, Parker J, et al: Cutting edge: molecular portrait of human autoimmune disease. J Immunol 2002, 169:5-9.

  • 21. Mannick E E, Bonomolo J C, Horswell R, et al: Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 2004, 112:247-257.

  • 22. Pascual V, Chaussabel D, Banchereau J: A genomic approach to human autoimmune diseases. Annu Rev Immunol 2010, 28:535-571.

  • 23. Quackenbush J: Microarray Analysis and Tumor Classification. N Engl J Med 2006, 354:2463-2472.

  • 24. Quintana F J, Farez M F, Viglietta V, et al: Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci USA 2008, 105:18889-18894.

  • 25. Fossey S C, Vnencak-Jones C L, Olsen N J, et al: Identification of molecular biomarkers for multiple sclerosis. J Mol Diagn 2007, 9:197-204.

  • 26. Tossberg J T, Crooke P S, Henderson M A, et al: Gene-expression signatures: biomarkers toward diagnosing multiple sclerosis. Genes Immun 2012, 13:146-154.

  • 27. Abdi H: The Bonferonni and Sidak corrections for multiple comparisons. Sage; 2007:1-9.

  • 28. Ochs R L, Stein T W, Chan E K, et al: cDNA cloning and characterization of a novel nucleolar protein. Mol Biol Cell 1996, 7:1015-1024.

  • 29. Pines J: Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 2011, 12:427-438.

  • 30. Moshe Y, Bar-On O, Ganoth D, et al: Regulation of the action of early mitotic inhibitor 1 on the anaphase-promoting complex/cyclosome by cyclin-dependent kinases. J Biol Chem 2011, 286:16647-16657.

  • 31. Arnaoutov A, Dasso M: The Ran GTPase regulates kinetochore function. Dev Cell 2003, 5:99-111.

  • 32. Qiao X, Pham D N, Luo H, et al: Ran overexpression leads to diminished T cell responses and selectively modulates nuclear levels of c-Jun and c-Fos. J Biol Chem 2010, 285:5488-5496.

  • 33. Quimby B B, Dasso M: The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol 2003, 15:338-344.

  • 34. Spiller R C: Irritable bowel syndrome: gender, infection, lifestyle or what else. Dig Dis 2011, 29:215-221.

  • 35. Lam W, Leung C-H, Bussom S, et al: The impact of hypoxic treatment on the expression of phosphogycerate kinase and the cytotoxicity of troxacitabine and gemcitabine. Mol Pharm 2007, 72:536-544.



It will be understood that various details of the presently disclosed subject matter can be changed without departing from the scope of the subject matter disclosed herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.


SEQUENCES

The following are complementary DNA (cDNA) sequences of genes-of-interest identified in Table A. The portion of the sequences bolded and underlined are Applied BioSystems context sequences, the region of that can be amplified in some embodiments of the presently-disclosed subject matter. ABI assay numbers for the sequences are provided in Table A.















SEQ ID NO: 1 - Homo sapiens active BCR-related gene (ABR), transcript variant 3, mRNA



GGACTGCAGAGGGAACTTGCCTTGAAGAGGCCTGGTCCTTAAAGAGACACAGCACACACGGCCCGACCGG


CAGCCCCAGAGCAGAGGCTCCACTGATGGCAGGCGCCCCTGGCTAGGCTCTGAGGTTCCTTTGCCCTCGC


CTTGCTGAATGGTGAGCCGCTGCCTCTCGGAGCCCGTCTCCTTGACAGCCTGCCCTCGGCTCCTGCAGCC


ACTCCTGGGCCTGATGGGGACAGGGCCAGCCTGGTGGGTGGTGTCAGAGGTCCTGGCAGAGCAGCGTAGG


CCTGGGATGCGTCTGCAGAATTCTGGCTGAACGAGCGAGGAGCACGGCCAGCTTCGGGGCCGTCGTGACC


ACAGGAGGGCAGAGGGCCAGCCCGTGAGCTCTGACCCCAGCTGGACGTGCTCTTGTTTCCCTTGGGGCTA


AGGAGATTGGAGCCACTGAACTGAATCTCTGGGTTTTGGAGACTTAGAGAATCCATTGGACTCTTCTGCT


GGCGTCTTTCTGAATGCTGATGGGGACTTGGTGACTTCAGCTACGGGACGGACGAGTACGACGGAGAGGG


GAATGAGGAGCAGAAGGGGCCCCCGGAGGGCTCAGAGACCATGCCGTACATCGATGAGTCGCCCACCATG


TCCCCGCAGCTCAGCGCCCGCAGCCAGGGCGGGGGGGATGGCGTCTCCCCGACTCCACCTGAGGGACTGG




CTCCTGGGGTGGAAGCAGGGAAA
GGCCTGGAGATGAGGAAGCTGGTTCTCTCGGGGTTCTTGGCCAGCGA



AGAGATCTACATTAACCAGCTGGAAGCCCTGTTGCTGCCCATGAAACCCCTGAAGGCCACCGCCACCACC


TCCCAGCCCGTGCTCACCATCCAGCAGATCGAGACCATCTTCTACAAGATCCAGGACATCTATGAGATCC


ACAAGGAGTTCTATGACAACCTGTGCCCCAAGGTGCAACAGTGGGACAGCCAGGTCACCATGGGCCACCT


CTTCCAGAAGCTGGCCAGCCAGCTCGGTGTGTACAAAGCGTTTGTCGATAACTATAAAGTCGCTCTGGAG


ACAGCTGAGAAGTGCAGCCAGTCCAACAACCAGTTCCAGAAGATCTCAGAGGAACTCAAAGTGAAAGGTC


CCAAGGACTCCAAGGACAGCCACACGTCTGTCACCATGGAAGCTCTGCTCTACAAGCCCATTGACCGGGT


CACTCGGAGCACCCTAGTCCTACACGACCTGCTGAAGCACACACCTGTGGACCACCCCGACTACCCGCTG


CTGCAGGATGCCCTCCGCATCTCCCAGAACTTCCTGTCCAGCATCAACGAGGACATCGACCCCCGCCGGA


CTGCAGTGACAACGCCCAAGGGGGAGACGCGACAGCTGGTGAAGGACGGCTTCCTGGTGGAAGTGTCAGA


GAGCTCCCGGAAGCTGCGGCACGTCTTCCTCTTTACAGATGTCCTACTGTGTGCCAAGCTGAAGAAGACC


TCTGCAGGGAAGCACCAGCAGTATGACTGTAAGTGGTACATCCCCCTGGCCGACCTGGTGTTTCCATCCC


CCGAGGAGTCTGAGGCCAGCCCCCAGGTGCACCCCTTCCCAGACCATGAGCTGGAGGACATGAAGATGAA


GATCTCTGCCCTCAAGAGTGAAATCCAGAAGGAGAAAGCCAACAAAGGCCAGAGCCGGGCCATCGAGCGC


CTGAAGAAGAAGATGTTTGAGAATGAGTTCCTGCTGCTGCTCAACTCCCCCACAATCCCGTTCAGGATCC


ACAATCGGAATGGAAAGAGTTACCTGTTCCTACTGTCCTCGGACTACGAGAGGTCAGAGTGGAGAGAAGC


AATTCAGAAACTACAGAAGAAGGATCTCCAGGCCTTTGTCCTGAGCTCAGTGGAGCTCCAGGTGCTCACA


GGATCCTGTTTCAAGCTTAGGACTGTACACAACATTCCTGTCACCAGCAATAAAGACGACGATGAGTCTC


CAGGACTCTATGGCTTCCTTCATGTCATCGTCCACTCTGCCAAGGGATTTAAGCAATCAGCCAACCTGTA


CTGTACCCTGGAGGTGGATTCCTTCGGCTATTTTGTCAGCAAAGCCAAAACCAGGGTGTTCCGGGACACA


GCGGAGCCCAAGTGGGATGAGGAGTTTGAGATCGAGCTGGAGGGCTCCCAGTCCCTGAGGATCCTGTGCT


ATGAGAAGTGCTATGACAAGACCAAGGTCAACAAGGACAACAATGAGATCGTGGACAAGATCATGGGCAA


AGGACAGATCCAGCTGGACCCACAAACCGTGGAGACCAAGAACTGGCACACGGACGTGATTGAGATGAAC


GGGATCAAAGTGGAATTTTCCATGAAATTCACCAGCCGAGATATGAGCCTGAAGAGGACCCCGTCCAAAA


AGCAGACCGGCGTCTTCGGTGTGAAGATCAGCGTGGTGACGAAGCGGGAGCGCTCCAAGGTGCCCTACAT


CGTCCGGCAGTGTGTGGAGGAGGTGGAGAAGAGGGGTATCGAGGAGGTTGGCATCTACAGGATATCGGGC


GTGGCCACGGACATCCAGGCGCTCAAGGCCGTCTTCGATGCCAATAACAAGGACATCCTGCTGATGCTGA


GTGACATGGACATCAACGCCATCGCCGGGACGCTCAAGCTGTACTTCCGGGAACTGCCCGAGCCGCTCCT


CACGGACCGACTCTACCCAGCCTTCATGGAGGGCATCGCCCTGTCAGACCCTGCTGCCAAGGAAAACTGC


ATGATGCACCTGCTCCGCTCCCTGCCCGACCCCAACCTCATCACCTTCCTCTTCCTGCTGGAACACTTGA


AAAGGGTTGCCGAGAAGGAGCCCATCAACAAAATGTCACTTCACAACCTGGCTACCGTGTTTGGACCCAC


GTTACTGAGACCCTCAGAAGTGGAGAGCAAAGCACACCTCACCTCGGCTGCGGACATCTGGTCCCATGAC


GTCATGGCGCAGGTCCAGGTCCTCCTCTACTACCTGCAGCACCCCCCCATTTCCTTCGCAGAACTCAAGC


GGAACACACTGTACTTCTCCACCGACGTGTAGCCCGAGGCAGGGTGGCTGCGGGCGGGTGGTGGAACCAG


CCCCTCCAGCCTGGGGTCCAACTCAGACTTGAAAGACTGCAATAGAAAACTCCCAAACCCAGCACTCCAG


ACTCGAGGGAAGCCAGCTTCCAAGAACTGGAATGCGTACGTCTTTTGTGCCACCTTGTACAAAGCCGGCT


GCCCAGCCCCAGCCTCACCACCGCATCCCACCTCCTGCCCTCCATACCTCTAGTTGTGTCTGATGCTCCG


TGCTGTTCGGGAATTGTTTTATGTACACTTGTCAGGCAGAAAAGGTAGTGACCGGCCCGGCGTGGGCACA


CAGACAGCCCGCTTTGTTCTTTCATTTCCTCCAGCACTTTCTTTCCGCCTGAGTCCAGCCCAAGGCCTTT


TATTTTGCGCTGTGTAACTGCTGCCAGCTTCTCTCTTGGCCCTGCTCCCAGATGGCGGTCTCCTGGCAGC


CTCCCCTCAGTCTTCCTCCACCCGCTCTTCCTTCCCAGCCTGCCTGCATGCATGTGCACCCTTGGTCTTC


GCTCCATCGCCTTGAAAGCTCTGAAGAGGCCCTGGGTTGCCGCGGCAGCAGTGGTCTGTTTGATGCTGCC


GTTTGCCGCTGCCGGCCCCTCCTCAGACTCCGCCTTTGGGAGCACACCTGCTTTGCCTTGCTGCCTGTGC


AAATGTTGGACAAGCAGACACACTCACACTCGTCCCCAGCTTAGCACAGAGCTGGAGCGCCCATTTCTGG


AATTTTCCGTTTGGGAATCTCCACTTCTGGGGTTTACCTGTTCGGCCTCCTGTCTATCAGTGAGGCATCT


CTGACTGTTTCTTCTACTGCTTTTCAGTTCCCTTCCCTGCTGTTCTATTTCCTTTGAGTGTAAAGACTCA


CAGGTGACCTGCTATCGAGATAGCCAGAGGGTCAGGAGAGAATGGGGGAGGAGGCGGTCAGGCTGCTGAG


GAAACACCACAGGCTGAACGGGGGAGGAATGCACATGCCACGCTGGGTGTCCCGGGTCGCGGGGAGGCAG


CTCAGCTCTTAGGAGCAAGTTGTGGGGGCTTTTCAAGAGGGGCCAGGCTTCCTGGAGGGTGACTGATGTG


GCCGAAGCAGGTGTCCAGGCAGGTAGGCTGCAGCCAGGAGCTCCCTGGCACCGCAGGACCTCGTGGTACT


CTTGCCTTAGATTTTACACACACTCCACAGCCAAGCACTGCCACGGTCCTCCAGGACCTGGGAAGCAAAG


GCACAGGCCCACGGTGGCCAGCCATTGTGGTGCCGCCCCAGCTTCTGGATACAGCCTTTTGGGTAAACAC


TGGGAACTCCAGAAGTTGTGGGGAGAGTGGGGAATCAGACAGCCGCCTCTAGGGGCTGGGTTCTGCTGGG


GCCTCCTTGTTGGTGCTGTAGGCACCCGCCAGGGAGCAGGGACCCGACTTGCAGACGCATTGCCCGGTAC


TAGGAAGGAGTGAGGTGTGTTCCCACCGTACACTTCCCACACGAGCTGCGGCTGCCAGCCTCGGGCCATC


AGCCTAGGAGAGCAGATGCAGCTCCAGGGGCTCGACTTATAGCCAGTTACAGCTCCCCGGCTCTTCTGTG


TGGCAGAGCGTCGTTTCCGGGCCCTCAGGGCTGGGGAGCTCAGTTCCCATTGCTTGTGCTCAGGGCTGAG


TCTTAAAGAAGGGTTTGCCGGCCCTAACGCTGCAGCGCGTGCGCGGTGAGAGGCCCTTTTTGAGCCTGTT


TACTCCTGTGGCCTTGGGCAGAACAGTAAATACTCTGTGCACGGAGGAAAGACATGCCCAAGAGGAAGGA


AGTACTGACCATCGGCTGCCTGTGAGCAGCTTAGCAAGGAGCCCTTGCTCCCTGGGAAAGGCGGTGAACT


TGAGTCTAAAGATGCAGTGCCTGGCCCTTCCTAAGGTCCCTGCCTGGCATCCGAGTGTCGGTGTGTGGCA


CAGAAGGCTCCTGCTTGCTTCCAAAGTGATGGACAGGAAGGGGCAGAGTGAGTCACGGCCCAGACTGGGC


ACCTTCGCGTCTCAGCCTCAGGGAGCCCCACAGCCCCAAGCTCGCTGAGGCAACGTGAGAACAGGCTATG


GGAAGGCTGCAAAGGCTGAGAAATGCAAAGGCTCATATTTATAAATCCCACCCCCAGAGTGGGGAGGGTC


AGGTGCCAGACCTGGACTAAACTGCACCAAGGAAACACCCAGCAGGGTCTCCTGTGAGCCGGGGACCATG


CAGCCCGAAACCTCCAGTCACTGCGCCCGGCAGGAGTCAGGAGCCAGGGACTGTGCAGCCTGGAACCTCC


AGTCACTGTGCCCAGCAGGGTGGGCTGTGCCCAGCAGGAGTCAGGCTAAGAAACGCCAGGTCTGCCTGTT


CTTGCTGGGCAATGGCTGATGGCTGCCAGTTTCTGCTGATACACAGGTAGGATGGGACCCTTCATGAATA


TCTGACTTTAATAAGTTGGTAAGGATATATTTTTTTGTCTATGTTCTGTTTCAACTTATGTAGATTATTA


TAAATTGATGTAAACCACGTGAGAGGAAAATGTTAATAAAAAATGCAAAGCCCCATCATTTGCACAAAAC


TCA





SEQ ID NO: 2 - Homo sapiens actin, beta (ACTB), mRNA


ACCGCCGAGACCGCGTCCGCCCCGCGAGCACAGAGCCTCGCCTTTGCCGATCCGCCGCCCGTCCACACCC


GCCGCCAGCTCACCATGGATGATGATATCGCCGCGCTCGTCGTCGACAACGGCTCCGGCATGTGCAAGGC


CGGCTTCGCGGGCGACGATGCCCCCCGGGCCGTCTTCCCCTCCATCGTGGGGCGCCCCAGGCACCAGGGC


GTGATGGTGGGCATGGGTCAGAAGGATTCCTATGTGGGCGACGAGGCCCAGAGCAAGAGAGGCATCCTCA


CCCTGAAGTACCCCATCGAGCACGGCATCGTCACCAACTGGGACGACATGGAGAAAATCTGGCACCACAC


CTTCTACAATGAGCTGCGTGTGGCTCCCGAGGAGCACCCCGTGCTGCTGACCGAGGCCCCCCTGAACCCC


AAGGCCAACCGCGAGAAGATGACCCAGATCATGTTTGAGACCTTCAACACCCCAGCCATGTACGTTGCTA


TCCAGGCTGTGCTATCCCTGTACGCCTCTGGCCGTACCACTGGCATCGTGATGGACTCCGGTGACGGGGT


CACCCACACTGTGCCCATCTACGAGGGGTATGCCCTCCCCCATGCCATCCTGCGTCTGGACCTGGCTGGC


CGGGACCTGACTGACTACCTCATGAAGATCCTCACCGAGCGCGGCTACAGCTTCACCACCACGGCCGAGC


GGGAAATCGTGCGTGACATTAAGGAGAAGCTGTGCTACGTCGCCCTGGACTTCGAGCAAGAGATGGCCAC


GGCTGCTTCCAGCTCCTCCCTGGAGAAGAGCTACGAGCTGCCTGACGGCCAGGTCATCACCATTGGCAAT


GAGCGGTTCCGCTGCCCTGAGGCACTCTTCCAGCCTTCCTTCCTGGGCATGGAGTCCTGTGGCATCCACG


AAACTACCTTCAACTCCATCATGAAGTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACAGTGCT


GTCTGGCGGCACCACCATGTACCCTGGCATTGCCGACAGGATGCAGAAGGAGATCACTGCCCTGGCACCC


AGCACAATGAAGATCAAGATCATTGCTCCTCCTGAGCGCAAGTACTCCGTGTGGATCGGCGGCTCCATCC


TGGCCTCGCTGTCCACCTTCCAGCAGATGTGGATCAGCAAGCAGGAGTATGACGAGTCCGGCCCCTCCAT


CGTCCACCGCAAATGCTTCTAGGCGGACTATGACTTAGTTGCGTTACACCCTTTCTTGACAAAACCTAAC


TTGCGCAGAAAACAAGATGAGATTGGCATGGCTTTATTTGTTTTTTTTGTTTTGTTTTGGTTTTTTTTTT


TTTTTTGGCTTGACTCAGGATTTAAAAACTGGAACGGTGAAGGTGACAGCAGTCGGTTGGAGCGAGCATC


CCCCAAAGTTCACAATGTGGCCGAGGACTTTGATTGCACATTGTTGTTTTTTTAATAGTCATTCCAAATA


TGAGATGCGTTGTTACAGGAAGTCCCTTGCCATCCTAAAAGCCACCCCACTTCTCTCTAAGGAGAATGGC


CCAGTCCTCTCCCAAGTCCACACAGGGGAGGTGATAGCATTGCTTTCGTGTAAATTATGTAATGCAAAAT


TTTTTTAATCTTCGCCTTAATACTTTTTTATTTTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCT


TCCCCCTTTTTTGTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGGGTGGAGGCAG


CCAGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAAAAGTGCACACCTTAAAAATGAAAAAAAAA


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 3 - Homo sapiens ARP1 actin-related protein 1 homolog A, centractin


alpha (yeast) (ACTR1A), mRNA


GCTCCCTCGCCGCCCTGAACCGGCGGCTAGACTGCGCATGCGTGTCAGTGGCGCTAGCGGCGGACCCGGC


TGGGCAGTTCCTTCCCCAGAAGGAGAGATTCCTCTGCCATGGAGTCCTACGATGTGATCGCCAACCAGCC


TGTCGTGATCGACAACGGATCCGGTGTGATTAAAGCTGGTTTTGCTGGTGATCAGATCCCCAAATACTGC


TTTCCAAACTATGTGGGCCGACCCAAGCACGTTCGTGTCATGGCAGGAGCCCTTGAAGGCGACATCTTCA


TTGGCCCCAAAGCTGAGGAGCACCGAGGGCTGCTTTCAATCCGCTATCCCATGGAGCATGGCATCGTCAA


GGATTGGAACGACATGGAACGCATTTGGCAATATGTCTATTCTAAGGACCAGCTGCAGACTTTCTCAGAG


GAGCATCCTGTGCTCCTGACTGAGGCGCCTTTAAACCCACGAAAAAACCGGGAACGAGCTGCCGAAGTTT


TCTTCGAGACCTTCAATGTGCCCGCTCTTTTCATCTCCATGCAAGCTGTACTCAGCCTTTACGCTACAGG


CAGGACCACAGGGGTGGTGCTGGATTCTGGGGATGGAGTCACCCATGCTGTGCCCATCTATGAGGGCTTT


GCCATGCCCCACTCCATCATGCGCATCGACATCGCGGGCCGGGACGTCTCTCGCTTCCTGCGCCTCTACC


TGCGTAAGGAGGGCTACGACTTCCACTCATCCTCTGAGTTTGAGATTGTCAAGGCCATAAAAGAAAGAGC




CTGTTA
CCTATCCATAAACCCCCAAAAGGATGAGACGCTAGAGACAGAGAAAGCTCAGTACTACCTGCCT



GATGGCAGCACCATTGAGATTGGTCCTTCCCGATTCCGGGCCCCTGAGTTGCTCTTCAGGCCAGATTTGA


TTGGAGAGGAGAGTGAAGGCATCCACGAGGTCCTGGTGTTCGCCATTCAGAAGTCAGACATGGACCTGCG


GCGCACGCTTTTCTCTAACATTGTCCTCTCAGGAGGCTCTACCCTGTTCAAAGGTTTTGGTGACAGGCTC


CTGAGTGAAGTGAAGAAACTAGCTCCAAAAGATGTGAAGATCAGGATATCTGCACCTCAGGAGAGACTGT


ATTCCACGTGGATTGGGGGCTCCATCCTTGCCTCCCTGGACACCTTTAAGAAGATGTGGGTCTCCAAAAA


GGAATATGAGGAAGACGGTGCCCGATCCATCCACAGAAAAACCTTCTAATGTCGGGACATCATCTTCACC


TCTCTCTGAAGTTAACTCCACTTTAAAACTCGCTTTCTTGAGTCGGAGTGTTTGCGAGGAACTGCCTGTG


TGTGAGTGCGTGTGTGGATATGAGTGTGTGTGCACATGCGAGTGCCGTGTGGCCCTGGGACCCTGGGCCC


AGAAAGGACGATGAACTACCTGCAGTGGTGATGGCCTGAGGCCTGGGGTTGACCACTAACTGGCTCCTGA


CAGGGAAGAGCGCTGGCAGAGGCTGTGCTCCCTCCTCAGGTGGCCTCTGGCTGGCTGTGGGGGACTCCGT


TTACTACCACAGGGAGACAGAGGGAGGTAAGCCATCCCCCGGGAGACCTTGCTGCTGACCATCCTAGGCT


GGGCTGGCCCCACCCTCACCCCCACCCCCAGGGTGCCCTGAGGCCCCAGGCAGCTGCTGCCTCCACTATC


GATGCCTCCTGACTGCACACTGAGGACTGGGACTGGGGTTGAGTTCTGTCTGGTTTTGTTGCCATTTTGG


TTTGGGAGGCTGGAAAAGCACCCCAAGAGCTATTACAGAGACTGGAGTCAGGAGAGAGCAGGAGGCCCTC


ATGTTCACCAGGGAACAGGACCACACCGGCCACTGGAGGAGGGCAGGAGCAGTCCTCACTCTGAATGGCT


GCAGAGTTAATGTTCCCAGCCCAGTCCCCTTTCGGGGGCCTTGGGAGAGTTTAAGGCACCTGCTGGTTCC


AGGACCTCGCTTTCCATCTGTTCTTGTTGCAATGCCATCTTCAAACCGTTTTATTTATTGAAGTGTTTGT


TCAGTTAGGGGCTGGAGAGAGGGAGCTTGCTGCCTCCTGCCTTGCTACACTAATGTTTACAGCACCTAAG


CTTAGCCTCCAGGGCCCCACCTCTCCCAGCTGATGGTGAGCTGACAGTGTCCACAGGTTCCAGGACCATT


TGAGATTGGAAGCTACACTCAAAGACACTCCCACCAGGCTCTTTCTCCCTTTTCCTCTTGCTCACTGCCC


TGGAATCAACAGGCTGGTTGCTGGTTAGATTTTCTGAAACAGGAGGTAAAATTTTTCTTTGGCAGAGGCC


CCTAAGCAAGGGAGGGGTGTTGGAGAGCCAGTGCCCTTAAGACTGGAGAAAGCTGCAATTTACCAAGTTG


CCTTTTGCCACTGTAGCTGACCAGGGGACTAGGTTGTAGAGGTGGGAAGGCCCCCTCTGGGCTGATCTTG


TGCCATTCTTGACCTTGGACCTGCTTGGTTAAGGAGGGAGTGGGCCAGACCAGAGTGCCAGGAGCTAATG


GAGCCAGGCCTGACTCCTAGGAGTGGTCCAAAGGCCTTCAGCCTAGATGGTGCAAAGCTGGGGCCAGCCT


GTCTTCACCGGCACCCTCACCTGTGACACCAAGACCCACCCCAATCCCAGACTTCACACAGTATTCTCCC


CCACGCCGTCCTATGACCAAAGGCCCCTGCCAGGTGTGGGCCACAGCAGCAGGTATGTGTGAAAGCAACG


TAGCGCCCCGCGGACTGCAGTGCGCTTAACCAACTCACCTCCCTTCTCTTAGCCCAAGCCTGTCCCTCGC


ACAGCCTCGCACAAACCACATTGCCTGGTGGGGCCCAGTGTACTGAAATAAAGTCGTTCCGATAGACACG


TCAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 4 - Homo sapiens ADAMTS-like 4 (ADAMTSL4), transcript


variant 1, mRNA


CCGCCGCGGAGCGAGGTTGCCTGGAGAGAGCGCCTGGGCGCAGAAGGGTTAACGGGCCACCGGGGGCTCG


CAGAGCAGGAGGGTGCTCTCGGACGGTGTGTCCCCCACTGCACTCCTGAACTTGGAGGACAGGGTCGCCG


CGAGGGACGCAGAGAGCACCCTCCACGCCCAGATGCCTGCGTAGTTTTTGTGACCAGTCCGCTCCTGCCT


CCCCCTGGGGCAGTAGAGGGGGAGCGATGGAGAACTGGACTGGCAGGCCCTGGCTGTATCTGCTGCTGCT


TCTGTCCCTCCCTCAGCTCTGCTTGGATCAGGAGGTGTTGTCCGGACACTCTCTTCAGACACCTACAGAG


GAGGGCCAGGGCCCCGAAGGTGTCTGGGGACCTTGGGTCCAGTGGGCCTCTTGCTCCCAGCCCTGCGGGG


TGGGGGTGCAGCGCAGGAGCCGGACATGTCAGCTCCCTACAGTGCAGCTCCACCCGAGTCTGCCCCTCCC


TCCCCGGCCCCCAAGACATCCAGAAGCCCTCCTCCCCCGGGGCCAGGGTCCCAGACCCCAGACTTCTCCA


GAAACCCTCCCCTTGTACAGGACACAGTCTCGGGGAAGGGGTGGCCCACTTCGAGGTCCCGCTTCCCACC


TAGGGAGAGAGGAGACCCAGGAGATTCGAGCGGCCAGGAGGTCCCGGCTTCGAGACCCCATCAAGCCAGG


AATGTTCGGTTATGGGAGAGTGCCCTTTGCATTGCCACTGCACCGGAACCGCAGGCACCCTCGGAGCCCA


CCCAGATCTGAGCTGTCCCTGATCTCTTCTAGAGGGGAAGAGGCTATTCCGTCCCCTACTCCAAGAGCAG


AGCCATTCTCCGCAAACGGCAGCCCCCAAACTGAGCTCCCTCCCACAGAACTGTCTGTCCACACCCCATC


CCCCCAAGCAGAACCTCTAAGCCCTGAAACTGCTCAGACAGAGGTGGCCCCCAGAACCAGGCCTGCCCCC


CTACGGCATCACCCCAGAGCCCAGGCCTCTGGCACAGAGCCCCCCTCACCCACGCACTCCTTAGGAGAAG


GTGGCTTCTTCCGTGCATCCCCTCAGCCACGAAGGCCAAGTTCCCAGGGTTGGGCCAGTCCCCAGGTAGC


AGGGAGACGCCCTGATCCTTTTCCTTCGGTCCCTCGGGGCCGAGGCCAGCAGGGCCAAGGGCCTTGGGGA


ACGGGGGGGACTCCTCACGGGCCCCGCCTGGAGCCTGACCCTCAGCACCCGGGCGCCTGGCTGCCCCTGC


TGAGCAACGGCCCCCATGCCAGCTCCCTCTGGAGCCTCTTTGCTCCCAGTAGCCCTATTCCAAGATGTTC


TGGGGAGAGTGAACAGCTAAGAGCCTGCAGCCAAGCGCCCTGCCCCCCTGAGCAGCCAGACCCCCGGGCC


CTGCAGTGCGCAGCCTTTAACTCCCAGGAATTCATGGGCCAGCTGTATCAGTGGGAGCCCTTCACTGAAG


TCCAGGGCTCCCAGCGCTGTGAACTGAACTGCCGGCCCCGTGGCTTCCGCTTCTATGTCCGTCACACTGA


AAAGGTCCAGGATGGGACCCTGTGTCAGCCTGGAGCCCCTGACATCTGTGTGGCTGGACGCTGTCTGAGC


CCCGGCTGTGATGGGATCCTTGGCTCTGGCAGGCGTCCTGATGGCTGTGGAGTCTGTGGGGGTGATGATT


CTACCTGTCGCCTTGTTTCGGGGAACCTCACTGACCGAGGGGGCCCCCTGGGCTATCAGAAGATCTTGTG


GATTCCAGCGGGAGCCTTGCGGCTCCAGATTGCCCAGCTCCGGCCTAGCTCCAACTACCTGGCACTTCGT


GGCCCTGGGGGCCGGTCCATCATCAATGGGAACTGGGCTGTGGATCCCCCTGGGTCCTACAGGGCCGGCG


GGACCGTCTTTCGATATAACCGTCCTCCCAGGGAGGAGGGCAAAGGGGAGAGTCTGTCGGCTGAAGGCCC


CACCACCCAGCCTGTGGATGTCTATATGATCTTTCAGGAGGAAAACCCAGGCGTTTTTTATCAGTATGTC


ATCTCTTCACCTCCTCCAATCCTTGAGAACCCCACCCCAGAGCCCCCTGTCCCCCAGCTTCAGCCGGAGA


TTCTGAGGGTGGAGCCCCCACTTGCTCCGGCACCCCGCCCAGCCCGGACCCCAGGCACCCTCCAGCGTCA


GGTGCGGATCCCCCAGATGCCCGCCCCGCCCCATCCCAGGACACCCCTGGGGTCTCCAGCTGCGTACTGG


AAACGAGTGGGACACTCTGCATGCTCAGCGTCCTGCGGGAAAGGTGTCTGGCGCCCCATTTTCCTCTGCA


TCTCCCGTGAGTCGGGAGAGGAACTGGATGAACGCAGCTGTGCCGCGGGTGCCAGGCCCCCAGCCTCCCC


TGAACCCTGCCACGGCACCCCATGCCCCCCATACTGGGAGGCTGGCGAGTGGACATCCTGCAGCCGCTCC


TGTGGCCCCGGCACCCAGCACCGCCAGCTGCAGTGCCGGCAGGAATTTGGGGGGGGTGGCTCCTCGGTGC


CCCCGGAGCGCTGTGGACATCTCCCCCGGCCCAACATCACCCAGTCTTGCCAGCTGCGCCTCTGTGGCCA


TTGGGAAGTTGGCTCTCCTTGGAGCCAGTGCTCCGTGCGGTGCGGCCGGGGCCAGAGAAGCCGGCAGGTT


CGCTGTGTTGGGAACAATGGTGATGAAGTGAGCGAGCAGGAGTGTGCGTCAGGCCCCCCGCAGCCCCCCA


GCAGAGAGGCCTGTGACATGGGGCCCTGTACTACTGCCTGGTTCCACAGCGACTGGAGCTCCAAGTGCTC


AGCCGAGTGTGGGACGGGAATCCAGCGGCGCTCTGTGGTCTGCCTTGGGAGTGGGGCAGCCCTCGGGCCA


GGCCAGGGGGAAGCAGGAGCAGGAACTGGGCAGAGCTGTCCAACAGGAAGCCGGCCCCCTGACATGCGCG


CCTGCAGCCTGGGGCCCTGTGAGAGAACTTGGCGCTGGTACACAGGGCCCTGGGGTGAGTGCTCCTCCGA


ATGTGGCTCTGGCACACAGCGTAGAGACATCATCTGTGTATCCAAACTGGGGACGGAGTTCAACGTGACT


TCTCCGAGCAACTGTTCTCACCTCCCCAGGCCCCCTGCCCTGCAGCCCTGTCAAGGGCAGGCCTGCCAGG


ACCGATGGTTTTCCACGCCCTGGAGCCCATGTTCTCGCTCCTGCCAAGGGGGAACGCAGACACGGGAGGT


CCAGTGCCTGAGCACCAACCAGACCCTCAGCACCCGATGCCCTCCTCAACTGCGGCCCTCCAGGAAGCGC


CCCTGTAACAGCCAACCCTGCAGCCAGCGCCCTGATGATCAATGCAAGGACAGCTCTCCACATTGCCCCC


TGGTGGTACAGGCCCGGCTCTGCGTCTACCCCTACTACACAGCCACCTGTTGCCGCTCTTGCGCACATGT


CCTGGAGCGGTCTCCCCAGGATCCCTCCTGAAAGGGGTCCGGGGCACCTTCACGGTTTTCTGTGCCACCA


TCGGTCACCCATTGATCGGCCCACTCTGAACCCCCTGGCTCTCCAGCCTGTCCCAGTCTCAGCAGGGATG


TCCTCCAGGTGACAGAGGGTGGCAAGGTGACTGACACAAAGTGACTTTCAGGGCTGTGGTCAGGCCCATG


TGGTGGTGTGATGGGTGTGTGCACATATGCCTCAGGTGTGCTTTTGGGACTGCATGGATATGTGTGTGCT


CAAACGTGTATCACTTTTCAAAAAGAGGTTACACAGACTGAGAAGGACAAGACCTGTTTCCTTGAGACTT


TCCTAGGTGGAAAGGAAAGCAAGTCTGCAGTTCCTTGCTAATCTGAGCTACTTAGAGTGTGGTCTCCCCA


CCAACTCCAGTTTTGTGCCCTAAGCCTCATTTCTCATGTTCAGACCTCACATCTTCTAAGCCGCCCTGTG


TCTCTGACCCCTTCTCATTTGCCTAGTATCTCTGCCCCTGCCTCCCTAATTAGCTAGGGCTGGGGTCAGC


CACTGCCAATCCTGCCTTACTCAGGAAGGCAGGAGGAAAGAGACTGCCTCTCCAGAGCAAGGCCCAGCTG


GGCAGAGGGTGAAAAAGAGAAATGTGAGCATCCGCTCCCCCACCACCCCGCCCAGCCCCTAGCCCCACTC


CCTGCCTCCTGAAATGGTTCCCACCCAGAACTAATTTATTTTTTATTAAAGATGGTCATGACAAATGAGA


AAAAAAAAA





SEQ ID NO: 5 - Homo sapiens anaphase promoting complex subunit 1


(ANAPC1), mRNA


CGCGTCCATTTGAACGTCTCGCACGCCTTCCTGCCATTAGCACTCGAGCCCGCTGCTGTTGCCCGTTCTT


CCTCCAGAATAGGGGAGGGAGAGGGAATGAGAAGCTGCTGCGGCCCAAGAGTCACTGTGAAGGACCCCGC


CGCTGCCCTCGGGCCTCCTCGGCCCCTGCGCCTCCGGGGAGCAGCCGGGGCTCGCCGCGCCTGACGCGTC


CCGAGTTATACAGAAATAATGTTGATATTTGGAACCCATGTCGAACTTCTATGAAGAAAGGACAACGATG


ATTGCAGCAAGGGATTTGCAGGAATTTGTTCCTTTTGGTCGAGACCACTGCAAGCACCACCCTAATGCTT


TGAACCTTCAACTTCGCCAGCTGCAGCCAGCTTCTGAATTATGGTCTTCTGATGGTGCTGCTGGCTTGGT


GGGATCCCTTCAGGAGGTTACAATCCACGAGAAACAGAAGGAAAGCTGGCAGTTAAGGAAAGGAGTAAGT


GAAATTGGAGAAGATGTGGACTATGATGAGGAACTCTATGTTGCTGGAAATATGGTGATATGGAGCAAAG


GAAGTAAAAGCCAGGCATTGGCAGTTTATAAAGCATTTACAGTTGACAGTCCTGTTCAGCAGGCATTGTG


GTGTGACTTCATTATATCACAGGATAAGTCTGAAAAGGCCTACAGTAGCAATGAAGTAGAAAAATGCATA


TGTATATTGCAAAGCTCATGTATTAACATGCATAGCATAGAAGGAAAGGATTACATAGCTTCATTACCAT


TTCAGGTTGCAAATGTTTGGCCCACTAAATATGGATTGCTGTTTGAACGAAGCGCTTCTTCACATGAAGT


ACCTCCAGGTTCACCCAGAGAACCTTTACCTACTATGTTCAGCATGCTGCACCCACTAGATGAAATAACT


CCACTTGTTTGTAAATCTGGAAGTCTTTTTGGTTCATCACGGGTGCAATATGTTGTAGATCATGCAATGA


AAATTGTTTTCCTCAATACTGACCCCTCTATTGTAATGACTTATGATGCTGTTCAAAATGTGCATTCTGT


GTGGACTCTCCGGAGAGTCAAATCAGAGGAAGAGAATGTTGTTTTAAAGTTCTCTGAACAGGGGGGAACC


CCACAGAATGTGGCCACTAGCAGCTCCCTCACAGCACATCTCAGAAGCCTCTCCAAAGGAGATTCCCCTG


TGACTTCACCTTTCCAGAATTACTCCTCCATTCACAGCCAGAGTCGCTCAACCTCATCACCCAGTCTACA


TTCTCGCTCACCTTCTATTTCCAACATGGCAGCTCTAAGTCGTGCTCATTCTCCTGCGTTAGGAGTGCAC


TCTTTTTCAGGGGTGCAAAGGTTCAACATTTCAAGCCATAATCAGTCTCCAAAGAGACATAGTATTTCTC


ATTCTCCAAATAGTAATTCTAATGGCTCCTTTCTTGCACCAGAAACGGAGCCAATTGTTCCTGAACTGTG


TATTGACCATTTGTGGACAGAAACGATTACTAATATAAGAGAGAAAAATTCACAAGCCTCAAAAGTGTTT


ATTACATCTGACCTATGTGGGCAAAAGTTCCTGTGCTTTTTAGTAGAGTCCCAGCTCCAGTTACGCTGTG


TAAAGTTTCAAGAGAGTAATGATAAAACCCAGCTCATCTTTGGTTCAGTGACCAACATACCAGCAAAGGA


TGCAGCACCAGTGGAGAAAATAGACACCATGCTGGTCTTGGAAGGCAGTGGAAACCTGGTGCTATACACA


GGAGTGGTTCGGGTGGGAAAGGTTTTTATTCCTGGACTGCCAGCTCCCTCTCTGACGATGTCCAACACAA


TGCCTCGGCCCAGTACTCCACTAGATGGCGTTAGTACTCCAAAGCCTCTTAGTAAACTCCTTGGATCATT


GGACGAGGTTGTTCTGTTGTCCCCAGTTCCAGAACTGAGGGATTCTTCAAAACTTCATGATTCTCTCTAT


AATGAGGATTGTACTTTCCAACAGCTTGGAACTTACATTCATTCTATCAGAGATCCTGTCCATAACAGAG


TCACCCTGGAACTGAGTAATGGCTCCATGGTTAGGATCACTATTCCTGAAATTGCCACCTCTGAGTTAGT


ACAAACGTGTTTGCAAGCAATTAAGTTTATCCTGCCAAAAGAAATAGCAGTTCAGATGCTTGTCAAGTGG


TACAATGTCCACAGTGCTCCAGGAGGACCCAGTTATCACTCAGAGTGGAATTTATTTGTGACTTGTCTCA


TGAACATGATGGGTTATAACACAGACCGCTTAGCATGGACTAGAAATTTTGACTTTGAAGGATCACTTTC


TCCTGTCATTGCGCCCAAAAAAGCAAGGCCTTCCGAGACTGGATCTGATGATGACTGGGAATATTTACTA


AATTCAGACTACCACCAGAATGTTGAGTCTCATCTTTTGAACAGATCTTTATGTCTGAGTCCTTCAGAAG


CTTCACAGATGAAGGATGAGGATTTTTCACAGAATCTCAGTCTGGATTCTTCTACACTTCTCTTTACTCA


CATACCTGCAATTTTTTTCGTTCTTCACCTTGTGTATGAGGAGCTTAAGTTGAATACTCTAATGGGAGAA


GGAATTTGTTCACTTGTTGAACTTCTCGTTCAGTTGGCAAGGGACTTAAAATTGGGGCCTTATGTAGATC


ATTACTATAGAGACTACCCAACGCTTGTCAGAACTACTGGACAAGTGTGCACAATTGATCCAGGTCAAAC


AGGATTTATGCATCATCCATCATTTTTTACGTCTGAGCCACCAAGTATTTATCAGTGGGTGAGTTCTTGT


CTGAAGGGTGAAGGAATGCCACCTTATCCTTACCTCCCTGGAATCTGTGAAAGAAGCAGACTTGTAGTCT


TGAGTATTGCACTGTACATACTTGGTGATGAGAGCTTGGTTTCTGATGAATCCTCACAGTATTTAACCAG


AATAACTATAGCCCCCCAGAAGTTGCAAGTAGAACAAGAGGAAAACAGGTTTAGTTTCAGGCATTCTACA


TCTGTTTCTAGTCTAGCTGAAAGATTGGTTGTCTGGATGACTAATGTAGGATTCACTTTAAGAGATTTGG


AAACTCTTCCCTTTGGAATTGCTCTTCCCATCAGAGATGCAATTTATCACTGTCGTGAGCAGCCTGCCTC


AGACTGGCCAGAAGCTGTCTGTCTCTTGATTGGACGTCAGGATCTTTCCAAGCAGGCCTGCGAAGGAAAC


TTACCCAAAGGGAAGTCTGTGCTCTCATCAGATGTTCCTTCAGGAACAGAAACTGAGGAGGAAGATGACG


GCATGAATGACATGAATCACGAGGTCATGTCATTAATATGGAGTGAAGATTTAAGGGTGCAGGATGTGCG


AAGGCTTCTTCAGAGTGCGCATCCTGTCCGTGTCAACGTAGTGCAGTACCCAGAGCTCAGTGACCACGAG


TTCATCGAGGAAAAGGAAAACAGATTGCTCCAATTGTGTCAGCGAACTATGGCTCTTCCTGTAGGACGAG


GAATGTTTACCTTGTTTTCGTACCATCCTGTTCCAACAGAGCCATTGCCTATTCCTAAATTGAATCTGAC


TGGGCGTGCCCCTCCTCGGAACACAACAGTAGACCTTAATAGTGGAAACATCGATGTGCCTCCCAACATG


ACAAGCTGGGCCAGCTTTCATAATGGTGTGGCTGCTGGCCTGAAGATAGCTCCTGCCTCCCAGATCGACT


CAGCTTGGATTGTTTACAATAAGCCCAAGCATGCTGAGTTGGCCAATGAGTATGCTGGCTTTCTCATGGC


TCTGGGTTTGAATGGGCACCTTACCAAGCTGGCGACTCTCAATATCCATGACTACTTGACCAAGGGCCAT


GAAATGACAAGCATTGGACTGCTACTTGGTGTTTCTGCTGCAAAACTAGGCACCATGGATATGTCTATTA


CTCGGCTTCTTAGCATTCACATTCCTGCTCTCTTACCCCCAACGTCCACAGAGCTGGATGTTCCTCACAA


TGTCCAAGTGGCTGCAGTGGTTGGCATTGGCCTTGTATATCAAGGGACAGCTCACAGACATACTGCAGAA


GTCCTGTTGGCTGAGATAGGACGGCCTCCTGGTCCTGAAATGGAATACTGCACTGACAGAGAGTCATACT


CCTTAGCTGCTGGCTTGGCCCTGGGCATGGTCTGCTTGGGGCATGGCAGCAATTTGATAGGTATGTCTGA


TCTCAATGTGCCTGAGCAGCTCTATCAGTACATGGTTGGAGGACATAGGCGCTTTCAAACAGGAATGCAT


AGGGAGAAACATAAATCACCAAGTTATCAAATCAAAGAAGGAGATACCATAAATGTGGATGTGACTTGTC


CAGGTGCTACTCTAGCTTTGGCTATGATCTACTTAAAAACCAATAACAGATCTATTGCAGATTGGCTCCG


AGCCCCTGACACCATGTATTTGTTGGACTTTGTGAAGCCAGAATTTCTCTTGCTTAGGACACTTGCTCGA


TGCCTGATTTTGTGGGATGATATTTTACCAAATTCCAAGTGGGTTGACAGCAATGTTCCTCAAATTATAA


GAGAAAATAGTATCTCTCTCAGTGAAATCGAATTGCCGTGCTCAGAGGATTTGAATTTGGAAACTTTGTC


CCAAGCACATGTCTACATAATTGCAGGAGCCTGCTTGTCTCTGGGTTTTCGATTTGCTGGCTCAGAAAAC


TTATCAGCATTTAACTGTTTGCATAAATTTGCCAAAGATTTTATGACTTATTTGTCCGCACCTAATGCTT


CTGTTACAGGTCCTCATAACCTAGAAACTTGTCTGAGCGTGGTGCTGCTGTCTCTCGCCATGGTCATGGC


TGGCTCAGGAAACCTAAAGGTTTTGCAGCTTTGTCGCTTCTTACACATGAAAACGGGTGGTGAAATGAAC


TATGGTTTTCACTTAGCCCACCACATGGCCCTTGGACTTCTATTTTTGGGAGGAGGAAGGTACTCTTTGA


GCACATCAAATTCTTCCATTGCCGCTCTTCTCTGTGCCCTTTATCCGCACTTCCCAGCTCACAGCACTGA




CAACCGGTATCATCTCCAGGCTCT
CCGGCACCTCTATGTGCTGGCCGCGGAGCCCAGGCTTCTAGTGCCT



GTGGATGTGGACACAAACACGCCCTGCTATGCCCTCTTAGAAGTTACCTACAAGGGCACTCAGTGGTATG


AACAAACCAAAGAAGAATTGATGGCTCCTACCCTTCTTCCAGAACTCCATCTTTTAAAGCAGATTAAAGT


AAAAGGCCCAAGATACTGGGAACTGCTCATAGATTTAAGCAAAGGAACACAACACTTGAAGTCCATCCTT


TCCAAGGATGGGGTTTTATATGTTAAACTCCGGGCGGGTCAGCTCTCCTACAAAGAAGATCCAATGGGAT


GGCAAAGTTTGTTGGCTCAGACTGTTGCTAACAGGAACTCTGAAGCCCGGGCTTTCAAGCCAGAAACAAT


CTCAGCATTCACTTCTGATCCAGCACTTCTGTCATTTGCTGAATATTTCTGCAAGCCAACTGTGAACATG


GGTCAGAAACAGGAAATTCTGGATCTCTTTTCTTCAGTACTCTATGAATGTGTTACCCAGGAGACCCCAG


AGATGTTGCCTGCATACATAGCAATGGATCAGGCTATAAGAAGACTTGGGAGAAGAGAAATGTCTGAGAC


TTCTGAACTTTGGCAGATAAAGTTGGTGTTAGAGTTTTTCAGCTCCCGAAGCCATCAGGAGCGGCTGCAG


AACCACCCTAAGCGGGGGCTCTTTATGAACTCGGAATTCCTCCCTGTTGTGAAGTGCACCATTGATAATA


CCCTGGACCAGTGGCTACAAGTCGGGGGTGATATGTGTGTGCACGCCTACCTCAGCGGGCAGCCCTTGGA


GGAATCACAGCTGAGCATGCTGGCCTGCTTCCTCGTCTACCACTCTGTGCCAGCTCCACAGCACCTGCCA


CCTATAGGACTAGAAGGGAGCACAAGCTTTGCTGAACTGCTCTTCAAATTTAAGCAGCTAAAAATGCCAG


TGCGAGCTTTGCTGAGATTGGCTCCTTTGCTTCTTGGAAATCCACAGCCAATGGTGATGTGACCGTGTCT


GGCGGTGAACCTACCCTGAAACGTGACTTCTGCACAACAAACGTGACCAAACATCAAAGCTAAAGCAATG


TTTATAAAGTTTTATGGTATAACTAGGGGGAAATGAGCTGCACAAACCTCAATGTATTTTAAATCTGTTG


CTGTCATCATTAACGGTATATGACATATAAAAGCAAGTTAAAATTTACTTTTGTAAATAAAGTTTTTGGT


TTGTTTCCAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 6 - Homo sapiens apolipoprotein B mRNA editing enzyme,


catalytic polypeptide-like 3F (APOBEC3F), transcript variant 1, mRNA


TTCCCTTTGCAATTGCCTTGGGTCCTGCCGCACAGAGCGGCCTGTCTTTATCAGAGGTCCCTCTGCCAGG


GGGAGGGCCCCAGAGAAAACCAGAAAGAGGGTGAGAGACTGAGGAAGATAAAGCGTCCCAGGGCCTCCTA


CACCAGCGCCTGAGCAGGAAGGGGGAGGGGCCATGACTACGAGGCCCTGGGAGGTCACTTTAGGGAGGGC


TGTCCTGAAACCTGGAGCCTGGAGCAGAAAGTGAAACCCTGGTGCTCCAGACAAAGATCTTAGTCGGGAC


TAGCCGGCCAAGGATGAAGCCTCACTTCAGAAACACAGTGGAGCGAATGTATCGAGACACATTCTCCTAC


AACTTTTATAATAGACCCATCCTTTCTCGTCGGAATACCGTCTGGCTGTGCTACGAAGTGAAAACAAAGG


GTCCCTCAAGGCCCCGTTTGGACGCAAAGATCTTTCGAGGCCAGGTGTATTCCCAGCCTGAGCACCACGC


AGAAATGTGCTTCCTCTCTTGGTTCTGTGGCAACCAGCTGCCTGCTTACAAGTGTTTCCAGATCACCTGG


TTTGTATCCTGGACCCCCTGCCCGGACTGTGTGGCGAAGCTGGCCGAATTCCTGGCTGAGCACCCCAATG


TCACCCTGACCATCTCCGCCGCCCGCCTCTACTACTACTGGGAAAGAGATTACCGAAGGGCGCTCTGCAG


GCTGAGTCAGGCAGGGGCCCGCGTGAAGATTATGGACGATGAAGAATTTGCATACTGCTGGGAAAACTTT


GTGTACAGTGAAGGTCAGCCATTCATGCCTTGGTACAAATTCGATGACAATTATGCATTCCTGCACCGCA


CGCTAAAGGAGATTCTCAGAAACCCGATGGAGGCAATGTATCCACACATATTCTACTTCCACTTTAAAAA


CCTACGCAAAGCCTATGGTCGGAACGAAAGCTGGCTGTGCTTCACCATGGAAGTTGTAAAGCACCACTCA


CCTGTCTCCTGGAAGAGGGGCGTCTTCCGAAACCAGGTGGATCCTGAGACCCATTGTCATGCAGAAAGGT


GCTTCCTCTCTTGGTTCTGTGACGACATACTGTCTCCTAACACAAACTACGAGGTCACCTGGTACACATC


TTGGAGCCCTTGCCCAGAGTGTGCAGGGGAGGTGGCCGAGTTCCTGGCCAGGCACAGCAACGTGAATCTC


ACCATCTTCACCGCCCGCCTCTACTACTTCTGGGATACAGATTACCAGGAGGGGCTCCGCAGCCTGAGTC


AGGAAGGGGCCTCCGTGGAGATCATGGGCTACAAAGATTTTAAATATTGTTGGGAAAACTTTGTGTACAA


TGATGATGAGCCATTCAAGCCTTGGAAAGGACTAAAATACAACTTTCTATTCCTGGACAGCAAGCTGCAG


GAGATTCTCGAGTGAGGGGTCTCCCCGGGCCTCATGGTCTGTCTCCTCTAGCCTCCTGCTCATGTTGTGC


AGGCCTCCCCTCCATCCTGGACCAGCTGTGCTTTTGCCTGGTCATCCTGAGCCCCTCCTGGCCTCAGGGC


CATTCCATAGTGCTCCCCTGCCTCACCACCTCCTCTCCGCTCTCCCAGGCTCTTCCTGCAGAGGCCTCTT


TCTGCCTCCATGGCTATCCATCCACCCACCAAGACCCTGTTCCCTGAGCCTGCATGCCCCTAACCTGCCT


TTTCCCATCTCCCCAGCATAACCTAATATTTTTTTTTTTTTTTTGAGACGGAATTTCGCTCTGTCACCCA


GACTGGAGTGCAATGGCTTGATCTTGGCTCACTGCAAACTCTGCCTACCAGGTTCAAGCGATTCTCCTGC


CTCCGCCTCCCGAGTAGCTGGAATTACAGACGCCTGCCACCACGCACAGCTAACTTTTTTTTTTTTTGTA


TTTTTAGTAGTGACTGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCAGGTGATCCGC


CTATCTCAGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGGCCCGGCGGCACAACCAAATCTTA


TTAAACTCACCCTAGGCTGGCCGCGGTGACTCATGCCTATAATCCCCCAGCAATTTGGGAGGCAGAGGTG


AGAGAATCGCTTGAGCCCAGGAATTCGAGACCAGCCTGGGCCACATGACAAAGCCCCATCTCTACAAAAA


AATTACAAAAAAAAAAAAAACAGGTGTGGTGGCATGCACCTGTAGTTGAAGCTACTTGGAAGGATGAAGT


GGGAGGATTGCTTGAGCCGGGGAGGTGGAGGCTGCAGTGAACTGAGATCACGTCACTGAACTCCAGTCTG


AGCAACAGATCGAGACCCTGCCTGAAAATAAATCAATAAATAAACTCAACCGAAATGGGTATGAAAGTTG


AAATGGGTATGTAAGTTGAAAACCAGAAGTTTTGAGAAACATCCTTTGTTAACTTTCATCCTACAAATTG


GGTCATTCATGTCCTACGCAGCTAAAACAGAGCCCAGGAGCCAGGGAGGAAAAGCAGTCAGGCCACACAC


CATTGCTCCCAAAATGGACTTCTCTGCAAGCCTGACTCCTGAAACTGTGCATTGTACCCTGAAACCAGCT


TTATCCATAGCTTCTGCAATAAATGGCTGTAAGTCTTGGACTCCTTGCTATAATCGCAGCTATTCAGCAA


TGGAACCTCCCAGTTCCCAACCCTTCCTAGTGCCCATGGGCTTTCCCATAGGACAAGAGAACATTTCTCC


TTTTCTTTTTTTTTTTCTTTGAAATGGAGTCTCGCCCTGTCACCCAGGCTGGAGTGCAATGGTGCGGTCT


CGGCTCACTGCAACCTCTGCCTCCCTTGTTCAAGTGATTCTCCTGTCTCAGCCTCCCGAGTAGCTGGGAT


TACAGGCGTCCACCACCAAACCAGGCTAATTTTTGTATTTTTCATAAAAACGGGTTTCATCATGTTTCCC


AGGCTGGTCTTATTTTTATTTTATTTTTTGAGATGGAGTCTTGCTCTGTTGCCCAGGCTGGGGTGCAGTG


GTGCAATCTGGGTTCACTGCAGCCTCTGCCGCCTGAGTTCAAGCTATTTTCCTACCTAAGCCTCCCAAGT


AGCTGGGATTACATGCGCGTGCCACCACGCCTAGCTAATTTTTGTGTTTTTAGTAGAGACGGGGTTTCAA


CATCTTGACCAGGCTGGTCTTGAACTCCTGACCTCGTGATCCACCCGTCTCGGCCTCCCAAAGTGCTGGG


ATTACAGGCGTGAGCCACCTGGCCAGGCTTAGGCTGGTCTTAAACTCCTGACCTCAAGTGATCCAACCTC


CTTGGCCTCCCAAATTGCTGGGATTGCTGGTGTGAGCCACAGCGCCTAGCCCATTTCTCCTTTTAATAGG


ACCTGTTGCTGTCTCTGTTCTCCCAACATGGTGAACACCACCCGGACTGCGTGTATGTCCCAAATTACAA


TTCTTTCTTTGCAAATGAAATGTGAAATTTAGAGGCCCTTCTCCACACTTTAAATTTGACTTGACATTTT


CTAGGCAGATATAAGTTATTAGAGAATGAGATTCTCTATAAAAATGATCCCTTCATGCTGTGGCCTCCAC


AGAAGATGCCCTGGGCCAGGTGCCCACATGAATAATGCGGGCCACAGGCAGGCATTTATTTTCTCACAGA


TATGGAGGCTACAAGTCCAAGGTGGAGGGGTCGGCGGGGTTGTTTGCTCTGAGGCCGCTCCTCCTGGATG


GCAGGGATCCCTTCTGGCTGTGTCCTCTGTGGCCTTTCCTCTATGAACCTGTACTGTACCTCTGGGGTCT


CTCTGCTTCCAAATATCTTTTTTTTTTTTTTCAGACAGTTTTGCTCTTGTTTTCTAGGCTGGAGTGCAAT


GGCACAATCTCAGCTCACTGCAACCTCTGCCTTCCGAGTTCAAGCGATTCTCGTGCCTCAGCCTCCTGAG


TAGCTGGGACTACAGGCGTGTGCCACCACGCCTGGCTAATTTTGTAGTTTTAGTAGAGACGGGGTTTCTC


CATGTTGCTCAGGCTGGTCTTGAACTCATGAGCTCAGGCGATCCACTCTCCTCAGCCTCCCAAAGTGCTG


GGATTACAGATATAAGCCACCATACACAACTTTTTTTTTTTTTTGAGATGGAGTTTCACTCTGTTGCCCA


GGCTGGAGTGCTAAATAGCAGAATCACTGCTCACTGCAACCTCTGCCTGCTGGGTTCAAGCAATTCTCCC


ACCTCAGCCTCCTGAGTAGCTGGGATTACAGATGCCCAGAACCAATCTCTGCTAATTTTTCTATTTTTTA


GTAGAGATGGGGTTTCACTGAGGAAGGAGACCACCTCTCTCATTGTCTCCTATTTCAGAAGGAAGCAAAA


AGTTAGAAAGATGCAGAAGTAAGATCAATGGCCAGACTGTTTGGCGCTGCTACCTGGGCCTGGTAGTTAA


AGATCAACTCCTGACCTGACCGCTTGTTTTATCTAAAGATTCCAGACATTGTATGAGGAAGCATTGTGAA


ACTTTCTGGTCTGTTCTGCTAGCCCCCACCACTGATGCATGTAGCCCCCCAGTCACGTAGCCCACGCTTG


CACAATCTATCACGACCCTTTCACGTGGACCCCTTAGAATTGTAAGCCCTTAAAAGGGCCAGGGACTTCT


TCAGGGAGCTCCAATCTTCAGATGCAAGTCTGTCAACGCTCCCAGCTGATTAAAGCCTCTTCCTTCCTAA


AAAAAAAAAAAAAAAA





SEQ ID NO: 7 - Homo sapiens argininosuccinate lyase (ASL), transcript


variant 1, mRNA


CCAGGCGGAGGTGAGTGCGCGGCGGCCGGATGGGCGGGACGGGCGTGGAGGACGCCGAGCACCGTGGCGC


GCGCTCACGTCCGCGTCCCCAAGGGCTGCGCTCCCTCAAGCGCAGTGCCCAGAACTCGGAGCCAGCCCGG


CCCGGGGGACCCTGCTGGCCAAGGAGGTCGTCAGTCCGGTCTTGTCTTCCAGACCCGGAGGACCGAAGCT


TCCGGACGACGAGGAACCGCCCAACATGGCCTCGGAGAGTGGGAAGCTTTGGGGTGGCCGGTTTGTGGGT


GCAGTGGACCCCATCATGGAGAAGTTCAACGCGTCCATTGCCTACGACCGGCACCTTTGGGAGGTGGATG


TTCAAGGCAGCAAAGCCTACAGCAGGGGCCTGGAGAAGGCAGGGCTCCTCACCAAGGCCGAGATGGACCA


GATACTCCATGGCCTAGACAAGGTGGCTGAGGAGTGGGCCCAGGGCACCTTCAAACTGAACTCCAATGAT


GAGGACATCCACACAGCCAATGAGCGCCGCCTGAAGGAGCTCATTGGTGCAACGGCAGGGAAGCTGCACA


CGGGACGGAGCCGGAATGACCAGGTGGTCACAGACCTCAGGCTGTGGATGCGGCAGACCTGCTCCACGCT


CTCGGGCCTCCTCTGGGAGCTCATTAGGACCATGGTGGATCGGGCAGAGGCGGAACGTGATGTTCTCTTC


CCGGGGTACACCCATTTGCAGAGGGCCCAGCCCATCCGCTGGAGCCACTGGATTCTGAGCCACGCCGTGG


CACTGACCCGAGACTCTGAGCGGCTGCTGGAGGTGCGGAAGCGGATCAATGTCCTGCCCCTGGGGAGTGG


GGCCATTGCAGGCAATCCCCTGGGTGTGGACCGAGAGCTGCTCCGAGCAGAACTCAACTTTGGGGCCATC


ACTCTCAACAGCATGGATGCCACTAGTGAGCGGGACTTTGTGGCCGAGTTCCTGTTCTGGGCTTCGCTGT


GCATGACCCATCTCAGCAGGATGGCCGAGGACCTCATCCTCTACTGCACCAAGGAATTCAGCTTCGTGCA


GCTCTCAGATGCCTACAGCACGGGAAGCAGCCTGATGCCCCAGAAGAAAAACCCCGACAGTTTGGAGCTG


ATCCGGAGCAAGGCTGGGCGTGTGTTTGGGCGGTGTGCCGGGCTCCTGATGACCCTCAAGGGACTTCCCA


GCACCTACAACAAAGACTTACAGGAGGACAAGGAAGCTGTGTTTGAAGTGTCAGACACTATGAGTGCCGT


GCTCCAGGTGGCCACTGGCGTCATCTCTACGCTGCAGATTCACCAAGAGAACATGGGACAGGCTCTCAGC


CCCGACATGCTGGCCACTGACCTTGCCTATTACCTGGTCCGCAAAGGGATGCCATTCCGCCAGGCCCACG


AGGCCTCCGGGAAAGCTGTGTTCATGGCCGAGACCAAGGGGGTCGCCCTCAACCAGCTGTCACTGCAGGA


GCTGCAGACCATCAGCCCCCTGTTCTCGGGCGACGTGATCTGCGTGTGGGACTACGGGCACAGTGTGGAG


CAGTATGGTGCCCTGGGCGGCACTGCGCGCTCCAGCGTCGACTGGCAGATCCGCCAGGTGCGGGCGCTAC


TGCAGGCACAGCAGGCCTAGGTCCTCCCACACCTGCCCCCTAATAAAGTGGGCGCGAGAGGAGGCTGCTG


TGTGTTTCCTGCCCCAGCCTGGCTCCCTCGTTGCTGGGCTTTCGGGGCTGGCCAGTGGGGACAGTCAGGG


ACTGGAGAGGCAGGGCAGGGTGGCCTGTAATCCCAGCACTTTGGAAGGGCAAGGTGCGAGGATGCTTGAG


GCCAGGAGTTTGACACAGCCTGGGCAACACAGGGAGACCCCCATCTCTACTCAATAATAAAACAAATAGC


CTGGCGTGGTGGCCCATGCATATAGTCCCAGCTACTTGTAAGGCTGAGGTGAGAGGACACTTGTGCCCAG


GAGTGGAGGCTGCAGTGAGCTATGATCACGCCACTGCATTCCAGCCTGGATAACAGAGTGAGAACCTATC


TCTAAAAATAAATAAATAAACGAAAAATAAA





SEQ ID NO: 8 - Homo sapiens beta-2-microglobulin (B2M), mRNA


AATATAAGTGGAGGCGTCGCGCTGGCGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAGATGTCTCGCT


CCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGAT


TCAGGTTTACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTT


CATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACT


TGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGA


GTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGATCGAGACATGTAA




G
CAGCATCATGGAGGTTTGAAGATGCCGCATTTGGATTGGATGAATTCCAAATTCTGCTTGCTTGCTTTT



TAATATTGATATGCTTATACACTTACACTTTATGCACAAAATGTAGGGTTATAATAATGTTAACATGGAC


ATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCCATGTTTGATGTATCTGAGCAGGTTGCTCCACA


GGTAGCTCTAGGAGGGCTGGCAACTTAGAGGTGGGGAGCAGAGAATTCTCTTATCCAACATCAACATCTT


GGTCAGATTTGAACTCTTCAATCTCTTGCACTCAAAGCTTGTTAAGATAGTTAAGCGTGCATAAGTTAAC


TTCCAATTTACATACTCTGCTTAGAATTTGGGGGAAAATTTAGAAATATAATTGACAGGATTATTGGAAA


TTTGTTATAATGAATGAAACATTTTGTCATATAAGATTCATATTTACTTCTTATACATTTGATAAAGTAA


GGCATGGTTGTGGTTAATCTGGTTTATTTTTGTTCCACAAGTTAAATAAATCATAAAACTTGATGTGTTA


TCTCTTA





SEQ ID NO: 9 - Homo sapiens breast cancer 1, early onset (BRCA1), transcript


variant 6, non-coding RNA


AGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGGTAGTAGAGTCCCGGGA


AAGGGACAGGGGGCCCAAGTGATGCTCTGGGGTACTGGCGTGGGAGAGTGGATTTCCGAAGCTGACAGAT


GGTTCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATG


CTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGA


CCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACAGTGTCCTTTA


TGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTCA


GCTTGACACAGGTTTGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAACTCTCCTGAACAT


CTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTG


AACCCGAAAATCCTTCCTTGGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCT


GAGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAA


GATACCGTTAATAAGGCAACTTATTGCAGTGTGGGAGATCAAGAATTGTTACAAATCACCCCTCAAGGAA


CCAGGGATGAAATCAGTTTGGATTCTGCAAAAAAGGCTGCTTGTGAATTTTCTGAGACGGATGTAACAAA


TACTGAACATCATCAACCCAGTAATAATGATTTGAACACCACTGAGAAGCGTGCAGCTGAGAGGCATCCA


GAAAAGTATCAGGGTAGTTCTGTTTCAAACTTGCATGTGGAGCCATGTGGCACAAATACTCATGCCAGCT


CATTACAGCATGAGAACAGCAGTTTATTACTCACTAAAGACAGAATGAATGTAGAAAAGGCTGAATTCTG


TAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAACATAACAGATGGGCTGGAAGTAAGGAAACATGT


AATGATAGGCGGACTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCCTGTGTGAGAGAAAAG


AATGGAATAAGCAGAAACTGCCATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGATAACACT


AAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGAACTGTTAGGTTCTGATGACTCA


CATGATGGGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACGTTCTAAATGAGGTAGATGAAT


ATTCTGGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCCTCATGAGGCTTTAATATGTAAAAGTGA


AAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAG


GCAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATCTAATTATAGGAGCATTTGTTACTGAGCCACAGA


TAATACAAGAGCGTCCCCTCACAAATAAATTAAAGCGTAAAAGGAGACCTACATCAGGCCTTCATCCTGA


GGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATCAGGGAACTAACCAA


ACGGAGCAGAATGGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGATTCTA


TTCAGAATGAGAAAAATCCTAACCCAATAGAATCACTCGAAAAAGAATCTGCTTTCAAAACGAAAGCTGA


ACCTATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCCACAATTCAAAAGCACCTAAAAAG


AATAGGCTGAGGAGGAAGTCTTCTACCAGGCATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAA


GCCCACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGTGAAGAGATAAAGAAAAAAAAGTA


CAACCAAATGCCAGTCAGGCACAGCAGAAACCTACAACTCATGGAAGGTAAAGAACCTGCAACTGGAGCC


AAGAAGAGTAACAAGCCAAATGAACAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTGAAGT


TAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAAATACCAGTGAACTTAAAGAATTTGTCAATCCTAG


CCTTCCAAGAGAAGAAAAAGAAGAGAAACTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA


GATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGG


TACCTGGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGGGAAGGCAAA


AACAGAACCAAATAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGT


TCCAAAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGACATGAAGTTAACCACAGTCGGG


AAACAAGCATAGAAATGGAAGAAAGTGAACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA


GCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCTCTGCCCAC


TCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAA


AGAATGAGTCTAATATCAAGCCTGTACAGACAGTTAATATCACTGCAGGCTTTCCTGTGGTTGGTCAGAA


AGATAAGCCAGTTGATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCTATCATCTCAGTTC


AGAGGCAACGAAACTGGACTCATTACTCCAAATAAACATGGACTTTTACAAAACCCATATCGTATACCAC


CACTTTTTCCCATCAAGTCATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAACTTTGAGGA


ACATTCAATGTCACCTGAAAGAGAAATGGGAAATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGT


AATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGGTTCCAGTACTA


ATGAAGTGGGCTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTAGAAA


CAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCTATAAACAAAGTCTT


CCTGGAAGTAATTGTAAGCATCCTGAAATAAAAAAGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATA


CAGATTTCTCTCCATATCTGATTTCAGATAACTTAGAACAGCCTATGGGAAGTAGTCATGCATCTCAGGT


TTGTTCTGAGACACCTGATGACCTGTTAGATGATGGTGAAATAAAGGAAGATACTAGTTTTGCTGAAAAT


GACATTAAGGAAAGTTCTGCTGTTTTTAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCC


CTTTCACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAGAAGAGAA


CTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCCAACACTTGTTATTTGGTAAAGTAAACAATATACCT


TCTCAGTCTACTAGGCATAGCACCGTTGCTACCGAGTGTCTGTCTAAGAACACAGAGGAGAATTTATTAT


CATTGAAGAATAGCTTAAATGACTGCAGTAACCAGGTAATATTGGCAAAGGCATCTCAGGAACATCACCT


TAGTGAGGAAACAAAATGTTCTGCTAGCTTGTTTTCTTCACAGTGCAGTGAATTGGAAGACTTGACTGCA


AATACAAACACCCAGGATCCTTTCTTGATTGGTTCTTCCAAACAAATGAGGCATCAGTCTGAAAGCCAGG


GAGTTGGTCTGAGTGACAAGGAATTGGTTTCAGATGATGAAGAAAGAGGAACGGGCTTGGAAGAAAATAA


TCAAGAAGAGCAAAGCATGGATTCAAACTTAGGTGAAGCAGCATCTGGGTGTGAGAGTGAAACAAGCGTC


TCTGAAGACTGCTCAGGGCTATCCTCTCAGAGTGACATTTTAACCACTCAGCAGAGGGATACCATGCAAC


ATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAAGCTGTGTTAGAACAGCATGGGAGCCAGCC


TTCTAACAGCTACCCTTCCATCATAAGTGACTCTTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGC


ACATCAGAAAAAGCAGTATTAACTTCACAGAAAAGTAGTGAATACCCTATAAGCCAGAATCCAGAAGGCC


TTTCTGCTGACAAGTTTGAGGTGTCTGCAGATAGTTCTACCAGTAAAAATAAAGAACCAGGAGTGGAAAG


GTCATCCCCTTCTAAATGCCCATCATTAGATGATAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAG


AATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTGGAGGAGCAACAGCTGGAAGAGT


CTGGGCCACACGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCTAGAGGGAACCCCTTACCTGGA


ATCTGGAATCAGCCTCTTCTCTGATGACCCTGAATCTGATCCTTCTGAAGACAGAGCCCCAGAGTCAGCT


CGTGTTGGCAACATACCATCTTCAACCTCTGCATTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCC


AGAGTCCAGCTGCTGCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGA


GAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACC




CCAGAAGAATTTATGCTCGTGT
ACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTG



AAGAGACTACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCT


AGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGGGTGACCCAGTCTATTAAAGAAAGAAAAATG


CTGAATGAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCCAAAGCGAG


CAAGAGAATCCCAGGACAGAAAGATCTTCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACCAACAT


GCCCACAGATCAACTGGAATGGATGGTACAGCTGTGTGGTGCTTCTGTGGTGAAGGAGCTTTCATCATTC


ACCCTTGGCACAGGTGTCCACCCAATTGTGGTTGTGCAGCCAGATGCCTGGACAGAGGACAATGGCTTCC


ATGCAATTGGGCAGATGTGTGAGGCACCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTCTA


CCAGTGCCAGGAGCTGGACACCTACCTGATACCCCAGATCCCCCACAGCCACTACTGACTGCAGCCAGCC


ACAGGTACAGAGCCACAGGACCCCAAGAATGAGCTTACAAAGTGGCCTTTCCAGGCCCTGGGAGCTCCTC


TCACTCTTCAGTCCTTCTACTGTCCTGGCTACTAAATATTTTATGTACATCAGCCTGAAAAGGACTTCTG


GCTATGCAAGGGTCCCTTAAAGATTTTCTGCTTGAAGTCTCCCTTGGAAATCTGCCATGAGCACAAAATT


ATGGTAATTTTTCACCTGAGAAGATTTTAAAACCATTTAAACGCCACCAATTGAGCAAGATGCTGATTCA


TTATTTATCAGCCCTATTCTTTCTATTCAGGCTGTTGTTGGCTTAGGGCTGGAAGCACAGAGTGGCTTGG


CCTCAAGAGAATAGCTGGTTTCCCTAAGTTTACTTCTCTAAAACCCTGTGTTCACAAAGGCAGAGAGTCA


GACCCTTCAATGGAAGGAGAGTGCTTGGGATCGATTATGTGACTTAAAGTCAGAATAGTCCTTGGGCAGT


TCTCAAATGTTGGAGTGGAACATTGGGGAGGAAATTCTGAGGCAGGTATTAGAAATGAAAAGGAAACTTG


AAACCTGGGCATGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGCAGATCACTGGA


GGTCAGGAGTTCGAAACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAAAATACAGAAATTAGC


CGGTCATGGTGGTGGACACCTGTAATCCCAGCTACTCAGGTGGCTAAGGCAGGAGAATCACTTCAGCCCG


GGAGGTGGAGGTTGCAGTGAGCCAAGATCATACCACGGCACTCCAGCCTGGGTGACAGTGAGACTGTGGC


TCAAAAAAAAAAAAAAAAAAAGGAAAATGAAACTAGAAGAGATTTCTAAAAGTCTGAGATATATTTGCTA


GATTTCTAAAGAATGTGTTCTAAAACAGCAGAAGATTTTCAAGAACCGGTTTCCAAAGACAGTCTTCTAA


TTCCTCATTAGTAATAAGTAAAATGTTTATTGTTGTAGCTCTGGTATATAATCCATTCCTCTTAAAATAT


AAGACCTCTGGCATGAATATTTCATATCTATAAAATGACAGATCCCACCAGGAAGGAAGCTGTTGCTTTC


TTTGAGGTGATTTTTTTCCTTTGCTCCCTGTTGCTGAAACCATACAGCTTCATAAATAATTTTGCTTGCT


GAAGGAAGAAAAAGTGTTTTTCATAAACCCATTATCCAGGACTGTTTATAGCTGTTGGAAGGACTAGGTC


TTCCCTAGCCCCCCCAGTGTGCAAGGGCAGTGAAGACTTGATTGTACAAAATACGTTTTGTAAATGTTGT


GCTGTTAACACTGCAAATAAACTTGGTAGCAAACACTTCCAAAAAAAAAAAAAAAAAA





SEQ ID NO: 10 - Homo sapiens CD55 molecule, decay accelerating


factor for complement (Cromer blood group) (CD55), transcript variant 1,


mRNA


AGCGAGCTCCTCCTCCTTCCCCTCCCCACTCTCCCCGAGTCTAGGGCCCCCGGGGCGTATGACGCCGGAG


CCCTCTGACCGCACCTCTGACCACAACAAACCCCTACTCCACCCGTCTTGTTTGTCCCACCCTTGGTGAC


GCAGAGCCCCAGCCCAGACCCCGCCCAAAGCACTCATTTAACTGGTATTGCGGAGCCACGAGGCTTCTGC


TTACTGCAACTCGCTCCGGCCGCTGGGCGTAGCTGCGACTCGGCGGAGTCCCGGCGGCGCGTCCTTGTTC


TAACCCGGCGCGCCATGACCGTCGCGCGGCCGAGCGTGCCCGCGGCGCTGCCCCTCCTCGGGGAGCTGCC


CCGGCTGCTGCTGCTGGTGCTGTTGTGCCTGCCGGCCGTGTGGGGTGACTGTGGCCTTCCCCCAGATGTA


CCTAATGCCCAGCCAGCTTTGGAAGGCCGTACAAGTTTTCCCGAGGATACTGTAATAACGTACAAATGTG


AAGAAAGCTTTGTGAAAATTCCTGGCGAGAAGGACTCAGTGATCTGCCTTAAGGGCAGTCAATGGTCAGA


TATTGAAGAGTTCTGCAATCGTAGCTGCGAGGTGCCAACAAGGCTAAATTCTGCATCCCTCAAACAGCCT


TATATCACTCAGAATTATTTTCCAGTCGGTACTGTTGTGGAATATGAGTGCCGTCCAGGTTACAGAAGAG


AACCTTCTCTATCACCAAAACTAACTTGCCTTCAGAATTTAAAATGGTCCACAGCAGTCGAATTTTGTAA


AAAGAAATCATGCCCTAATCCGGGAGAAATACGAAATGGTCAGATTGATGTACCAGGTGGCATATTATTT


GGTGCAACCATCTCCTTCTCATGTAACACAGGGTACAAATTATTTGGCTCGACTTCTAGTTTTTGTCTTA


TTTCAGGCAGCTCTGTCCAGTGGAGTGACCCGTTGCCAGAGTGCAGAGAAATTTATTGTCCAGCACCACC


ACAAATTGACAATGGAATAATTCAAGGGGAACGTGACCATTATGGATATAGACAGTCTGTAACGTATGCA


TGTAATAAAGGATTCACCATGATTGGAGAGCACTCTATTTATTGTACTGTGAATAATGATGAAGGAGAGT


GGAGTGGCCCACCACCTGAATGCAGAGGAAAATCTCTAACTTCCAAGGTCCCACCAACAGTTCAGAAACC


TACCACAGTAAATGTTCCAACTACAGAAGTCTCACCAACTTCTCAGAAAACCACCACAAAAACCACCACA


CCAAATGCTCAAGCAACACGGAGTACACCTGTTTCCAGGACAACCAAGCATTTTCATGAAACAACCCCAA


ATAAAGGAAGTGGAACCACTTCAGGTACTACCCGTCTTCTATCTGGGCACACGTGTTTCACGTTGACAGG


TTTGCTTGGGACGCTAGTAACCATGGGCTTGCTGACTTAGCCAAAGAAGAGTTAAGAAGAAAATACACAC


AAGTATACAGACTGTTCCTAGTTTCTTAGACTTATCTGCATATTGGATAAAATAAATGCAATTGTGCTCT


TCATTTAGGATGCTTTCATTGTCTTTAAGATGTGTTAGGAATGTCAACAGAGCAAGGAGAAAAAAGGCAG


TCCTGGAATCACATTCTTAGCACACCTACACCTCTTGAAAATAGAACAACTTGCAGAATTGAGAGTGATT


CCTTTCCTAAAAGTGTAAGAAAGCATAGAGATTTGTTCGTATTTAGAATGGGATCACGAGGAAAAGAGAA


GGAAAGTGATTTTTTTCCACAAGATCTGTAATGTTATTTCCACTTATAAAGGAAATAAAAAATGAAAAAC


ATTATTTGGATATCAAAAGCAAATAAAAACCCAATTCAGTCTCTTCTAAGCAAAATTGCTAAAGAGAGAT


GAACCACATTATAAAGTAATCTTTGGCTGTAAGGCATTTTCATCTTTCCTTCGGGTTGGCAAAATATTTT


AAAGGTAAAACATGCTGGTGAACCAGGGGTGTTGATGGTGATAAGGGAGGAATATAGAATGAAAGACTGA


ATCTTCCTTTGTTGCACAAATAGAGTTTGGAAAAAGCCTGTGAAAGGTGTCTTCTTTGACTTAATGTCTT


TAAAAGTATCCAGAGATACTACAATATTAACATAAGAAAAGATTATATATTATTTCTGAATCGAGATGTC


CATAGTCAAATTTGTAAATCTTATTCTTTTGTAATATTTATTTATATTTATTTATGACAGTGAACATTCT


GATTTTACATGTAAAACAAGAAAAGTTGAAGAAGATATGTGAAGAAAAATGTATTTTTCCTAAATAGAAA


TAAATGATCCCATTTTTTGGTATCATGTAGTATGTGAAATTTATTCTTAAACGTGACTACTTTATTTCTA


AATAAGAAATTCCCTACCTGCTTCCTACAAGCAGTTCAGAATGCCATGCCTTGGTTGTCCTAGTGTGAAT


AATTTTCAGCTACTTTAAAATTATATTGTACTTTCTCAAGCATGTCATATCCTTTCCTATTAGAGTATCT


ATATTACTTGTTACTGATTTACCTGAAGGCAATCTGATTAATTTCTAGGTTTTTACCATATTCTTGTCAT


CTTGCCAATTACATTTTAAGTGTTAGACTAGACTAAGATGTACTAGTTGTATAGAATATAACTAGATTTA


TTATGGCAATGTTTATTTTGTCATTTTGCTTCATCTGTTTTGTTGTTGAAGTACTTTAAATTTCATACGT


TCATGGCATTTCACTGTAAAGACTTTAATGTGTATTTCTTAAAATAAAACTTTTTTTCCTCCTTAAAAAA


AAAAAAAAAAAA





SEQ ID NO: 11 - Homo sapiens cadherin 1, type 1, E-cadherin (epithelial)


(CDH1), mRNA


AGTGGCGTCGGAACTGCAAAGCACCTGTGAGCTTGCGGAAGTCAGTTCAGACTCCAGCCCGCTCCAGCCC


GGCCCGACCCGACCGCACCCGGCGCCTGCCCTCGCTCGGCGTCCCCGGCCAGCCATGGGCCCTTGGAGCC


GCAGCCTCTCGGCGCTGCTGCTGCTGCTGCAGGTCTCCTCTTGGCTCTGCCAGGAGCCGGAGCCCTGCCA


CCCTGGCTTTGACGCCGAGAGCTACACGTTCACGGTGCCCCGGCGCCACCTGGAGAGAGGCCGCGTCCTG


GGCAGAGTGAATTTTGAAGATTGCACCGGTCGACAAAGGACAGCCTATTTTTCCCTCGACACCCGATTCA


AAGTGGGCACAGATGGTGTGATTACAGTCAAAAGGCCTCTACGGTTTCATAACCCACAGATCCATTTCTT


GGTCTACGCCTGGGACTCCACCTACAGAAAGTTTTCCACCAAAGTCACGCTGAATACAGTGGGGCACCAC


CACCGCCCCCCGCCCCATCAGGCCTCCGTTTCTGGAATCCAAGCAGAATTGCTCACATTTCCCAACTCCT


CTCCTGGCCTCAGAAGACAGAAGAGAGACTGGGTTATTCCTCCCATCAGCTGCCCAGAAAATGAAAAAGG


CCCATTTCCTAAAAACCTGGTTCAGATCAAATCCAACAAAGACAAAGAAGGCAAGGTTTTCTACAGCATC


ACTGGCCAAGGAGCTGACACACCCCCTGTTGGTGTCTTTATTATTGAAAGAGAAACAGGATGGCTGAAGG


TGACAGAGCCTCTGGATAGAGAACGCATTGCCACATACACTCTCTTCTCTCACGCTGTGTCATCCAACGG


GAATGCAGTTGAGGATCCAATGGAGATTTTGATCACGGTAACCGATCAGAATGACAACAAGCCCGAATTC


ACCCAGGAGGTCTTTAAGGGGTCTGTCATGGAAGGTGCTCTTCCAGGAACCTCTGTGATGGAGGTCACAG


CCACAGACGCGGACGATGATGTGAACACCTACAATGCCGCCATCGCTTACACCATCCTCAGCCAAGATCC


TGAGCTCCCTGACAAAAATATGTTCACCATTAACAGGAACACAGGAGTCATCAGTGTGGTCACCACTGGG


CTGGACCGAGAGAGTTTCCCTACGTATACCCTGGTGGTTCAAGCTGCTGACCTTCAAGGTGAGGGGTTAA


GCACAACAGCAACAGCTGTGATCACAGTCACTGACACCAACGATAATCCTCCGATCTTCAATCCCACCAC


GTACAAGGGTCAGGTGCCTGAGAACGAGGCTAACGTCGTAATCACCACACTGAAAGTGACTGATGCTGAT


GCCCCCAATACCCCAGCGTGGGAGGCTGTATACACCATATTGAATGATGATGGTGGACAATTTGTCGTCA


CCACAAATCCAGTGAACAACGATGGCATTTTGAAAACAGCAAAGGGCTTGGATTTTGAGGCCAAGCAGCA


GTACATTCTACACGTAGCAGTGACGAATGTGGTACCTTTTGAGGTCTCTCTCACCACCTCCACAGCCACC


GTCACCGTGGATGTGCTGGATGTGAATGAAGCCCCCATCTTTGTGCCTCCTGAAAAGAGAGTGGAAGTGT


CCGAGGACTTTGGCGTGGGCCAGGAAATCACATCCTACACTGCCCAGGAGCCAGACACATTTATGGAACA


GAAAATAACATATCGGATTTGGAGAGACACTGCCAACTGGCTGGAGATTAATCCGGACACTGGTGCCATT


TCCACTCGGGCTGAGCTGGACAGGGAGGATTTTGAGCACGTGAAGAACAGCACGTACACAGCCCTAATCA


TAGCTACAGACAATGGTTCTCCAGTTGCTACTGGAACAGGGACACTTCTGCTGATCCTGTCTGATGTGAA


TGACAACGCCCCCATACCAGAACCTCGAACTATATTCTTCTGTGAGAGGAATCCAAAGCCTCAGGTCATA


AACATCATTGATGCAGACCTTCCTCCCAATACATCTCCCTTCACAGCAGAACTAACACACGGGGCGAGTG


CCAACTGGACCATTCAGTACAACGACCCAACCCAAGAATCTATCATTTTGAAGCCAAAGATGGCCTTAGA


GGTGGGTGACTACAAAATCAATCTCAAGCTCATGGATAACCAGAATAAAGACCAAGTGACCACCTTAGAG


GTCAGCGTGTGTGACTGTGAAGGGGCCGCTGGCGTCTGTAGGAAGGCACAGCCTGTCGAAGCAGGATTGC


AAATTCCTGCCATTCTGGGGATTCTTGGAGGAATTCTTGCTTTGCTAATTCTGATTCTGCTGCTCTTGCT


GTTTCTTCGGAGGAGAGCGGTGGTCAAAGAGCCCTTACTGCCCCCAGAGGATGACACCCGGGACAACGTT


TATTACTATGATGAAGAAGGAGGCGGAGAAGAGGACCAGGACTTTGACTTGAGCCAGCTGCACAGGGGCC


TGGACGCTCGGCCTGAAGTGACTCGTAACGACGTTGCACCAACCCTCATGAGTGTCCCCCGGTATCTTCC


CCGCCCTGCCAATCCCGATGAAATTGGAAATTTTATTGATGAAAATCTGAAAGCGGCTGATACTGACCCC


ACAGCCCCGCCTTATGATTCTCTGCTCGTGTTTGACTATGAAGGAAGCGGTTCCGAAGCTGCTAGTCTGA


GCTCCCTGAACTCCTCAGAGTCAGACAAAGACCAGGACTATGACTACTTGAACGAATGGGGCAATCGCTT


CAAGAAGCTGGCTGACATGTACGGAGGCGGCGAGGACGACTAGGGGACTCGAGAGAGGCGGGCCCCAGAC


CCATGTGCTGGGAAATGCAGAAATCACGTTGCTGGTGGTTTTTCAGCTCCCTTCCCTTGAGATGAGTTTC


TGGGGAAAAAAAAGAGACTGGTTAGTGATGCAGTTAGTATAGCTTTATACTCTCTCCACTTTATAGCTCT


AATAAGTTTGTGTTAGAAAAGTTTCGACTTATTTCTTAAAGCTTTTTTTTTTTTCCCATCACTCTTTACA


TGGTGGTGATGTCCAAAAGATACCCAAATTTTAATATTCCAGAAGAACAACTTTAGCATCAGAAGGTTCA


CCCAGCACCTTGCAGATTTTCTTAAGGAATTTTGTCTCACTTTTAAAAAGAAGGGGAGAAGTCAGCTACT


CTAGTTCTGTTGTTTTGTGTATATAATTTTTTAAAAAAAATTTGTGTGCTTCTGCTCATTACTACACTGG


TGTGTCCCTCTGCCTTTTTTTTTTTTTTAAGACAGGGTCTCATTCTATCGGCCAGGCTGGAGTGCAGTGG


TGCAATCACAGCTCACTGCAGCCTTGTCCTCCCAGGCTCAAGCTATCCTTGCACCTCAGCCTCCCAAGTA


GCTGGGACCACAGGCATGCACCACTACGCATGACTAATTTTTTAAATATTTGAGACGGGGTCTCCCTGTG


TTACCCAGGCTGGTCTCAAACTCCTGGGCTCAAGTGATCCTCCCATCTTGGCCTCCCAGAGTATTGGGAT


TACAGACATGAGCCACTGCACCTGCCCAGCTCCCCAACTCCCTGCCATTTTTTAAGAGACAGTTTCGCTC


CATCGCCCAGGCCTGGGATGCAGTGATGTGATCATAGCTCACTGTAACCTCAAACTCTGGGGCTCAAGCA


GTTCTCCCACCAGCCTCCTTTTTATTTTTTTGTACAGATGGGGTCTTGCTATGTTGCCCAAGCTGGTCTT


AAACTCCTGGCCTCAAGCAATCCTTCTGCCTTGGCCCCCCAAAGTGCTGGGATTGTGGGCATGAGCTGCT


GTGCCCAGCCTCCATGTTTTAATATCAACTCTCACTCCTGAATTCAGTTGCTTTGCCCAAGATAGGAGTT


CTCTGATGCAGAAATTATTGGGCTCTTTTAGGGTAAGAAGTTTGTGTCTTTGTCTGGCCACATCTTGACT


AGGTATTGTCTACTCTGAAGACCTTTAATGGCTTCCCTCTTTCATCTCCTGAGTATGTAACTTGCAATGG


GCAGCTATCCAGTGACTTGTTCTGAGTAAGTGTGTTCATTAATGTTTATTTAGCTCTGAAGCAAGAGTGA


TATACTCCAGGACTTAGAATAGTGCCTAAAGTGCTGCAGCCAAAGACAGAGCGGAACTATGAAAAGTGGG


CTTGGAGATGGCAGGAGAGCTTGTCATTGAGCCTGGCAATTTAGCAAACTGATGCTGAGGATGATTGAGG


TGGGTCTACCTCATCTCTGAAAATTCTGGAAGGAATGGAGGAGTCTCAACATGTGTTTCTGACACAAGAT


CCGTGGTTTGTACTCAAAGCCCAGAATCCCCAAGTGCCTGCTTTTGATGATGTCTACAGAAAATGCTGGC


TGAGCTGAACACATTTGCCCAATTCCAGGTGTGCACAGAAAACCGAGAATATTCAAAATTCCAAATTTTT


TTCTTAGGAGCAAGAAGAAAATGTGGCCCTAAAGGGGGTTAGTTGAGGGGTAGGGGGTAGTGAGGATCTT


GATTTGGATCTCTTTTTATTTAAATGTGAATTTCAACTTTTGACAATCAAAGAAAAGACTTTTGTTGAAA


TAGCTTTACTGTTTCTCAAGTGTTTTGGAGAAAAAAATCAACCCTGCAATCACTTTTTGGAATTGTCTTG


ATTTTTCGGCAGTTCAAGCTATATCGAATATAGTTCTGTGTAGAGAATGTCACTGTAGTTTTGAGTGTAT


ACATGTGTGGGTGCTGATAATTGTGTATTTTCTTTGGGGGTGGAAAAGGAAAACAATTCAAGCTGAGAAA


AGTATTCTCAAAGATGCATTTTTATAAATTTTATTAAACAATTTTGTTAAACCAT





SEQ ID NO: 12 - Homo sapiens cyclin-dependent kinase inhibitor 1B


(p27, Kipl) (CDKN1B), mRNA


CTTCTTCGTCAGCCTCCCTTCCACCGCCATATTGGGCCACTAAAAAAAGGGGGCTCGTCTTTTCGGGGTG


TTTTTCTCCCCCTCCCCTGTCCCCGCTTGCTCACGGCTCTGCGACTCCGACGCCGGCAAGGTTTGGAGAG


CGGCTGGGTTCGCGGGACCCGCGGGCTTGCACCCGCCCAGACTCGGACGGGCTTTGCCACCCTCTCCGCT


TGCCTGGTCCCCTCTCCTCTCCGCCCTCCCGCTCGCCAGTCCATTTGATCAGCGGAGACTCGGCGGCCGG


GCCGGGGCTTCCCCGCAGCCCCTGCGCGCTCCTAGAGCTCGGGCCGTGGCTCGTCGGGGTCTGTGTCTTT


TGGCTCCGAGGGCAGTCGCTGGGCTTCCGAGAGGGGTTCGGGCTGCGTAGGGGCGCTTTGTTTTGTTCGG


TTTTGTTTTTTTGAGAGTGCGAGAGAGGCGGTCGTGCAGACCCGGGAGAAAGATGTCAAACGTGCGAGTG


TCTAACGGGAGCCCTAGCCTGGAGCGGATGGACGCCAGGCAGGCGGAGCACCCCAAGCCCTCGGCCTGCA


GGAACCTCTTCGGCCCGGTGGACCACGAAGAGTTAACCCGGGACTTGGAGAAGCACTGCAGAGACATGGA


AGAGGCGAGCCAGCGCAAGTGGAATTTCGATTTTCAGAATCACAAACCCCTAGAGGGCAAGTACGAGTGG


CAAGAGGTGGAGAAGGGCAGCTTGCCCGAGTTCTACTACAGACCCCCGCGGCCCCCCAAAGGTGCCTGCA


AGGTGCCGGCGCAGGAGAGCCAGGATGTCAGCGGGAGCCGCCCGGCGGCGCCTTTAATTGGGGCTCCGGC


TAACTCTGAGGACACGCATTTGGTGGACCCAAAGACTGATCCGTCGGACAGCCAGACGGGGTTAGCGGAG


CAATGCGCAGGAATAAGGAAGCGACCTGCAACCGACGATTCTTCTACTCAAAACAAAAGAGCCAACAGAA


CAGAAGAAAATGTTTCAGACGGTTCCCCAAATGCCGGTTCTGTGGAGCAGACGCCCAAGAAGCCTGGCCT


CAGAAGACGTCAAACGTAAACAGCTCGAATTAAGAATATGTTTCCTTGTTTATCAGATACATCACTGCTT


GATGAAGCAAGGAAGATATACATGAAAATTTTAAAAATACATATCGCTGACTTCATGGAATGGACATCCT


GTATAAGCACTGAAAAACAACAACACAATAACACTAAAATTTTAGGCACTCTTAAATGATCTGCCTCTAA


AAGCGTTGGATGTAGCATTATGCAATTAGGTTTTTCCTTATTTGCTTCATTGTACTACCTGTGTATATAG


TTTTTACCTTTTATGTAGCACATAAACTTTGGGGAAGGGAGGGCAGGGTGGGGCTGAGGAACTGACGTGG


AGCGGGGTATGAAGAGCTTGCTTTGATTTACAGCAAGTAGATAAATATTTGACTTGCATGAAGAGAAGCA


ATTTTGGGGAAGGGTTTGAATTGTTTTCTTTAAAGATGTAATGTCCCTTTCAGAGACAGCTGATACTTCA


TTTAAAAAAATCACAAAAATTTGAACACTGGCTAAAGATAATTGCTATTTATTTTTACAAGAAGTTTATT


CTCATTTGGGAGATCTGGTGATCTCCCAAGCTATCTAAAGTTTGTTAGATAGCTGCATGTGGCTTTTTTA


AAAAAGCAACAGAAACCTATCCTCACTGCCCTCCCCAGTCTCTCTTAAAGTTGGAATTTACCAGTTAATT


ACTCAGCAGAATGGTGATCACTCCAGGTAGTTTGGGGCAAAAATCCGAGGTGCTTGGGAGTTTTGAATGT


TAAGAATTGACCATCTGCTTTTATTAAATTTGTTGACAAAATTTTCTCATTTTCTTTTCACTTCGGGCTG


TGTAAACACAGTCAAAATAATTCTAAATCCCTCGATATTTTTAAAGATCTGTAAGTAACTTCACATTAAA


AAATGAAATATTTTTTAATTTAAAGCTTACTCTGTCCATTTATCCACAGGAAAGTGTTATTTTTCAAGGA


AGGTTCATGTAGAGAAAAGCACACTTGTAGGATAAGTGAAATGGATACTACATCTTTAAACAGTATTTCA


TTGCCTGTGTATGGAAAAACCATTTGAAGTGTACCTGTGTACATAACTCTGTAAAAACACTGAAAAATTA


TACTAACTTATTTATGTTAAAAGATTTTTTTTAATCTAGACAATATACAAGCCAAAGTGGCATGTTTTGT


GCATTTGTAAATGCTGTGTTGGGTAGAATAGGTTTTCCCCTCTTTTGTTAAATAATATGGCTATGCTTAA


AAGGTTGCATACTGAGCCAAGTATAATTTTTTGTAATGTGTGAAAAAGATGCCAATTATTGTTACACATT


AAGTAATCAATAAAGAAAACTTCCATAGCTATT





SEQ ID NO: 13 - Homo sapiens checkpoint kinase 2 (CHEK2), transcript


variant 3, mRNA


GCAGGTTTAGCGCCACTCTGCTGGCTGAGGCTGCGGAGAGTGTGCGGCTCCAGGTGGGCTCACGCGGTCG


TGATGTCTCGGGAGTCGGATGTTGAGGCTCAGCAGTCTCATGGCAGCAGTGCCTGTTCACAGCCCCATGG


CAGCGTTACCCAGTCCCAAGGCTCCTCCTCACAGTCCCAGGGCATATCCAGCTCCTCTACCAGCACGATG


CCAAACTCCAGCCAGTCCTCTCACTCCAGCTCTGGGACACTGAGCTCCTTAGAGACAGTGTCCACTCAGG


AACTCTATTCTATTCCTGAGGACCAAGAACCTGAGGACCAAGAACCTGAGGAGCCTACCCCTGCCCCCTG


GGCTCGATTATGGGCCCTTCAGGATGGATTTGCCAATCTTGAGACAGAGTCTGGCCATGTTACCCAATCT


GATCTTGAACTCCTGCTGTCATCTGATCCTCCTGCCTCAGCCTCCCAAAGTGCTGGGATAAGAGGTGTGA


GGCACCATCCCCGGCCAGTTTGCAGTCTAAAATGTGTGAATGACAACTACTGGTTTGGGAGGGACAAAAG


CTGTGAATATTGCTTTGATGAACCACTGCTGAAAAGAACAGATAAATACCGAACATACAGCAAGAAACAC


TTTCGGATTTTCAGGGAAGTGGGTCCTAAAAACTCTTACATTGCATACATAGAAGATCACAGTGGCAATG


GAACCTTTGTAAATACAGAGCTTGTAGGGAAAGGAAAACGCCGTCCTTTGAATAACAATTCTGAAATTGC


ACTGTCACTAAGCAGAAATAAAGTTTTTGTCTTTTTTGATCTGACTGTAGATGATCAGTCAGTTTATCCT


AAGGCATTAAGAGATGAATACATCATGTCAAAAACTCTTGGAAGTGGTGCCTGTGGAGAGGTAAAGCTGG


CTTTCGAGAGGAAAACATGTAAGAAAGTAGCCATAAAGATCATCAGCAAAAGGAAGTTTGCTATTGGTTC


AGCAAGAGAGGCAGACCCAGCTCTCAATGTTGAAACAGAAATAGAAATTTTGAAAAAGCTAAATCATCCT


TGCATCATCAAGATTAAAAACTTTTTTGATGCAGAAGATTATTATATTGTTTTGGAATTGATGGAAGGGG




G
AGAGCTGTTTGACAAAGTGGTGGGGAATAAACGCCTGAAAGAAGCTACCTGCAAGCTCTATTTTTACCA



GATGCTCTTGGCTGTGCAGTACCTTCATGAAAACGGTATTATACACCGTGACTTAAAGCCAGAGAATGTT


TTACTGTCATCTCAAGAAGAGGACTGTCTTATAAAGATTACTGATTTTGGGCACTCCAAGATTTTGGGAG


AGACCTCTCTCATGAGAACCTTATGTGGAACCCCCACCTACTTGGCGCCTGAAGTTCTTGTTTCTGTTGG


GACTGCTGGGTATAACCGTGCTGTGGACTGCTGGAGTTTAGGAGTTATTCTTTTTATCTGCCTTAGTGGG


TATCCACCTTTCTCTGAGCATAGGACTCAAGTGTCACTGAAGGATCAGATCACCAGTGGAAAATACAACT


TCATTCCTGAAGTCTGGGCAGAAGTCTCAGAGAAAGCTCTGGACCTTGTCAAGAAGTTGTTGGTAGTGGA


TCCAAAGGCACGTTTTACGACAGAAGAAGCCTTAAGACACCCGTGGCTTCAGGATGAAGACATGAAGAGA


AAGTTTCAAGATCTTCTGTCTGAGGAAAATGAATCCACAGCTCTACCCCAGGTTCTAGCCCAGCCTTCTA


CTAGTCGAAAGCGGCCCCGTGAAGGGGAAGCCGAGGGTGCCGAGACCACAAAGCGCCCAGCTGTGTGTGC


TGCTGTGTTGTGAACTCCGTGGTTTGAACACGAAAGAAATGTACCTTCTTTCACTCTGTCATCTTTCTTT


TCTTTGAGTCTGTTTTTTTATAGTTTGTATTTTAATTATGGGAATAATTGCTTTTTCACAGTCACTGATG


TACAATTAAAAACCTGATGGAACCTGGAAAA





SEQ ID NO: 14 - Homo sapiens colony stimulating factor 3 receptor


(granulocyte) (CSF3R), transcript variant 3, mRNA


GAGTACTGTGAAGATGTGGTCCCCAAGGCTAGAGCTGAAAAGAGGCTTAGGGCCGGGTGAGCCTTCCAGC


CAGGGCCTGCCTCCAAGTGATGCTCCCCCAGGGCAGGGGGCATAAGGATGGCACCCAGCCAGGTGGGAGC


CTGGGCCCTGCCCAGCCTCAAAGCTTTGAGCTCAGGAAATCCGGAGGCAGGGGAGGGGGACATCGTTGCC


ACATTCCCCAGCCCTTTAAGACCCCCAAGGCAGGAAGGCTGCCCGGGCCTCACCAGCTTCCCTCACAGGC


TCCTTCCTGGGAGGAAGGGGCTGCCTGTGCCCTCGAAGGCGCAAGGGAGGGCAGGAGGGAGGCTCGGAAG


GTGTTGCAATCCCCAGCCCCCGGGCCTGTCAGAGGCTGAGCCATTAACGACAGAGCTCGGGGAGAGAAGC


TGGACTGCAGCTGGTTTCAGGAACTTCTCTTGACGAGAAGAGAGACCAAGGAGGCCAAGCAGGGGCTGGG


CCAGAGGTGCCAACATGGGGAAACTGAGGCTCGGCTCGGAAAGGTGAAGTAACTTGTCCAAGATCACAAA


GCTGGTGAACATCAAGTTGGTGCTATGGCAAGGCTGGGAAACTGCAGCCTGACTTGGGCTGCCCTGATCA


TCCTGCTGCTCCCCGGAAGTCTGGAGGAGTGCGGGCACATCAGTGTCTCAGCCCCCATCGTCCACCTGGG


GGATCCCATCACAGCCTCCTGCATCATCAAGCAGAACTGCAGCCATCTGGACCCGGAGCCACAGATTCTG


TGGAGACTGGGAGCAGAGCTTCAGCCCGGGGGCAGGCAGCAGCGTCTGTCTGATGGGACCCAGGAATCTA


TCATCACCCTGCCCCACCTCAACCACACTCAGGCCTTTCTCTCCTGCTGCCTGAACTGGGGCAACAGCCT


GCAGATCCTGGACCAGGTTGAGCTGCGCGCAGGCTACCCTCCAGCCATACCCCACAACCTCTCCTGCCTC


ATGAACCTCACAACCAGCAGCCTCATCTGCCAGTGGGAGCCAGGACCTGAGACCCACCTACCCACCAGCT


TCACTCTGAAGAGTTTCAAGAGCCGGGGCAACTGTCAGACCCAAGGGGACTCCATCCTGGACTGCGTGCC


CAAGGACGGGCAGAGCCACTGCTGCATCCCACGCAAACACCTGCTGTTGTACCAGAATATGGGCATCTGG


GTGCAGGCAGAGAATGCGCTGGGGACCAGCATGTCCCCACAACTGTGTCTTGATCCCATGGATGTTGTGA


AACTGGAGCCCCCCATGCTGCGGACCATGGACCCCAGCCCTGAAGCGGCCCCTCCCCAGGCAGGCTGCCT


ACAGCTGTGCTGGGAGCCATGGCAGCCAGGCCTGCACATAAATCAGAAGTGTGAGCTGCGCCACAAGCCG


CAGCGTGGAGAAGCCAGCTGGGCACTGGTGGGCCCCCTCCCCTTGGAGGCCCTTCAGTATGAGCTCTGCG


GGCTCCTCCCAGCCACGGCCTACACCCTGCAGATACGCTGCATCCGCTGGCCCCTGCCTGGCCACTGGAG


CGACTGGAGCCCCAGCCTGGAGCTGAGAACTACCGAACGGGCCCCCACTGTCAGACTGGACACATGGTGG


CGGCAGAGGCAGCTGGACCCCAGGACAGTGCAGCTGTTCTGGAAGCCAGTGCCCCTGGAGGAAGACAGCG


GACGGATCCAAGGTTATGTGGTTTCTTGGAGACCCTCAGGCCAGGCTGGGGCCATCCTGCCCCTCTGCAA


CACCACAGAGCTCAGCTGCACCTTCCACCTGCCTTCAGAAGCCCAGGAGGTGGCCCTTGTGGCCTATAAC


TCAGCCGGGACCTCTCGTCCCACTCCGGTGGTCTTCTCAGAAAGCAGAGGCCCAGCTCTGACCAGACTCC


ATGCCATGGCCCGAGACCCTCACAGCCTCTGGGTAGGCTGGGAGCCCCCCAATCCATGGCCTCAGGGCTA


TGTGATTGAGTGGGGCCTGGGCCCCCCCAGCGCGAGCAATAGCAACAAGACCTGGAGGATGGAACAGAAT


GGGAGAGCCACGGGGTTTCTGCTGAAGGAGAACATCAGGCCCTTTCAGCTCTATGAGATCATCGTGACTC


CCTTGTACCAGGACACCATGGGACCCTCCCAGCATGTCTATGCCTACTCTCAAGAAATGGCTCCCTCCCA


TGCCCCAGAGCTGCATCTAAAGCACATTGGCAAGACCTGGGCACAGCTGGAGTGGGTGCCTGAGCCCCCT


GAGCTGGGGAAGAGCCCCCTTACCCACTACACCATCTTCTGGACCAACGCTCAGAACCAGTCCTTCTCCG


CCATCCTGAATGCCTCCTCCCGTGGCTTTGTCCTCCATGGCCTGGAGCCCGCCAGTCTGTATCACATCCA


CCTCATGGCTGCCAGCCAGGCTGGGGCCACCAACAGTACAGTCCTCACCCTGATGACCTTGACCCCAGAG


GGGTCGGAGCTACACATCATCCTGGGCCTGTTCGGCCTCCTGCTGTTGCTCACCTGCCTCTGTGGAACTG


CCTGGCTCTGTTGCAGCCCCAACAGGAAGAATCCCCTCTGGCCAAGTGTCCCAGACCCAGCTCACAGCAG


CCTGGGCTCCTGGGTGCCCACAATCATGGAGGAGCTGCCCGGACCCAGACAGGGACAGTGGCTGGGGCAG


ACATCTGAAATGAGCCGTGCTCTCACCCCACATCCTTGTGTGCAGGATGCCTTCCAGCTGCCCGGCCTTG


GCACGCCACCCATCACCAAGCTCACAGTGCTGGAGGAGGATGAAAAGAAGCCGGTGCCCTGGGAGTCCCA


TAACAGCTCAGAGACCTGTGGCCTCCCCACTCTGGTCCAGACCTATGTGCTCCAGGGGGACCCAAGAGCA


GTTTCCACCCAGCCCCAATCCCAGTCTGGCACCAGCGATCAGGTCCTTTATGGGCAGCTGCTGGGCAGCC


CCACAAGCCCAGGGCCAGGGCACTATCTCCGCTGTGACTCCACTCAGCCCCTCTTGGCGGGCCTCACCCC


CAGCCCCAAGTCCTATGAGAACCTCTGGTTCCAGGCCAGCCCCTTGGGGACCCTGGTAACCCCAGCCCCA


AGCCAGGAGGACGACTGTGTCTTTGGGCCACTGCTCAACTTCCCCCTCCTGCAGGGGATCCGGGTCCATG


GGATGGAGGCGCTGGGGAGCTTCTAGGGCTTCCTGGGGTTCCCTTCTTGGGCCTGCCTCTTAAAGGCCTG


AGCTAGCTGGAGAAGAGGGGAGGGTCCATAAGCCCATGACTAAAAACTACCCCAGCCCAGGCTCTCACCA


TCTCCAGTCACCAGCATCTCCCTCTCCTCCCAATCTCCATAGGCTGGGCCTCCCAGGCGATCTGCATACT


TTAAGGACCAGATCATGCTCCATCCAGCCCCACCCAATGGCCTTTTGTGCTTGTTTCCTATAACTTCAGT


ATTGTAAACTAGTTTTTGGTTTGCAGTTTTTGTTGTTGTTTATAGACACTCTTGGGTGTAAAAAAAAAAA





SEQ ID NO: 15 - CYHomo sapiens cathepsin S (CTSS), transcript variant 1,


mRNA


GACAAGGGCTCTTCTTGATGGCTTACTGTATCCACTTTGTCCCCAAGACCATAGGGAAATGACTAGAGGT


GACTGTACTAGCTAGATTTTAAATGAAACTGAAATGAAAGTTCACTTCCTCATTTTGAGTACCTCATGTG


ACAAGTTCCAATTTCTTTTCAAGTCAATTGAACTGAAATCTCCTTGTTGCTTTGAAATCTTAGAAGAGAG


CCCACTAATTCAAGGACTCTTACTGTGGGAGCAACTGCTGGTTCTATCACAATGAAACGGCTGGTTTGTG


TGCTCTTGGTGTGCTCCTCTGCAGTGGCACAGTTGCATAAAGATCCTACCCTGGATCACCACTGGCATCT


CTGGAAGAAAACCTATGGCAAACAATACAAGGAAAAGAATGAAGAAGCAGTACGACGTCTCATCTGGGAA


AAGAATCTAAAGTTTGTGATGCTTCACAACCTGGAGCATTCAATGGGAATGCACTCATACGATCTGGGCA


TGAACCACCTGGGAGACATGACCAGTGAAGAAGTGATGTCTTTGATGAGTTCCCTGAGAGTTCCCAGCCA


GTGGCAGAGAAATATCACATATAAGTCAAACCCTAATCGGATATTGCCTGATTCTGTGGACTGGAGAGAG


AAAGGGTGTGTTACTGAAGTGAAATATCAAGGTTCTTGTGGTGCTTGCTGGGCTTTCAGTGCTGTGGGGG


CCCTGGAAGCACAGCTGAAGCTGAAAACAGGAAAGCTGGTGTCTCTCAGTGCCCAGAACCTGGTGGATTG


CTCAACTGAAAAATATGGAAACAAAGGCTGCAATGGTGGCTTCATGACAACGGCTTTCCAGTACATCATT


GATAACAAGGGCATCGACTCAGACGCTTCCTATCCCTACAAAGCCATGGATCAGAAATGTCAATATGACT


CAAAATATCGTGCTGCCACATGTTCAAAGTACACTGAACTTCCTTATGGCAGAGAAGATGTCCTGAAAGA


AGCTGTGGCCAATAAAGGCCCAGTGTCTGTTGGTGTAGATGCGCGTCATCCTTCTTTCTTCCTCTACAGA


AGTGGTGTCTACTATGAACCATCCTGTACTCAGAATGTGAATCATGGTGTACTTGTGGTTGGCTATGGTG


ATCTTAATGGGAAAGAATACTGGCTTGTGAAAAACAGCTGGGGCCACAACTTTGGTGAAGAAGGATATAT


TCGGATGGCAAGAAATAAAGGAAATCATTGTGGGATTGCTAGCTTTCCCTCTTACCCAGAAATCTAGAGG


ATCTCTCCTTTTTATAACAAATCAAGAAATATGAAGCACTTTCTCTTAACTTAATTTTTCCTGCTGTATC


CAGAAGAAATAATTGTGTCATGATTAATGTGTATTTACTGTACTAATTAGAAAATATAGTTTGAGGCCGG


GCACGGTGGCTCACGCCTGTAATCCCAGTACTTGGGAGGCCAAGGCAGGCATATCAACTTGAGGCCAGGA


GTTAAAGAGCAGCCTGGCTAACATGGTGAAACCCCATCTCTACTAAAAATACAAAAAATTAGCCGAGCAC


GGTGGTGCATGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCACGAGATTCCTTGAACCCAAGAGGTTG


AGGCTATGTTGAGCTGAGATCACACCACTGTACTCCAGCCTGGATGACAGAGTGGAGACTCTGTTTCAAA


AAAACAGAAAAGAAAATATAGTTTGATTCTTCATTTTTTTAAATTTGCAAATCTCAGGATAAAGTTTGCT


AAGTAAATTAGTAATGTACTATAGATATAACTGTACAAAAATTGTTCAACCTAAAACAATCTGTAATTGC


TTATTGTTTTATTGTATACTCTTTGTCTTTTTAAGACCCCTAATAGCCTTTTGTAACTTGATGGCTTAAA


AATACTTAATAAATCTGCCATTTCAAATTTCTATCATTGCCACATACCATTCTTATTCCTAGGCAACTAT


TAATAATCTATCCTGAGAATATTAATTGTGGTATTCTGGTGATGGGGTTTAGCAACTTTGATGGAAGAAA


ATATTAGGCTATAAATGTCCTAAGGACTCAGATTGTATCTTTGTACAGAAGAGGATTCAAAACGCCACGT


GTAGTGGCTCATGCCTGTAATCCCAACACTTTGGGAGGCTGAAGTAGGAGGATCGTCTTGAGCCCAGGAG


TTCAAGACCAGCCTGGACAACATAGTGAGACCTTGTCTCCACAAAAATAAAAAAGAAACTATCCAGGAGT


GGTGGTGTGTGCCTGTGGTCCCTGCTATGCAGATGTCTAAGACAGGAGGATCACAAGAGCCCAGGAGGTT


GAGAATGCAGTGAGCTTGTAATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGTCTTAA


AAAAAGAGGATTCAACACATATTTTTATATTATGTTAAAGTAAAGAAATGCATAAAAGACAAGCACTTTG


GAAGAATTATTTTAATGATCAACAATTTAATGTATTAGTCCAAATTATTTTTACGTAGTCATCAACAATT


TGACCAGGGCCTTTATTTGGCAAATAACTGAGCCAACCAGAATAAAATAACCAATACTCCACTGCTCATA


TTTTTATCTAATTCAGATGGATCTTCCTTACAACTGCTCTAGATTAGTAGATGCATCTAAGCAGGCAGCA


GGAACTTTAAATTTTTTAAGTTCATGTCTATGACATGAACAATGTGTGGGATAATGTCATTAATATATCC


TAAATTAACCTAAACGTATTTCACTAACTCTGGCTCCTTCTCCATAAAGCACATTTTAAGGAACAAGAAT


TGCTAAATATAAAAACATAAATAATACCATAATACATGGCTATCATCAAAAGTGTATAGAATATTATAGT


TTAAAAGTATTTAGTTGATTACTTTTCAGTTTTGTTTTGTTTTTTGAGACGGAGTCTCACTCTGTTGCCC


AGGCTGGAGTGCAGTGGCACCATCTCAGTTCACTGCAACTTCTGCCTCCCGAGTTCAAGCGATTCTCCTG


CCTCAGCCTCCCGAGTAGCTGGAATTATAGGCGTGCACCACCACGCCCAGCTAATTTTTGTATTTTTAGT


AAAGACAGGGTTTTGCCACATTAGCCAGGCTGGTCTCAAACTCCTGACCTCAGGTGATCCACCCACCCCA


GCCTCCCAAAGTGCTAAGATTACAGGCGTGAGCCACTGAGCCCAGCCTACTTTTCAGTTTTTAACATAAT


TTTTGTTTTATCCACAACTTTTCAAGTATTGAAAGTAGAATAAAAACATGGGTTCTTAGTCTTTAGCTAT


CTGTTAAAGCCTATGAATGCCTTCTTAAAATCATGTTTTTAAATGCATAAAATATATAGGATTACAAAGG


AATCTAATTATATCGAAATACAGTTATTAAAATGTTAAAAGATAAGTTTGTTATATATTAATATGCATGC


TTCTTTATAAATGCATTAAATAAGAGTTAATAGCTATCCTAAATTTGAAATAGTGATAAGCATAATGAAA


ATAGATGCAAAAAACTAATGTGATATGAAAATATCTGGGTTTTTCTTTTGATGATGAAGTATTGCTAATA


TTACCGTGGTTTATGAACTATGTTCAGAATTGAAGAAAATCCTAACTTTCAGTTAGAGGTTAGTGACGGG


GTTCAGGACACCCTACACAAAATACAGCACTTTGACATATTGAATATTTTAAGCTGAAGGCATTTGAGGA


AATTGCAGAAGCAGGAAGGTGACTCTGACCTTCTGCCTGCTGTTCTCCCCAGAAGCAGCCATAAAACCTG


GGAAGGATTTTCTGACCTTCCCCTGAAGTAGATCATAAGACTGTCATGTAAGAGGTGCTCTCCTGGCACC


CAGAGAAAAGGAGCATCCTTACCTCCAAAAGCACAGGGACACAAAGAGGAATCTAAACAAACAGGCCTCT


CAGTTTCCCCCAGTTTATTACATTTAGCTTGTTCACACTTTGCCCTATGACATTTCTACATCACTGGCTG


CTCTTCATCAAACCTACTATAAAAAACATTCAAGTTCAACTGTTTCTTTGGGCCTTTATTTCCTTATGGA


GCCCCTCGTGTCGTGTAAAACTTATATTAAATAAATGTGCATGCTTT





SEQ ID NO: 16 - Homo sapiens epoxide hydrolase 2, cytoplasmic


(EPHX2), mRNA


CTGGGCGGGTCATGCGCCCTGGCCTTCGCGCATCTCCCAGGTTAGCTGCGTGTCCGGGTGCTAGGCTGCA


GACCCGCCGCCATGACGCTGCGCGCGGCCGTCTTCGACCTTGACGGGGTGCTGGCGCTGCCAGCGGTGTT


CGGCGTCCTCGGCCGCACGGAGGAGGCCCTGGCGCTGCCCAGAGGACTTCTGAATGATGCTTTCCAGAAA


GGGGGACCAGAGGGTGCCACTACCCGGCTTATGAAAGGAGAGATCACACTTTCCCAGTGGATACCACTCA


TGGAAGAAAACTGCAGGAAGTGCTCCGAGACCGCTAAAGTCTGCCTCCCCAAGAATTTCTCCATAAAAGA


AATCTTTGACAAGGCGATTTCAGCCAGAAAGATCAACCGCCCCATGCTCCAGGCAGCTCTCATGCTCAGG


AAGAAAGGATTCACTACTGCCATCCTCACCAACACCTGGCTGGACGACCGTGCTGAGAGAGATGGCCTGG


CCCAGCTGATGTGTGAGCTGAAGATGCACTTTGACTTCCTGATAGAGTCGTGTCAGGTGGGAATGGTCAA


ACCTGAACCTCAGATCTACAAGTTTCTGCTGGACACCCTGAAGGCCAGCCCCAGTGAGGTCGTTTTTTTG


GATGACATCGGGGCTAATCTGAAGCCAGCCCGTGACTTGGGAATGGTCACCATCCTGGTCCAGGACACTG


ACACGGCCCTGAAAGAACTGGAGAAAGTGACCGGAATCCAGCTTCTCAATACCCCGGCCCCTCTGCCGAC


CTCTTGCAATCCAAGTGACATGAGCCATGGGTACGTGACAGTAAAGCCCAGGGTCCGTCTGCATTTTGTG


GAGCTGGGCTCCGGCCCTGCTGTGTGCCTCTGCCATGGATTTCCCGAGAGTTGGTATTCTTGGAGGTACC


AGATCCCTGCTCTGGCCCAGGCAGGTTACCGGGTCCTAGCTATGGACATGAAAGGCTATGGAGAGTCATC


TGCTCCTCCCGAAATAGAAGAATATTGCATGGAAGTGTTATGTAAGGAGATGGTAACCTTCCTGGATAAA


CTGGGCCTCTCTCAAGCAGTGTTCATTGGCCATGACTGGGGTGGCATGCTGGTGTGGTACATGGCTCTCT


TCTACCCCGAGAGAGTGAGGGCGGTGGCCAGTTTGAATACTCCCTTCATACCAGCAAATCCCAACATGTC


CCCTTTGGAGAGTATCAAAGCCAACCCAGTATTTGATTACCAGCTCTACTTCCAAGAACCAGGAGTGGCT


GAGGCTGAACTGGAACAGAACCTGAGTCGGACTTTCAAAAGCCTCTTCAGAGCAAGCGATGAGAGTGTTT


TATCCATGCATAAAGTCTGTGAAGCGGGAGGACTTTTTGTAAATAGCCCAGAAGAGCCCAGCCTCAGCAG


GATGGTCACTGAGGAGGAAATCCAGTTCTATGTGCAGCAGTTCAAGAAGTCTGGTTTCAGAGGTCCTCTA


AACTGGTACCGAAACATGGAAAGGAACTGGAAGTGGGCTTGCAAAAGCTTGGGACGGAAGATCCTGATTC


CGGCCCTGATGGTCACGGCGGAGAAGGACTTCGTGCTCGTTCCTCAGATGTCCCAGCACATGGAGGACTG


GATTCCCCACCTGAAAAGGGGACACATTGAGGACTGTGGGCACTGGACACAGATGGACAAGCCAACCGAG


GTGAATCAGATCCTCATTAAGTGGCTGGATTCTGATGCCCGGAACCCACCGGTGGTCTCAAAGATGTAGA


ACGCAGCGTGTGCCCACGCTCAGCAGGTGTGCCATCCTTCCACCTGCTGGGGCACCATTCTTAGTATACA


GAGGTGGCCTTACACACATCTTGCATGGATGGCAGCATTGTTCTGAAGGGGTTTGCAGAAAAAAAAGATT


TTCTTTACATAAAGTGAATCAAATTTGACATTATTTTAGATCCCAGAGAAATCAGGTGTGATTAGTTCTC


CAGGCATGAATGCATCGTCCCTTTATCTGTAAGAACCCTTAGTGTCCTGTAGGGGGACAGAATGGGGTGG


CCAGGTGGTGATTTCTCTTTGACCAATGCATAGTTTGGCAGAAAAATCAGCCGTTCATTTAGAAGAATCT


TAGCAGAGATTGGGATGCCTTACTCAATAAAGCTAAGATGACTATGCTGCTGGCTGTCTTTGTTCTTGGA


GAGGTGGAGTGACTGTTCACGGAGAA





SEQ ID NO: 17 - Homo sapiens exostosin 2 (EXT2), transcript variant 2,


mRNA


CTGTCTGAGCATTTCACTGCGGAGCCTGAGCGCGCCTGCCTGGGAAAACACTGCAGCGGTGCTCGGACTC


CTCCTGTCCAGCAGGAGGCGCGGCCCGGCAGCTCCCGCATGCGCAGTGCGCTCGGTGTCAGACGGCCCGG


ATCCCGGTTACCGGCCCCTCGCTCGCTGCTCGCCAGCCCAGACTCGGCCCTGGCAGTGGCGGCTGGCGAT


TCGGACCGATCCGACCTGGGCGGAGGTGGCCCGCGCCCCGCGGCATGAGCCGGTGACCAAGCTCGGGGCC


GAGCGGGAGGCAGCCGTGGCCGAGGAGTGTGAGGAAGAGGCTGTCTGTGTCATTATGTGTGCGTCGGTCA


AGTATAATATCCGGGGTCCTGCCCTCATCCCAAGAATGAAGACCAAGCACCGAATCTACTATATCACCCT


CTTCTCCATTGTCCTCCTGGGCCTCATTGCCACTGGCATGTTTCAGTTTTGGCCCCATTCTATCGAGTCC


TCAAATGACTGGAATGTAGAGAAGCGCAGCATCCGTGATGTGCCGGTTGTTAGGCTGCCAGCCGACAGTC


CCATCCCAGAGCGGGGGGATCTCAGTTGCAGAATGCACACGTGTTTTGATGTCTATCGCTGTGGCTTCAA


CCCAAAGAACAAAATCAAGGTGTATATCTATGCTCTGAAAAAGTACGTGGATGACTTTGGCGTCTCTGTC


AGCAACACCATCTCCCGGGAGTATAATGAACTGCTCATGGCCATCTCAGACAGTGACTACTACACTGATG


ACATCAACCGGGCCTGTCTGTTTGTTCCCTCCATCGATGTGCTTAACCAGAACACACTGCGCATCAAGGA


GACAGCACAAGCGATGGCCCAGCTCTCTAGGTGGGATCGAGGTACGAATCACCTGTTGTTCAACATGTTG


CCTGGAGGTCCCCCAGATTATAACACAGCCCTGGATGTCCCCAGAGACAGGGCCCTGTTGGCTGGTGGCG


GCTTTTCTACGTGGACTTACCGGCAAGGCTACGATGTCAGCATTCCTGTCTATAGTCCACTGTCAGCTGA


GGTGGATCTTCCAGAGAAAGGACCAGGTCCACGGCAATACTTCCTCCTGTCATCTCAGGTGGGTCTCCAT


CCTGAGTACAGAGAGGACCTAGAAGCCCTCCAGGTCAAACATGGAGAGTCAGTGTTAGTACTCGATAAAT


GCACCAACCTCTCAGAGGGTGTCCTTTCTGTCCGTAAGCGCTGCCACAAGCACCAGGTCTTCGATTACCC


ACAGGTGCTACAGGAGGCTACTTTCTGTGTGGTTCTTCGTGGAGCTCGGCTGGGCCAGGCAGTATTGAGC


GATGTGTTACAAGCTGGCTGTGTCCCGGTTGTCATTGCAGACTCCTATATTTTGCCTTTCTCTGAAGTTC


TTGACTGGAAGAGAGCATCTGTGGTTGTACCAGAAGAAAAGATGTCAGATGTGTACAGTATTTTGCAGAG


CATCCCCCAAAGACAGATTGAAGAAATGCAGAGACAGGCCCGGTGGTTCTGGGAAGCGTACTTCCAGTCA


ATTAAAGCCATTGCCCTGGCCACCCTGCAGATTATCAATGACCGGATCTATCCATATGCTGCCATCTCCT


ATGAAGAATGGAATGACCCTCCTGCTGTGAAGTGGGGCAGCGTGAGCAATCCACTCTTCCTCCCGCTGAT


CCCACCACAGTCTCAAGGGTTCACCGCCATAGTCCTCACCTACGACCGAGTAGAGAGCCTCTTCCGGGTC


ATCACTGAAGTGTCCAAGGTGCCCAGTCTATCCAAACTACTTGTCGTCTGGAATAATCAGAATAAAAACC


CTCCAGAAGATTCTCTCTGGCCCAAAATCCGGGTTCCATTAAAAGTTGTGAGGACTGCTGAAAACAAGTT


AAGTAACCGTTTCTTCCCTTATGATGAAATCGAGACAGAAGCTGTTCTGGCCATTGATGATGATATCATT


ATGCTGACCTCTGACGAGCTGCAATTTGGTTATGAGGTCTGGCGGGAATTTCCTGACCGGTTGGTGGGTT


ACCCGGGTCGTCTGCATCTCTGGGACCATGAGATGAATAAGTGGAAGTATGAGTCTGAGTGGACGAATGA


AGTGTCCATGGTGCTCACTGGGGCAGCTTTTTATCACAAGTATTTTAATTACCTGTATACCTACAAAATG


CCTGGGGATATCAAGAACTGGGTAGATGCTCATATGAACTGTGAAGATATTGCCATGAACTTCCTGGTGG


CCAACGTCACGGGAAAAGCAGTTATCAAGGTAACCCCACGAAAGAAATTCAAGTGTCCTGAGTGCACAGC


CATAGATGGGCTTTCACTAGACCAAACACACATGGTGGAGAGGTCAGAGTGCATCAACAAGTTTGCTTCA


GTCTTCGGGACCATGCCTCTCAAGGTGGTGGAACACCGAGCTGACCCTGTCCTGTACAAAGATGACTTTC


CTGAGAAGCTGAAGAGCTTCCCCAACATTGGCAGCTTATGAAACGTGTCATTGGTGGAGGTCTGAATGTG


AGGCTGGGACAGAGGGAGAGAACAAGGCCTCCCAGCACTCTGATGTCAGAGTAGTAGGTTAAGGGTGGAA


GGTTGACCTACTTGGATCTTGGCATGCACCCACCTAACCCACTTTCTCAAGAACAAGAACCTAGAATGAA


TATCCAAGCACCTCGAGCTATGCAACCTCTGTTCTTGTATTTCTTATGATCTCTGATGGGTTCTTCTCGA


AAATGCCAAGTGGAAGACTTTGTGGCATGCTCCAGATTTAAATCCAGCTGAGGCTCCCTTTGTTTTCAGT


TCCATGTAACAATCTGGAAGGAAACTTCACGGACAGGAAGACTGCTGGAGAAGAGAAGCGTGTTAGCCCA


TTTGAGGTCTGGGGAATCATGTAAAGGGTACCCAGACCTCACTTTTAGTTATTTACATCAATGAGTTCTT


TCAGGGAACCAAACCCAGAATTCGGTGCAAAAGCCAAACATCTTGGTGGGATTTGATAAATGCCTTGGGA


CCTGGAGTGCTGGGCTTGTGCACAGGAAGAGCACCAGCCGCTGAGTCAGGATCCTGTCAGTTCCATGAGC


TATTCCTCTTTGGTTTGGCTTTTTGATATGATTAAAATTATTTTTTATTCCTTTTTCTACTGTGTCTTAA


ACACCAATTCCTGATAGTCCAAGGAACCACCTTTCTCCCTTGATATATTTAACTCCGTCTTTGGCCTGAC


AACAGTCTTCTGCCCATGTCTGGGAACACACGCCAGGAGGAATGTCTGATACCCTCTGCATCAAGCGTAA


GAAGGTCCCAAATCATAACCATTTTAAGAACAGATGACTCAGAAACCTCCAGAGGAATCTGTTTGCTTCC


TGATTAGATCCAGTCAATGTTTTAAAGGTATTGTCAGAGAAAAACAGAGGGTCTGTACTAGCCATGCAAG


GAGTCGCTCTAGCTGGTACCCGTAAAAGTTGTGGGAATTGTGACCCCCATCCCAAGGGGATGCCAAAATT


TCTCTCATTCTTTTGGTATAAACTTAACATTAGCCAGGGAGGTTCTGGCTAACGTTAAATGCTGCTATAC


AACTGCTTTGCAACAGTTGCTGGTATATTTAAATCATTAAATTTCAGCATTTACTAATACTGCAAAAAAA


AAAAAAAAAAA





SEQ ID NO: 18 - Homo sapiens FBJ murine osteosarcoma viral oncogene


homolog (FOS), mRNA


ATTCATAAAACGCTTGTTATAAAAGCAGTGGCTGCGGCGCCTCGTACTCCAACCGCATCTGCAGCGAGCA


TCTGAGAAGCCAAGACTGAGCCGGCGGCCGCGGCGCAGCGAACGAGCAGTGACCGTGCTCCTACCCAGCT


CTGCTCCACAGCGCCCACCTGTCTCCGCCCCTCGGCCCCTCGCCCGGCTTTGCCTAACCGCCACGATGAT


GTTCTCGGGCTTCAACGCAGACTACGAGGCGTCATCCTCCCGCTGCAGCAGCGCGTCCCCGGCCGGGGAT


AGCCTCTCTTACTACCACTCACCCGCAGACTCCTTCTCCAGCATGGGCTCGCCTGTCAACGCGCAGGACT




TCTGCACGGACCTG
GCCGTCTCCAGTGCCAACTTCATTCCCACGGTCACTGCCATCTCGACCAGTCCGGA



CCTGCAGTGGCTGGTGCAGCCCGCCCTCGTCTCCTCCGTGGCCCCATCGCAGACCAGAGCCCCTCACCCT


TTCGGAGTCCCCGCCCCCTCCGCTGGGGCTTACTCCAGGGCTGGCGTTGTGAAGACCATGACAGGAGGCC


GAGCGCAGAGCATTGGCAGGAGGGGCAAGGTGGAACAGTTATCTCCAGAAGAAGAAGAGAAAAGGAGAAT


CCGAAGGGAAAGGAATAAGATGGCTGCAGCCAAATGCCGCAACCGGAGGAGGGAGCTGACTGATACACTC


CAAGCGGAGACAGACCAACTAGAAGATGAGAAGTCTGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGG


AGAAGGAAAAACTAGAGTTCATCCTGGCAGCTCACCGACCTGCCTGCAAGATCCCTGATGACCTGGGCTT


CCCAGAAGAGATGTCTGTGGCTTCCCTTGATCTGACTGGGGGCCTGCCAGAGGTTGCCACCCCGGAGTCT


GAGGAGGCCTTCACCCTGCCTCTCCTCAATGACCCTGAGCCCAAGCCCTCAGTGGAACCTGTCAAGAGCA


TCAGCAGCATGGAGCTGAAGACCGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAGGCCCAGTGG


CTCTGAGACAGCCCGCTCCGTGCCAGACATGGACCTATCTGGGTCCTTCTATGCAGCAGACTGGGAGCCT


CTGCACAGTGGCTCCCTGGGGATGGGGCCCATGGCCACAGAGCTGGAGCCCCTGTGCACTCCGGTGGTCA


CCTGTACTCCCAGCTGCACTGCTTACACGTCTTCCTTCGTCTTCACCTACCCCGAGGCTGACTCCTTCCC


CAGCTGTGCAGCTGCCCACCGCAAGGGCAGCAGCAGCAATGAGCCTTCCTCTGACTCGCTCAGCTCACCC


ACGCTGCTGGCCCTGTGAGGGGGCAGGGAAGGGGAGGCAGCCGGCACCCACAAGTGCCACTGCCCGAGCT


GGTGCATTACAGAGAGGAGAAACACATCTTCCCTAGAGGGTTCCTGTAGACCTAGGGAGGACCTTATCTG


TGCGTGAAACACACCAGGCTGTGGGCCTCAAGGACTTGAAAGCATCCATGTGTGGACTCAAGTCCTTACC


TCTTCCGGAGATGTAGCAAAACGCATGGAGTGTGTATTGTTCCCAGTGACACTTCAGAGAGCTGGTAGTT


AGTAGCATGTTGAGCCAGGCCTGGGTCTGTGTCTCTTTTCTCTTTCTCCTTAGTCTTCTCATAGCATTAA


CTAATCTATTGGGTTCATTATTGGAATTAACCTGGTGCTGGATATTTTCAAATTGTATCTAGTGCAGCTG


ATTTTAACAATAACTACTGTGTTCCTGGCAATAGTGTGTTCTGATTAGAAATGACCAATATTATACTAAG


AAAAGATACGACTTTATTTTCTGGTAGATAGAAATAAATAGCTATATCCATGTACTGTAGTTTTTCTTCA


ACATCAATGTTCATTGTAATGTTACTGATCATGCATTGTTGAGGTGGTCTGAATGTTCTGACATTAACAG


TTTTCCATGAAAACGTTTTATTGTGTTTTTAATTTATTTATTAAGATGGATTCTCAGATATTTATATTTT


TATTTTATTTTTTTCTACCTTGAGGTCTTTTGACATGTGGAAAGTGAATTTGAATGAAAAATTTAAGCAT


TGTTTGCTTATTGTTCCAAGACATTGTCAATAAAAGCATTTAAGTTGAATGCGACCAA





SEQ ID NO: 19 - Homo sapiens FOS-like antigen 1 (FOSL1), mRNA


ACGGGCCAAGGCGGCGCGTCTCGGGGGTGGAGCCTGGAGGTGACCGCGCCGCTGCAACGCCCCCACCCCC


CGCGGTCGCAGTGGTTCAGCCCGAGAACTTTTCATTCATAAAAAGAAAAGACTCCGCACGGCGCGGGTGA


GTCAGAACCCAGCAGCCGTGTACCCCGCAGAGCCGCCAGCCCCGGGCATGTTCCGAGACTTCGGGGAACC


CGGCCCGAGCTCCGGGAACGGCGGCGGGTACGGCGGCCCCGCGCAGCCCCCGGCCGCAGCGCAGGCAGCC


CAGCAGAAGTTCCACCTGGTGCCAAGCATCAACACCATGAGTGGCAGTCAGGAGCTGCAGTGGATGGTAC


AGCCTCATTTCCTGGGGCCCAGCAGTTACCCCAGGCCTCTGACCTACCCTCAGTACAGCCCCCCACAACC


CCGGCCAGGAGTCATCCGGGCCCTGGGGCCGCCTCCAGGGGTACGTCGAAGGCCTTGTGAACAGATCAGC


CCGGAGGAAGAGGAGCGCCGCCGAGTAAGGCGCGAGCGGAACAAGCTGGCTGCGGCCAAGTGCAGGAACC


GGAGGAAGGAACTGACCGACTTCCTGCAGGCGGAGACTGACAAACTGGAAGATGAGAAATCTGGGCTGCA


GCGAGAGATTGAGGAGCTGCAGAAGCAGAAGGAGCGCCTAGAGCTGGTGCTGGAAGCCCACCGACCCATC


TGCAAAATCCCGGAAGGAGCCAAGGAGGGGGACACAGGCAGTACCAGTGGCACCAGCAGCCCACCAGCCC


CCTGCCGCCCTGTACCTTGTATCTCCCTTTCCCCAGGGCCTGTGCTTGAACCTGAGGCACTGCACACCCC


CACACTCATGACCACACCCTCCCTAACTCCTTTCACCCCCAGCCTGGTCTTCACCTACCCCAGCACTCCT


GAGCCTTGTGCCTCAGCTCATCGCAAGAGTAGCAGCAGCAGCGGAGACCCATCCTCTGACCCCCTTGGCT


CTCCAACCCTCCTCGCTTTGTGAGGCGCCTGAGCCCTACTCCCTGCAGATGCCACCCTAGCCAATGTCTC


CTCCCCTTCCCCCACCGGTCCAGCTGGCCTGGACAGTATCCCACATCCAACTCCAGCAACTTCTTCTCCA




T
CCCTCTAATGAGACTGACCATATTGTGCTTCACAGTAGAGCCAGCTTGGGGCCACCAAAGCTGCCCACT



GTTTCTCTTGAGCTGGCCTCTCTAGCACAATTTGCACTAAATCAGAGACAAAATATTTCCCATTTGTGCC


AGAGGAATCCTGGCAGCCCAGAGACTTTGTAGATCCTTAGAGGTCCTCTGGAGCCCTAACCCCTTCCAGA


TCACTGCCACACTCTCCATCACCCTCTTCCTGTGATCCACCCAACCCTATCTCCTGACAGAAGGTGCCAC


TTTACCCACCTAGAACACTAACTCACCAGCCCCACTGCCAGCAGCAGCAGGTGATTGGACCAGGCCATTC


TGCCGCCCCCTCCTGAACCGCACAGCTCAGGAGGCGCCCTTGGCTTCTGTGATGAGCTGATCTGCGGATC


TCAGCTTTGAGAAGCCTTCAGCTCCAGGGAATCCAAGCCTCCACAGCGAGGGCAGCTGCTATTTATTTTC


CTAAAGAGAGTATTTTTATACAAACCTACCAAAATGGAATAAAAGGCTTGAAGCTGTG





SEQ ID NO: 20 - Homo sapiens forkhead box N3 (FOXN3), transcript


variant 1, mRNA


CGCGATCTGCTGCAGCTCGGCCGGGAGACGGCGCGACCCGGCGGCGGGGCCACCCGCGAGTCCAGCGTCG


CCGCAGCCCCCCAATGCGGCCGCGAGAAGCAGCGGGGGGGCAGGCGATCGAAGGAGCCTTCACGTAAATG


GGTCCAGTCATGCCTCCCAGTAAGAAGCCAGAAAGCTCAGGAATTAGTGTCTCCAGTGGACTGAGTCAGT


GTTACGGGGGCAGCGGTTTCTCCAAGGCCCTTCAGGAAGACGATGACCTCGACTTTTCTCTGCCTGACAT


CCGATTAGAAGAGGGGGCCATGGAAGATGAAGAGCTGACCAACCTGAACTGGCTGCACGAGAGCAAGAAC


TTGCTGAAGAGCTTTGGGGAGTCGGTCCTCAGGAGTGTCAGCCCCGTCCAGGACCTGGACGATGACACCC


CCCCATCCCCTGCCCACTCTGACATGCCCTACGATGCCAGGCAGAACCCCAACTGCAAACCCCCCTACTC


CTTCAGCTGCCTCATATTTATGGCCATCGAGGACTCTCCAACCAAGCGCCTGCCAGTGAAGGATATCTAC


AACTGGATCTTGGAACATTTTCCGTATTTTGCAAATGCACCTACTGGGTGGAAAAACTCAGTGAGACACA


ATTTATCATTGAATAAGTGTTTTAAGAAAGTGGACAAAGAGAGGAGTCAGAGTATTGGGAAAGGGTCGTT


GTGGTGCATAGACCCAGAGTATAGACAAAATCTAATTCAGGCTTTGAAAAAGACACCTTATCACCCACAC


CCACACGTGTTCAATACACCTCCCACCTGTCCTCAGGCATATCAAAGCACATCAGGTCCACCCATCTGGC


CGGGCAGTACCTTCTTCAAGAGAAATGGAGCCCTTCTCCAAGATCCTGACATTGATGCTGCCAGTGCCAT


GATGCTTTTGAATACTCCCCCTGAGATACAAGCAGGTTTTCCTCCAGGAGTGATCCAAAATGGAGCGCGG


GTCCTGAGCCGAGGGCTGTTTCCTGGCGTGCGGCCGCTGCCAATCACTCCCATTGGGGTGACAGCGGCCA


TGAGGAATGGCATCACCAGCTGCCGGATGCGGACTGAGAGTGAGCCATCTTGTGGCTCCCCAGTGGTCAG


CGGAGACCCCAAGGAGGATCACAACTACAGCAGTGCCAAGTCCTCCAACGCCCGGAGCACCTCGCCCACC


AGCGACTCCATCTCCTCCTCCTCCTCCTCAGCCGACGACCACTATGAGTTTGCCACCAAGGGGAGCCAGG


AGGGCAGCGAGGGCAGCGAGGGGAGCTTCCGGAGCCACGAGAGCCCCAGCGACACGGAAGAGGACGACAG


GAAGCACAGCCAGAAGGAGCCCAAGGATTCTCTGGGGGACAGCGGGTACGCATCCCAGCACAAGAAGCGC


CAGCACTTCGCCAAGGCCAGGAAGGTCCCCAGCGACACACTGCCCCTCAAAAAGAGACGCACCGAAAAGC


CCCCCGAGAGCGATGATGAGGAGATGAAAGAAGCGGCAGGGTCCCTCCTGCACTTAGCAGGGATCCGGTC


CTGTTTGAATAACATCACCAATCGGACGGCAAAGGGGCAGAAAGAGCAAAAGGAAACCACAAAAAATTAA


AAACAAGTCACTGATTTGTTTTGAACTTACGACCATTTGGTTTCAGCATGTCAGGAGATTTCTAATGATT


TGTGGCAATATCAGCAATTTTTTTTCTTTTTTCTTGTTTTTGGTTTGGTTTTCTTTCTTTTCTTTTCCTT


TTATTTTGTTTTAATTTGCCCCCTCTTCTTTGTTTTGGACCCTTAAGAATTTTATTTTTAAAGGAGATTG


AAGCCATAGAACTCATATTGACACTCAGCTGTTTTACAAAAGCTTTTCATTATCTGAAGACAAAACCGAA


AAAGCCAAAATTACCATTGCTTCCTCCAGCTTGTCAGAAACCTGTGGCTGAATCCGCAGGGATGTCAACG


TCAATATCACAGGAACACACATTCGGCACCTAGAAGGCACGTGGGCAAAGTAATCATCGTTCAGGCCCAA


CCCTTAGGTTTAAAAAGTCAGGTTGTCCATCCCATTGGGTTCACTGAGTGAAGGCACATAAAGCAATTGA


GGAGGAGGAGGAACCCCTCGTCCCCCTAGGAGCAGACCCAAGCTTGTGGCACCAGGCATCTGATGGTGCC


AGGAAAGCCACTGGAATTGTCACACGGCGAGCACAGAGGGCCGGCCACCAGTCCTCGATGCTTCTGAACC


CTGAAGCCCGATGACATCTTACGAGGTGGACGTTGGACTGTTCATGCGCATCGGGTGTCAGTGACTCATG


GAGAAGAAATGGGGTAAATTTTTAGTGATGTTGCTAATCATTGAATTCTGTTCTCTATTAAATTAAGAAA


ATGTTCCAAAAGCCATAAGCCTGAAGATTGGCCCTGTGCACGCACGCACACACACACACACACACACACA


CACACACACACACACACGAAGGAGAGAGAGAGAAAACTGATGGGGAAAACAAGCTGTGTCTTCTTAACTG


CCCAAGTGAAAAGCAACCAAGTCCAGGAAATTACAATAGCTGTTAAGGAAAGGAAATAATGGTACAGATC


TTTTTCTGTCTATCAAAACTATTTGATCCAAGTGAAAAAAAAAAAAAAACTAGAAAGCTACGGAACCTGC


CATTAGTATTGTGGTGTATTTTTAAGATTAAAGGTACACTGATGGACAAAAAAAAAAAGTAAAACATGGC


AAAAAATAAAATAACTCCTATACTGCCCTCAAAATGGAGTTTGCAATTAATATCAGGATTTATCTTTGCA


AAAATCAGTGATTTCCACATTCAGCCAGTATAGCCAGCAGAAATTTCTGATCCACAATGCATGGATTCCT


TTGAAGAAAAAAAAGAAAAAGAGAAAAAAATCACAAAAACAAACTTTTTTTATTCAAAAGTAACAAAGTT


CTTGTAAGGTAAATAATGTATTTAGCATGAAGCATGAATTATTTTCATATAAATATAGAAAATAGAGAAA


AGGCTATGCCTGTAATTTTTAAGCCCTTAGGCTTAGAGTTTCTTTTGGTTTTCTTCTTTTTTCTTTCCTT


TTCTTTGCTTTCTTTTTTTCCTTTTTGTTTTTGTTTTTGTTTTTTGTTTTTGTTTTTTTTTCGGGTTATT


TTGTTTTGGTTTTTTGAAGCAGGTGTTTAAGGTTTAACCTTCTTCAGGGACAAATTCTGACTGTTGGGGA


ACTTACTCTGCAATATAAAAATATCTTCATGCTCTGGTAGGGCTTGGATGGTTGAACTCTGTACTGCCTT


GTGTGCACTTCAGCCCCGACCCCCTCTGATTCTCTGTTGAAAAGTGTGTCCTTTCTCTCTGTCTGTACAT


GTTTAACATGACGCAATAATTTGAGGGCAAACTTAGTAGTGAGTGTGTATGATAGAATCAAGAGAATTAT


GGGACGCTTACTTGAGAAAATCATTACCATGATTTGGTTCTAGGAAAAAGGCAGTGAATAATTATGCAAA


TTAGCCAGAAGAAGGGGAACCGTGCTAATGGGCCTTATTGGGTGAGGGGACGAGATGGGGTTCATGTGAA


GGAGGAAGCGATGCCGAGGTAGGAAAGGCCAGCCCCAGACATCCTATCGCCACAATGCCATGTCGCAATA


GGAAGCAGGGGCCGGCCATCGCTACCTTCAGCACACTGACCAACCTGGAATTAAGACCACCTAGATTGCG


AGAGCTGAATTTAGAAACCAGACAACGTCATGCAGCCCAGAAACTCCTGTTGTTACCTTTGCCTAAGAAA


TTTTCTTTAATGGCGGGGGCGGGGGGCGGGGGTACAAAGAGAAATCTCTAAAAGAATATGATCTTCCATC


CAAGTGGAGGGAAACTTTAAAACAAAAACACCCAGTACTGTGGCTCAGGATATGATGCGTGAGGAGAGGG


AGGGAACAGAGATGACCTTAACTTTTAAAAAAGGGACTGCTGTGGGCCAAAGCCAAGCCCATCTGCCAGG


ACGAGGTAATGTCAGAGCTCCATCAGCCCGGACAGTGGGAACTAACTGGTGCATTCCCCACACTTACCTT


CCGGTGGGTTGCTGATGAGAGAACCTGAAAAAACCTACACCTCTACAGCAGGTCGAATTCATGACCTGAA


GCTGAATACTTCCAGCATATTTATTCAGGGTGTAGGTGGGAATAAAGTATCTTCGCAGTGCTCTGTTCCC


TCCGTCTCCCCAGACATCTGACACCCTAAAAGCCATCCACAGCTATGGAACCTGAGCGACACCTTGATTT


GTGTTGTCACCTGACCAAGCCTAAAGACCTCCAGCTCAGTCCCCCACCTTCATCCCACCCCACAGATGAT


AAAATTCAGACCTCTCTCCTGAAAGGCAGAGGTTCAACATTCAGGACTGTTTCTGGCCGAGGACTTCTTC


CAATTAAAACCCCCACCGTGGGCTGTCTCCCCTCATTTCATTTTTCTAAAGGGGCAGAGGCCTCTTTTAG


AAAATAATAAAATGCAATGTGTGTGATTTACTTTTCTGATCTCTTTGAGAAATAGAGAAATATAAAAGTG


TGTTCTTAACTCCAGAACCACTCTTTTTGCATAAATACCTCATCGGGCAGCTTTCTAAGTGTGATTTTCC


TGAGTCTCCCTTCGTTGGATCTGCCGGAAGACTTGTCGGGGAACCTTTAGTGAGGGTACTTCTTCCTATT


TTTCTTCTGTTTTTGGAGGCATACACATTATGCATAACCAAAACAATGGCTCAATTGTGTTTAACTTTGT


ATTTTGATTGTTGAGAACAAAAACAAAAAGTATCAATGTGTATGTGGCTGTTTGTAGTGAATTTATTGGA


GAATGAGGTTGTCCGTGTCCTTAACAAGCCAAGGGGCAGGAGGCACCCTCTCTTATCCCCTCCTCCAAGA


GCAGTAGAGAATTTAAGCACAAGCCTATTTGTGAAAGAATATTTTGCTTAAGTGTCATTCACTTTAGTCT


TGGAATTCCTTCCCAAACGTCAGGTGTTCTTTTAGCTTCCAAACTAGCATATGTATCCATTAGTCTGACA


GATCGCCTGAACACCATTAAGAGGTGTGGCGTTTTTGCTTTCATTTCTCCTGCTGGGAGAAGTGGCGGTT


CATGTGTCATTCCAGTATCTCACATACTCACACGGGGCAGGGGGGAGGGGGAAACGGGGAACTATAGCAA


TATTTAAAGATGCTTTGGAAACCAACCGTGAACACATCAACACCACGACGTCTACGATTACTTGCTATTG


GCCCTCGGATACATTTAAGAGAAAGAGACAGTCACTCTTTTTTTTCTTAAATGATATACATATAAACAGT


TATTTTTATCCTATTATAATTGTCTTTTGTCTTTATCTAGTACTATGTGGAAAGGGTTTGCATCATAGAT


TTTTCCCAGCCTTATAATATACCATAAGCTCCTACTTCCCTGCCCCTCCCTAATCAGTATTCTTTCAAGA


GTTCTTTGGTGAAGCCATCTATCTGAAACTAAAATGAACCAAACCCATATTTCACTGGTGGTTGGAGAAA


ACCATGGCCAAAACGATTGTGGCAGGTCTCAATCTTGGGAGTTTTTAAGAAGGAATGTGCCAGAGGCCGA


TTCCCAAGAACAGAGTTTTCTTTTGTTTTGCAGAGGCATTCAATGTGTCTAGTGCTTGCTGGCCACAGCA


GTTACTACCACAGAGCCTTCTGGGAGGGGCCGTTGTGTTGAAGGAGGCTCCTGCCTGAGGGACAGCATCA


GGCAGTGGGCTCTGTAGAGTGAGAACCAGGTGGAGGCCTTCTGTGCCCAGCTCAGAGTTCTGCACCACGC


CAGGACTGCCCAGGCCAAGGGCTACTGACGCAAGTTCCACTCATTCCACTCTGTGGGGGGCGCCTTGGGC


CTCTCCTGGAAGGGCTCTTGGAGAAGGAATTGGAGTTACGTACAAGTGACCTAAATGGGAAGCTTTTCTA


GATGAGATTGGATTAAATTCCATGTGATTTCTCTTTCCCTTTAATCCAGGTTGGGACTCGTTTCTTTCTG


GTGGATCACAGCTGCCCAGATGTTGCAATTGATTTTTATGTTTCTGTAGAGAAGTATTTTTCTTTCATCT


TCAGGATTTTTTTTGCCACCAAAAGAAAACATTGGAACTCTGTGTTTCCTCTTGATTGTGACTTCCCAGT


GTTGACAGTTAAGTCCTTAGTGTCGTAGGTCCCAGCCCACCAATACTATATCAAACACTGTTATGCACAT


AATGCAGCACTGTGATCTAATTTAAATAATACTTTTTTATTATTTATACTACTATATATAATATACATCA


ACACTTTTGCTATATAACCTAAGTGATAACCCTCTTTTAGTTACCTGCCAAACTCTGGACTTGGTTTATA


TTGCAGTTAACACAGTTACAAAGCTGTAATGGTGTCTTTTTTTCCTTTGTAACGGAATGTGTAAATCAAA


GTATATACATTGTGTGGTGTTCCTGTTTCTGGAGTTTCATGAGGATTTACACATGGCATTCAGTGTTCTG


TATAGATCTGCCTACCTTTGTGAATTCATCTGTTAACCCCTCTTCCTTTGAGAGAGCACCGGCGATGGTG


GTTAACTCCTTGTGTTTTCTCTCTCTCCTACTGGTTATTCTTGAATTAAGCACAGACTCGTCAGCTCGGT


TGCTTTATCATGAATAATGTGTGTGACCTTGCAGTTCTTCCACAGTTCAGCAAACAAGTGCTAGCTTCAC


TGACCAAAAATTAAGGAAGGAAAACACAGTTTTTAAAACGATCCATCTTTTAACAGCCGAAACCGATGTG


TCTATGGTGCTGCACCTTGCTGTTGTACTTCTGAAATCAGACGTGTGTGAACGATCATTTCTGACTTAAC


CGTGAGATGCTCACGAGTACCCTTCCTGTTGTTTTGTTAGCATTGAAATCGAGACTATTTATTTGGAATA


TATACAACAGTGTTTTTCCACTGTATTTCATTTGCAAAAGTTGAGAACTGCTTTCTCTACCTTTTGCAAA


ATAATTGATATTCCATATTGGATTCTCAAAGACTTCGATATGGTGAACCTATTAAACCTAGAAATTGTAT


TCATCCTTTCATGACTGTGGCCTGAGTTCCCCAGCCCCTCTCCTCCTTTTTTTTAGATGAGATTTAGCAC


ACTCTCAGTTATTTAAACATGCAACATTTCTTGAGTATGTATGTTGAGGCCATCTGAGCTCATAGCTGAT


TCAGTAACCAGTTTCATGCTGTGTCATTCACACTCACTACTTAATACTGCCATGGTGAAAATGTGGAGGA


AAAATGTATCCATGTGTGTCTGGGAAGCATATACACTTGTACATTTTTTAATACTCTGATTCTGTAACAT


TTCTGAGTTTTGTTTTGTTTTACAGAAAAAAAAAAAAAGTGATAAAGCAATCAGAAGACCAAGAGGTTTA


CTATTGATGCTTAGGGTCGTCTGACCTTGGCTGGCCAATAGACCTACACGGCCAAATTAATTTACGAGAG


TAATAATTTTTCAAAAGCCAATTTTTTTTCTGTATTTTCTGTATGAAACTGCCAATATCATGAATAGAAA


GGGAGAACCATAAAGGAGAAAGAACGTGATGTTCTGTTATGTTCATGTAAACCTAAAGAAACAGTGTGGA


GGCAGGCGCGATCAGCCGAACTCTAGGGACTTGGTGTTGCTTGGAAGGCATCCATACCTGCATTTTGCAT


TCTTCGTATGTAATCATATTGCCAAAGACAAACTATTTCATCATTTATTGTAAATAACACTTTTCCCCAG


ACCTACCATAAAGTTTCTGTGATGTATTGTCTTCCAGTTGCAATAAAAATTACTGAGTTGCATCAATTGA


AGAAAAACACCAAAAA





SEQ ID NO: 21 - Homo sapiens glyceraldehyde-3-phosphate dehydrogenase


(GAPDH), mRNA


AAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTG


CGTCGCCAGCCGAGCCACATCGCTCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCG


TATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCC


TTCATTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCG


TCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTC


CAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG


AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCA


TGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCAC


CACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACC


ACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCC


GCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGA


GCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC


TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCC


TCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTC


CACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAAC


GAATTTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGA


CCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCA


GTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA


GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACC





SEQ ID NO: 22 - Homo sapiens glyceraldehyde-3-phosphate dehydrogenase


(GAPDH), mRNA


AAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTG


CGTCGCCAGCCGAGCCACATCGCTCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCG


TATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCC


TTCATTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCG


TCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTC


CAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG


AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCA


TGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCAC


CACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACC


ACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCC


GCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGA


GCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC


TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCC


TCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTC


CACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAAC


GAATTTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGA


CCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCA


GTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA


GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACC





SEQ ID NO: 23 - Homo sapiens GATAbinding protein 3 (GATA3), transcript


variant 1, mRNA


GGCGCCGTCTTGATACTTTCAGAAAGAATGCATTCCCTGTAAAAAAAAAAAAAAAATACTGAGAGAGGGA


GAGAGAGAGAGAAGAAGAGAGAGAGACGGAGGGAGAGCGAGACAGAGCGAGCAACGCAATCTGACCGAGC


AGGTCGTACGCCGCCGCCTCCTCCTCCTCTCTGCTCTTCGCTACCCAGGTGACCCGAGGAGGGACTCCGC


CTCCGAGCGGCTGAGGACCCCGGTGCAGAGGAGCCTGGCTCGCAGAATTGCAGAGTCGTCGCCCCTTTTT


ACAACCTGGTCCCGTTTTATTCTGCCGTACCCAGTTTTTGGATTTTTGTCTTCCCCTTCTTCTCTTTGCT


AAACGACCCCTCCAAGATAATTTTTAAAAAACCTTCTCCTTTGCTCACCTTTGCTTCCCAGCCTTCCCAT


CCCCCCACCGAAAGCAAATCATTCAACGACCCCCGACCCTCCGACGGCAGGAGCCCCCCGACCTCCCAGG


CGGACCGCCCTCCCTCCCCGCGCGCGGGTTCCGGGCCCGGCGAGAGGGCGCGAGCACAGCCGAGGCCATG


GAGGTGACGGCGGACCAGCCGCGCTGGGTGAGCCACCACCACCCCGCCGTGCTCAACGGGCAGCACCCGG


ACACGCACCACCCGGGCCTCAGCCACTCCTACATGGACGCGGCGCAGTACCCGCTGCCGGAGGAGGTGGA


TGTGCTTTTTAACATCGACGGTCAAGGCAACCACGTCCCGCCCTACTACGGAAACTCGGTCAGGGCCACG


GTGCAGAGGTACCCTCCGACCCACCACGGGAGCCAGGTGTGCCGCCCGCCTCTGCTTCATGGATCCCTAC


CCTGGCTGGACGGCGGCAAAGCCCTGGGCAGCCACCACACCGCCTCCCCCTGGAATCTCAGCCCCTTCTC


CAAGACGTCCATCCACCACGGCTCCCCGGGGCCCCTCTCCGTCTACCCCCCGGCCTCGTCCTCCTCCTTG


TCGGGGGGCCACGCCAGCCCGCACCTCTTCACCTTCCCGCCCACCCCGCCGAAGGACGTCTCCCCGGACC


CATCGCTGTCCACCCCAGGCTCGGCCGGCTCGGCCCGGCAGGACGAGAAAGAGTGCCTCAAGTACCAGGT


GCCCCTGCCCGACAGCATGAAGCTGGAGTCGTCCCACTCCCGTGGCAGCATGACCGCCCTGGGTGGAGCC


TCCTCGTCGACCCACCACCCCATCACCACCTACCCGCCCTACGTGCCCGAGTACAGCTCCGGACTCTTCC


CCCCCAGCAGCCTGCTGGGCGGCTCCCCCACCGGCTTCGGATGCAAGTCCAGGCCCAAGGCCCGGTCCAG


CACAGAAGGCAGGGAGTGTGTGAACTGTGGGGCAACCTCGACCCCACTGTGGCGGCGAGATGGCACGGGA


CACTACCTGTGCAACGCCTGCGGGCTCTATCACAAAATGAACGGACAGAACCGGCCCCTCATTAAGCCCA


AGCGAAGGCTGTCTGCAGCCAGGAGAGCAGGGACGTCCTGTGCGAACTGTCAGACCACCACAACCACACT


CTGGAGGAGGAATGCCAATGGGGACCCTGTCTGCAATGCCTGTGGGCTCTACTACAAGCTTCACAATATT


AACAGACCCCTGACTATGAAGAAGGAAGGCATCCAGACCAGAAACCGAAAAATGTCTAGCAAATCCAAAA


AGTGCAAAAAAGTGCATGACTCACTGGAGGACTTCCCCAAGAACAGCTCGTTTAACCCGGCCGCCCTCTC


CAGACACATGTCCTCCCTGAGCCACATCTCGCCCTTCAGCCACTCCAGCCACATGCTGACCACGCCCACG


CCGATGCACCCGCCATCCAGCCTGTCCTTTGGACCACACCACCCCTCCAGCATGGTCACCGCCATGGGTT


AGAGCCCTGCTCGATGCTCACAGGGCCCCCAGCGAGAGTCCCTGCAGTCCCTTTCGACTTGCATTTTTGC


AGGAGCAGTATCATGAAGCCTAAACGCGATGGATATATGTTTTTGAAGGCAGAAAGCAAAATTATGTTTG


CCACTTTGCAAAGGAGCTCACTGTGGTGTCTGTGTTCCAACCACTGAATCTGGACCCCATCTGTGAATAA


GCCATTCTGACTCATATCCCCTATTTAACAGGGTCTCTAGTGCTGTGAAAAAAAAAATGCTGAACATTGC


ATATAACTTATATTGTAAGAAATACTGTACAATGACTTTATTGCATCTGGGTAGCTGTAAGGCATGAAGG


ATGCCAAGAAGTTTAAGGAATATGGGAGAAATAGTGTGGAAATTAAGAAGAAACTAGGTCTGATATTCAA


ATGGACAAACTGCCAGTTTTGTTTCCTTTCACTGGCCACAGTTGTTTGATGCATTAAAAGAAAATAAAAA


AAAGAAAAAAGAGAAAAGAAAAAAAAAGAAAAAAGTTGTAGGCGAATCATTTGTTCAAAGCTGTTGGCCT


CTGCAAAGGAAATACCAGTTCTGGGCAATCAGTGTTACCGTTCACCAGTTGCCGTTGAGGGTTTCAGAGA


GCCTTTTTCTAGGCCTACATGCTTTGTGAACAAGTCCCTGTAATTGTTGTTTGTATGTATAATTCAAAGC


ACCAAAATAAGAAAAGATGTAGATTTATTTCATCATATTATACAGACCGAACTGTTGTATAAATTTATTT


ACTGCTAGTCTTAAGAACTGCTTTCTTTCGTTTGTTTGTTTCAATATTTTCCTTCTCTCTCAATTTTTGG


TTGAATAAACTAGATTACATTCAGTTGGCCTAAGGTGGTTGTGCTCGGAGGGTTTCTTGTTTCTTTTCCA


TTTTGTTTTTGGATGATATTTATTAAATAGCTTCTAAGAGTCCGGCGGCATCTGTCTTGTCCCTATTCCT


GCAGCCTGTGCTGAGGGTAGCAGTGTATGAGCTACCAGCGTGCATGTCAGCGACCCTGGCCCGACAGGCC


ACGTCCTGCAATCGGCCCGGCTGCCTCTTCGCCCTGTCGTGTTCTGTGTTAGTGATCACTGCCTTTAATA


CAGTCTGTTGGAATAATATTATAAGCATAATAATAAAGTGAAAATATTTTAAAACTACAA





SEQ ID NO: 24 - Homo sapiens guanine nucleotide binding protein (G protein),


beta 5 (GNB5), transcript variant 1, mRNA


CCGGGGACGGCTGCTGGAGCGGCGCCCGCCGCGGCTCAGCGCATTCCCGCTCTCCGCTTCCCTCTCCGCT


GCGTCCCCGCGCGAAGATGGCAACCGAGGGGCTGCACGAGAACGAGACGCTGGCGTCGCTGAAGAGCGAG


GCCGAGAGCCTCAAGGGCAAGCTGGAGGAGGAGCGAGCCAAGCTGCACGATGTGGAGCTGCACCAGGTGG


CGGAGCGGGTGGAGGCCCTGGGGCAGTTTGTCATGAAGACCAGAAGGACCCTCAAAGGCCACGGGAACAA


AGTCCTGTGCATGGACTGGTGCAAAGATAAGAGGAGGATCGTGAGCTCGTCACAGGATGGGAAGGTGATC


GTGTGGGATTCCTTCACCACAAACAAGGAGCACGCGGTCACCATGCCCTGCACGTGGGTGATGGCATGTG


CTTATGCCCCATCGGGATGTGCCATTGCTTGTGGTGGTTTGGATAATAAGTGTTCTGTGTACCCCTTGAC


GTTTGACAAAAATGAAAACATGGCTGCCAAAAAGAAGTCTGTTGCTATGCACACCAACTACCTGTCGGCC


TGCAGCTTCACCAACTCTGACATGCAGATCCTGACAGCGAGCGGCGATGGCACATGTGCCCTGTGGGACG


TGGAGAGCGGGCAGCTGCTGCAGAGCTTCCACGGACATGGGGCTGACGTCCTCTGCTTGGACCTGGCCCC


CTCAGAAACTGGAAACACCTTCGTGTCTGGGGGATGTGACAAGAAAGCCATGGTGTGGGACATGCGCTCC


GGCCAGTGCGTGCAGGCCTTTGAAACACATGAATCTGACATCAACAGTGTCCGGTACTACCCCAGTGGAG


ATGCCTTTGCTTCAGGGTCAGATGACGCTACGTGTCGCCTCTATGACCTGCGGGCAGATAGGGAGGTTGC


CATCTATTCCAAAGAAAGCATCATATTTGGAGCATCCAGCGTGGACTTCTCCCTCAGTGGTCGCCTGCTG


TTTGCTGGATACAATGATTACACTATCAACGTCTGGGATGTTCTCAAAGGGTCCCGGGTCTCCATCCTGT


TTGGACATGAAAACCGCGTTAGCACTCTACGAGTTTCCCCCGATGGGACTGCTTTCTGCTCTGGATCATG


GGATCATACCCTCAGAGTCTGGGCCTAATCATCTTCTGACAGTGCACTCATGTATACCTGAGAATTTGAA


ATCTTCACATGTAAATAGATATTACTTCTAGAGGAGCTTAGAGTTTATTGCAGTGTAGCTTAGGGGAGCA


ACCCATGGCTCACAGGTCACTAAGCGTCTCCAATATGACTATTAAAACTGTCACCTCTGGAAATACACTA


GTGTGAGCCTTCAGCACTGCGAGAATACCTTCAAGTACAGTATTTTTCTTTTGGAACACTTTTTAAAATG


TATCTGTTTTTAAGGTTATTCTAAATTATAGTAGCCTCAACTCATTCTGTCACCAGTAGAATTCAGCAGT


TAATATATTCCATATTATTTCTTTGAATCAATTCATTTTCAGAGCACTTTAAAGTCTGATATTTCTCGAT


GTGCACTGTGATGCCTGGAACCTTCCTCTGGAAGTGCTGATTTTATGGACTGAGGACTGGTGACTGGTCT


GTGATAGAAGCAAATTCCAATTCCAAATGTAATTAGACAAAAATCATTTTTTTAGAATGTGTTTTTATTG


TAAAAGTATCTTTTTCAGCTTCCTGTTCTATTGTCTTTTTTCAGATACAACATTTTTGTCTATGGTGAAC


TGCTGTAAATGACGCAGAGAAATGCCTAAAAAGGACAGGTGGTTTGACTCATGGATGATGATGATGTCAC


TGTGCCACTTGGACAGGGCGTTTTCTCTGAATTGAAGGGAAAGCCAATGGTGTTTGTAAACAAATGCTTC


TGAGAGCAAAGAAAAGTCTTCTGTGTGGGAACACAAGATAGTAAACTTATTTAAAAACCTATTAGTAGAA


TTAGTGGAAACACTTAGGTTAAAGTGAATCTTGTCCATATAAATTATATTCATGGCCGGGCGCGGTGGCT


CACGCTTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGTTCGAGACCACG


GTGAAACCCTGTCTCTACTAAAAAATACAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAG


CTACTCGGAGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGTGGAGCTTGCAGTGAGCCGAGGTCG


AGCCACTGCAGCCTGGGTGACAAAGCGAGACTCCGTCTCAAAAAAAAAAAAAAATTATATTCATATGTAT


TGCATTGCAATTATAATTACATATGCAGATTGATTGATAGTCATGAATAATAACGTCTGCTCCTCTTACA


TAGAAAAACGATATTAAAAGAAGATCTTCTCTTTATTTGAGACTCAGAATTCCTTCTAGAAGAAGGAAGT


GCTTTTTGTTATAGGATCCCTTCTTTTCCTTTTTTTGTTTTTTTGTAAGATGTAGATGCTTATTCTTTGC


TTTAGAAAACTTCTCACTTAAAAAGATGGCATGCACCTAGGGGAATAAAAGGTCACCTCAGACACCAGGT


GTCATTCCTGGTGAGGCCTGCCTCGTCGGTGGCCTGGGGTCTGCCGGCAGGTTCTGGCTGCACCTGAAGG


CTGCGTGCACCTTGTCCCCTGGACAGGTCTCCTTTCCTGGCCCTGCTCCAGCCCAGCCCTTCTTCTAGTG


GTAGCTCTGGCTTTGCAGGCCCAGCTCCAGGCCCTGCTCCTCAGAGAGACTCTTCCAGAGCTGGAGCTGG


GCACAGCCATAAGACAGGACTGGACCAGATGCTCCTGTAAACATCCAGGGGTGTGCCAGGCCCACCCTCA


CAACTGCTTGTTCAGGTATCGTGATGGGCCACTCGGTCCAAAATCAGCCAGGCCATCTTTTCCATCATCT


CACTTCAAATAAACATAATAATTATATTTGATCATTTGC





SEQ ID NO: 25 - Homo sapiens glutathione S-transferase mu 4 (GSTM4),


transcript variant 2, mRNA


AAGCTGGCGAGGCCGAGCCCCTCCTAGTGCTTCCGGACCTTGCTCCCTGAACACTCGGAGGTGGCGGTGG


ATCTTACTCCTTCCAGCCAGTGAGGATCCAGCAACCTGCTCCGTGCCTCCCGCGCCTGTTGGTTGGAAGT


GACGACCTTGAAGATCGGCCGGTTGGAAGTGACGACCTTGAAGATCGGCGGGCGCAGCGGGGCCGAGGGG


GCGGGTCTGGCGCTAGGTCCAGCCCCTGCGTGCCGGGAACCCCAGAGGAGGTCGCAGTTCAGCCCAGCTG


AGGCCTGTCTGCAGAATCGACACCAACCAGCATCATGTCCATGACACTGGGGTACTGGGACATCCGCGGG


CTGGCCCACGCCATCCGCCTGCTCCTGGAATACACAGACTCAAGCTACGAGGAAAAGAAGTATACGATGG


GGGACGCTCCTGACTATGACAGAAGCCAGTGGCTGAATGAAAAATTCAAGCTGGGCCTGGACTTTCCCAA


TCTGCCCTACTTGATTGATGGGGCTCACAAGATCACCCAGAGCAACGCCATCCTGTGCTACATTGCCCGC


AAGCACAACCTGTGTGGGGAGACAGAAGAGGAGAAGATTCGTGTGGACATTTTGGAGAACCAGGCTATGG


ACGTCTCCAATCAGCTGGCCAGAGTCTGCTACAGCCCTGACTTTGAGAAACTGAAGCCAGAATACTTGGA


GGAACTTCCTACAATGATGCAGCACTTCTCACAGTTCCTGGGGAAGAGGCCATGGTTTGTTGGAGACAAG


ATCACCTTTGTAGATTTCCTCGCCTATGATGTCCTTGACCTCCACCGTATATTTGAGCCCAACTGCTTGG


ACGCCTTTCCAAATCTGAAGGACTTCATCTCCCGCTTTGAGGTTTCCTGTGGCATAATGTGATGGTCAAT


TTTCTGCATCAACTTGACTGGGCTAAGGGATGCTCAGATGGCAGGTAAAATCATTGTGCTTGTGAGGGTG


TTTCCAGAAGAGATTTGCCTTTGAATCAGAAGACAGCAAAGATTTCCTTCAGCAATGAAGGAGGCATCCA


CCAAACTGTCAGGGCCCAGAGAGAAGAAAAAGACAGGAAGGGTGAATTTGACCTCTCTGACTGGGACATC


CATCTCTGCCTATCCTGGGACCTCCACACTCCTGGTTCTCTGGCCTTCAGACTTGATCAGGGACTAACAC


CATCGCCTCCCACCCCCACCTTTGTTCTGAGGCCTTTAGCCTCTGAATGATACCACTGGCTTTCCTGCTT


CTCTATCCTGCAGTCGGCAGATCATGGGACTTCTTCACTCCAAAATTGTGTGAGCCAATTCCCATAACAG


ATAGATAAATTTATAAATAAACACACAAATTTCCTACAGCCT





SEQ ID NO: 26 - Homo sapiens major histocompatibility complex, class II,


DR alpha (HLA-DRA), mRNA


TTTTAATGGTCAGACTCTATTACACCCCACATTCTCTTTTCTTTTATTCTTGTCTGTTCTGCCTCACTCC


CGAGCTCTACTGACTCCCAACAGAGCGCCCAAGAAGAAAATGGCCATAAGTGGAGTCCCTGTGCTAGGAT


TTTTCATCATAGCTGTGCTGATGAGCGCTCAGGAATCATGGGCTATCAAAGAAGAACATGTGATCATCCA


GGCCGAGTTCTATCTGAATCCTGACCAATCAGGCGAGTTTATGTTTGACTTTGATGGTGATGAGATTTTC


CATGTGGATATGGCAAAGAAGGAGACGGTCTGGCGGCTTGAAGAATTTGGACGATTTGCCAGCTTTGAGG


CTCAAGGTGCATTGGCCAACATAGCTGTGGACAAAGCCAACCTGGAAATCATGACAAAGCGCTCCAACTA


TACTCCGATCACCAATGTACCTCCAGAGGTAACTGTGCTCACAAACAGCCCTGTGGAACTGAGAGAGCCC


AACGTCCTCATCTGTTTCATAGACAAGTTCACCCCACCAGTGGTCAATGTCACGTGGCTTCGAAATGGAA


AACCTGTCACCACAGGAGTGTCAGAGACAGTCTTCCTGCCCAGGGAAGACCACCTTTTCCGCAAGTTCCA


CTATCTCCCCTTCCTGCCCTCAACTGAGGACGTTTACGACTGCAGGGTGGAGCACTGGGGCTTGGATGAG


CCTCTTCTCAAGCACTGGGAGTTTGATGCTCCAAGCCCTCTCCCAGAGACTACAGAGAACGTGGTGTGTG


CCCTGGGCCTGACTGTGGGTCTGGTGGGCATCATTATTGGGACCATCTTCATCATCAAGGGATTGCGCAA


AAGCAATGCAGCAGAACGCAGGGGGCCTCTGTAAGGCACATGGAGGTGATGGTGTTTCTTAGAGAGAAGA


TCACTGAAGAAACTTCTGCTTTAATGGCTTTACAAAGCTGGCAATATTACAATCCTTGACCTCAGTGAAA


GCAGTCATCTTCAGCATTTTCCAGCCCTATAGCCACCCCAAGTGTGGATATGCCTCTTCGATTGCTCCGT


ACTCTAACATCTAGCTGGCTTCCCTGTCTATTGCCTTTTCCTGTATCTATTTTCCTCTATTTCCTATCAT


TTTATTATCACCATGCAATGCCTCTGGAATAAAACATACAGGAGTCTGTCTCTGCTATGGAATGCCCCAT


GGGGCATCTCTTGTGTACTTATTGTTTAAGGTTTCCTCAAACTGTGATTTTTCTGAACACAATAAACTAT


TTTGATGATCTTGGGTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 27 - Homo sapiens v-Ha-ras Harvey rat sarcoma viral oncogene


homolog (HRAS), transcript variant 3, mRNA


TGCCCTGCGCCCGCAACCCGAGCCGCACCCGCCGCGGACGGAGCCCATGCGCGGGGCGAACCGCGCGCCC


CCGCCCCCGCCCCGCCCCGGCCTCGGCCCCGGCCCTGGCCCCGGGGGCAGTCGCGCCTGTGAACGGTGGG


GCAGGAGACCCTGTAGGAGGACCCCGGGCCGCAGGCCCCTGAGGAGCGATGACGGAATATAAGCTGGTGG


TGGTGGGCGCCGGCGGTGTGGGCAAGAGTGCGCTGACCATCCAGCTGATCCAGAACCATTTTGTGGACGA


ATACGACCCCACTATAGAGGATTCCTACCGGAAGCAGGTGGTCATTGATGGGGAGACGTGCCTGTTGGAC


ATCCTGGATACCGCCGGCCAGGAGGAGTACAGCGCCATGCGGGACCAGTACATGCGCACCGGGGAGGGCT


TCCTGTGTGTGTTTGCCATCAACAACACCAAGTCTTTTGAGGACATCCACCAGTACAGGGAGCAGATCAA


ACGGGTGAAGGACTCGGATGACGTGCCCATGGTGCTGGTGGGGAACAAGTGTGACCTGGCTGCACGCACT


GTGGAATCTCGGCAGGCTCAGGACCTCGCCCGAAGCTACGGCATCCCCTACATCGAGACCTCGGCCAAGA




CCCGGCAGGGAGTGGAGGATG
CCTTCTACACGTTGGTGCGTGAGATCCGGCAGCACAAGCTGCGGAAGCT



GAACCCTCCTGATGAGAGTGGCCCCGGCTGCATGAGCTGCAAGTGTGTGCTCTCCTGACGCAGGTGAGGG


GGACTCCCAGGGCGGCCGCCACGCCCACCGGATGACCCCGGCTCCCCGCCCCTGCCGGTCTCCTGGCCTG


CGGTCAGCAGCCTCCCTTGTGCCCCGCCCAGCACAAGCTCAGGACATGGAGGTGCCGGATGCAGGAAGGA


GGTGCAGACGGAAGGAGGAGGAAGGAAGGACGGAAGCAAGGAAGGAAGGAAGGGCTGCTGGAGCCCAGTC


ACCCCGGGACCGTGGGCCGAGGTGACTGCAGACCCTCCCAGGGAGGCTGTGCACAGACTGTCTTGAACAT


CCCAAATGCCACCGGAACCCCAGCCCTTAGCTCCCCTCCCAGGCCTCTGTGGGCCCTTGTCGGGCACAGA


TGGGATCACAGTAAATTATTGGATGGTCTTGAAAAAAAAAAAAAAAAAA





SEQ ID NO: 28 - Homo sapiens interferon, alpha-inducible protein 27 (IFI27),


transcript variant 1, mRNA


GGGAACACATCCAAGCTTAAGACGGTGAGGTCAGCTTCACATTCTCAGGAACTCTCCTTCTTTGGGTCTG


GCTGAAGTTGAGGATCTCTTACTCTCTAGGCCACGGAATTAACCCGAGCAGGCATGGAGGCCTCTGCTCT


CACCTCATCAGCAGTGACCAGTGTGGCCAAAGTGGTCAGGGTGGCCTCTGGCTCTGCCGTAGTTTTGCCC




CTGGCCAGGATTGCTACAGTT
GTGATTGGAGGAGTTGTGGCCATGGCGGCTGTGCCCATGGTGCTCAGTG



CCATGGGCTTCACTGCGGCGGGAATCGCCTCGTCCTCCATAGCAGCCAAGATGATGTCCGCGGCGGCCAT


TGCCAATGGGGGTGGAGTTGCCTCGGGCAGCCTTGTGGCTACTCTGCAGTCACTGGGAGCAACTGGACTC


TCCGGATTGACCAAGTTCATCCTGGGCTCCATTGGGTCTGCCATTGCGGCTGTCATTGCGAGGTTCTACT


AGCTCCCTGCCCCTCGCCCTGCAGAGAAGAGAACCATGCCAGGGGAGAAGGCACCCAGCCATCCTGACCC


AGCGAGGAGCCAACTATCCCAAATATACCTGGGGTGAAATATACCAAATTCTGCATCTCCAGAGGAAAAT


AAGAAATAAAGATGAATTGTTGCAACTCTTCAAAA





SEQ ID NO: 29 - Homo sapiens interleukin 11 receptor, alpha (IL11RA),


transcript variant 3, mRNA


AGAGGGCGAGGGCGAGGGCAGAGGGCGCTGGCGGCAGCGGCCGCGGAAGATGAGCAGCAGCTGCTCAGGG


CTGAGCAGGGTCCTGGTGGCCGTGGCTACAGCCCTGGTGTCTGCCTCCTCCCCCTGCCCCCAGGCCTGGG


GCCCCCCAGGGGTCCAGTATGGGCAGCCAGGCAGGTCCGTGAAGCTGTGTTGTCCTGGAGTGACTGCCGG


GGACCCAGTGTCCTGGTTTCGGGATGGGGAGCCAAAGCTGCTCCAGGGACCTGACTCTGGGCTAGGGCAT


GAACTGGTCCTGGCCCAGGCAGACAGCACTGATGAGGGCACCTACATCTGCCAGACCCTGGATGGTGCAC


TTGGGGGCACAGTGACCCTGCAGCTGGGCTACCCTCCAGCCCGCCCTGTTGTCTCCTGCCAAGCAGCCGA


CTATGAGAACTTCTCTTGCACTTGGAGTCCCAGCCAGATCAGCGGTTTACCCACCCGCTACCTCACCTCC


TACAGGAAGAAGACAGTCCTAGGAGCTGATAGCCAGAGGAGGAGTCCATCCACAGGGCCCTGGCCATGCC


CACAGGATCCCCTAGGGGCTGCCCGCTGTGTTGTCCACGGGGCTGAGTTCTGGAGCCAGTACCGGATTAA


TGTGACTGAGGTGAACCCACTGGGTGCCAGCACACGCCTGCTGGATGTGAGCTTGCAGAGCATCTTGCGC




CCTGACCC
ACCCCAGGGCCTGCGGGTAGAGTCAGTACCAGGTTACCCCCGACGCCTGCGAGCCAGCTGGA



CATACCCTGCCTCCTGGCCGTGCCAGCCCCACTTCCTGCTCAAGTTCCGTTTGCAGTACCGTCCGGCGCA


GCATCCAGCCTGGTCCACGGTGGAGCCAGCTGGACTGGAGGAGGTGATCACAGATGCTGTGGCTGGGCTG


CCCCATGCTGTACGAGTCAGTGCCCGGGACTTTCTAGATGCTGGCACCTGGAGCACCTGGAGCCCGGAGG


CCTGGGGAACTCCGAGCACTGGGACCATACCAAAGGAGATACCAGCATGGGGCCAGCTACACACGCAGCC


AGAGGTGGAGCCTCAGGTGGACAGCCCTGCTCCTCCAAGGCCCTCCCTCCAACCACACCCTCGGCTACTT


GATCACAGGGACTCTGTGGAGCAGGTAGCTGTGCTGGCGTCTTTGGGAATCCTTTCTTTCCTGGGACTGG


TGGCTGGGGCCCTGGCACTGGGGCTCTGGCTGAGGCTGAGACGGGGTGGGAAGGATGGATCCCCAAAGCC


TGGGTTCTTGGCCTCAGTGATTCCAGTGGACAGGCGTCCAGGAGCTCCAAACCTGTAGAGGACCCAGGAG


GGCTTCGGCAGATTCCACCTATAATTCTGTCTTGCTGGTGTGGATAGAAACCAGGCAGGACAGTAGATCC


CTATGGTTGGATCTCAGCTGGAAGTTCTGTTTGGAGCCCATTTCTGTGAGACCCTGTATTTCAAATTTGC


AGCTGAAAGGTGCTTGTACCTCTGATTTCACCCCAGAGTTGGAGTTCTGCTCAAGGAACGTGTGTAATGT


GTACATCTGTGTCCATGTGTGACCATGTGTCTGTGAGGCAGGGAACATGTATTCTCTGCATGCATGTATG


TAGGTGCCTGGGGAGTGTGTGTGGGTCCTTGGCTCTTGGCCTTTCCCCTTGCAGGGGTTGTGCAGGTGTG


AATAAAGAGAATAAGGAAGTTCTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA


AAAAAAAAAA





SEQ ID NO: 30 - Homo sapiens jun proto-oncogene (JUN), mRNA


GACATCATGGGCTATTTTTAGGGGTTGACTGGTAGCAGATAAGTGTTGAGCTCGGGCTGGATAAGGGCTC


AGAGTTGCACTGAGTGTGGCTGAAGCAGCGAGGCGGGAGTGGAGGTGCGCGGAGTCAGGCAGACAGACAG


ACACAGCCAGCCAGCCAGGTCGGCAGTATAGTCCGAACTGCAAATCTTATTTTCTTTTCACCTTCTCTCT


AACTGCCCAGAGCTAGCGCCTGTGGCTCCCGGGCTGGTGTTTCGGGAGTGTCCAGAGAGCCTGGTCTCCA


GCCGCCCCCGGGAGGAGAGCCCTGCTGCCCAGGCGCTGTTGACAGCGGCGGAAAGCAGCGGTACCCACGC


GCCCGCCGGGGGAAGTCGGCGAGCGGCTGCAGCAGCAAAGAACTTTCCCGGCTGGGAGGACCGGAGACAA


GTGGCAGAGTCCCGGAGCGAACTTTTGCAAGCCTTTCCTGCGTCTTAGGCTTCTCCACGGCGGTAAAGAC


CAGAAGGCGGCGGAGAGCCACGCAAGAGAAGAAGGACGTGCGCTCAGCTTCGCTCGCACCGGTTGTTGAA


CTTGGGCGAGCGCGAGCCGCGGCTGCCGGGCGCCCCCTCCCCCTAGCAGCGGAGGAGGGGACAAGTCGTC


GGAGTCCGGGCGGCCAAGACCCGCCGCCGGCCGGCCACTGCAGGGTCCGCACTGATCCGCTCCGCGGGGA


GAGCCGCTGCTCTGGGAAGTGAGTTCGCCTGCGGACTCCGAGGAACCGCTGCGCCCGAAGAGCGCTCAGT


GAGTGACCGCGACTTTTCAAAGCCGGGTAGCGCGCGCGAGTCGACAAGTAAGAGTGCGGGAGGCATCTTA


ATTAACCCTGCGCTCCCTGGAGCGAGCTGGTGAGGAGGGCGCAGCGGGGACGACAGCCAGCGGGTGCGTG


CGCTCTTAGAGAAACTTTCCCTGTCAAAGGCTCCGGGGGGCGCGGGTGTCCCCCGCTTGCCAGAGCCCTG


TTGCGGCCCCGAAACTTGTGCGCGCAGCCCAAACTAACCTCACGTGAAGTGACGGACTGTTCTATGACTG


CAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCTTA


TGGCTACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGGGAGCCTG


AAGCCGCACCTCCGCGCCAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAGCTGGCGT


CGCCCGAGCTGGAGCGCCTGATAATCCAGTCCAGCAACGGGCACATCACCACCACGCCGACCCCCACCCA


GTTCCTGTGCCCCAAGAACGTGACAGATGAGCAGGAGGGCTTCGCCGAGGGCTTCGTGCGCGCCCTGGCC


GAACTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGTCAACGGGGCAGGCATGG


TGGCTCCCGCGGTAGCCTCGGTGGCAGGGGGCAGCGGCAGCGGCGGCTTCAGCGCCAGCCTGCACAGCGA


GCCGCCGGTCTACGCAAACCTCAGCAACTTCAACCCAGGCGCGCTGAGCAGCGGCGGCGGGGCGCCCTCC


TACGGCGCGGCCGGCCTGGCCTTTCCCGCGCAACCCCAGCAGCAGCAGCAGCCGCCGCACCACCTGCCCC


AGCAGATGCCCGTGCAGCACCCGCGGCTGCAGGCCCTGAAGGAGGAGCCTCAGACAGTGCCCGAGATGCC


CGGCGAGACACCGCCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGATCAAGGCGGAGAGGAAGCGC


ATGAGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGCTGGAGAGAATCGCCCGGCTGGAGGAAA


AAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATGCTCAGGGAACAGGTGGC


ACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCAGTTGCAA


ACATTTTGAAGAGAGACCGTCGGGGGCTGAGGGGCAACGAAGAAAAAAAATAACACAGAGAGACAGACTT


GAGAACTTGACAAGTTGCGACGGAGAGAAAAAAGAAGTGTCCGAGAACTAAAGCCAAGGGTATCCAAGTT


GGACTGGGTTGCGTCCTGACGGCGCCCCCAGTGTGCACGAGTGGGAAGGACTTGGCGCGCCCTCCCTTGG


CGTGGAGCCAGGGAGCGGCCGCCTGCGGGCTGCCCCGCTTTGCGGACGGGCTGTCCCCGCGCGAACGGAA


CGTTGGACTTTTCGTTAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTCATTCAGTATTAAAG


GGGGGAGGGGGAGGGGGTTACAAACTGCAATAGAGACTGTAGATTGCTTCTGTAGTACTCCTTAAGAACA


CAAAGCGGGGGGAGGGTTGGGGAGGGGCGGCAGGAGGGAGGTTTGTGAGAGCGAGGCTGAGCCTACAGAT


GAACTCTTTCTGGCCTGCCTTCGTTAACTGTGTATGTACATATATATATTTTTTAATTTGATGAAAGCTG


ATTACTGTCAATAAACAGCTTCATGCCTTTGTAAGTTATTTCTTGTTTGTTTGTTTGGGTATCCTGCCCA


GTGTTGTTTGTAAATAAGAGATTTGGAGCACTCTGAGTTTACCATTTGTAATAAAGTATATAATTTTTTT


ATGTTTTGTTTCTGAAAATTCCAGAAAGGATATTTAAGAAAATACAATAAACTATTGGAAAGTACTCCCC


TAACCTCTTTTCTGCATCATCTGTAGATACTAGCTATCTAGGTGGAGTTGAAAGAGTTAAGAATGTCGAT


TAAAATCACTCTCAGTGCTTCTTACTATTAAGCAGTAAAAACTGTTCTCTATTAGACTTTAGAAATAAAT


GTACCTGATGTACCTGATGCTATGGTCAGGTTATACTCCTCCTCCCCCAGCTATCTATATGGAATTGCTT


ACCAAAGGATAGTGCGATGTTTCAGGAGGCTGGAGGAAGGGGGGTTGCAGTGGAGAGGGACAGCCCACTG


AGAAGTCAAACATTTCAAAGTTTGGATTGTATCAAGTGGCATGTGCTGTGACCATTTATAATGTTAGTAG


AAATTTTACAATAGGTGCTTATTCTCAAAGCAGGAATTGGTGGCAGATTTTACAAAAGATGTATCCTTCC


AATTTGGAATCTTCTCTTTGACAATTCCTAGATAAAAAGATGGCCTTTGCTTATGAATATTTATAACAGC


ATTCTTGTCACAATAAATGTATTCAAATACCAAAAAAAAAAAAAAAAA





SEQ ID NO: 31 - Homo sapiens v-Ki-ras2 Kirsten rat sarcoma viral oncogene


homolog (KRAS), transcript variant b, mRNA


GGCCGCGGCGGCGGAGGCAGCAGCGGCGGCGGCAGTGGCGGCGGCGAAGGTGGCGGCGGCTCGGCCAGTA


CTCCCGGCCCCCGCCATTTCGGACTGGGAGCGAGCGCGGCGCAGGCACTGAAGGCGGCGGCGGGGCCAGA


GGCTCAGCGGCTCCCAGGTGCGGGAGAGAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGG


AGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTGGACGAATATGAT


CCAACAATAGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCG


ACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACCAGTACATGAGGACTGGGGAGGGCTTTCTTTG


TGTATTTGCCATAAATAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTAAAAGAGTT


AAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCTAGAACAGTAGACA


CAAAACAGGCTCAGGACTTAGCAAGAAGTTATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACA




GGGTGTTGAT
GATGCCTTCTATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAGATGAGCAAAGAT



GGTAAAAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAAATACAATTTGTACTTTTTTCTT


AAGGCATACTAGTACAAGTGGTAATTTTTGTACATTACACTAAATTATTAGCATTTGTTTTAGCATTACC


TAATTTTTTTCCTGCTCCATGCAGACTGTTAGCTTTTACCTTAAATGCTTATTTTAAAATGACAGTGGAA


GTTTTTTTTTCCTCTAAGTGCCAGTATTCCCAGAGTTTTGGTTTTTGAACTAGCAATGCCTGTGAAAAAG


AAACTGAATACCTAAGATTTCTGTCTTGGGGTTTTTGGTGCATGCAGTTGATTACTTCTTATTTTTCTTA


CCAATTGTGAATGTTGGTGTGAAACAAATTAATGAAGCTTTTGAATCATCCCTATTCTGTGTTTTATCTA


GTCACATAAATGGATTAATTACTAATTTCAGTTGAGACCTTCTAATTGGTTTTTACTGAAACATTGAGGG


AACACAAATTTATGGGCTTCCTGATGATGATTCTTCTAGGCATCATGTCCTATAGTTTGTCATCCCTGAT


GAATGTAAAGTTACACTGTTCACAAAGGTTTTGTCTCCTTTCCACTGCTATTAGTCATGGTCACTCTCCC


CAAAATATTATATTTTTTCTATAAAAAGAAAAAAATGGAAAAAAATTACAAGGCAATGGAAACTATTATA


AGGCCATTTCCTTTTCACATTAGATAAATTACTATAAAGACTCCTAATAGCTTTTCCTGTTAAGGCAGAC


CCAGTATGAAATGGGGATTATTATAGCAACCATTTTGGGGCTATATTTACATGCTACTAAATTTTTATAA


TAATTGAAAAGATTTTAACAAGTATAAAAAATTCTCATAGGAATTAAATGTAGTCTCCCTGTGTCAGACT


GCTCTTTCATAGTATAACTTTAAATCTTTTCTTCAACTTGAGTCTTTGAAGATAGTTTTAATTCTGCTTG


TGACATTAAAAGATTATTTGGGCCAGTTATAGCTTATTAGGTGTTGAAGAGACCAAGGTTGCAAGGCCAG


GCCCTGTGTGAACCTTTGAGCTTTCATAGAGAGTTTCACAGCATGGACTGTGTCCCCACGGTCATCCAGT


GTTGTCATGCATTGGTTAGTCAAAATGGGGAGGGACTAGGGCAGTTTGGATAGCTCAACAAGATACAATC


TCACTCTGTGGTGGTCCTGCTGACAAATCAAGAGCATTGCTTTTGTTTCTTAAGAAAACAAACTCTTTTT


TAAAAATTACTTTTAAATATTAACTCAAAAGTTGAGATTTTGGGGTGGTGGTGTGCCAAGACATTAATTT


TTTTTTTAAACAATGAAGTGAAAAAGTTTTACAATCTCTAGGTTTGGCTAGTTCTCTTAACACTGGTTAA


ATTAACATTGCATAAACACTTTTCAAGTCTGATCCATATTTAATAATGCTTTAAAATAAAAATAAAAACA


ATCCTTTTGATAAATTTAAAATGTTACTTATTTTAAAATAAATGAAGTGAGATGGCATGGTGAGGTGAAA


GTATCACTGGACTAGGAAGAAGGTGACTTAGGTTCTAGATAGGTGTCTTTTAGGACTCTGATTTTGAGGA


CATCACTTACTATCCATTTCTTCATGTTAAAAGAAGTCATCTCAAACTCTTAGTTTTTTTTTTTTACAAC


TATGTAATTTATATTCCATTTACATAAGGATACACTTATTTGTCAAGCTCAGCACAATCTGTAAATTTTT


AACCTATGTTACACCATCTTCAGTGCCAGTCTTGGGCAAAATTGTGCAAGAGGTGAAGTTTATATTTGAA


TATCCATTCTCGTTTTAGGACTCTTCTTCCATATTAGTGTCATCTTGCCTCCCTACCTTCCACATGCCCC


ATGACTTGATGCAGTTTTAATACTTGTAATTCCCCTAACCATAAGATTTACTGCTGCTGTGGATATCTCC


ATGAAGTTTTCCCACTGAGTCACATCAGAAATGCCCTACATCTTATTTCCTCAGGGCTCAAGAGAATCTG


ACAGATACCATAAAGGGATTTGACCTAATCACTAATTTTCAGGTGGTGGCTGATGCTTTGAACATCTCTT


TGCTGCCCAATCCATTAGCGACAGTAGGATTTTTCAAACCTGGTATGAATAGACAGAACCCTATCCAGTG


GAAGGAGAATTTAATAAAGATAGTGCTGAAAGAATTCCTTAGGTAATCTATAACTAGGACTACTCCTGGT


AACAGTAATACATTCCATTGTTTTAGTAACCAGAAATCTTCATGCAATGAAAAATACTTTAATTCATGAA


GCTTACTTTTTTTTTTTGGTGTCAGAGTCTCGCTCTTGTCACCCAGGCTGGAATGCAGTGGCGCCATCTC


AGCTCACTGCAACCTCCATCTCCCAGGTTCAAGCGATTCTCGTGCCTCGGCCTCCTGAGTAGCTGGGATT


ACAGGCGTGTGCCACTACACTCAACTAATTTTTGTATTTTTAGGAGAGACGGGGTTTCACCCTGTTGGCC


AGGCTGGTCTCGAACTCCTGACCTCAAGTGATTCACCCACCTTGGCCTCATAAACCTGTTTTGCAGAACT


CATTTATTCAGCAAATATTTATTGAGTGCCTACCAGATGCCAGTCACCGCACAAGGCACTGGGTATATGG


TATCCCCAAACAAGAGACATAATCCCGGTCCTTAGGTAGTGCTAGTGTGGTCTGTAATATCTTACTAAGG


CCTTTGGTATACGACCCAGAGATAACACGATGCGTATTTTAGTTTTGCAAAGAAGGGGTTTGGTCTCTGT


GCCAGCTCTATAATTGTTTTGCTACGATTCCACTGAAACTCTTCGATCAAGCTACTTTATGTAAATCACT


TCATTGTTTTAAAGGAATAAACTTGATTATATTGTTTTTTTATTTGGCATAACTGTGATTCTTTTAGGAC


AATTACTGTACACATTAAGGTGTATGTCAGATATTCATATTGACCCAAATGTGTAATATTCCAGTTTTCT


CTGCATAAGTAATTAAAATATACTTAAAAATTAATAGTTTTATCTGGGTACAAATAAACAGGTGCCTGAA


CTAGTTCACAGACAAGGAAACTTCTATGTAAAAATCACTATGATTTCTGAATTGCTATGTGAAACTACAG


ATCTTTGGAACACTGTTTAGGTAGGGTGTTAAGACTTACACAGTACCTCGTTTCTACACAGAGAAAGAAA


TGGCCATACTTCAGGAACTGCAGTGCTTATGAGGGGATATTTAGGCCTCTTGAATTTTTGATGTAGATGG


GCATTTTTTTAAGGTAGTGGTTAATTACCTTTATGTGAACTTTGAATGGTTTAACAAAAGATTTGTTTTT


GTAGAGATTTTAAAGGGGGAGAATTCTAGAAATAAATGTTACCTAATTATTACAGCCTTAAAGACAAAAA


TCCTTGTTGAAGTTTTTTTAAAAAAAGCTAAATTACATAGACTTAGGCATTAACATGTTTGTGGAAGAAT


ATAGCAGACGTATATTGTATCATTTGAGTGAATGTTCCCAAGTAGGCATTCTAGGCTCTATTTAACTGAG


TCACACTGCATAGGAATTTAGAACCTAACTTTTATAGGTTATCAAAACTGTTGTCACCATTGCACAATTT


TGTCCTAATATATACATAGAAACTTTGTGGGGCATGTTAAGTTACAGTTTGCACAAGTTCATCTCATTTG


TATTCCATTGATTTTTTTTTTCTTCTAAACATTTTTTCTTCAAACAGTATATAACTTTTTTTAGGGGATT


TTTTTTTAGACAGCAAAAACTATCTGAAGATTTCCATTTGTCAAAAAGTAATGATTTCTTGATAATTGTG


TAGTAATGTTTTTTAGAACCCAGCAGTTACCTTAAAGCTGAATTTATATTTAGTAACTTCTGTGTTAATA


CTGGATAGCATGAATTCTGCATTGAGAAACTGAATAGCTGTCATAAAATGAAACTTTCTTTCTAAAGAAA


GATACTCACATGAGTTCTTGAAGAATAGTCATAACTAGATTAAGATCTGTGTTTTAGTTTAATAGTTTGA


AGTGCCTGTTTGGGATAATGATAGGTAATTTAGATGAATTTAGGGGAAAAAAAAGTTATCTGCAGATATG


TTGAGGGCCCATCTCTCCCCCCACACCCCCACAGAGCTAACTGGGTTACAGTGTTTTATCCGAAAGTTTC


CAATTCCACTGTCTTGTGTTTTCATGTTGAAAATACTTTTGCATTTTTCCTTTGAGTGCCAATTTCTTAC


TAGTACTATTTCTTAATGTAACATGTTTACCTGGAATGTATTTTAACTATTTTTGTATAGTGTAAACTGA


AACATGCACATTTTGTACATTGTGCTTTCTTTTGTGGGACATATGCAGTGTGATCCAGTTGTTTTCCATC


ATTTGGTTGCGCTGACCTAGGAATGTTGGTCATATCAAACATTAAAAATGACCACTCTTTTAATTGAAAT


TAACTTTTAAATGTTTATAGGAGTATGTGCTGTGAAGTGATCTAAAATTTGTAATATTTTTGTCATGAAC


TGTACTACTCCTAATTATTGTAATGTAATAAAAATAGTTACAGTGACAAAAAAAAAAAAAAA





SEQ ID NO: 32 - Homo sapiens leprecan-like 4 (LEPREL4), mRNA


GCTTCCTGGGCTTCCCATCTCTGGCGGGAAGCGCTCCCCGACGCATTCTCTACCTAGGGGACACCCCCAA


GGCAGGAGCCCGGGCCGACGGAGAGGACTTAACGACACTATCGGACCCTCTGGGAAAAGAGGGGAGACGT


CGTGACCCAGGCCCCGCCCCACCTTGCCGCCTCGTGCCCGGCGCTAAGACCCAGCGGGCGCGCCGCCCGC


CCGGGGCCCGGCCCTGTCCCCTTCCGTCCGCGGGGCAGCCAGCTCAGCTCCGGAGAGCCGGCGGCGCGGC


GGGCATGGCTCGGGTGGCGTGGGGGCTGCTGTGGTTGCTGCTGGGCAGCGCCGGGGCGCAGTACGAGAAG


TACAGCTTCCGGGGCTTCCCGCCCGAGGACCTGATGCCGCTGGCCGCGGCGTACGGGCACGCTCTGGAGC


AGTACGAGGGAGAGAGCTGGCGCGAGAGCGCGCGCTACCTGGAGGCGGCGCTGCGGCTGCACCGGCTCCT


GCGCGACAGCGAGGCCTTCTGCCACGCCAACTGCAGCGGCCCCGCGCCCGCGGCCAAGCCCGATCCCGAC


GGCGGCCGCGCAGACGAGTGGGCCTGCGAGCTGCGGCTCTTCGGCCGCGTCCTGGAGCGAGCCGCCTGCC


TGCGGCGCTGCAAGCGGACGCTGCCCGCCTTCCAGGTGCCCTACCCGCCGCGGCAGCTGCTGCGTGACTT


CCAGAGCCGCCTGCCCTACCAGTACCTGCACTACGCGCTGTTCAAGGCTAACCGGCTGGAGAAGGCGGTG


GCGGCGGCCTACACCTTCCTCCAGAGGAACCCGAAGCACGAGCTGACCGCCAAGTATCTCAACTACTATC


AGGGGATGCTGGACGTCGCCGACGAGTCCCTCACGGACCTAGAGGCCCAGCCCTACGAGGCCGTGTTCCT


CCGGGCTGTGAAGCTCTACAACAGCGGGGATTTCCGCAGCAGCACGGAGGACATGGAGCGGGCCTTGTCA


GAGTACCTGGCAGTCTTTGCCCGGTGCCTGGCCGGCTGTGAAGGGGCCCATGAGCAGGTGGACTTCAAGG


ACTTCTACCCGGCCATAGCAGATCTCTTTGCAGAGTCCCTGCAGTGCAAGGTGGACTGTGAGGCCAATTT


GACCCCCAATGTGGGTGGCTACTTCGTGGACAAGTTCGTGGCCACCATGTACCACTACCTGCAGTTTGCC


TACTATAAGTTGAATGATGTGCGCCAGGCTGCCCGCAGCGCCGCCAGCTACATGCTCTTCGACCCCAAGG


ACAGCGTCATGCAGCAGAACCTGGTGTATTACCGGTTCCACCGGGCTCGCTGGGGCCTGGAAGAGGAGGA


CTTCCAGCCCCGGGAGGAGGCCATGCTCTACCACAACCAGACCGCCGAGCTGCGGGAGCTGCTGGAGTTC


ACCCACATGTACCTGCAGTCAGATGATGAGATGGAGCTGGAGGAGACAGAACCGCCCCTGGAGCCTGAGG


ATGCCCTATCTGACGCCGAGTTTGAGGGGGAGGGTGACTACGAGGAGGGCATGTATGCTGACTGGTGGCA


GGAGCCGGATGCCAAGGGTGACGAGGCCGAGGCTGAGCCAGAGCCTGAACTCGCATGAGAAGGGGACACC


CCACACCGCTCAAGCTTGGGAAGCCTGGTGCCGATGGCCCCACCCTCACCAGCCTGGGCAGCAGCAAGAA


CTATTTATTAAAAACTTAAGATGGGCCAGGTGCGGTGGCTCACACCTGTAATCCCAGCATTTTGGGAGGC


CAAGGTGGGTGGATCACTTGAGGCCAGGAGTTCAAGACCAGCCTGGCCAACATGATGAGACCTCCGTCTC


TACTAAAATACATAAATTAGCCGGGTGTGGTGGCAGGCGCCTGAAATCCCAGCTACTCAAGAGGCTGAGG


CAGGAGAATCGCTTGAACCTGGGAGGCAAAGGTTGCAGTGAACTGAGATTGCGCCACCGCACTCCAGCCT


GGGCGACAGAGCGAGACTCCATCTTTAAAAAAAAACAAGACGGGCCGGCACGGTGGCTCACGCCTGTAAT


CCCAGCACTGAGAGGCCGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCC


ATCTCTACTAAAAAATACAAAAATTAGCCAGGCATGGTGGCACACACCTGTAATCGTAGCTGAGGCAGGA


GAATCGCCTGAACCCAGGAGGCGGAGCTTGCAGTGAGCCGAGATCGTGCCACTGCACTCCAGCCTGGGCG


ACAGAGTGAGACTCCATCTCAAAAAAAAAAAAAAAAACTTAAGATGGACACAGCTGACTGGACCCCCATC


CTGCCTCACCCATGGGTGCTGCACCCCAGACCCATCCTGCCACTTCTATGTCTCTGGACCACAGGATGGT


GGTGGCATTGCAGGTTGGCAAGTGGGCTGATGGGGTCCGCCCTCCTCACTGCTGAGCTCCTCACCTGGAC


AGTCTCCTGGACAAGGAGTTTCCAGCTGCTGGCTGGAGTCTCAGGCCAAATTGCAGAGGGTCCTCCAGGG


TCCTGAAGAGCACTGGACTAAGAGTCTAGTGGTTCCAGGGCCCTGACCAGTAGGTGCTCAATAAATGTTT


GTTGTTGAATGAAAAAAAAAAAAAAAAAA





SEQ ID NO: 33 - Homo sapiens lethal giant larvae homolog 2 (Drosophila)


(LLGL2), transcript variant 2, mRNA


GGAGGTGAGCAGGAAGGAGACGGCCGCCCAGCAGCCCGTGGGCAGGCGCGGCGGAGCGAGCGGGGCCGGC


GGCGGGCGCCGAGGGACGCCGAGGCCTCGGGCGGGGGCTGGCCCGGGGTTCCAGGTCTCCAGTGGGGGCT


GCAGACTAAGCAAAATGAGGCGGTTCCTGAGGCCAGGGCATGACCCTGTGCGGGAGAGGCTCAAGCGGGA


CCTGTTCCAGTTTAACAAGACGGTGGAGCATGGCTTCCCGCACCAGCCCAGCGCCCTCGGCTACAGCCCG


TCCCTGCGCATCCTGGCCATCGGCACCCGTTCTGGAGCCATCAAGCTCTACGGAGCCCCAGGCGTGGAGT


TCATGGGGCTGCACCAGGAGAACAACGCTGTGACGCAGATCCACCTCCTGCCCGGCCAGTGCCAGCTGGT


CACCCTGCTGGATGACAACAGCCTGCACCTTTGGAGCCTGAAGGTCAAGGGCGGGGCATCGGAGCTGCAG


GAGGATGAGAGCTTCACACTGCGTGGACCCCCAGGGGCTGCCCCCAGTGCCACACAGATCACCGTGGTCC


TGCCACATTCCTCCTGCGAGCTGCTCTACCTGGGCACCGAGAGTGGCAACGTGTTTGTGGTGCAGCTGCC


AGCTTTTCGTGCGCTGGAGGACCGGACCATCAGCTCGGACGCGGTGCTGCAGCGGTTGCCAGAGGAGGCC




CG
CCACCGGCGTGTGTTCGAGATGGTGGAGGCACTGCAGGAGCACCCTCGAGACCCCAACCAGATCCTGA



TCGGCTACAGCCGAGGCCTCGTTGTCATCTGGGACCTACAGGGCAGCCGCGTGCTCTACCACTTCCTCAG


CAGCCAGCAACTGGAGAACATCTGGTGGCAGCGGGACGGCCGCCTGCTCGTCAGCTGTCACTCTGACGGC


AGCTACTGCCAGTGGCCCGTGTCCAGCGAAGCCCAGCAACCAGAGCCCCTCCGCAGCCTCGTGCCTTACG


GTCCCTTTCCTTGCAAAGCGATTACCAGAATCCTCTGGCTGACCACTAGGCAGGGGTTGCCCTTCACCAT


CTTCCAGGGTGGCATGCCACGGGCCAGCTACGGGGACCGCCACTGCATCTCAGTGATCCACGATGGCCAG


CAGACGGCCTTCGACTTCACCTCCCGTGTCATCGGCTTCACTGTCCTCACAGAGGCAGACCCTGCAGCCA


GTAGGAGAGCTTCGGGAGTGGGTGCCCAGGGTTAGGTGTGGGAGGCATGGGGCAGGACCATCAGTAAAGA


CAGGGCCAGGTGCAGTGGCTCCTGCCTGTAACCCCAGTGCTGTGGGAGGCCAAGGTGGTAGGATCGCTTG


AACCCAGGAGTTCAAGTCCAGCCTGGACAACGTAGGGAGACCCTTGTCTCTACAAAAAATAAAAAAATTA


GCCAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 34 - Homo sapiens neuroblastoma RAS viral (v-ras) oncogene


homolog (NRAS), mRNA


GAAACGTCCCGTGTGGGAGGGGCGGGTCTGGGTGCGGCCTGCCGCATGACTCGTGGTTCGGAGGCCCACG


TGGCCGGGGCGGGGACTCAGGCGCCTGGGGCGCCGACTGATTACGTAGCGGGCGGGGCCGGAAGTGCCGC


TCCTTGGTGGGGGCTGTTCATGGCGGTTCCGGGGTCTCCAACATTTTTCCCGGCTGTGGTCCTAAATCTG


TCCAAAGCAGAGGCAGTGGAGCTTGAGGTTCTTGCTGGTGTGAAATGACTGAGTACAAACTGGTGGTGGT


TGGAGCAGGTGGTGTTGGGAAAAGCGCACTGACAATCCAGCTAATCCAGAACCACTTTGTAGATGAATAT


GATCCCACCATAGAGGATTCTTACAGAAAACAAGTGGTTATAGATGGTGAAACCTGTTTGTTGGACATAC


TGGATACAGCTGGACAAGAAGAGTACAGTGCCATGAGAGACCAATACATGAGGACAGGCGAAGGCTTCCT


CTGTGTATTTGCCATCAATAATAGCAAGTCATTTGCGGATATTAACCTCTACAGGGAGCAGATTAAGCGA


GTAAAAGACTCGGATGATGTACCTATGGTGCTAGTGGGAAACAAGTGTGATTTGCCAACAAGGACAGTTG


ATACAAAACAAGCCCACGAACTGGCCAAGAGTTACGGGATTCCATTCATTGAAACCTCAGCCAAGACCAG




ACAGGGTGTTGA
AGATGCTTTTTACACACTGGTAAGAGAAATACGCCAGTACCGAATGAAAAAACTCAAC



AGCAGTGATGATGGGACTCAGGGTTGTATGGGATTGCCATGTGTGGTGATGTAACAAGATACTTTTAAAG


TTTTGTCAGAAAAGAGCCACTTTCAAGCTGCACTGACACCCTGGTCCTGACTTCCCTGGAGGAGAAGTAT


TCCTGTTGCTGTCTTCAGTCTCACAGAGAAGCTCCTGCTACTTCCCCAGCTCTCAGTAGTTTAGTACAAT


AATCTCTATTTGAGAAGTTCTCAGAATAACTACCTCCTCACTTGGCTGTCTGACCAGAGAATGCACCTCT


TGTTACTCCCTGTTATTTTTCTGCCCTGGGTTCTTCCACAGCACAAACACACCTCTGCCACCCCAGGTTT


TTCATCTGAAAAGCAGTTCATGTCTGAAACAGAGAACCAAACCGCAAACGTGAAATTCTATTGAAAACAG


TGTCTTGAGCTCTAAAGTAGCAACTGCTGGTGATTTTTTTTTTCTTTTTACTGTTGAACTTAGAACTATG


CTAATTTTTGGAGAAATGTCATAAATTACTGTTTTGCCAAGAATATAGTTATTATTGCTGTTTGGTTTGT


TTATAATGTTATCGGCTCTATTCTCTAAACTGGCATCTGCTCTAGATTCATAAATACAAAAATGAATACT


GAATTTTGAGTCTATCCTAGTCTTCACAACTTTGACGTAATTAAATCCAACTTTCACAGTGAAGTGCCTT


TTTCCTAGAAGTGGTTTGTAGACTTCCTTTATAATATTTCAGTGGAATAGATGTCTCAAAAATCCTTATG


CATGAAATGAATGTCTGAGATACGTCTGTGACTTATCTACCATTGAAGGAAAGCTATATCTATTTGAGAG


CAGATGCCATTTTGTACATGTATGAAATTGGTTTTCCAGAGGCCTGTTTTGGGGCTTTCCCAGGAGAAAG


ATGAAACTGAAAGCACATGAATAATTTCACTTAATAATTTTTACCTAATCTCCACTTTTTTCATAGGTTA


CTACCTATACAATGTATGTAATTTGTTTCCCCTAGCTTACTGATAAACCTAATATTCAATGAACTTCCAT


TTGTATTCAAATTTGTGTCATACCAGAAAGCTCTACATTTGCAGATGTTCAAATATTGTAAAACTTTGGT


GCATTGTTATTTAATAGCTGTGATCAGTGATTTTCAAACCTCAAATATAGTATATTAACAAATTACATTT


TCACTGTATATCATGGTATCTTAATGATGTATATAATTGCCTTCAATCCCCTTCTCACCCCACCCTCTAC


AGCTTCCCCCACAGCAATAGGGGCTTGATTATTTCAGTTGAGTAAAGCATGGTGCTAATGGACCAGGGTC


ACAGTTTCAAAACTTGAACAATCCAGTTAGCATCACAGAGAAAGAAATTCTTCTGCATTTGCTCATTGCA


CCAGTAACTCCAGCTAGTAATTTTGCTAGGTAGCTGCAGTTAGCCCTGCAAGGAAAGAAGAGGTCAGTTA


GCACAAACCCTTTACCATGACTGGAAAACTCAGTATCACGTATTTAAACATTTTTTTTTCTTTTAGCCAT


GTAGAAACTCTAAATTAAGCCAATATTCTCATTTGAGAATGAGGATGTCTCAGCTGAGAAACGTTTTAAA


TTCTCTTTATTCATAATGTTCTTTGAAGGGTTTAAAACAAGATGTTGATAAATCTAAGCTGATGAGTTTG


CTCAAAACAGGAAGTTGAAATTGTTGAGACAGGAATGGAAAATATAATTAATTGATACCTATGAGGATTT


GGAGGCTTGGCATTTTAATTTGCAGATAATACCCTGGTAATTCTCATGAAAAATAGACTTGGATAACTTT


TGATAAAAGACTAATTCCAAAATGGCCACTTTGTTCCTGTCTTTAATATCTAAATACTTACTGAGGTCCT


CCATCTTCTATATTATGAATTTTCATTTATTAAGCAAATGTCATATTACCTTGAAATTCAGAAGAGAAGA


AACATATACTGTGTCCAGAGTATAATGAACCTGCAGAGTTGTGCTTCTTACTGCTAATTCTGGGAGCTTT


CACAGTACTGTCATCATTTGTAAATGGAAATTCTGCTTTTCTGTTTCTGCTCCTTCTGGAGCAGTGCTAC


TCTGTAATTTTCCTGAGGCTTATCACCTCAGTCATTTCTTTTTTAAATGTCTGTGACTGGCAGTGATTCT


TTTTCTTAAAAATCTATTAAATTTGATGTCAAATTAGGGAGAAAGATAGTTACTCATCTTGGGCTCTTGT


GCCAATAGCCCTTGTATGTATGTACTTAGAGTTTTCCAAGTATGTTCTAAGCACAGAAGTTTCTAAATGG


GGCCAAAATTCAGACTTGAGTATGTTCTTTGAATACCTTAAGAAGTTACAATTAGCCGGGCATGGTGGCC


CGTGCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGCAGGAGAATCACTTCAACCCAGGAGGTGGAGGTTA


CAGTGAGCAGAGATCGTGCCACTGCACTCCAGCCTGGGTGACAAGAGAGACTTGTCTCCAAAAAAAAAGT


TACACCTAGGTGTGAATTTTGGCACAAAGGAGTGACAAACTTATAGTTAAAAGCTGAATAACTTCAGTGT


GGTATAAAACGTGGTTTTTAGGCTATGTTTGTGATTGCTGAAAAGAATTCTAGTTTACCTCAAAATCCTT


CTCTTTCCCCAAATTAAGTGCCTGGCCAGCTGTCATAAATTACATATTCCTTTTGGTTTTTTTAAAGGTT


ACATGTTCAAGAGTGAAAATAAGATGTTCTGTCTGAAGGCTACCATGCCGGATCTGTAAATGAACCTGTT


AAATGCTGTATTTGCTCCAACGGCTTACTATAGAATGTTACTTAATACAATATCATACTTATTACAATTT


TTACTATAGGAGTGTAATAGGTAAAATTAATCTCTATTTTAGTGGGCCCATGTTTAGTCTTTCACCATCC


TTTAAACTGCTGTGAATTTTTTTGTCATGACTTGAAAGCAAGGATAGAGAAACACTTTAGAGATATGTGG


GGTTTTTTTACCATTCCAGAGCTTGTGAGCATAATCATATTTGCTTTATATTTATAGTCATGAACTCCTA


AGTTGGCAGCTACAACCAAGAACCAAAAAATGGTGCGTTCTGCTTCTTGTAATTCATCTCTGCTAATAAA


TTATAAGAAGCAAGGAAAATTAGGGAAAATATTTTATTTGGATGGTTTCTATAAACAAGGGACTATAATT


CTTGTACATTATTTTTCATCTTTGCTGTTTCTTTGAGCAGTCTAATGTGCCACACAATTATCTAAGGTAT


TTGTTTTCTATAAGAATTGTTTTAAAAGTATTCTTGTTACCAGAGTAGTTGTATTATATTTCAAAACGTA


AGATGATTTTTAAAAGCCTGAGTACTGACCTAAGATGGAATTGTATGAACTCTGCTCTGGAGGGAGGGGA


GGATGTCCGTGGAAGTTGTAAGACTTTTATTTTTTTGTGCCATCAAATATAGGTAAAAATAATTGTGCAA


TTCTGCTGTTTAAACAGGAACTATTGGCCTCCTTGGCCCTAAATGGAAGGGCCGATATTTTAAGTTGATT


ATTTTATTGTAAATTAATCCAACCTAGTTCTTTTTAATTTGGTTGAATGTTTTTTCTTGTTAAATGATGT


TTAAAAAATAAAAACTGGAAGTTCTTGGCTTAGTCATAATTCTT





SEQ ID NO: 35 - Homo sapiens 2′-5′-oligoadenylate synthetase 1, 40/46kDa


(OAS1), transcript variant 3, mRNA


TCCCTTCTGAGGAAACGAAACCAACAGCAGTCCAAGCTCAGTCAGCAGAAGAGATAAAAGCAAACAGGTC


TGGGAGGCAGTTCTGTTGCCACTCTCTCTCCTGTCAATGATGGATCTCAGAAATACCCCAGCCAAATCTC


TGGACAAGTTCATTGAAGACTATCTCTTGCCAGACACGTGTTTCCGCATGCAAATCAACCATGCCATTGA


CATCATCTGTGGGTTCCTGAAGGAAAGGTGCTTCCGAGGTAGCTCCTACCCTGTGTGTGTGTCCAAGGTG


GTAAAGGGTGGCTCCTCAGGCAAGGGCACCACCCTCAGAGGCCGATCTGACGCTGACCTGGTTGTCTTCC


TCAGTCCTCTCACCACTTTTCAGGATCAGTTAAATCGCCGGGGAGAGTTCATCCAGGAAATTAGGAGACA


GCTGGAAGCCTGTCAAAGAGAGAGAGCATTTTCCGTGAAGTTTGAGGTCCAGGCTCCACGCTGGGGCAAC


CCCCGTGCGCTCAGCTTCGTACTGAGTTCGCTCCAGCTCGGGGAGGGGGTGGAGTTCGATGTGCTGCCTG


CCTTTGATGCCCTGGGTCAGTTGACTGGCGGCTATAAACCTAACCCCCAAATCTATGTCAAGCTCATCGA


GGAGTGCACCGACCTGCAGAAAGAGGGCGAGTTCTCCACCTGCTTCACAGAACTACAGAGAGACTTCCTG


AAGCAGCGCCCCACCAAGCTCAAGAGCCTCATCCGCCTAGTCAAGCACTGGTACCAAAATTGTAAGAAGA


AGCTTGGGAAGCTGCCACCTCAGTATGCCCTGGAGCTCCTGACGGTCTATGCTTGGGAGCGAGGGAGCAT


GAAAACACATTTCAACACAGCCCAGGGATTTCGGACGGTCTTGGAATTAGTCATAAACTACCAGCAACTC


TGCATCTACTGGACAAAGTATTATGACTTTAAAAACCCCATTATTGAAAAGTACCTGAGAAGGCAGCTCA


CGAAACCCAGGCCTGTGATCCTGGACCCGGCGGACCCTACAGGAAACTTGGGTGGTGGAGACCCAAAGGG


TTGGAGGCAGCTGGCACAAGAGGCTGAGGCCTGGCTGAATTACCCATGCTTTAAGAATTGGGATGGGTCC


CCAGTGAGCTCCTGGATTCTGCTGACCCAGCACACTCCAGGCAGCATCCACCCCACAGGCAGAAGAGGAC


TGGACCTGCACCATCCTCTGAATGCCAGTGCATCTTGGGGGAAAGGGCTCCAGTGTTATCTGGACCAGTT


CCTTCATTTTCAGGTGGGACTCTTGATCCAGAGAGGACAAAGCTCCTCAGTGAGCTGGTGTATAATCCAG


GACAGAACCCAGGTCTCCTGACTCCTGGCCTTCTATGCCCTCTATCCTATCATAGATAACATTCTCCACA


GCCTCACTTCATTCCACCTATTCTCTGAAAATATTCCCTGAGAGAGAACAGAGAGATTTAGATAAGAGAA


TGAAATTCCAGCCTTGACTTTCTTCTGTGCACCTGATGGGAGGGTAATGTCTAATGTATTATCAATAACA


ATAAAAATAAAGCAAATACCATTTAAAAAAAAAAA





SEQ ID NO: 36 - Homo sapiens origin recognition complex, subunit 1 (ORC1),


transcript variant 3, mRNA


ACGGTCTGGGGGCGGGGCCACGCCGATTGGCGCGAAGTTTTCTTTTCTCCTTCCACCTTCTTTTCATTTC


TAGTGAGACACACGCTTTGGTCCTGGCTTTCGGCCCGTAGTTGTAGAAGGAGCCCTGCTGGTGCAGGTTA


GAGGTGCCGCATCCCCCGGAGCTCTCGAAGTGGAGGCGGTAGGAAACGGAGGGCTTGCGGCTAGCCGGAG


GAAGCTTTGGAGCCGGAAGCCATGGCACACTACCCCACAAGGCTGAAGACCAGAAAAACTTATTCATGGG


TTGGCAGGCCCTTGTTGGATCGAAAACTGCACTACCAAACCTATAGAGAAATGTGTGTGAAAACAGAAGG


TTGTTCCACCGAGATTCACATCCAGATTGGACAGTTTGTGTTGATTGAAGGGGATGATGATGAAAACCCG


TATGTTGCTAAATTGCTTGAGTTGTTCGAAGATGACTCTGATCCTCCTCCTAAGAAACGTGCTCGAGTAC


AGTGGTTTGTCCGATTCTGTGAAGTCCCTGCCTGTAAACGGCATTTGTTGGGCCGGAAGCCTGGTGCACA


GGAAATATTCTGGTATGATTACCCGGCCTGTGACAGCAACATTAATGCGGAGACCATCATTGGCCTTGTT


CGGGTGATACCTTTAGCCCCAAAGGATGTGGTACCGACGAATCTGAAAAATGAGAAGACACTCTTTGTGA


AACTATCCTGGAATGAGAAGAAATTCAGGCCACTTTCCTCAGAACTATTTGCGGAGTTGAATAAACCACA


AGAGAGTGCAGCCAAGTGCCAGAAACCCGTGAGAGCCAAGAGTAAGAGTGCAGAGAGCCCTTCTTGGACC


CCAGCAGAACATGTGGCCAAAAGGATTGAATCAAGGCACTCCGCCTCCAAATCTCGCCAAACTCCTACCC


ATCCTCTTACCCCAAGAGCCAGAAAGAGGCTGGAGCTTGGCAACTTAGGTAACCCTCAGATGTCCCAGCA


GACTTCATGTGCCTCCTTGGATTCTCCAGGAAGAATAAAACGGAAAGTGGCCTTCTCGGAGATCACCTCA


CCTTCTAAGAGATCTCAGCCTGATAAACTTCAAACCTTGTCTCCAGCTCTGAAAGCCCCAGAGAAAACCA


GAGAGACTGGACTCTCTTATACTGAGGATGACAAGAAGGCTTCACCTGAACATCGCATAATCCTGAGAAC


CCGAATTGCAGCTTCGAAAACCATAGACATTAGAGAGGAGAGAACACTTACCCCTATCAGTGGGGGACAG


AGATCTTCAGTGGTGCCATCCGTGATTCTGAAACCAGAAAACATCAAAAAGAGGGATGCAAAAGAAGCAA


AAGCCCAGAATGAAGCGACCTCTACTCCCCATCGTATCCGCAGAAAGAGTTCTGTCTTGACTATGAATCG


GATTAGGCAGCAGCTTCGGTTTCTAGGTAATAGTAAAAGTGACCAAGAAGAGAAAGAGATTCTGCCAGCA


GCAGAGATTTCAGACTCTAGCAGTGACGAAGAAGAGGCTTCCACACCGCCCCTTCCAAGGAGAGCACCCA


GAACTGTGTCCAGGAACCTGCGATCTTCCTTGAAGTCATCCTTACATACCCTCACGAAGCTCAAGCCTAG


AACGCCACGTTGTGCCGCTCCTCAGATCCGTAGTCGAAGCCTGGCTGCCCAGGAGCCAGCCAGTGTGCTG


GAGGAAGCCCGACTGAGGCTGCATGTTTCTGCTGTACCTGAGTCTCTTCCCTGTCGGGAACAGGAATTCC


AAGACATCTACAATTTTGTGGAAAGCAAACTCCTTGACCATACCGGAGGGTGCATGTACATCTCCGGTGT


CCCTGGGACAGGGAAGACTGCCACTGTTCATGAAGTGATACGCTGCCTGCAGCAGGCAGCCCAAGCCAAT


GATGTTCCTCCCTTTCAATACATTGAGGTCAATGGCATGAAGCTGACGGAGCCCCACCAAGTCTATGTGC


AAATCTTGCAGAAGCTAACAGGCCAAAAAGCAACAGCCAACCATGCGGCAGAACTGCTGGCAAAGCAATT


CTGCACCCGAGGGTCACCTCAGGAAACCACCGTCCTGCTTGTGGATGAGCTCGACCTTCTGTGGACTCAC


AAACAAGACATAATGTACAATCTCTTTGACTGGCCCACTCATAAGGAGGCCCGGCTTGTGGTCCTGGCAA


TTGCCAACACAATGGACCTGCCAGAGCGAATCATGATGAACCGGGTGTCCAGCCGACTGGGTCTTACCAG


GATGTGCTTCCAGCCCTATACATATAGCCAGCTGCAGCAGATCCTAAGGTCCCGGCTCAAGCATCTAAAG


GCCTTTGAAGATGATGCCATCCAGCTGGTAGCCAGGAAGGTAGCAGCACTGTCTGGAGATGCACGACGGT


GCCTGGACATCTGCAGGCGTGCCACAGAGATCTGTGAGTTCTCCCAGCAGAAGCCTGACTCCCCTGGCCT


GGTCACCATAGCCCACTCAATGGAAGCTGTGGATGAGATGTTTTCATCATCATACATCACGGCCATCAAA


AATTCCTCTGTTCTGGAACAGAGCTTCCTGAGAGCCATCCTCGCAGAGTTCCGTCGATCAGGACTGGAGG


AAGCCACGTTTCAACAGATATATAGTCAACATGTGGCACTGTGCAGAATGGAGGGACTGCCGTACCCCAC


CATGTCAGAGACCATGGCCGTGTGTTCTCACCTGGGCTCCTGTCGCCTCCTGCTTGTGGAGCCCAGCAGG


AACGATCTGCTCCTTCGGGTGCGGCTCAACGTCAGCCAGGATGATGTGCTGTATGCGCTGAAAGACGAGT


AAAGGGGCTTCACAAGTTAAAAGACTGGGGTCTTGCTGGGTTTTGTTTTTTGAGACAGGGTCTTGCTCTG


TCGCCCAGGCTGGAGTGCAGTGGCACGATCATGGCTCACTGCAGCCTTGACTTCTCAGGCTTAGGTGACC


CCCCAACCTCATCCTCCCAGGTGGCTGAAACTACAGGCACATGCCACCATGCCCAGCTGATTTTTTGTAG


AGACAGGGCTTCACCATGTTGCCAAGCTAGTCTACAAAGCATCTGATTTTGGAAGTACATGGAATTGTTG


TAACAAAGTATATTGAATGGAAATGGCTCTCATGTATTTTGGAATTTTCCATTAAATAATTTGCTTTTTC


CTGAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 37 - Homo sapiens phosphoglycerate kinase 1 (PGK1), mRNA


GAGAGCAGCGGCCGGGAAGGGGCGGTGCGGGAGGCGGGGTGTGGGGCGGTAGTGTGGGCCCTGTTCCTGC


CCGCGCGGTGTTCCGCATTCTGCAAGCCTCCGGAGCGCACGTCGGCAGTCGGCTCCCTCGTTGACCGAAT


CACCGACCTCTCTCCCCAGCTGTATTTCCAAAATGTCGCTTTCTAACAAGCTGACGCTGGACAAGCTGGA


CGTTAAAGGGAAGCGGGTCGTTATGAGAGTCGACTTCAATGTTCCTATGAAGAACAACCAGATAACAAAC


AACCAGAGGATTAAGGCTGCTGTCCCAAGCATCAAATTCTGCTTGGACAATGGAGCCAAGTCGGTAGTCC


TTATGAGCCACCTAGGCCGGCCTGATGGTGTGCCCATGCCTGACAAGTACTCCTTAGAGCCAGTTGCTGT


AGAACTCAAATCTCTGCTGGGCAAGGATGTTCTGTTCTTGAAGGACTGTGTAGGCCCAGAAGTGGAGAAA


GCCTGTGCCAACCCAGCTGCTGGGTCTGTCATCCTGCTGGAGAACCTCCGCTTTCATGTGGAGGAAGAAG


GGAAGGGAAAAGATGCTTCTGGGAACAAGGTTAAAGCCGAGCCAGCCAAAATAGAAGCTTTCCGAGCTTC


ACTTTCCAAGCTAGGGGATGTCTATGTCAATGATGCTTTTGGCACTGCTCACAGAGCCCACAGCTCCATG


GTAGGAGTCAATCTGCCACAGAAGGCTGGTGGGTTTTTGATGAAGAAGGAGCTGAACTACTTTGCAAAGG


CCTTGGAGAGCCCAGAGCGACCCTTCCTGGCCATCCTGGGCGGAGCTAAAGTTGCAGACAAGATCCAGCT


CATCAATAATATGCTGGACAAAGTCAATGAGATGATTATTGGTGGTGGAATGGCTTTTACCTTCCTTAAG


GTGCTCAACAACATGGAGATTGGCACTTCTCTGTTTGATGAAGAGGGAGCCAAGATTGTCAAAGACCTAA


TGTCCAAAGCTGAGAAGAATGGTGTGAAGATTACCTTGCCTGTTGACTTTGTCACTGCTGACAAGTTTGA


TGAGAATGCCAAGACTGGCCAAGCCACTGTGGCTTCTGGCATACCTGCTGGCTGGATGGGCTTGGACTGT


GGTCCTGAAAGCAGCAAGAAGTATGCTGAGGCTGTCACTCGGGCTAAGCAGATTGTGTGGAATGGTCCTG


TGGGGGTATTTGAATGGGAAGCTTTTGCCCGGGGAACCAAAGCTCTCATGGATGAGGTGGTGAAAGCCAC


TTCTAGGGGCTGCATCACCATCATAGGTGGTGGAGACACTGCCACTTGCTGTGCCAAATGGAACACGGAG


GATAAAGTCAGCCATGTGAGCACTGGGGGTGGTGCCAGTTTGGAGCTCCTGGAAGGTAAAGTCCTTCCTG


GGGTGGATGCTCTCAGCAATATTTAGTACTTTCCTGCCTTTTAGTTCCTGTGCACAGCCCCTAAGTCAAC


TTAGCATTTTCTGCATCTCCACTTGGCATTAGCTAAAACCTTCCATGTCAAGATTCAGCTAGTGGCCAAG


AGATGCAGTGCCAGGAACCCTTAAACAGTTGCACAGCATCTCAGCTCATCTTCACTGCACCCTGGATTTG


CATACATTCTTCAAGATCCCATTTGAATTTTTTAGTGACTAAACCATTGTGCATTCTAGAGTGCATATAT


TTATATTTTGCCTGTTAAAAAGAAAGTGAGCAGTGTTAGCTTAGTTCTCTTTTGATGTAGGTTATTATGA


TTAGCTTTGTCACTGTTTCACTACTCAGCATGGAAACAAGATGAAATTCCATTTGTAGGTAGTGAGACAA


AATTGATGATCCATTAAGTAAACAATAAAAGTGTCCATTGAAACCGTGATTTTTTTTTTTTTCCTGTCAT


ACTTTGTTAGGAAGGGTGAGAATAGAATCTTGAGGAACGGATCAGATGTCTATATTGCTGAATGCAAGAA


GTGGGGCAGCAGCAGTGGAGAGATGGGACAATTAGATAAATGTCCATTCTTTATCAAGGGCCTACTTTAT


GGCAGACATTGTGCTAGTGCTTTTATTCTAACTTTTATTTTTATCAGTTACACATGATCATAATTTAAAA


AGTCAAGGCTTATAACAAAAAAGCCCCAGCCCATTCCTCCCATTCAAGATTCCCACTCCCCAGAGGTGAC


CACTTTCAACTCTTGAGTTTTTCAGGTATATACCTCCATGTTTCTAAGTAATATGCTTATATTGTTCACT


TCTTTTTTTTTTATTTTTTAAAGAAATCTATTTCATACCATGGAGGAAGGCTCTGTTCCACATATATTTC


CACTTCTTCATTCTCTCGGTATAGTTTTGTCACAATTATAGATTAGATCAAAAGTCTACATAACTAATAC


AGCTGAGCTATGTAGTATGCTATGATTAAATTTACTTATGTAAAAAAAAAAAAAAAAAA





SEQ ID NO: 38 - Homo sapiens phorbol-12-myristate-13-acetate-induced protein 1


(PMAIP1), mRNA


ACTGGACAAAAGCGTGGTCTCTGGCGCGGGGATCTCAGAGTTTCCCGGGCACTCACCGTGTGTAGTTGGC


ATCTCCGCGCGTCCGGACACCCGATCCCAGCATCCCTGCCTGCAGGACTGTTCGTGTTCAGCTCGCGTCC


TGCAGCTGTCCGAGGTGCTCCAGTTGGAGGCTGAGGTTCCCGGGCTCTGTAGCTGAGTGGGCGGCGGCAC


CGGCGGAGATGCCTGGGAAGAAGGCGCGCAAGAACGCTCAACCGAGCCCCGCGCGGGCTCCAGCAGAGCT




GGAAGTCGA
GTGTGCTACTCAACTCAGGAGATTTGGAGACAAACTGAACTTCCGGCAGAAACTTCTGAAT



CTGATATCCAAACTCTTCTGCTCAGGAACCTGACTGCATCAAAAACTTGCATGAGGGGACTCCTTCAAAA


GAGTTTTCTCAGGAGGTGCACGTTTCATCAATTTGAAGAAAGACTGCATTGTAATTGAGAGGAATGTGAA


GGTGCATTCATGGGTGCCCTTGGAAACGGAAGATGGAATACATCAAAGTGAATTTCTGTTCAAGTTTTCC


CAGATTATCATTCTTTGGGATGAGAGAACATTATAAAACCACTTTGTTTATTTTAAAGCAAGAATGGAAG


ACCCTTGAAAATAAAGAAGTAATTATTGACACATTTCTTTTTTACTTAGAGAATCGTTCTAGTGTTTTTG


CCGAAGATTACCGCTGGCCTACTGTGAAGGGAGATGACCTGTGATTAGACTGGGCGGCTGGGGAGAAACA


GTTCAGTGCATTGTTGTTGTTGCTGTTTTTGGTGTTTTGCTTTTCAGTGCCAACTCAGCACATTGTATAT


GATTCGGTTTATACATATTACCTTGTTATAATGAAAAAACTCATTCTGAGAACACTGAAATGTTATACTC


AGTGTTGATTTCTTCGGTCACTACACAACGTAAAATCATTTGTTTCTTTTGACTCAAATTGTATTGCTTC


TGTTCAGATGATCTTTCATTCAATGTGTTCCTGTTGGGCGTTACTAGAAACTATGGAAAACTGGAAAATA


ACTTTGAAAAAATTGGATAAAGTATAGGAGGGTTACTTGGGGCCAGTAAATCAGTAGACTGAACATTCAA


TATAATAAAAGAACATGGGGATTTTGTATAACCAGGGATAATAAAAAGAAAAAAGAAGTTAATTTTTAAT


TGATGTTTTTGAAACTTAGTAGAACAAATATTCAGAAGTAACTTGATAAGATATGAATGTTTCTAAAGAA


GTTTCTAAAGGTTCGGAAAATGCTCCTTGTCACATTAGTGTGCATCCTACAAAAAGTGATCTCTTAATGT


AAATTAAGAATATTTTCATAATTGGAATATACTTTTCTTAAAAAAAAGGAACAGTTAGTTCTCATCTAGA


ATGAAAGTTCCATATATGCATTGGTGAATATATATGTATACACATACTTACATACTTATATGGGTATCTG


TATAGATAATTTGTATTAGAGTATTATATAGCTTCTTAGTAGGGTCTCAAGTAAGTTTCATTTTTTTTAT


CTGGGCTATATACAGTCCTCAAATAAATAATGTCTTGATTTTATTTCAGCAGGAATAATTTTATTTATTT


TGCCTATTTATAATTAAAGTATTTTTCTTTAGTTTGAAAATGTGTATTAAAGTTACATTTTTGAGTTACA


AGAGTCTTATAACTACTTGAATTTTTAGTTAAAATGTCTTAATGTAGGTTGTAGTCACTTTAGATGGAAA


ATTACCTCACATCTGTTTTCTTCAGTATTACTTAAGATTGTTTATTTAGTGGTAGAGAGTTTTTTTTTTC


AGCCTAGAGGCAGCTATTTTACCATCTGGTATTTATGGTCTAATTTGTATTTAAACATATGCACACATAT


AAAAGTTGATACTGTGGCAGTAAACTATTAAAAGTTTTCACTGTTCAAAAAAAAAAAAAAAAAA





SEQ ID NO: 39 - Homo sapiens POU class 6 homeobox 1 (POU6F1), transcript


variant 2, non-coding RNA


AATCGGTGGCCGCCAGACACCCGCGGCGAAGGCGGCTCGGGCTCGGGCTCCGGATGTGCTAGGTGTGGGC


CGGCCCCCACCCGACCCTGACAAGTGACCATGGATCCTGGAGCCGGGTCAGAGACATCTCTGACTGTCAA


TGAGCAGGTCATCGTGATGTCAGGTCATGAGACCATCCGAGTGCTGGAAGTCGGAGTGGATGCCCAACTC


CCTGCTGAGGAAGAGAGCAAAGGACTGGAGGGTGTGGCCGCCGAGGGCTCCCAGAGCGGAGACCCTGCTG


AAGCCAGTCAAGCTGCTGGTGAAGCTGGGCCAGACAACCTGGGCTCCTCTGCAGAGGCAACTGTGAAGTC


ACCCCCGGGGATCCCTCCGAGCCCTGCCCCTGCCATTGCCACCTTCAGCCAAGCCCCAAGCCAGCCTCAG


GCATCGCAGACCCTGACGCCACTGGCTGTACAAGCTGCCCCCCAGTATTGCAGGTCAAGTGGCTGGTCAG


CAGGGGCTGGCCGTGTGGACAATTCCTACAGCAACTGTGGCTGCCCTCCCAGGACTGACCGCTGCTTCTC


CTACGGGGGGAGTGTTCAAGCCACCTTTAGCCGGTCTCCAAGCAGCTGCTGTGCTGAACACCGCTCTTCC


GGCACCGGTACAAGCTGCCGCACCAGTACAGGCCTCCTCGACGGCCCAACCCCGGCCACCAGCCCAGCCC


CAGACGCTGTTCCAGACCCAGCCGCTGCTGCAGACCACACCTGCCATCCTCCCGCAGCCCACTGCTGCCA


CCGCTGCTGCCCCTACCCCCAAGCCAGTGGACACCCCCCCACAGATCACCGTCCAGCCTGCAGGCTTCGC


ATTTAGCCCAGGAATCATCAGTGCTGCTTCCCTCGGGGGACAGACCCAGATCCTGGGGTCCCTCACTACA


GCTCCAGTCATTACCAGCGCCATTCCCAGCATGCCAGGGATCAGCAGTCAGATCCTCACCAATGCTCAGG


GACAGGTTATTGGAACCCTTCCATGGGTAGTGAACTCAGCTAGTGTGGCGGCCCCAGCACCAGCCCAAAG


CCTGCAGGTCCAGGCCGTGACCCCCCAGCTGTTGTTGAACGCCCAGGGCCAGGTGATTGCGACCCTGGCT


AGCAGCCCCCTGCCTCCACCTGTGGCTGTCCGGAAGCCAAGCACACCTGAGTCCCCTGCTAAGAGTGAGG




TGCAGCCCATCCA
GCCCACACCAACCGTGCCCCAGCCTGCTGTGGTCATTGCCAGCCCAGCTCCAGCCGC



CAAGCCATCTGCCTCTGCTCCTATCCCAATTACCTGCTCAGAGACCCCCACCGTCAGCCAGTTGGTGTCC


AAGCCACATACTCCAAGTCTGGATGAGGATGGGATCAACTTAGAAGAGATCCGGGAGTTTGCCAAGAACT


TTAAGATCCGGCGGCTCTCGCTGGGCCTTACACAGACCCAGGTGGGTCAGGCTCTGACTGCAACGGAAGG


TCCAGCCTACAGCCAGTCAGCCATCTGCCGGTTCGAGAAGCTAGACATCACACCCAAGAGTGCCCAGAAG


CTAAAGCCGGTGCTGGAAAAGTGGCTAAACGAAGCTGAACTGCGGAACCAGGAAGGCCAGCAGAACCTGA


TGGAGTTTGTGGGAGGCGAGCCCTCCAAGAAACGCAAACGCCGCACCTCCTTCACCCCCCAGGCCATAGA


GGCTCTCAATGCCTATTTTGAGAAGAACCCACTGCCCACAGGCCAGGAGATCACTGAAATTGCTAAGGAG


CTCAACTACGACCGTGAGGTAGTGCGGGTCTGGTTCTGCAATCGGCGCCAGACGCTCAAGAACACCAGCA


AGCTGAACGTCTTTCAGATCCCTTAGGGCTCAGCCCCTGGCCCTGTGTTCTAGCACTTTGTCCATTTCCC


GTGGCATCCGGCTGCAGCCACTGCCATGACAGCACCTGTCATTTTGCCACGTGCAGCTGTGCTCACCCCA


GGTCATCAGACTCCACCGTGTGCATGTGCATCAATGTCCCTCTTTTCTCCCACACATCTCACATCATGGG


GAGGCCAGAGGGGGCCACACGAGAGCTCCAGGCTCTGGGCTGGTCACTCCGAAGAAGAGGATTTGTGACG


TCACTTAGAGAAGCACCTTGCTAGCATGGTTTCTGAAGGGTGAATTCTGGTGGGGAACCAGAAACTCCCT


GTCTTTGGGGCAGGGCTAAAGCAGCTCCTAAGGACCACTGGCCATTAGCTCTTGCTTTTGATGGCATTCT


CTTTCCACCTTGTCTTCTCCTTTGCTCCTCTGTGTTAGTGTGGCAGGTATGACAACTCATCCAGTGGAAA


CACAGCCTCACACTGCCCTTCCGCCCCCCACACTTTGCCTGCAGGTGCACCGAAAGGACCTGGGAGATAA


AATTCAAAAAAGTGTGATGTGCTGCTCAGAAGGTCAGACTCCATGTCTGCCTTGACCTCAAGGTCAGAAG


GTTCCCAAACCCCTGGGGCTGGAACATGGGATCTCCTCTTCCACCTCTTCCTGGTTCCTTTGCGGGGAAA


ATTGCACTAAAACAGAACCTTTTCTTAATCCATGTTGGAAGGAAGCAACAGTGAACTCTACCTGTTCTGG


AGTTCTCCTGGGTCTGCAGAAGGTTGGGAATTTAGAAAATAAGGCTGTTCTTTCATATTTTAATTTAATC


TCTGTCAATGGCCATCCCTCCCACAAAAAAACGTGGGTTAAGAGAACTTGCAGACTGGATATGCAAGCAA


ACGGGCAACTCTGGAGAAAAATAAGGAAAGGAATGCTGACTTTCTCTTTCTTTCTCTTGTCCCCACACCC


ATTCCCAACCCAATACTGGGGCCTTCTCAAAAGGAGCAAATTAAACAATAAACCAGACAGCAAGGCCCTG


GGGGAAAGGACAACATCCTGAAATAAATGATGGAGCCCAGGAAGGTCTCTTGTGGAAGTTGACTTAACTC


TAATTTTCTTTGTAACTTTAAGCCTTGGATACGGGAGGAGAAATCTCATTTTGTCGAGTCTCAGACCATG


TCTGTGTGTAAGCAATCCCCACAGTGTCCTCTGAGCCAAGGACACCCCCAGATCAGATTGAGTTTTGCTT


CTAGACGGGGTAGCTATGGTACCTTGGGGGTTAGCTCTCATCCAAGCTGTTAAGTGAGTTTCCAGCCTCA


CTGTGGCTGGAAAGCCCCTAAAATTCAGTATGTAACTCCAGGAAGTCAGGAGAGAACTGAGATTTGCCTA


GATGACCACAGGCTTGCGGTGTAGATTATCCCTAAAGGGCCCCAAGTCACGGGGGTCAACCACCCCTGTC


TTCAGTACTCTTATCCTTACAGAGGCTGGTCTCTAACAGCTGCCTCCAGTGGACCTCCCATGATCCACCC


TGAGGGAAGGACCGTCAGCTGGGGACACATCACCACCTCTGTCAGTCACTGGTGCAGAGCCACCTCCTAG


CCTAGCTTCCTCTGGTGTCCTGTTTCCTTTCCCACTTACTGTTGGTGCCTCCCAGGCCCTGCAGTGCCAG


CGTGGCCACCCTCTTGGTAGCCTGGCCAGTAAGAGGAGGACAGTTGTGTGCTGAATTAGCACACGCACGT


GCAGCGCGCACAGACGCGCGCACACACACACACATACACGCTCTGCTGCATTTGGACAAACCATGCCTGC


CAGAGTGTAGCAGAGGTGAGGAAGCAGGTGGGCAGCTTGCCTGACCCAGCTTTTCAGGAGAGCGTGTCTC


CAACAGAGAGTCTCCACACTCTAGTTCAGGGTTATCGACCTGCCTCAATGAGATGACAGACTCATTTGGG


AGGGGTGTTGCAAACAAGTTTTCAGTGAGAATAGTTAAGTTCCAGAGCTTGTAAAGGATTCAGTGACTGA


CACTTCAGTAAATTAGGCCAGGCACATTGGCTTATGCCTGTAATTCCAACACTTTGGAAGGCCGAGGTGG


GCGGATCATTTGAGGTCTGGAGTTCGAGACCAGCCTGACCAACATGGTGAAACCCCGTCTCTACTAAAAA


TACAAAAATTAGCCAGGTGTGGTAGTGCACATCTGTAATCCCAGCTACTTGGGAGGTGGAGGCAGGAGAA


TTGCTTGAACCCTGGAGGTTGCAATGAGCTGAGATCACACTACTTCACTCCAGCCTGGGTGACAGAGCAA


GACTCGGTCTCAAACAAACAAAAACTTATGGCGATGCAGGTTTTCATGCTCAGACGCTTGCATTCAGGTA


TGCTTTCTTTTTTGAGAGAGACAAATGGGTCACAGCTGGCACCCTGGGAATAGCACATAATCCAGGGTGT


GTCTGTGGTGGTGGACGTGCAGGGGAACACCATCTGTCCTGTGTCATGATGGGAAAACAATCATGAACCA


CTGGTCTAAATTAGGCCTGGCCATGCTTTCTCAGCCCCTCCCTCATTTAAATTTGTCTTCCCAAAGCTGA


GCTAAAACTAAACCATTTCTCCTCTGCTGGAATGATGGATTGGTCATTCAGAGGAACAATACCAGGGGTG


GGAGGTTTGCAGGCTGAGTTCCCCAGGCATGGGGGTGCAGGGTGTCCCTGAGGTTTACCCAAAGCACAGC


TCGCTGGCCTGTGACCTCTGCCCTTCCTCCCACAGTGTAAGACCCCCCAGGAAGCAGCTGGGGCCTGAAC


CTCTCACCTAGGAGGTAGGTTTATTTTATTTTTTGTTAGCATCAGGCTCTGAAGGAGTTGGTATACATTT


TGTTTTGAAAACATCTTCTGGACTTACACCAGAGCTTAGTGTCGTCTTTACTATGGAAAGAGAGGAGAAT


GGACAGAAATGGTTTAACTGTGTGGAGTTTTGTTTGTTTTGTTTTAAATGGAAGAAAGACCAAAACTTTC


CTGGTGGATCAGCTAGGGCCTTTGACCCTGCATTACCACGGCATTTTATCCAGGTGAAGTCCAGGGAAAG


AACTCAGCCAAATGGACTAAGGAACACACGAGTTTGGAATGCGAGACTCTGACATTTTTGTGTTCTTGGA


AATCCAATTACCTTCCCATGCCCAGATTTCCTTCCTGCCTCTTGGACCAGGCTCTGGCACTGAGGTTCTC


ACTGTTCCCAACACAGACAAAGCTTCCTGAGGGCTGGAGGGGCAGCAAGGGGAGAGGAGAATGGGGAAGA


AGCGCTTGATGTAGTTGTGTGGAATAAACAGTATTTTTTCTTTTGTAAAAAAAAAAAAAAAAA





SEQ ID NO: 40 - Homo sapiens Ran GTPase activating protein 1 (RANGAP1), mRNA


AAATCCTCCTCCTCCGCCATCATCCGCCGCGGTGCGGAGAGCAGGTGGTGCTGGAAGCGCGTGAGGCCGG


GAGCTCGAGAGAGCTAACAGACTAGCCGGCTGGACATCTGGACCGCTGGATCCGGAGGTGGCGACCCCGG


CCTGACCCGGACCCTAAATCCGTCCCCGCCCCAGAGGGCGGAGGCGCGCGCTCGATTCCCCCCACGCGGC


GGCGCCGCCTGTTTACGTCTGCAGATCTCCAGGGGAGCCCACCAGCCTAGTCAACATGGCCTCGGAAGAC


ATTGCCAAGCTGGCAGAGACACTTGCCAAGACTCAGGTGGCCGGGGGACAGCTGAGTTTCAAAGGCAAGA


GCCTCAAACTCAACACTGCAGAAGATGCTAAAGATGTGATTAAAGAGATTGAAGACTTTGACAGCTTGGA


GGCTCTGCGTCTGGAAGGCAACACAGTGGGCGTGGAAGCAGCCAGGGTCATCGCCAAGGCCTTAGAGAAG


AAGTCGGAGTTGAAGCGCTGCCACTGGAGTGACATGTTCACGGGAAGGCTGCGGACCGAGATCCCACCAG




CCCTGATCTCACTAG
GGGAAGGACTCATCACAGCTGGGGCTCAGCTGGTGGAGCTGGACTTAAGCGACAA



CGCATTCGGGCCCGACGGTGTGCAAGGCTTCGAGGCCCTGCTCAAGAGCTCAGCCTGCTTCACCCTGCAG


GAACTCAAGCTCAACAACTGTGGCATGGGCATTGGCGGCGGCAAGATCCTGGCTGCAGCTCTGACCGAAT


GTCACCGGAAATCCAGTGCCCAAGGCAAGCCTCTGGCCCTGAAGGTCTTTGTGGCTGGCAGAAACCGTCT


GGAGAATGATGGCGCCACTGCCTTGGCAGAAGCTTTTAGGGTCATCGGGACCCTGGAGGAGGTCCACATG


CCACAGAATGGGATCAACCACCCTGGCATCACTGCCCTGGCCCAGGCTTTCGCTGTCAACCCCCTGCTGC


GGGTCATCAACCTGAATGACAACACCTTCACTGAGAAGGGCGCCGTGGCCATGGCCGAGACCTTGAAGAC


CTTGCGGCAGGTGGAGGTGATTAATTTTGGGGACTGCCTGGTGCGCTCCAAGGGTGCAGTTGCCATTGCA


GATGCCATCCGCGGCGGCCTGCCCAAGCTAAAGGAGCTGAACTTGTCATTCTGTGAAATCAAGAGGGATG


CTGCCCTGGCTGTTGCTGAGGCCATGGCAGACAAAGCTGAGCTGGAGAAGCTGGACCTGAATGGCAACAC


CCTGGGAGAAGAAGGCTGTGAACAGCTTCAGGAGGTGCTGGAGGGCTTCAACATGGCCAAGGTGCTGGCG


TCCCTCAGTGATGACGAGGACGAGGAGGAGGAGGAGGAAGGAGAAGAGGAAGAAGAGGAAGCAGAAGAAG


AGGAGGAGGAAGATGAGGAAGAGGAGGAAGAAGAGGAGGAGGAGGAGGAAGAAGAGCCTCAGCAGCGAGG


GCAGGGAGAGAAGTCAGCCACGCCCTCACGGAAGATTCTGGACCCTAACACTGGGGAGCCAGCTCCCGTG


CTGTCCTCCCCACCTCCTGCAGACGTCTCCACCTTCCTGGCTTTTCCCTCTCCAGAGAAGCTGCTGCGCC


TAGGGCCCAAGAGCTCCGTGCTGATAGCCCAGCAGACTGACACGTCTGACCCCGAGAAGGTGGTCTCTGC


CTTCCTAAAGGTGTCATCTGTGTTCAAGGACGAAGCTACTGTGAGGATGGCAGTGCAGGATGCAGTAGAT


GCCCTGATGCAGAAGGCTTTCAACTCCTCGTCCTTCAACTCCAACACCTTCCTCACCAGGCTGCTCGTGC


ACATGGGTCTGCTCAAGAGTGAAGACAAGGTCAAGGCCATTGCCAACCTGTACGGCCCCCTGATGGCGCT


GAACCACATGGTGCAGCAGGACTATTTCCCCAAGGCCCTTGCACCCCTGCTGCTGGCGTTCGTGACCAAG


CCCAACAGCGCCCTGGAATCCTGCTCCTTCGCCCGCCACAGTCTGCTGCAGACGCTGTACAAGGTCTAGA


CTCAAAGCCTCTCCCATCCCTTGGCCTGGACCAGTGAGCTGGGGAGGGACTCGGATGAACTGAGGCGCAG


CCTACGCCATTGCCTTGGACAGGACTCTGGCCACAGGCAGGGCGGGTCTGTGTCCCATGTGTCCTGTCAG


TCCCCTGAGTATGTGTGTGGGTGTGGCGCATGTGCAGGTCTGTGCCTCCTGTCGGGATTTGGGTTTTAAC


GTCTTCTGCTGGCCCAGCCCTGCTCTGTTGTGGGGAGTTGGCCCCCAGGGGAAAGGGCTGTGAGCTGCTC


CGCCATTAAACTCACCTCCACCTGAGGGCGCTCTGCTGATCTCCGCCTGGGCCCTGATGGCCGTCCCCAC


CCACCTGCCTTCCGGCCCGGCTCCCTGGCGGAGCCAGAACCCAGGGAGTTGCCCGCGTGCTGTCCTTCCC


CTCTGTGTTGTGATTGGGTTGTTTCCTGCCCTGCCTGGGGCTGCTTCTCGTCACCAAGCCCTGGTCCTGC


GGCAGCTGTCACCCCTACCATCCATACCACTGTGCTGACCGCTCAGCCTGAAGAGCAGAGAATGCCATGG


GTGGGACTGTGGGGGTCGGATCGTGGGGTTGTTGGCAGAGGGCAACCCTGGGCCCCACACCGTGTGGACA


GGCAGACACCAGATTGTCCAGGAGCAGGAGCTGCTGGGACTGCGCTGGCCCCGGACCTAGTGGGCCTTCT


CCTGGCTGCTGAGATGTCGTCTGTGACTGGCCTGGCTGGAGGGGGAGTGTTGACAACCCAAAGCTGTTCT


CCAGTCTGGGGAGGGAGAGGCAGGGTCCCCAATGTCCGAGCTGCATCTGGACGCTGCTCTTAAAGGACCT


CCTGGGGCAGGGGAGCGGTAGGGTCTGGACTGGGCAGATGCTGTATGACCTCCCTGAGCACCCGTGACTG


CCCCATGCTTTCCCCTTTGTGCTCTGTGTGTGTCTGGGCTGTGCCCGGGGGCTTCACAAATAAAGTCGTG


TGGCAGCTTCAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 41 - Homo sapiens Spi-B transcription factor (Spi-1/PU.1 related)


(SPIB), mRNA


GGCAAACAGCCCGCCCGGCACCACCATGCTCGCCCTGGAGGCTGCACAGCTCGACGGGCCACACTTCAGC




TGTCTGTACCCAG
ATGGCGTCTTCTATGACCTGGACAGCTGCAAGCATTCCAGCTACCCTGATTCAGAGG



GGGCTCCTGACTCCCTGTGGGACTGGACTGTGGCCCCACCTGTCCCAGCCACCCCCTATGAAGCCTTCGA


CCCGGCAGCAGCCGCTTTTAGCCACCCCCAGGCTGCCCAGCTCTGCTACGAACCCCCCACCTACAGCCCT


GCAGGGAACCTCGAACTGGCCCCCAGCCTGGAGGCCCCGGGGCCTGGCCTCCCCGCATACCCCACGGAGA


ACTTCGCTAGCCAGACCCTGGTTCCCCCGGCATATGCCCCGTACCCCAGCCCTGTGCTATCAGAGGAGGA


AGACTTACCGTTGGACAGCCCTGCCCTGGAGGTCTCGGACAGCGAGTCGGATGAGGCCCTCGTGGCTGGC


CCCGAGGGGAAGGGATCCGAGGCAGGGACTCGCAAGAAGCTGCGCCTGTACCAGTTCCTGCTGGGGCTAC


TGACGCGCGGGGACATGCGTGAGTGCGTGTGGTGGGTGGAGCCAGGCGCCGGCGTCTTCCAGTTCTCCTC


CAAGCACAAGGAACTCCTGGCGCGCCGCTGGGGCCAGCAGAAGGGGAACCGCAAGCGCATGACCTACCAG


AAGCTGGCGCGCGCCCTCCGAAACTACGCCAAGACCGGCGAGATCCGCAAGGTCAAGCGCAAGCTCACCT


ACCAGTTCGACAGCGCGCTGCTGCCTGCAGTCCGCCGGGCCTGAGCACACCCGAGGCTCCCACCTGCGGA


GCCGCTGGGGGACCTCACGTCCCAGCCAGGATCCCCCTGGAAGAAAAAGGGCGTCCCCACACTCTAGGTG


ATAGGACTTACGCATCCCCACCTTTTGGGGTAAGGGGAGTGCTGCCCTGCCATAATCCCCAAGCCCAGCC


CGGGCCTGTCTGGGATTCCCCACTTGTGCCTGGGGTCCCTCTGGGATTTCTTTGTCATGTACAGACTCCC


TGGGATCCTCATGTTTTGGGTGACAGGACCTATGGACCACTATACTCGGGGAGGCAGGGTAGCAGTTCTT


CCAGAATCCCAAGAGCTTCTCTGGGATTTTCTTGTGATATCTGATTCCCCAGTGAGGCCTGGGACGTTTT


TAAGATCGCTGTGTGTCTGTAAACCCTGAATCTCATCTGGGGTGGGGGCCCTGCTGGCAACCCTGAGCCC


TGTCCAAGGTTCCCTCTTGTCAGATCTGAGATTTCCTAGTTATGTCTGGGGCCCTCTGGGAGCTGTTATC


ATCTCAGATCTCTTCGCCCATCTATGGCTGTGTTGTCACATCTGTCCCCTCATTTTTGAGATCCCCCAAT


TCTCTGGAACTATTCTGCTGCCCCTTTTTATGTGTCTGGAGTTCCCCAATCACATCTAGGGCTCCTCCAA


GAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 42 - Homo sapiens TAF11 RNA polymerase II, TATAbox binding


protein (TBP)-associated factor, 28kDa (TAF11), mRNA


AAGATCCTGGCCTGTGCAGCTCGGGTTTCCGAGCTTCTGCCTCAGGCATCTCCGCGATCTCCTCTCCCCT


CCAATCCTATCCGTGATGGACGATGCCCACGAGTCGCCCTCCGACAAAGGTGGAGAGACAGGGGAGTCGG


ATGAGACGGCCGCTGTGCCCGGGGACCCGGGGGCTACCGACACCGATGGAATCCCAGAGGAAACTGACGG


AGACGCAGATGTGGACTTGAAAGAAGCTGCAGCGGAGGAAGGCGAGCTCGAGAGTCAGGATGTCTCAGAT


TTAACAACAGTTGAAAGGGAAGACTCATCATTACTTAATCCTGCAGCCAAAAAACTGAAAATAGATACCA


AAGAAAAGAAAGAGAAAAAGCAGAAAGTAGATGAAGATGAGATTCAGAAGATGCAAATCCTGGTTTCTTC


TTTTTCTGAGGAGCAGCTGAACCGTTATGAAATGTATCGCCGCTCAGCTTTCCCTAAGGCAGCCATCAAA


AGGCTGATCCAGTCCATCACTGGCACCTCTGTGTCTCAGAATGTTGTTATTGCTATGTCTGGTATTTCCA


AGGTTTTCGTCGGGGAGGTGGTAGAAGAAGCACTGGATGTGTGTGAGAAGTGGGGAGAAATGCCACCACT


ACAACCCAAACATATGAGGGAAGCCGTTAGAAGGTTAAAGTCAAAAGGACAGATCCCTAACTCGAAGCAC


AAAAAAATCATCTTCTTCTAGACCAAAGTCTAGAAAGGCCTATGTTACTGACGGAAGAAGTATTGGTTCC


AGACTTCCTATAAGACTGTCTGCATTGGTGCTTTAGTATCTCAGGCCTCCAAGGATTCCATGATGATTTT


AATGTCTTTCTCAAAACTCTGATATTTGTCACACCTAGAAAGTATGTAGCCTGATTGATACTTGCCTTGA


CTAAATTTTGGGACCTCTTGGGGCATTTTGAAGTATTTAACTGTCTTGACCAGTTGGAAGAAGATACGTG


GGCCATAAGCATCTTCTGGACAGGGGAACTGCTTTCAGAGAGAAAACCTTTCCAAGAGAGTTTTGTTTTG


TTTTGGTTTCGTTTTGTTTGAGATAGGGTCTTGCTCTATCACCTAGGCTGGAGTGCAGCGGCATGACTGC


AGCCTTGAACTCCTGGGCTTAAGTGACCCTCCCACCTCAGTCTCCTGAGTAGCTAGGACTACAGGCACAC


ACTACTGTGCCCAGCTAACTTATTTTTATTTTTTATGGAGATGGGGTCTTGCTTTGTTGCCCAGGCTGGT


CGTGAACTCCTGGCTTCAAGCAGTCCTCCTGCCTCAGCCTCCTAAAGTGCCGAGGGCTTTAATGGTTTCA


CATTGAAGCCTGAAGTTGCTAAGACTTAGGTTGTTTCTTATATCTGGTTTTAAGTAGATGAAACAACCAG


AAACTTTTACTTGTGATACTCTACCATGAAGGATGCGGTAATGGCAGGAATAGCAGAATAATTGGTGCTT


GTAAACATTTAAGATTCTCCTGTGGATTTTGGTGAGTGATCATTAAACTGTTTTCCAACTTGCAAAAAAA


AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 43 - Homo sapiens TATAbox binding protein (TBP), transcript variant 2,


mRNA


GGCGGAAGTGACATTATCAACGCGCGCCAGGGGTTCAGTGAGGTCGGGCAGGTTCGCTGTGGCGGGCGCC


TGGGCCGCCGGCTGTTTAACTTCGCTTCCGCTGGCCCATAGTGATCTTTGCAGTGACCCAGGGTGCCATG


ACTCCCGGAATCCCTATCTTTAGTCCAATGATGCCTTATGGCACTGGACTGACCCCACAGCCTATTCAGA


ACACCAATAGTCTGTCTATTTTGGAAGAGCAACAAAGGCAGCAGCAGCAACAACAACAGCAGCAGCAGCA


GCAGCAGCAGCAACAGCAACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG


CAGCAGCAACAGGCAGTGGCAGCTGCAGCCGTTCAGCAGTCAACGTCCCAGCAGGCAACACAGGGAACCT


CAGGCCAGGCACCACAGCTCTTCCACTCACAGACTCTCACAACTGCACCCTTGCCGGGCACCACTCCACT


GTATCCCTCCCCCATGACTCCCATGACCCCCATCACTCCTGCCACGCCAGCTTCGGAGAGTTCTGGGATT


GTACCGCAGCTGCAAAATATTGTATCCACAGTGAATCTTGGTTGTAAACTTGACCTAAAGACCATTGCAC


TTCGTGCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTAATCATGAGGATAAGAGAGCCACG


AACCACGGCACTGATTTTCAGTTCTGGGAAAATGGTGTGCACAGGAGCCAAGAGTGAAGAACAGTCCAGA


CTGGCAGCAAGAAAATATGCTAGAGTTGTACAGAAGTTGGGTTTTCCAGCTAAGTTCTTGGACTTCAAGA


TTCAGAATATGGTGGGGAGCTGTGATGTGAAGTTTCCTATAAGGTTAGAAGGCCTTGTGCTCACCCACCA


ACAATTTAGTAGTTATGAGCCAGAGTTATTTCCTGGTTTAATCTACAGAATGATCAAACCCAGAATTGTT


CTCCTTATTTTTGTTTCTGGAAAAGTTGTATTAACAGGTGCTAAAGTCAGAGCAGAAATTTATGAAGCAT


TTGAAAACATCTACCCTATTCTAAAGGGATTCAGGAAGACGACGTAATGGCTCTCATGTACCCTTGCCTC


CCCCACCCCCTTCTTTTTTTTTTTTTAAACAAATCAGTTTGTTTTGGTACCTTTAAATGGTGGTGTTGTG


AGAAGATGGATGTTGAGTTGCAGGGTGTGGCACCAGGTGATGCCCTTCTGTAAGTGCCCACCGCGGGATG


CCGGGAAGGGGCATTATTTGTGCACTGAGAACACCGCGCAGCGTGACTGTGAGTTGCTCATACCGTGCTG


CTATCTGGGCAGCGCTGCCCATTTATTTATATGTAGATTTTAAACACTGCTGTTGACAAGTTGGTTTGAG


GGAGAAAACTTTAAGTGTTAAAGCCACCTCTATAATTGATTGGACTTTTTAATTTTAATGTTTTTCCCCA


TGAACCACAGTTTTTATATTTCTACCAGAAAAGTAAAAATCTTTTTTAAAAGTGTTGTTTTTCTAATTTA


TAACTCCTAGGGGTTATTTCTGTGCCAGACACATTCCACCTCTCCAGTATTGCAGGACAGAATATATGTG


TTAATGAAAATGAATGGCTGTACATATTTTTTTCTTTCTTCAGAGTACTCTGTACAATAAATGCAGTTTA


TAAAAGTGTTAGATTGTTGTTAAAAAAAAAAAAAAAAAA





SEQ ID NO: 44 - Homo sapiens transforming growth factor, beta receptor II


(70/80kDa) (TGFBR2), transcript variant 1, mRNA


GGAGAGGGAGAAGGCTCTCGGGCGGAGAGAGGTCCTGCCCAGCTGTTGGCGAGGAGTTTCCTGTTTCCCC


CGCAGCGCTGAGTTGAAGTTGAGTGAGTCACTCGCGCGCACGGAGCGACGACACCCCCGCGCGTGCACCC


GCTCGGGACAGGAGCCGGACTCCTGTGCAGCTTCCCTCGGCCGCCGGGGGCCTCCCCGCGCCTCGCCGGC


CTCCAGGCCCCCTCCTGGCTGGCGAGCGGGCGCCACATCTGGCCCGCACATCTGCGCTGCCGGCCCGGCG


CGGGGTCCGGAGAGGGCGCGGCGCGGAGGCGCAGCCAGGGGTCCGGGAAGGCGCCGTCCGCTGCGCTGGG


GGCTCGGTCTATGACGAGCAGCGGGGTCTGCCATGGGTCGGGGGCTGCTCAGGGGCCTGTGGCCGCTGCA


CATCGTCCTGTGGACGCGTATCGCCAGCACGATCCCACCGCACGTTCAGAAGTCGGATGTGGAAATGGAG


GCCCAGAAAGATGAAATCATCTGCCCCAGCTGTAATAGGACTGCCCATCCACTGAGACATATTAATAACG


ACATGATAGTCACTGACAACAACGGTGCAGTCAAGTTTCCACAACTGTGTAAATTTTGTGATGTGAGATT


TTCCACCTGTGACAACCAGAAATCCTGCATGAGCAACTGCAGCATCACCTCCATCTGTGAGAAGCCACAG


GAAGTCTGTGTGGCTGTATGGAGAAAGAATGACGAGAACATAACACTAGAGACAGTTTGCCATGACCCCA


AGCTCCCCTACCATGACTTTATTCTGGAAGATGCTGCTTCTCCAAAGTGCATTATGAAGGAAAAAAAAAA


GCCTGGTGAGACTTTCTTCATGTGTTCCTGTAGCTCTGATGAGTGCAATGACAACATCATCTTCTCAGAA


GAATATAACACCAGCAATCCTGACTTGTTGCTAGTCATATTTCAAGTGACAGGCATCAGCCTCCTGCCAC


CACTGGGAGTTGCCATATCTGTCATCATCATCTTCTACTGCTACCGCGTTAACCGGCAGCAGAAGCTGAG


TTCAACCTGGGAAACCGGCAAGACGCGGAAGCTCATGGAGTTCAGCGAGCACTGTGCCATCATCCTGGAA


GATGACCGCTCTGACATCAGCTCCACGTGTGCCAACAACATCAACCACAACACAGAGCTGCTGCCCATTG


AGCTGGACACCCTGGTGGGGAAAGGTCGCTTTGCTGAGGTCTATAAGGCCAAGCTGAAGCAGAACACTTC


AGAGCAGTTTGAGACAGTGGCAGTCAAGATCTTTCCCTATGAGGAGTATGCCTCTTGGAAGACAGAGAAG


GACATCTTCTCAGACATCAATCTGAAGCATGAGAACATACTCCAGTTCCTGACGGCTGAGGAGCGGAAGA


CGGAGTTGGGGAAACAATACTGGCTGATCACCGCCTTCCACGCCAAGGGCAACCTACAGGAGTACCTGAC


GCGGCATGTCATCAGCTGGGAGGACCTGCGCAAGCTGGGCAGCTCCCTCGCCCGGGGGATTGCTCACCTC


CACAGTGATCACACTCCATGTGGGAGGCCCAAGATGCCCATCGTGCACAGGGACCTCAAGAGCTCCAATA


TCCTCGTGAAGAACGACCTAACCTGCTGCCTGTGTGACTTTGGGCTTTCCCTGCGTCTGGACCCTACTCT


GTCTGTGGATGACCTGGCTAACAGTGGGCAGGTGGGAACTGCAAGATACATGGCTCCAGAAGTCCTAGAA


TCCAGGATGAATTTGGAGAATGTTGAGTCCTTCAAGCAGACCGATGTCTACTCCATGGCTCTGGTGCTCT


GGGAAATGACATCTCGCTGTAATGCAGTGGGAGAAGTAAAAGATTATGAGCCTCCATTTGGTTCCAAGGT


GCGGGAGCACCCCTGTGTCGAAAGCATGAAGGACAACGTGTTGAGAGATCGAGGGCGACCAGAAATTCCC


AGCTTCTGGCTCAACCACCAGGGCATCCAGATGGTGTGTGAGACGTTGACTGAGTGCTGGGACCACGACC


CAGAGGCCCGTCTCACAGCCCAGTGTGTGGCAGAACGCTTCAGTGAGCTGGAGCATCTGGACAGGCTCTC


GGGGAGGAGCTGCTCGGAGGAGAAGATTCCTGAAGACGGCTCCCTAAACACTACCAAATAGCTCTTCTGG


GGCAGGCTGGGCCATGTCCAAAGAGGCTGCCCCTCTCACCAAAGAACAGAGGCAGCAGGAAGCTGCCCCT


GAACTGATGCTTCCTGGAAAACCAAGGGGGTCACTCCCCTCCCTGTAAGCTGTGGGGATAAGCAGAAACA


ACAGCAGCAGGGAGTGGGTGACATAGAGCATTCTATGCCTTTGACATTGTCATAGGATAAGCTGTGTTAG


CACTTCCTCAGGAAATGAGATTGATTTTTACAATAGCCAATAACATTTGCACTTTATTAATGCCTGTATA


TAAATATGAATAGCTATGTTTTATATATATATATATATATCTATATATGTCTATAGCTCTATATATATAG


CCATACCTTGAAAAGAGACAAGGAAAAACATCAAATATTCCCAGGAAATTGGTTTTATTGGAGAACTCCA


GAACCAAGCAGAGAAGGAAGGGACCCATGACAGCATTAGCATTTGACAATCACACATGCAGTGGTTCTCT


GACTGTAAAACAGTGAACTTTGCATGAGGAAAGAGGCTCCATGTCTCACAGCCAGCTATGACCACATTGC


ACTTGCTTTTGCAAAATAATCATTCCCTGCCTAGCACTTCTCTTCTGGCCATGGAACTAAGTACAGTGGC


ACTGTTTGAGGACCAGTGTTCCCGGGGTTCCTGTGTGCCCTTATTTCTCCTGGACTTTTCATTTAAGCTC


CAAGCCCCAAATCTGGGGGGCTAGTTTAGAAACTCTCCCTCAACCTAGTTTAGAAACTCTACCCCATCTT


TAATACCTTGAATGTTTTGAACCCCACTTTTTACCTTCATGGGTTGCAGAAAAATCAGAACAGATGTCCC


CATCCATGCGATTGCCCCACCATCTACTAATGAAAAATTGTTCTTTTTTTCATCTTTCCCCTGCACTTAT


GTTACTATTCTCTGCTCCCAGCCTTCATCCTTTTCTAAAAAGGAGCAAATTCTCACTCTAGGCTTTATCG


TGTTTACTTTTTCATTACACTTGACTTGATTTTCTAGTTTTCTATACAAACACCAATGGGTTCCATCTTT


CTGGGCTCCTGATTGCTCAAGCACAGTTTGGCCTGATGAAGAGGATTTCAACTACACAATACTATCATTG


TCAGGACTATGACCTCAGGCACTCTAAACATATGTTTTGTTTGGTCAGCACAGCGTTTCAAAAAGTGAAG


CCACTTTATAAATATTTGGAGATTTTGCAGGAAAATCTGGATCCCCAGGTAAGGATAGCAGATGGTTTTC


AGTTATCTCCAGTCCACGTTCACAAAATGTGAAGGTGTGGAGACACTTACAAAGCTGCCTCACTTCTCAC


TGTAAACATTAGCTCTTTCCACTGCCTACCTGGACCCCAGTCTAGGAATTAAATCTGCACCTAACCAAGG


TCCCTTGTAAGAAATGTCCATTCAAGCAGTCATTCTCTGGGTATATAATATGATTTTGACTACCTTATCT


GGTGTTAAGATTTGAAGTTGGCCTTTTATTGGACTAAAGGGGAACTCCTTTAAGGGTCTCAGTTAGCCCA


AGTTTCTTTTGCTTATATGTTAATAGTTTTACCCTCTGCATTGGAGAGAGGAGTGCTTTACTCCAAGAAG


CTTTCCTCATGGTTACCGTTCTCTCCATCATGCCAGCCTTCTCAACCTTTGCAGAAATTACTAGAGAGGA


TTTGAATGTGGGACACAAAGGTCCCATTTGCAGTTAGAAAATTTGTGTCCACAAGGACAAGAACAAAGTA


TGAGCTTTAAAACTCCATAGGAAACTTGTTAATCAACAAAGAAGTGTTAATGCTGCAAGTAATCTCTTTT


TTAAAACTTTTTGAAGCTACTTATTTTCAGCCAAATAGGAATATTAGAGAGGGACTGGTAGTGAGAATAT


CAGCTCTGTTTGGATGGTGGAAGGTCTCATTTTATTGAGATTTTTAAGATACATGCAAAGGTTTGGAAAT


AGAACCTCTAGGCACCCTCCTCAGTGTGGGTGGGCTGAGAGTTAAAGACAGTGTGGCTGCAGTAGCATAG


AGGCGCCTAGAAATTCCACTTGCACCGTAGGGCATGCTGATACCATCCCAATAGCTGTTGCCCATTGACC


TCTAGTGGTGAGTTTCTAGAATACTGGTCCATTCATGAGATATTCAAGATTCAAGAGTATTCTCACTTCT


GGGTTATCAGCATAAACTGGAATGTAGTGTCAGAGGATACTGTGGCTTGTTTTGTTTATGTTTTTTTTTC


TTATTCAAGAAAAAAGACCAAGGAATAACATTCTGTAGTTCCTAAAAATACTGACTTTTTTCACTACTAT


ACATAAAGGGAAAGTTTTATTCTTTTATGGAACACTTCAGCTGTACTCATGTATTAAAATAGGAATGTGA


ATGCTATATACTCTTTTTATATCAAAAGTCTCAAGCACTTATTTTTATTCTATGCATTGTTTGTCTTTTA


CATAAATAAAATGTTTATTAGATTGAATAAAGCAAAATACTCAGGTGAGCATCCTGCCTCCTGTTCCCAT


TCCTAGTAGCTAAA





SEQ ID NO: 45 - Homo sapiens tumor protein p53 (TP53), transcript variant 4,


mRNA


GATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAG


CCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTC


CACGACGGTGACACGCTTCCCTGGATTGGCAGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGC


AGTCAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGA


AAACAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAA


CAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCCCGTGGCCC


CTGCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCC


TTCCCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCT


GTGACTTGCACGTACTCCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGC


TGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCA


CATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCT


CAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACATA


GTGTGGTGGTGCCCTATGAGCCGCCTGAGGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTG


TAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACTCCAGT


GGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAG


AGGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGCACT


GCCCAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAG


ATGCTACTTGACTTACGATGGTGTTACTTCCTGATAAACTCGTCGTAAGTTGAAAATATTATCCGTGGGC


GTGAGCGCTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGAAGGA


GCCAGGGGGGAGCAGGGCTCACTCCAGCCACCTGAAGTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAA


AAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACTGACATTCTCCACTTCTTGTTCCCCACTGACAGC


CTCCCACCCCCATCTCTCCCTCCCCTGCCATTTTGGGTTTTGGGTCTTTGAACCCTTGCTTGCAATAGGT


GTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGGCTCCACTGAACAAGTTGGCCTGCACT


GGTGTTTTGTTGTGGGGAGGAGGATGGGGAGTAGGACATACCAGCTTAGATTTTAAGGTTTTTACTGTGA


GGGATGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTACAATCAGCCACATTCTAGGT


AGGGGCCCACTTCACCGTACTAACCAGGGAAGCTGTCCCTCACTGTTGAATTTTCTCTAACTTCAAGGCC


CATATCTGTGAAATGCTGGCATTTGCACCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAATAATGTA


CATCTGGCCTTGAAACCACCTTTTATTACATGGGGTCTAGAACTTGACCCCCTTGAGGGTGCTTGTTCCC


TCTCCCTGTTGGTCGGTGGGTTGGTAGTTTCTACAGTTGGGCAGCTGGTTAGGTAGAGGGAGTTGTCAAG


TCTCTGCTGGCCCAGCCAAACCCTGTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGAAATCTCA


CCCCATCCCACACCCTGGAGGATTTCATCTCTTGTATATGATGATCTGGATCCACCAAGACTTGTTTTAT


GCTCAGGGTCAATTTCTTTTTTCTTTTTTTTTTTTTTTTTTCTTTTTCTTTGAGACTGGGTCTCGCTTTG


TTGCCCAGGCTGGAGTGGAGTGGCGTGATCTTGGCTTACTGCAGCCTTTGCCTCCCCGGCTCGAGCAGTC


CTGCCTCAGCCTCCGGAGTAGCTGGGACCACAGGTTCATGCCACCATGGCCAGCCAACTTTTGCATGTTT


TGTAGAGATGGGGTCTCACAGTGTTGCCCAGGCTGGTCTCAAACTCCTGGGCTCAGGCGATCCACCTGTC


TCAGCCTCCCAGAGTGCTGGGATTACAATTGTGAGCCACCACGTCCAGCTGGAAGGGTCAACATCTTTTA


CATTCTGCAAGCACATCTGCATTTTCACCCCACCCTTCCCCTCCTTCTCCCTTTTTATATCCCATTTTTA


TATCGATCTCTTATTTTACAATAAAACTTTGCTGCCACCTGTGTGTCTGAGGGGTG





SEQ ID NO: 46 - Homo sapiens tumor protein p53 (TP53), transcript variant 2,


mRNA


GATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAG


CCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTC


CACGACGGTGACACGCTTCCCTGGATTGGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGCAGT


CAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGAAAA


CAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAACAA


TGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCCCGTGGCCCCTG


CACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCCTTC


CCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCTGTG




ACTTGCACGTACTCCCCTG
CCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT



GGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACAT


GACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCTCAG


CATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACATAGTG


TGGTGGTGCCCTATGAGCCGCCTGAGGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA


CAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACTCCAGTGGT


AATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGG


AAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGCACTGCC


CAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGATC


CGTGGGCGTGAGCGCTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTG


GGAAGGAGCCAGGGGGGAGCAGGGCTCACTCCAGCCACCTGAAGTCCAAAAAGGGTCAGTCTACCTCCCG


CCATAAAAAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACTGACATTCTCCACTTCTTGTTCCCCAC


TGACAGCCTCCCACCCCCATCTCTCCCTCCCCTGCCATTTTGGGTTTTGGGTCTTTGAACCCTTGCTTGC


AATAGGTGTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGGCTCCACTGAACAAGTTGGC


CTGCACTGGTGTTTTGTTGTGGGGAGGAGGATGGGGAGTAGGACATACCAGCTTAGATTTTAAGGTTTTT


ACTGTGAGGGATGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTACAATCAGCCACAT


TCTAGGTAGGGGCCCACTTCACCGTACTAACCAGGGAAGCTGTCCCTCACTGTTGAATTTTCTCTAACTT


CAAGGCCCATATCTGTGAAATGCTGGCATTTGCACCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAA


TAATGTACATCTGGCCTTGAAACCACCTTTTATTACATGGGGTCTAGAACTTGACCCCCTTGAGGGTGCT


TGTTCCCTCTCCCTGTTGGTCGGTGGGTTGGTAGTTTCTACAGTTGGGCAGCTGGTTAGGTAGAGGGAGT


TGTCAAGTCTCTGCTGGCCCAGCCAAACCCTGTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGA


AATCTCACCCCATCCCACACCCTGGAGGATTTCATCTCTTGTATATGATGATCTGGATCCACCAAGACTT


GTTTTATGCTCAGGGTCAATTTCTTTTTTCTTTTTTTTTTTTTTTTTTCTTTTTCTTTGAGACTGGGTCT


CGCTTTGTTGCCCAGGCTGGAGTGGAGTGGCGTGATCTTGGCTTACTGCAGCCTTTGCCTCCCCGGCTCG


AGCAGTCCTGCCTCAGCCTCCGGAGTAGCTGGGACCACAGGTTCATGCCACCATGGCCAGCCAACTTTTG


CATGTTTTGTAGAGATGGGGTCTCACAGTGTTGCCCAGGCTGGTCTCAAACTCCTGGGCTCAGGCGATCC


ACCTGTCTCAGCCTCCCAGAGTGCTGGGATTACAATTGTGAGCCACCACGTCCAGCTGGAAGGGTCAACA


TCTTTTACATTCTGCAAGCACATCTGCATTTTCACCCCACCCTTCCCCTCCTTCTCCCTTTTTATATCCC


ATTTTTATATCGATCTCTTATTTTACAATAAAACTTTGCTGCCACCTGTGTGTCTGAGGGGTG





SEQ ID NO: 47 - Homo sapiens TXK tyrosine kinase (TXK), mRNA


GATTTCAGTTGAAAGATGTGTTTTTGTGAGTAGAGCACCGCAGAAGAACTGAAGACTGTTGTGTGCTCCC


CGCAGAAGGGGCTACCATGATCCTTTCCTCCTATAACACCATCCAGTCGGTTTTCTGTTGCTGCTGTTGC


TGTTCAGTGCAGAAGCGACAAATGAGAACACAGATAAGCCTGAGCACAGATGAAGAGCTTCCAGAAAAAT


ACACCCAGCGTCGCAGGCCGTGGCTCAGCCAATTGTCAAATAAGAAGCAATCCAACACGGGCCGTGTGCA


GCCGTCAAAACGAAAGCCACTGCCTCCCCTCCCACCCTCTGAGGTTGCTGAAGAGAAGATCCAAGTCAAG


GCACTTTATGATTTTCTGCCCAGAGAACCCTGTAATTTAGCCTTAAGGAGAGCAGAAGAATACCTGATAC


TGGAGAAATACAATCCTCACTGGTGGAAGGCAAGAGACCGTTTGGGGAATGAAGGCTTAATCCCAAGCAA


CTATGTGACTGAAAACAAAATAACTAATTTAGAAATATATGAGTGGTACCATAGAAACATTACCAGAAAT


CAGGCAGAACATCTATTGAGACAAGAGTCTAAAGAAGGTGCATTTATTGTCAGAGATTCAAGACATTTAG


GATCCTACACAATTTCCGTATTTATGGGAGCTAGAAGAAGTACGGAGGCTGCCATAAAACATTATCAGAT


AAAAAAGAATGACTCAGGACAGTGGTATGTGGCTGAAAGACACGCCTTTCAATCAATCCCTGAGTTAATC


TGGTATCACCAGCACAATGCAGCCGGTCTCATGACTCGTCTCCGATATCCAGTTGGGCTGATGGGCAGTT


GTTTACCAGCCACAGCTGGGTTTAGCTACGAAAAGTGGGAGATAGATCCATCTGAGTTGGCTTTTATAAA


GGAGATTGGAAGCGGTCAGTTTGGAGTGGTCCATTTAGGTGAATGGCGGTCACATATCCAGGTAGCTATC


AAGGCCATCAATGAAGGCTCCATGTCTGAAGAGGATTTCATTGAAGAGGCCAAAGTGATGATGAAATTAT


CTCATTCAAAGCTAGTGCAACTTTATGGAGTCTGTATACAGCGGAAGCCCCTTTACATTGTGACAGAGTT


CATGGAAAATGGCTGCCTGCTTAACTATCTCAGGGAGAATAAAGGAAAGCTTAGGAAGGAAATGCTACTG



AGTGTATGCCAGGATATATGTGAAGGAATGGAATATCTGGAGAGGAATGGCTATATTCATAG
GGATTTGG





CGGCAAGGAATTGTTTG
GTCAGTTCAACATGCATAGTAAAAATTTCAGACTTTGGAATGACAAGGTACGT



TTTGGATGATGAGTATGTCAGTTCTTTTGGAGCCAAGTTCCCAATCAAGTGGTCCCCTCCTGAAGTTTTT


CTTTTCAATAAGTACAGCAGTAAATCTGATGTCTGGTCATTTGGAGTTTTAATGTGGGAAGTTTTTACAG


AAGGAAAAATGCCTTTTGAAAATAAGTCAAATTTGCAAGTCGTGGAAGCTATTTCTGAAGGCTTCAGGCT


ATATCGCCCTCACCTGGCACCAATGTCCATATATGAAGTCATGTACAGCTGCTGGCATGAGAAACCTGAA


GGCCGCCCTACATTTGCCGAGCTGCTGCGGGCTGTCACAGAGATTGCGGAAACCTGGTGACCGGAAACAG


AATGCCAACCCAAAGAGTCATCTTGCAAAACTGTCATTTATTGTGAATATCTTCACCATATGGGGTCACT


TATGGTGAATATCTTTCTTCAGAGTTGCTGACTCTTGAAAACAGTGCAAAGATCACAGTTTTTAAAAGTT


TTAAAAATTTAAGAATATTCACACAATCGTTTTTCTATGTGTGAGAGGGATTTGCACACTCTTATTTTTC


TGTAAAATATTTCACATCCCAAATGTGAAGAAGTGAAAAAGACTTCGCAGCAGTCTTCATTGTGGTGCTC


TTCATGATCATAGCCCCAGGAACCCTTGAGGTTCTTCTTCACAAGGCTGAGAGTGCTTCCTTCTTGAAGA


CGAGTGACATTCATCACTTCAGTGATCCATGCATAGAATATGAAAATAAATTCTTCCAACTCATGGGATA


AAGGGGACTCCCTTGAAGAATTTCATGTTTTTGGGCTGTATAGCTCTTTACAGAAAATGCACCTTTATAA


ATCACATGAATGTTAGTATTCTGGAAATGTCTTTTGTTAATATAATCTTCCCATGTTATTTAACAAATTG


TTTTTGCACATATCTGATTATATTGAAAGCAGTTTTTTGCATTCGAGTTTTAAACACTGTTATAAAATGT


AGCCAAAGCTCACCTTTGAACAGATCCCGGTGACATTCTATTTCCAGGAAAATCCGGAACCTGATTTTAG


TTCTGTGATTTTACACTTTTTACATGTGAGATTGGACAGTTTCAGAGGCCTTATTTTGTCATACTAAGTG


TCTCCTGTAATTTTCAGGAAGATGATTTGTTCTTTCCAGAAGAGGAGACAAAAGCAAGATAGCCAAATGT


GACATCAAGCTCCATTGTTTCGGAAATCCAGGATTTTGAATTCGAGATGAAACAACCAGCAATCACAGTT


AAATCTTAACTTTGCCTGCACTCTTTGTAGGAATGATCAGAAATTTATCTTTATCATTCTGAGTGCTTCA


GGAGTACAATAGGAAGAAAGATACTGGAGAAAGCACTAATGTAATCACCATGAAGTCTGACAACAGGAGC


CCATTATTTGCGTACTGTCCCACCCTGTATCATGGTTCTCTGGGAACAAGCTTTATGATTCTCATTAGAG


TTTATTTGTTGATTGTCAGTAGTTGCGACTTTTAAATTATATTTCCCCCACTCAAAGAATGGTATCTTTA


TATATCAATGACATTCAATAAATGTGTATTATTTCTAATGAGAA








Claims
  • 1. A method for characterizing a gastro-intestinal (GI) disease in a subject, comprising: (a) providing a biological sample from the subject;(b) determining expression levels of at least two genes in the biological sample;(c) calculating one or more ratios of the expression levels of the at least two genes; and(d) comparing each ratios to a reference, wherein the GI disease is characterized based on a difference in the ratios of the expression values of the at least two genes in the biological sample from the subject as compared to the references.
  • 2. The method of claim 1, wherein the determining is of the expression levels of at least two genes represented by SEQ ID NOs: 1-47.
  • 3. The method of claim 1, wherein the determining is of the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47.
  • 4. The method of claim 1, wherein the determining is of the expression levels of at least two genes corresponding to those set forth in Table A.
  • 5. The method of claim 1, wherein the determining is of the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A or at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table B.
  • 6. The method of claim 4, wherein the determining is of the expression levels of the genes corresponding to: (a) ABR, ACTB, ACTR1A, EXT2, KRAS, LLGL2, NRAS, PGK1, and POU6F1;(b) ACTR1A, CD55, HRAS, IL11RA, JUN, PGK1, POU6F1, TAF11, TBP, and TP53;(c) ABR, CD55, CTSS, GAPDH, HLA-DRA, HRAS, JUN, OAS1, ORC1L, and TBP; or(d) ANAPC1, CDH1, EXT2, GAPDH, GNB5, NRAS, ORC1L, POU6F1, TBP, and TP53.
  • 7. The method of claim 1, wherein the one or more ratios are ratios of expression levels of genes corresponding to those set forth in Table A, wherein each ratio is calculated by dividing the expression level of a first gene in Table A by the expression level of a second gene in Table A.
  • 8. The method of claim 1, wherein the one or more ratios are ratios are selected from those set forth in Table B.
  • 9. The method of claim 1, wherein the one or more ratios consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, or 89 ratios set forth in Table B.
  • 10. The method of claim 1, wherein the one or more ratios consist of the ratios set forth in: (a) Column 1 (IBD vs. CTRL) of Table B;(b) Column 2 (IBS vs. CTRL) of Table B;(c) Column 3 (IBD vs. IBS) of Table B; or(d) Column 4 (CD vs. UC) of Table B.
  • 11. The method of claim 1, wherein the one or more ratios consist of: (a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 ratios set forth in Column 1 (IBD vs. CTRL) of Table B;(b) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 ratios set forth in Column 2 (IBS vs. CTRL) of Table B;(c) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 ratios set forth in Column 3 (IBD vs. IBS) of Table B; or(d) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 ratios set forth in Column 4 (CD vs. UC) of Table B.
  • 12. The method of claim 1, wherein the reference is a reference ratio of a comparator group or a standard reference ratio.
  • 13. The method of claim 1, wherein the reference is a healthy control.
  • 14. The method of claim 1, and further comprising comparing each ratio to a second reference.
  • 15. The method of claim 14, wherein the second reference is not a healthy control.
  • 16. The method of claim 14, wherein the second reference comprises other GI diseases.
  • 17. The method of claim 1, wherein the characterizing comprises providing a diagnosis, prognosis and/or theranosis of the condition.
  • 18. The method of claim 1, wherein the characterization comprises diagnosing or prognosticating a GI disease.
  • 19. The method of claim 1, wherein a GI disease is predicted.
  • 20. The method of claim 1, wherein a GI disease is not predicted.
  • 21. The method of claim 1, wherein the characterization comprises an exclusion of a diagnosis of a GI disease.
  • 22. The method of claim 17, wherein the GI disease is selected from irritable bowel syndrome (IBS), Inflammatory bowel diseases (IBD), Crohn's disease (CD), Celiac's disease (CeD), and ulcerative colitis (UC).
  • 23. The method of claim 17, wherein the characterization comprises a diagnosis of IBS; a diagnosis of no IBS; a diagnosis of CD; a diagnosis of no CD; a diagnosis of UC; or a diagnosis of no UC.
  • 24. The method of claim 1, and further comprising providing a series of biological sample obtained from the subject; and determining a presence of any change in the ratios in each of the biological samples from the series.
  • 25. The method of claim 1, wherein the providing a biological sample from the subject comprises extracting mRNA from the biological sample and/or synthesizing cDNA.
  • 26. The method of claim 1, wherein determining the expression levels of the genes in the biological sample includes sequencing the mRNA and/or DNA sequences of the biomarkers.
  • 27. A kit, comprising primer pairs for determining expression levels of at least two genes in a biological sample, said at least two genes selected from the group of genes set forth in SEQ ID NOs: 1-47.
  • 28. A device, comprising probes for detecting each of at least two genes selected from the group of genes set forth in SEQ ID NOs: 1-47.
RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application Ser. No. 61/731,265 filed Nov. 29, 2012, the entire disclosure of which is incorporated herein by this reference.

GOVERNMENT INTEREST

This invention was made with government support under AI53984 and AI044924 awarded by the National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
61731265 Nov 2012 US