Characterizing Gastro-Intestinal Disease

Information

  • Patent Application
  • 20180171408
  • Publication Number
    20180171408
  • Date Filed
    December 07, 2017
    6 years ago
  • Date Published
    June 21, 2018
    6 years ago
Abstract
A method for characterizing a gastro-intestinal disease in a subject involves comparing ratios of expression levels of genes in a biological sample from a subject to references, wherein the gastro-intestinal disease is characterized based on a difference in the ratios of the expression values of genes in the biological sample from the subject as compared to the references.
Description
TECHNICAL FIELD

The presently-disclosed subject matter relates to the characterization of gastro-intestinal (GI) diseases in a subject, including diagnosis of GI diseases and exclusion of a diagnosis of GI diseases.


INTRODUCTION

Inflammatory bowel diseases (IBD), Crohn's disease (CD), Celiac's disease (CeD), and ulcerative colitis (UC) are chronic relapsing remitting inflammatory conditions affecting the gastrointestinal tract, primarily the small intestine and colon [1]. CD is most frequently diagnosed in patients in their 20s and UC in their 30s; however, the diagnosis can be made at any age [2]. IBD diagnosis is often straightforward, as disease can be seen by endoscopy or imaging modalities. However, diagnosis can be difficult as patients may experience symptoms consistent with IBD but ultimately have other diagnoses including functional gastrointestinal disorders such as irritable bowel syndrome (IBS) [3-6]. Patients with IBS can have symptoms very similar to those with IBD. IBD can be limited to difficult to evaluate areas of the GI tract such as isolated small bowel disease. Also, within IBD, differentiating between CD and UC can be difficult, especially within patients with severe inflammatory activity, often termed indeterminate colitis [7]. When the clinical presentation is severe and an operation including colectomy is indicated, differentiating CD and UC is imperative, as ileal pouch-anal anastomosis (IPAA) is generally contraindicated in CD due to high morbidity [8].


Developing biomarkers that can be easily obtained and allow for the correct diagnosis early into evaluation can avoid costly interventions that expose patients to multiple unnecessary procedures. Blood markers for both IBD and IBS have been sought for decades. For IBD, perinuclear antineutrophil cytoplasmic antibody (p-ANCA) and anti-Saccharomyces cerevisiae antibody (ASCA) have been reported to be markers for UC and CD, respectively. However, p-ANCA is also detected in 10-40% of patients with CD and ASCA is detected in 6-14% of patients with UC [1]. Other markers increased in subjects with CD include antibodies to (a) Escherichia coli outer membrane porin C (Omp-C), (b) protein from Pseudomonas fluorescens [9] and (c) flagellin c-BIR1 (anti-CBIR1) [10], but these markers remain insensitive. In patients with indeterminate colitis, those with one or more positive antibodies, including ANCA, ASCA, 12 (antibody to Pseudomonas fluorescens), and Omp-C, have significantly higher post-operative complications [11]. Other inflammatory biomarkers such as C-reactive protein, fecal calprotectin, and fecal lactoferrin differentiate IBD from other gastrointestinal disorders such as IBS [5], but tests do not differentiate among various types of inflammatory colitides [12].


Therefore, improved tests that can effectively, efficiently, and noninvasively characterize GI diseases are needed, including tests to diagnose GI diseases and/or to exclude a diagnosis of a GI disease.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are used, and the accompanying drawings of which:



FIG. 1 includes gene-expression profiles in multiple gastrointestinal disorders. Expression levels of 44 target genes were determined by quantitative RT-PCR and normalized to expression of GAPDH. Expression levels of 25 genes are shown; expression levels of the remainder were not statistically different between CTRL and any disease cohort. Results are expressed as transcript levels of individual genes relative to transcript levels of GAPDH using the formula: 2(GAPDH Ct-target gene Ct). Genes are identified that showed statistically significant (p-value<0.05 after Bonferroni's correction) increased or decreased expression in individual disease cohorts relative to CTRL subjects.



FIG. 2 includes a discrimination of IBD from CTRL and IBS from CTRL using the ratioscore system. (A) Ability of a single ratio, PGK1/POU6F1, to discriminate IBD and CTRL subjects. (B) The most discriminatory 25 gene-expression ratios were identified to segregate IBD and CTRL subjects. The ratioscore system was applied to combine ratio performance into a single discriminator. (C) Ability of a single ratio, PGK1/POU6F1, to discriminate IBS and CTRL subjects. (D) The most discriminatory 19 gene-expression ratios were identified to segregate IBS and CTRL subjects. The ratioscore system was applied to combine ratio performance into a single discriminator * indicates ratios found in both IBD:CTRL and IBS:CTRL comparisons.



FIG. 3 includes a discrimination of IBD from IBS using the ratioscore system. (A) Ability of a single ratio, HRAS/TBP, to discriminate IBD and IBS subjects. (B) The most discriminatory 25 gene-expression ratios were identified to segregate IBD and IBS subjects. The ratioscore system was applied to combine ratio performance into a single discriminator.



FIG. 4 includes a discrimination of UC from CD using the ratioscore system. (A) Ability of a single ratio, POU6F1/ANAPC1, to discriminate UC and CD subjects. (B) The most discriminatory 20 gene-expression ratios were identified to segregate UC and CD subjects. The ratioscore system was applied to combine ratio performance into a single discriminator.



FIG. 5 includes ROC curves derived from SVM #2 method, wherein sensitivity, specificity, and AUC were determined using the Mathematica program for the following comparisons: IBD:CTRL, IBS:CTRL, IBD:IBS, and CD:UC.



FIG. 6 includes proposed tiered analyses to discriminate subjects with IBD or IBS and, if positive for IBD, to discriminate between CD and UC.



FIG. 7 is a flow chart of the processing of the data and creation of the classifiers.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

The details of one or more embodiments of the presently-disclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom. In case of conflict, the specification of this document, including definitions, will control.


The presently-disclosed subject matter includes methods, devices, and kits useful for characterizing an auto-immune disease in a subject and, more particularly, for characterizing gastro-intestinal (GI) diseases in a subject. In some embodiments, the method involves providing a biological sample from the subject; determining expression values of at least two genes in the biological sample; calculating one or more ratios of the expression values of the at least two genes; and comparing each ratios to a reference, wherein the GI disease(s) is characterized based on a difference in the ratios of the expression values of the at least two genes in the biological sample from the subject as compared to the references. In some embodiments, the biological sample is blood obtained from the subject or another biological sample containing a cell obtained from the subject, e.g., a subject suspected of having a GI disease. The method can be used, in some embodiments, to diagnose the subject with a GI disease. In some embodiments, the method can be used to exclude the subject from a diagnosis of GI disease.


The method can be used, in some embodiments, to diagnose the subject with a GI disease that is either an inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). In some embodiments, the method can be used to exclude the subject from a diagnosis of an IBD. In some embodiments, the method can be used to exclude the subject from a diagnosis of an IBD and to diagnose the subject with IBS. In some embodiments, the method can be used to exclude the subject from a diagnosis of IBS. In some embodiments, the method can be used to exclude the subject from a diagnosis of IBS and to diagnose the subject with an IBD.


The method can be used, in some embodiments, to diagnose the subject with a GI disease that is either Crohn's disease (CD) or ulcerative colitis (UC). In some embodiments, the subject is one who has received a diagnosis of IBD. In some embodiments, the method can be used to exclude the subject from a diagnosis of CD. In some embodiments, the method can be used to exclude the subject from a diagnosis of CD and to diagnose the subject with UC. In some embodiments, the method can be used to exclude the subject from a diagnosis of UC. In some embodiments, the method can be used to exclude the subject from a diagnosis of UC and to diagnose the subject with CD.


Methods of the presently-disclosed methods include determining expression values of genes in biological samples. As such, nucleic acid molecules or nucleotides are relevant to the disclosed subject matter. Nucleotides or genes, the expression of which is desired to be determined for characterizing an auto-immune disease, include, but are not limited to those identified in Table A, the isolated nucleic acid molecules of any one of SEQ ID NOs: 1-47, fragments of the isolated nucleic acid molecules of any one of SEQ ID NOs: 1-47 where detection of such fragments are indicative of expression of an associated gene, e.g., as identified in Table A, complementary nucleic acid molecules, isolated nucleic acid molecules capable of hybridizing to any one of the SEQ ID NOs: 1-47 under conditions disclosed herein, and corresponding RNA and/or DNA molecules.


As used herein, “nucleic acid” and “nucleic acid molecule” refer to any of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. The term “isolated”, when used in the context of an isolated DNA molecule or an isolated polypeptide, is a DNA molecule or polypeptide that, by the hand of man, exists apart from its native environment and is therefore not a product of nature.


Unless otherwise indicated, a particular nucleotide sequence also implicitly encompasses complementary sequences, subsequences, elongated sequences, as well as the sequence explicitly indicated. The terms “nucleic acid molecule” or “nucleotide sequence” can also be used in place of “gene”, “cDNA”, or “mRNA”. Nucleic acids can be derived from any source, including any organism. In one embodiment, a nucleic acid is derived from a biological sample isolated from a subject.


The terms “complementary” and “complementary sequences”, as used herein, refer to two nucleotide sequences that comprise antiparallel nucleotide sequences capable of pairing with one another upon formation of hydrogen bonds between base pairs. As used herein, the term “complementary sequences” means nucleotide sequences which are substantially complementary, as can be assessed by the same nucleotide comparison set forth herein, or is defined as being capable of hybridizing to the nucleic acid segment in question under conditions such as those described herein. In one embodiment, a complementary sequence is at least 80% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 85% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 90% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 95% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 98% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 99% complementary to the nucleotide sequence with which is it capable of pairing. In still another embodiment, a complementary sequence is at 100% complementary to the nucleotide sequence with which is it capable of pairing. A particular example of a complementary nucleic acid segment is an antisense oligonucleotide.


“Stringent hybridization conditions” in the context of nucleic acid hybridization experiments are both sequence- and environment-dependent. Longer sequences hybridize specifically at higher temperatures. Generally, highly stringent hybridization and wash conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Very stringent conditions are selected to be equal to the Tm for a particular probe. Typically, under “stringent conditions” a probe hybridizes specifically to its target sequence, but to no other sequences. An extensive guide to the hybridization of nucleic acids is found in Tijssen 1993, which is incorporated herein by this reference. In general, a signal to noise ratio of 2-fold (or higher) than that observed for a negative control probe in a same hybridization assay indicates detection of specific or substantial hybridization.


It is understood that in order to determine a gene expression level by hybridization, a full-length cDNA need not be employed. To determine the expression level of a gene represented by one of SEQ ID NOs: 1-47, any representative fragment or subsequence of the sequences set forth in SEQ ID NOs: 1-47 can be employed in conjunction with the hybridization conditions disclosed herein. As a result, a nucleic acid sequence used to assay a gene expression level can comprise sequences corresponding to the open reading frame (or a portion thereof), the 5′ untranslated region, and/or the 3′ untranslated region. It is understood that any nucleic acid sequence that allows the expression level of a reference gene to be specifically determined can be employed with the methods and compositions of the presently disclosed subject matter.


As used herein, the terms “corresponding to” and “representing”, “represented by” and grammatical derivatives thereof, when used in the context of a nucleic acid sequence corresponding to or representing a gene, refers to a nucleic acid sequence that results from transcription, reverse transcription, or replication from a particular genetic locus, gene, or gene product (for example, an mRNA). In other words, a partial cDNA, or full-length cDNA corresponding to a particular reference gene is a nucleic acid sequence that one of ordinary skill in the art would recognize as being a product of either transcription or replication of that reference gene (for example, a product produced by transcription of the reference gene). One of ordinary skill in the art would understand that the partial cDNA, or full- length cDNA itself is produced by in vitro manipulation to convert the mRNA into a cDNA, for example by reverse transcription of an isolated RNA molecule that was transcribed from the reference gene. One of ordinary skill in the art will also understand that the product of a reverse transcription is a double-stranded DNA molecule, and that a given strand of that double-stranded molecule can embody either the coding strand or the non-coding strand of the gene. The sequences presented in the Sequence Listing are single-stranded, however, and it is to be understood that the presently claimed subject matter is intended to encompass the genes represented by the sequences presented in SEQ ID NOs: 1-47, including the specific sequences set forth as well as the reverse/complement of each of these sequences.


The term “gene expression” generally refers to the cellular processes by which a biologically active polypeptide is produced from a DNA sequence. Generally, gene expression comprises the processes of transcription and translation, along with those modifications that normally occur in the cell to modify the newly translated protein to an active form and to direct it to its proper subcellular or extracellular location.


The terms “gene expression level” and “expression level” as used herein refer to an amount of gene-specific RNA or polypeptide that is present in a biological sample. When used in relation to an RNA molecule, the term “abundance” can be used interchangeably with the terms “gene expression level” and “expression level”.


Determination of expression levels of genes of interest can be achieved using any technique known the skilled artisan. For example, in some embodiments, RNA can be purified from the biological sample, converted to the more-stable complementary DNA (cDNA), before the gene expression products of genes of interest are detected. As will be recognized by the skilled artisan, where amplification of the sample is desired, polymerase chain reaction amplification can be employed. Determining the expression levels can be achieved, for example, using reverse transcription-polymerase chain reaction (RT-PCR), microarray analysis, or other techniques known to the skilled artisan.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, or 47 genes represented by SEQ ID NOs: 1-47. In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A.









TABLE A







Genes















SEQ


Gene


ABI Assay
ID


Abbreviation
Gene
NCBI Ref. No.
Number:
NO:














ABR
active BCR-related gene, transcript
NM_001159746.1
Hs00254300_m1
1



variant 3


ACTB
actin, beta
NM_001101.3
Hs99999903_m1
2


ACTR1A
ARP1 actin-related protein 1
NM_005736.3
Hs00194913_m1
3



homolog A, centractin alpha (yeast)


ADAMTSL4
ADAMTS-like 4 (ADAMTSL4),
NM_019032.4
Hs00296775_m1
4



transcript variant 1


ANAPC1
anaphase promoting complex
NM_022662.2
Hs00224096_m1
5



subunit 1


APOBEC3F
apolipoprotein B mRNA editing
NM_145298.5
Hs00272529_m1
6



enzyme, catalytic polypeptide-like



3F


ASL
argininosuccinate lyase
NM_001024943.1
Hs00163695_m1
7


B2M
beta-2-microglobulin
NM_004048.2
Hs99999907_m1
8


BRCA1
breast cancer 1, early onset
NR_027676.1
Hs00173237_m1
9



(BRCA1), transcript variant 6, non-



coding RNA


CD55
CD55 molecule, decay accelerating
NM_000574.3
Hs00167090_m1
10



factor for complement (Cromer



blood group), transcript variant 1


CDH1
cadherin 1, type 1, E-cadherin
NM_004360.3
Hs00170423_m1
11



(epithelial)


CDKN1B
cyclin-dependent kinase inhibitor
NM_004064.3
Hs00153277_m1
12



1B (p27, Kip1)


CHEK2
checkpoint kinase 2 (CHEK2),
NM_001005735.1
Hs00200485_m1
13



transcript variant 3


CSF3R
colony stimulating factor 3 receptor
NM_156039.3
Hs00167918_m1
14



(granulocyte), transcript variant 3


CTSS
cathepsin S, transcript variant 1
NM_004079.4
Hs00175403_m1
15


EPHX2
epoxide hydrolase 2, cytoplasmic
NM_001979.4
Hs00157403_m1
16


EXT2
exostosin 2, transcript variant 2
NM_207122.1
Hs00181158_m1
17


FOS
FBJ murine osteosarcoma viral
NM_005252.3
Hs00170630_m1
18



oncogene homolog


FOSL1
FOS-like antigen 1
NM_005438.3
Hs00759776_s1
19


FOXN3
forkhead box N3, transcript variant 1
NM_001085471.1
Hs00231993_m1
20


GAPDH-1
glyceraldehyde-3-phosphate
NM_002046.3
Hs99999905_m1
21



dehydrogenase


GAPDH-2
glyceraldehyde-3-phosphate
NM_002046.3
Hs99999905_m1
22



dehydrogenase


GATA3
GATA binding protein 3
NM_001002295.1
Hs00231122_m1
23


GNB5
guanine nucleotide binding protein
NM_006578.3
Hs00275095_m1
24



(G protein), beta 5, transcript

and



variant 1

Hs01034253_m1


GSTM4
glutathione S-transferase mu 4,
NM_147148.2
Hs00426432_m1
25



transcript variant 2


HLA-DRA
major histocompatibility complex,
NM_019111.4
Hs00219575_m1
26



class II, DR alpha


HRAS
v-Ha-ras Harvey rat sarcoma viral
NM_001130442.1
Hs00610483_m1
27



oncogene homolog (HRAS),



transcript variant 3


IFI27
interferon, alpha-inducible protein
NM_001130080.1
Hs00271467_m1
28



27 (IFI27), transcript variant 1


IL11RA
interleukin 11 receptor, alpha,
NM_001142784.1
Hs00234415_m1
29



transcript variant 3


JUN
jun proto-oncogene
NM_002228.3
Hs00277190_s1
30


KRAS
v-Ki-ras2 Kirsten rat sarcoma viral
NM_004985.3
Hs00270666_m1
31



oncogene homolog, transcript



variant b


LEPREL4
leprecan-like 4
NM_006455.2
Hs00197668_m1
32


LLGL2
lethal giant larvae homolog 2
NM_001015002.1
Hs00189729_m1
33



(Drosophila), transcript variant 2


NRAS
neuroblastoma RAS viral (v-ras)
NM_002524.4
Hs00180035_m1
34



oncogene homolog


OAS1
2′-5′-oligoadenylate synthetase 1,
NM_001032409.1
Hs00242943_m1
35



40/46 kDa, transcript variant 3,


ORC1
origin recognition complex, subunit
NM_001190819.1
Hs00172751_m1
36



1 (ORC1), transcript variant 3


PGK1
phosphoglycerate kinase 1
NM_000291.3
Hs99999906_m1
37


PMAIP1
phorbol-12-myristate-13-acetate-
NM_021127.2
Hs00560402_m1
38



induced protein 1


POU6F1
POU class 6 homeobox 1,
NR_026893.1
Hs00231276_m1
39



transcript variant 2


RANGAP1
Ran GTPase activating protein 1
NM_002883.2
Hs00610049_m1
40


SPIB
Spi-B transcription factor (Spi-
NM_003121.3
Hs00162150_m1
41



1/PU.1 related)


TAF11
TAF11 RNA polymerase II, TATA
NM_005643.2
Hs00194573_m1
42



box binding protein (TBP)-



associated factor, 28 kDa


TBP
TATA box binding protein,
NM_001172085.1
Hs00427620_m1
43



transcript variant 2


TGFBR2
transforming growth factor, beta
NM_001024847.2
Hs00559661_m1
44



receptor II (70/80 kDa), transcript



variant 1


TP53
tumor protein p53 (TP53),
NM_001126113.1
Hs00153340_m1
45



transcript variant 4


TP53-2
tumor protein p53 (TP53),
NM_001126112.1
Hs01034253_m1
46



transcript variant 2


TXK
TXK tyrosine kinase
NM_003328.2
Hs00177433_m1
47


IL11R1









In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ABR, ACTB, ACTR1A, EXT2, KRAS, LLGL2, NRAS, PGK1, and POU6F1.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ACTR1A, CD55, HRAS, IL11RA, JUN, PGK1, POU6F1, TAF11, TBP, and TP53.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ABR, CD55, CTSS, GAPDH, HLA-DRA, HRAS, JUN, OAS1, ORC1L, and TBP.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ANAPC1, CDH1, EXT2, GAPDH, GNB5, NRAS, ORC1L, POU6F1, TBP, and TP53.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


As used herein, a “ratio” or “expression ratio” is the expression value of a first biomarker (numerator) divided by the expression value of a second biomarker (denominator), e.g., Gene A/Gene B. As such, once the expression levels of at least two genes are determined, a ratio can be calculated. Ratios can be calculated using expression levels of genes in a biological sample obtained from a subject. In some embodiments, a reference can be a ratio calculated using expression levels of genes from another source. As such, the term “subject ratio” can used herein to refer to a ratio calculated using expression values of a gene pair in a biological sample obtained from a subject, while the term “reference ratio” can be used to refer to a ratio of the same biomarker pair in a reference sample, which serves as a reference to which the subject ratio is compared.









TABLE B







Ratios










IBD vs. CTRL
IBS vs. Control
IBD vs. IBS
CD vs. UC


Expression Ratios
Expression Ratios
Expression Ratios
Expression Ratios


Numerator/
Numerator/
Numerator/
Numerator/


Denominator
Denominator
Denominator
Denominator





PGK1/POU6F1
PGK1/POU6F1*
HRAS/GAPDH
POU6F1/ANAPC1


PGK1/EXT2
PGK1/ACTR1A*
HRAS/TBP
POU6F1/GAPDH


PGK1/ACTR1A
PGK1/TBP
HRAS/HLA-DRA
POU6F1/TBP


PGK1/NRAS
JUN/TBP*
HRAS/ORC1L
POU6F1/GNB5


ABR/LLGL2
JUN/CD55
ABR/OAS1
POU6F1/ORC1L


KRAS/LLGL2
IL11RA/TBP*
ABR/JUN
POU6F1/TP53


ACTB/LLGL2
TAF11/TP53
ABR/CTSS
GAPDH/CDH1


NRAS/LLGL2
HRAS/TP53
ABR/CD55
NRAS/EXT2


GAPDH/ANAPC1
ORC1L/TP53
CDH1/PGK1
ORC1L/APOBEC3F


GAPDH/TP53
KRAS/APOBEC3F
CDH1/CTSS
SC65/ORC1L


GAPDH/GSTM4
KRAS/ADAMTSL4
PGK1/TBP
GATA3/TP53


B2M/TP53
ASL/ANAPC1
ACTR1A/ORC1L
ASL/LLGL2


B2M/APOBEC3F
GSTM4/TBP
TP53/SPIB
JUN/GAPDH


IL11RA/TBP
ABR/ANAPC1
TP53/EXT2
ADAMTSL4/KRAS


IL11RA/FOS
LLGL2/IL11RA
APOBEC3F/TAF11
APOBEC3F/GAPDH


KRAS/ANAPC1
KRAS/TBP
ADAMTSL4/ORC1L
CHEK2/GNB5


KRAS/CHEK2
CSF3R/TGFBR2
CDKN1B/PMAIP1
CDH1/GAPDH


JUN/TBP
GSTM4/OAS1
IL11RA/TBP
LLGL2/CDH1


JUN/SPIB
TXK/NRAS
JUN/TBP
IL11RA/PMAIP1


NRAS/SC65

SC65/PGK1
OAS1/IFI27


ABR/CDH1

CSF3R/HLA-DRA


HLA-DRA/ASL

ACTB/FOS


EPHX2/OAS1

ASL/GAPDH


GSTM4/TP53

GATA3/TP53


LLGL2/CDH1

GNB5/JUN









In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios of expression levels of genes corresponding to those set forth in Table A, wherein each ratio is calculated by dividing the expression level of a first gene in Table A by the expression level of a second gene in Table A.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, or 89 ratios set forth in Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 1 (IBD vs. CTRL) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 ratios set forth in Column 1 (IBD vs. Control) of Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 2 (IBS v. Control) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 ratios set forth in Column 2 (IBS v. Control) of Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 3 (IBD vs. IBS) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 ratios set forth in Column 3 (IBD vs. IBS) of Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 4 (CD vs. UC) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 ratios set forth in Column 4 (CD vs. UC) of Table B.


Various references are appropriate for use in connection with the presently-disclosed subject matter, with non-limiting examples described herein. In some embodiments, the reference comprises a reference ratio calculated using of the expression level of two genes in a biological sample taken from one or more individuals, which two genes are the same two genes used to calculate the subject ratio. The expression levels of genes in biological samples from one or more individuals can be a expression levels from a reference group or comparator group.


In some embodiments, a “comparator group” or “reference group” includes individuals having a common characterization, for example, healthy control individuals, individuals who have been diagnosed with a condition often confused with an auto-immune disease of interest in the context of clinical diagnosis, individuals who have been diagnosed with an auto-immune disease of interest, or individuals who have another common characterization of interest. Expression values of biomarkers obtained from biological samples of individuals in a comparator group can be used to calculate reference ratios. Data associated with one or more comparator groups can be stored, for example, in a database that can be accessed when practicing a method in accordance with the presently-disclosed subject matter.


With reference to Table B, for example, ratios-of-interest are provided for use with a healthy control comparator group (CTRL, column 1 and column 2) or a comparator group of individuals having IBS or IBD (column 3), or having CD or UC (column 4). Examples of comparator groups relevant to characterization of a GI disease include, but are not limited to: healthy control (CTRL), irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD), Crohn's disease (CD), Celiac's disease (CeD), and ulcerative colitis (UC). Because a comparator group can include data from multiple individuals, as will be recognized by one of ordinary skill in the art, it is expected that the expression values of biomarkers in biological samples obtained from different individuals in the same comparator group might differ. As such, identification of a reference ratio for a particular gene pair can be made with reference to a “threshold reference ratio” for the gene pair within the comparator group. In some embodiments, for example, the threshold expression ratio could be a median, an average, a value based on statistical analysis of the distribution of ratios of expression levels of the gene pair within the comparator group, or another threshold value, e.g., top value in the group, second highest value in the group, third highest value in the group, etc.


In some embodiments, the reference comprises a reference ratio calculated using a standard sample containing standard biomarker amounts, which can be analyzed in the same manner or even concurrently with the biological sample. In some embodiments, the reference comprises ratio values, such as standard threshold values. Such values can be published in a format useful for the practitioner, such as in a list, table, database, or incorporated into a software or system for use in connection with the presently-disclosed subject matter. Such values can in some cases be based, for example, on information obtained from a comparator group.


Ratios of interest, or ratios of gene pairs that are useful for characterizing GI diseases, have the ability to distinguish groups, e.g., IBD group and health control group, IBS group and health control group, IBD group and IBS group, CD group and UC group. Table B includes examples of ratios of interest for IBD vs. healthy control (CTRL), IBS vs. healthy control, IBD vs. IBS, and CD vs. UC. In this regard, an auto-immune disease can be characterized based on a difference in the ratios of the expression values of at least two genes in a biological sample from the subject as compared to a reference ratio.


In some embodiments, it can be useful to compare one or more subject ratios to one or more first reference ratios, e.g., from a first comparator group, and also to compare the one or more subject ratios to one or more second reference ratios, e.g., from a second comparator group. Such a multi-tiered approach can improve the efficacy of the characterization of GI diseases, as will be explained further in the Examples section.


Characterizing can include providing a diagnosis, prognosis, and/or theragnosis of an auto-immune disease in a subject.


“Making a diagnosis” or “diagnosing,” as used herein, are further inclusive of making a prognosis, which can provide for predicting a clinical outcome (with or without medical treatment), selecting an appropriate treatment (or whether treatment would be effective), or monitoring a potential auto-immune disease, based on calculated ratios of expression levels of genes. Diagnostic testing that involves treatment, such as treatment monitoring or decision making can be referred to as “theranosis.” Further, in some embodiments of the presently disclosed subject matter, multiple determinations of ratios of expression levels of genes over time can be made to facilitate diagnosis (including prognosis), evaluating treatment efficacy, and/or progression of a potential auto-immune disease or auto-immune disease. A temporal change in one or more ratios can be used to predict a clinical outcome, monitor the progression of the condition, and/or efficacy of administered therapies. In such an embodiment for example, one could observe a change in a particular ratio in a biological sample over time during the progression of a condition and/or during the course of a therapy.


The presently disclosed subject matter further provides in some embodiments a method for theranostic testing, such as evaluating progression of a condition and/or treatment efficacy in a subject. In some embodiments, the method comprises providing a series of biological samples over a time period from the subject; determining expression values of at least two genes in each of the biological samples; calculating one or more ratios of the expression values of the at least two genes for each of the biological samples; and determining any measurable change in the ratios in each of the biological samples from the series to thereby evaluate progression of the condition and/or treatment efficacy.


Any changes in the ratios, and changes in the ratios relative to references, over the time period can be used to make a diagnosis, predict clinical outcome, determine whether to initiate or continue the therapy, and whether a current therapy is effectively.


The phrase “determining the prognosis” as used herein refers to methods by which the skilled artisan can predict the course or outcome of a condition in a subject. The term “prognosis” can refer to the ability to predict the course or outcome of a condition with up to 100% accuracy, or predict that a given course or outcome is more or less likely to occur based on the ratios of expression values of genes of interest. The term “prognosis” can also refer to an increased probability that a certain course or outcome will occur; that is, that a course or outcome is more likely to occur in a subject when compared to individuals in a comparator group. For example, in individuals exhibiting subject ratios-of-interest that are higher than reference ratio-of-interest, the chance of a given outcome (e.g., a GI disease diagnosis) may be very high. In certain embodiments, a prognosis is about a 5% chance of a given expected outcome, about a 7% chance, about a 10% chance, about a 12% chance, about a 15% chance, about a 20% chance, about a 25% chance, about a 30% chance, about a 40% chance, about a 50% chance, about a 60% chance, about a 75% chance, about a 90% chance, or about a 95% chance.


The skilled artisan will understand that associating a prognostic indicator with a predisposition to an adverse outcome can be performed using statistical analysis. For example, subject ratios that are higher than reference ratios in some embodiments can signal that a subject is more likely to suffer from an auto-immune disease than subjects with ratios that are substantially equal to reference ratios, as determined by a level of statistical significance. Statistical significance is often determined by comparing two or more populations, and determining a confidence interval and/or a p value. See, e.g., Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York, 1983, incorporated herein by reference in its entirety. Exemplary confidence intervals of the present subject matter are 90%, 95%, 97.5%, 98%, 99%, 99.5%, 99.9% and 99.99%, while exemplary p values are 0.1, 0.05, 0.025, 0.02, 0.01, 0.005, 0.001, and 0.0001. When performing multiple statistical tests, p values can be corrected for multiple comparisons using techniques known in the art.


Further with respect to the methods of the presently disclosed subject matter, a preferred subject is a vertebrate subject. A preferred vertebrate is warm-blooded; a preferred warm-blooded vertebrate is a mammal. A mammal is most preferably a human. As used herein, the term “subject” includes both human and animal subjects. Thus, veterinary therapeutic uses are provided in accordance with the presently disclosed subject matter.


As such, the presently disclosed subject matter provides for the diagnosis of mammals such as humans, as well as those mammals of importance due to being endangered, such as Siberian tigers; of economic importance, such as animals raised on farms for consumption by humans; and/or animals of social importance to humans, such as animals kept as pets or in zoos. Examples of such animals include but are not limited to: carnivores such as cats and dogs; swine, including pigs, hogs, and wild boars; ruminants and/or ungulates such as cattle, oxen, sheep, giraffes, deer, goats, bison, and camels; and horses. Also provided is the treatment of birds, including the treatment of those kinds of birds that are endangered and/or kept in zoos, as well as fowl, and more particularly domesticated fowl, i.e., poultry, such as turkeys, chickens, ducks, geese, guinea fowl, and the like, as they are also of economic importance to humans. Thus, also provided is the treatment of livestock, including, but not limited to, domesticated swine, ruminants, ungulates, horses (including race horses), poultry, and the like.


The presently-disclosed subject matter further includes kits and devices useful for detecting and/or determining expression levels of at least two genes in a biological sample.


The kits of the presently-disclosed subject matter can include primer pairs for determining expression levels of at least two genes, which can be useful for calculating ratios as disclosed herein. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes corresponding to those set forth in Table A. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A.


In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ABR, ACTB, ACTR1A, EXT2, KRAS, LLGL2, NRAS, PGK1, and POU6F1. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ACTR1A, CD55, HRAS, IL11RA, JUN, PGK1, POU6F1, TAF11, TBP, and TP53. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ABR, CD55, CTSS, GAPDH, HLA-DRA, HRAS, JUN, OAS1, ORC1L, and TBP. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ANAPC1, CDH1, EXT2, GAPDH, GNB5, NRAS, ORC1L, POU6F1, TBP, and TP53. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


The devices of the presently-disclosed subject matter can include a probe for selectively binding each of at least two gene expression products to detect at least two genes, which can be useful for determining expression levels of the genes and for calculating ratios as disclosed herein. Such probes can selectively bind the gene products, for example, by hybridization of the probe and a nucleotide gene product. In some embodiments, the device includes probes for detecting each of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least two genes corresponding to those set forth in Table A. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A.


In some embodiments, the device includes probes for detecting each of the genes corresponding to ABR, ACTB, ACTR1A, EXT2, KRAS, LLGL2, NRAS, PGK1, and POU6F1. In some embodiments, the device includes probes for detecting each of the genes corresponding to ACTR1A, CD55, HRAS, IL11RA, JUN, PGK1, POU6F1, TAF11, TBP, and TP53. In some embodiments, the device includes probes for detecting each of the genes corresponding to ABR, CD55, CTSS, GAPDH, HLA-DRA, HRAS, JUN, OAS1, ORC1L, and TBP. In some embodiments, the device includes probes for detecting each of the genes corresponding to ANAPC1, CDH1, EXT2, GAPDH, GNB5, NRAS, ORC1L, POU6F1, TBP, and TP53. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


Some of the gene sequences disclosed herein are cross-referenced to GENBANK® accession numbers. The sequences cross-referenced in the GENBANK® database are expressly incorporated by reference as are equivalent and related sequences present in GENBANK® or other public databases. Also expressly incorporated herein by reference are all annotations present in the GENBANK® database associated with the sequences disclosed herein. Unless otherwise indicated or apparent, the references to the GENBANK® database are references to the most recent version of the database, as of the filing date of this Application.


While the terms used herein are believed to be well understood by one of ordinary skill in the art, definitions are set forth to facilitate explanation of the presently-disclosed subject matter.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presently-disclosed subject matter, representative methods, devices, and materials are now described.


Following long-standing patent law convention, the terms “a”, “an”, and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a cell” includes a plurality of such cells, and so forth.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.


As used herein, the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.


As used herein, ranges can be expressed as from “about” one particular value, and/or to “about” another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


The presently-disclosed subject matter is further illustrated by the following specific but non-limiting examples. The following examples may include compilations of data that are representative of data gathered at various times during the course of development and experimentation related to the present invention.


EXAMPLES

Inflammatory bowel diseases, ulcerative colitis and Crohn's disease are considered to be of autoimmune origin, but the etiology of irritable bowel syndrome remains elusive. Furthermore, classifying patients into irritable bowel syndrome and inflammatory bowel diseases can be difficult without invasive testing and holds important treatment implications. Our aim was to assess the ability of gene expression profiling in blood to differentiate among these subject groups.


It is generally thought that different profiles of biomarkers could provide useful information to guide clinical decision-making; from diagnosis to choice of optimal therapies and in some cases these biomarker profiles are being implemented in clinical practice [3,12-24]. Searches for optimal biomarker profiles can be achieved using clustering methods e.g., heirarchical clustering, K-means clustering, which depend upon the general ability to find common features across a sample population or forms of linear discriminate analysis, which depend upon the ability to find linear combinations of features that have the ability to separate two or more classes. The former method is a common method to analyze large numbers of features, such as microarray data whereas the latter is a more common method for analysis of smaller numbers of features. Both methods are suitable for further analyses using machine learning methods such as support vector machines, logistic regression, principal components analysis or prediction analysis for microarrays. Using a form of linear discriminant analysis, we have attempted to employ mRNA transcript profiles to distinguish between subjects with multiple sclerosis and other comparator groups [25,26]. Our results clearly demonstrate that mRNA transcript profiling has the capacity to distinguish between MS, even early in the disease process, and homogeneous comparator groups, such as healthy subjects (CTRL), or subjects with clinically related diseases such as neuromyelitis optica or transverse myelitis. Thus, these binary comparisons can produce a test of exclusion of multiple sclerosis. Here, we applied this approach to IBD and IBS. Our results demonstrate that distinct mRNA profiles accurately discriminate IBD from CTRL, IBS from CTRL, IBD from IBS, and CD from UC with high degrees of sensitivity and specificity. We propose these approaches may provide useful guides for clinical decision-making.


Methods


Transcript levels of a total of 45 genes in blood were determined by quantitative real-time polymerase chain reaction (RT-PCR). We applied three separate analytic approaches; one utilized a scoring system derived from combinations of ratios of expression levels of two genes and two different support vector machines.


Human Subjects


Blood samples collected in PAXgene tubes were obtained from CTRL, IBS, CeD, CD or UC subjects. Diagnosis of IBD, both CD and UC, was made by colonoscopy or sigmoidoscopy and tissue biopsy to localize inflammation to all layers of the intestinal wall (CD) or only the inner lining layer (UC). Diagnosis of IBS was made by the absence of pathologic damage in the colon after examination by colonoscopy or sigmoidoscopy. Inclusion criteria were diagnosis by a gastro-intestinal specialist using these methods. Age, race and gender were not statistically different among the different study groups. Time of blood draw, for example, morning/afternoon clinics, was also not statistically significant among the different study groups. Relevant institutional review board approval was obtained from all participating sites.


MRNA Transcript Determination


Total RNA was purified using Qiagen's RNA isolation kits using standard protocols and was reverse-transcribed using poly-A primers using Superscript III (Invitrogen, Carlsbad, Calif., USA). A TaqMan Low Density Array (TLDA) was designed to analyze expression levels of 44 target genes and of four housekeeping genes in 300 ng cDNA. The gene probes on the TLDA plate were: ABR, ACTB, ACTR1A, ADAMTSL4, ANAPC1, APOBEC3F, ASL, B2M, BRCA1, CD55, CDH1, CDKN1B, CHEK2, CSF3R, CTSS, EPHX2, EXT2, FOS, FOSL1, GAPDH, GATA3, GNB5-1, GNB5-1, GSTM4, HLA-DRA, HRAS, IFI27, IL11RA, JUN, KRAS, LEPREL4, LLGL2, NRAS, OAS1, ORC1L, PGK1, PMAIP1, POU6F1, RANGAP1, SC65, SPIB, TAF11, TBP, TGFBR2, TP53-1 TP53-2, TXK. GNB5-1 and -2 and TP53-1 and -2 interrogate different exon-intron junctions. [26]. Inclusion of the specific gene targets was based upon the following criteria: (a) previous studies demonstrating differential expression among control and multiple autoimmune diseases, (b) protein products possess known inflammatory functions, (c) expression levels change in response to pro-inflammatory stimuli (cytokines), and/or (d) protein products have known roles in cell cycle progression and/or apoptosis. Patient diagnosis was blinded for all experimental procedures. Relative expression levels were determined directly from the observed threshold cycle (CT). Linear expression levels were determined using the formula, 240-CT.


Ratioscore and Support Vector Machine (SVM) Methods


Principal Component Analysis (PCA) was applied directly to the normalized gene expression data using MATLAB's Bioinformatics Toolkit (The MathWorks, Inc.) and other techniques to identify a lower dimensional space of gene expressions that could be used to classify controls from cases. The results were disappointing and we concluded that looking at ratios of the gene expression data may be a more productive approach. The computational algorithm and permutation testing strategy employed to identify discriminatory combinations of ratios to create the ratioscore (our terminology) have been previously described [26]. For completeness, we summarize the algorithm used in the Ratioscore Method below. Let D denote the set of gene-expression levels associated with the disease group and C denote the set of gene-expression levels associated with the control group. The algorithm searches for the “best” set of gene ratios that partitions D and C:

    • 80% of the control and disease groups are randomly selected. Gene-expression level ratios are formed for elements in D and C. For each ratio, the number of elements in the disease group that are larger than the largest ratio in the control group is computed. The top 500 ratios that separate elements in D and C are saved. This calculation is repeated 200 times resulting in a set of 200 subsets of ratios (each subset having 500 ratios).
    • The 500 subsets are then processed looking for the smallest number of ratios, R={r1, r2, . . . , rn}, that produce the maximum of separation of D and C. Associate with each of the ratios in R, there are threshold values, T={t1, t2, . . . , tn}, which correspond to the highest value in the control group for each of the ratios in R .
    • For each member of the disease group D, the ratios in R are computed, {a1, a2, . . . , an}. If ai≥ti, then we assign the ratio a 1; otherwise, it is assigned a 0. In this way, we generate an n-tuple of 1's and 0's for each member of D. For example, if n=6, then a typical 6-tuple would be {1, 1, 0, 0, 1, 0}. This would mean that this individual in the disease group would have 3 ratios that exceed the corresponding ratios in the control group.
    • Lastly, the percentage of members in the disease group that have nonzero n-tuples is calculated. The larger the percentage, the better the separation of D and C.


The algorithm allows one to identify the smallest number of ratios that partitions the case and control groups.


Two support vector machines (SVM) were independently created and trained using ratios identified by the Ratioscore Method. The first SVM was coded in Mathematica (Wolfram Research, Inc.) and the second SVM employed LS-SVMLab software (http://www.esat.kuleuven.be/sista/lssvmab). We decided to use the two independently developed SVM since the choice of kernels, optimization algorithms, and the training algorithms can produce differing results. There was little difference in the performance of the two machines when classifying the different case-control combinations. To confirm the results of the Ratioscore Method and the SVM approaches, logistic regression was employed to separate to the case and control sets using the gene ratios. Its performance was in line with the other two approaches and hence, we have chosen not to report these results.


Statistical Analysis


The Welch's-corrected T-test not assuming equal variances was employed to calculate p-values in two-way comparisons. Fisher's exact test was employed to calculate p-values in 2 by 2 comparisons. The Bonferroni's method was employed to correct for multiple testing [27].


Results


All methods discriminated different subject cohorts, irritable bowel syndrome from control, inflammatory bowel disease from control, irritable bowel syndrome from inflammatory bowel disease, and ulcerative colitis from Crohn's disease, with high degrees of sensitivity and specificity.


Gene-Expression Patterns in Distinct Gastrointestinal Diseases


CTRL, IBD (CD and UC), IBS subjects were recruited from multiple sites within the United States. Demographic characteristics of the different gastrointestinal disease cohorts were not statistically different from the CTRL cohort (Table 1). We measured expression patterns of a common set of genes assayed using a common platform in CTRL and subjects with different gastrointestinal conditions, CD and UC, IBS, and CeD. Genes for analysis were selected from prior microarray studies [20,26]. Gene transcript levels were determined by quantitative RT-PCR and normalized to GAPDH transcript levels. We employed a heatmap to depict those genes differentially expressed in individual subject cohorts relative to the CTRL cohort, p-value<0.05 (after Bonferroni correction for multiple testing; see FIG. 1 with red=over-expressed gene, green=under-expressed gene). Ratios of transcript levels of individual genes in the indicated disease cohorts relative to GAPDH were calculated and depicted within each box. Each disease exhibited an underlying unique pattern of gene-expression. However, these profiles were sufficiently overlapping to prohibit accurate discrimination of one disease from another disease using the expression profile alone. For example, while PGK1 was over-expressed in all four conditions, ABR, ACTR1A, EXT2, HRAS, and KRAS were over-expressed in CeD and IBS but not CD and UC. Similarly, APOBEC3F, ASL, and SPIB were under-expressed in CD and UC, but not CeD and IBS. Other genes, ANAPC1, RANGAP1, and TP53, were only under-expressed in CD. Certain genes, e.g., APOBEC3F, ASL, GNB5, SPIB, were only under-expressed relative to the CTRL cohort, while other genes, e.g., ACTB, GATA3, HRAS, and LLGL2, were under-expressed in specific disease cohorts relative to CTRL but over-expressed in other disease cohorts relative to CTRL. Thus, each gene was differentially expressed in at least one disease cohort relative to CTRL. However, each individual disease cohort did not possess a unique expression profile distinguishing it from all other disease cohorts. For these reasons, we decided to look at other separation techniques.









TABLE 1







Demographic characteristics of the different subject populations
















AGE

GENDER

ETHNICITY




#
yrs
P*
(% F)
P
(% C/AA/As/H)
P


















IBD
97
40 ± 9 
NS
62
NS
92/5/0/1
NS


CD
46
38 ± 10
NS
63
NS
91/4/0/0
NS


UC
40
41 ± 8 
NS
59
NS
93/5/0/2
NS


IBS
44
43 ± 10
NS
79
NS
90/7/0/3
NS


CeD
16
44 ± 12
NS
69
NS
100/0/0/0 
NS


CTRL
113
41 ± 11

67

89/9/0/2





*P calculated by Student T-test (Age) or Fisher's exact test, NS: p-value > 0.05



C, Caucasian; AA, African American; As, Asian; H, Hispanic







Discrimination of IBD or IBS from CTRL Based Upon Gene-Expression Ratios


Initially, we employed standard methods of microarray analyses including unsupervised heirarchical clustering, supervised heirarchical clustering, and principal components analysis using the TIGR microarray software Multiexperiment Viewer to segregate patient groups. After normalization to GAPDH, gene expression data from IBD samples or IBS samples and CTRL samples were analyzed using unsupervised and supervised heirarchical clustering using all genes or only those genes whose expression was statistically significant using the supervised T-test. We found that unsupervised heirarchical clustering segregated 72% of IBD samples in one major branch and 28% of IBD samples in the second major branch. Similarly, 36% of CTRL samples were segregated into the branch with most of the IBD samples while 64% of CTRL samples were segregated into the alternate branch. Comparison of IBS and CTRL using unsupervised heirarchical clustering also did not produce the desired level of discrimination between case and control cohorts. Supervised heirarchical clustering and principal components analysis produced a similar low level of overall accuracy.


For these reasons, we turned to a type of linear discriminant analysis classifier


(Ratioscore Method) that we employed previously to discriminate subjects with multiple sclerosis from different control cohorts. We employed a search algorithm to identify those ratios of gene-expression levels in which the greatest number of subjects in the test group possessed a ratio value greater than the highest ratio value in the comparator group. We employed a second algorithm to perform permutation testing of one subject group to identify the optimum set of discriminatory ratios. CeD was excluded from this analysis due to the low number of cases in this cohort. Examination of expression levels of ratios of genes rather than individual genes offered the following advantages. First, ratios normalized for differences in mRNA or cDNA template quantity and quality among different samples. Second, ratios obviated the need for inclusion of a housekeeping genes in the analysis and the assumption that expression levels of housekeeping genes did not vary among different subject populations. Third, comparisons of ratios or combinations of ratios may more accurately identify cellular phenotypes that may contribute to disease. For example, a ratio containing one gene in the numerator that is over-expressed in the case cohort relative to the control cohort and one gene in the denominator that is under-expressed in the case cohort relative to the control cohort should produce a greater ratio value difference between individuals in the two cohorts than a single expression value. Fourth, ANAPC1, RANGAP1, and LEPREL4 genes encode unique proteins and each participates in mitosis [28-33]. Thus, a defect in expression of any one of these genes could produce a common cellular phenotype; a defect in mitosis, and for example, one subject with a given disease may exhibit a deficiency in expression of ANAPC1 while a second individual with the same disease may exhibit a deficiency in expression of RANGAP1 and a third with the same disease may exhibit a defect in LEPREL4 expression levels. Any of these defects has the potential to produce a common cellular phenotype. Our approach makes it possible to capture each subject as positive for a given disease. We refer to this as the Ratioscore Method.


We applied this approach to determine how accurately it would distinguish subjects with IBD or IBS from CTRL. First, we identified ratios capable of discriminating IBD subjects from CTRL. Second, we applied a re-sampling permutation testing strategy to identify ratios that consistently displayed high discriminatory power. Third, we identified the smallest number of ratios producing the greatest discrimination between two comparator groups. The single ratio with the greatest discriminatory power was PGK1/POU6F1 (FIG. 2A). Using this ratio, 30% of IBD subjects achieved a ratioscore value higher than all CTRL subjects and were awarded one point. A combination of 25 ratios produced a scoring panel where 100% of CTRL subjects achieved a score of 0 and 94% of IBD subjects achieved a ratio≥1 (FIG. 2B). Thus, we conclude that gene-expression ratios we identified accurately distinguished IBD subjects from CTRL.


We continued our analysis to determine how well IBS and CTRL cohorts were differentiated. Interestingly, the optimum ratio that distinguished the IBD cohort from the CTRL cohort, PGK1/POU6F 1, was also the optimum ratio that distinguished the IBS cohort from the CTRL cohort (FIG. 2C). We identified a total of 19 ratios that, in combination, produced a point system whereby 100% of CTRL subjects achieved a score of 0 and 90% of IBS subjects achieved a ratio≥1 (FIG. 2D). Thus, even though IBS is generally considered not to be an inflammatory disease, we conclude our approach accurately distinguishes these subjects from the CTRL group.


IBS-IBD Discrimination Based Upon the Ratioscore Method


Next, we assessed our ability to distinguish IBS and IBD cohorts. The optimum ratio we identified was HRAS/TBP, p-value<0.0001 (FIG. 3A). We identified a total of 25 ratios that, combined, produced a ratioscore whereby 100% of IBD subjects achieved a score of 0 and 92% of IBS subjects were awarded a ratio≥1 (FIG. 3B). Thus, we conclude that the ratioscore method was capable of discriminating between subjects with IBD and subjects with IBS.


UC-CD Discrimination Disease Based Upon the Ratioscore Method


Finally, we determined if our approach accurately discriminated between the two inflammatory bowel diseases, UC and CD. The optimum ratio was POU6F1/ANAPC1, p-value=0.003 (FIG. 4A). We identified a total of 20 ratios that, in combination, produced a point system that awarded 100% of UC subjects a score of 0 and 98% of subjects with CD a ratio≥1 (FIG. 4B). Thus, the Ratioscore Method accurately discriminated between the two major subclasses: IBD:UC and IBD:CD.


Disease Discrimination Based Upon the SVM Method


Support Vector Machines (SVM) were also employed to classify the data into two distinct groups. The inputs for the SVM were the same ratios used to calculate the ratioscores. For example, when separating IBS patients from CTRL subjects, the same 19 ratios of normalized gene-expression ratios employed to compute the ratioscore were used as input to the SVM. In the SVM calculations, we chose the radial basis kernel (RBK) to perform the kernel trick. This kernel contains a fitting parameter β. We also used the “soft margin” approach to the fitting of the hyper-surface that separates the two groups (cases and controls). This introduced a second fitting parameter C. Programs written in Mathematica (Wolfram Research, Inc.) were created and random training subsets of the two groups were chosen to find the parameters, β and C. Each training subset consisted of 60% of the total dataset. The values of the two fitting parameters that produced the smallest number of incorrect cases and controls were used to define the SVM. This SVM analysis also accurately discriminated the different subject groups: (i) IBD and CTRL, (ii) IBS and CTRL, (iii) IBD and IBS, and (iv) CD and UC (Table 2).









TABLE 2







Case/Control discrimination by support vector machines (SVM #1)











Training set
Case
CTRL













Comparison
Total #
% of total
TP #
FN #
TN #
FP #
















IBD* vs. CTRL
209
60
95
1
100
13


IBD* vs. CTRL
160
60
47
0
96
17


IBD* vs. IBS
143
60
45
2
86
10


CD* vs. UC
85
60
45
2
31
7





*Case cohort



TP = true positive, FN = false negative, TN = true negative, FP = false positive







A second SVM was also employed using LS-SVMLab software (http://www.esat.kuleuven.ac.be/sista/lssvmlab) to validate the SVM created with Mathematica. The procedure for training the SVM followed the following algorithm:

    • X(X=50%, 60%, and 80%) was randomly selected from the total set of data and used to train the SVM.
    • On the selected training set, L-fold cross-validation was performed. In this type of training a certain fraction of the training set was omitted from training and the remaining portion of the partial training set was used to estimate the parameters of the SVM. This was repeated L times. We used L=10. At the completion of the training, a composite estimate for the parameters was obtained.
    • Once the SVM was trained on X % of the total data, the SVM was applied to the total data set.


Numbers of correct and incorrect classifications were tabulated for total sets (training and validation), training sets and validation sets (Table 3). Overall accuracy in the training sets was greater than overall accuracy of the validation sets. The different training sessions did not produce much variation in the overall accuracy of the corresponding validation sets. Using the above algorithm, two different kernels, a polynomial kernel and Radial Basis Function (RBF) kernel, were used to create different machines. Overall, the SVM with the RBF kernels performed somewhat better than the polynomial kernels.


This second SVM was used to discriminate between the different subject groups, IBD and CTRL, IBS and CTRL, IBD and IBS, and CD and UC producing levels of sensitivity and specificity comparable to the Ratioscore Method or the first SVM method (Table 4). We determined receiver operating characteristic (ROC) curves from data produced by the second SVM method. The area-under-the-curve (AUC) for each comparison exceeded 0.96 (FIG. 5).


The IBD:CTRL comparison produced the greatest overall accuracy (AUC of 0.997). Thus, a tiered approach, using either ratioscore or SVM analysis, can be employed to segregate between IBD and IBS, first, followed by segregation between CD and UC if a subject is IBD positive. This approach produced high levels of sensitivity and specificity at both tiers of the analysis (FIG. 6).









TABLE 4







Sensitivity and specificity produced


by Ratioscore and two SVM methods









Method











Ratioscore
SVM#1*
SVM#2*














sensi-
speci-
sensi-
speci-
sensi-
speci-



tivity
ficity
tivity
ficity
tivity
ficity

















IBD vs. CTRL
0.94
1.00
0.97
0.94
0.99
0.97


IBS vs. CTRL
0.91
1.00
1.00
0.68
0.85
0.99


IBD vs. IBS
0.93
1.00
0.97
0.91
0.92
0.98


CD vs. UC
0.98
1.00
0.94
0.85
0.89
0.92





*Training set = 80% of total,


**Training set = 60% of total


Sensitivity = # true positives/(# true positives + # false negatives)


Specificity = # true negatives/(# true negatives + # false positives)






In the above discussion, two support vector machines were independently created and trained using the ratios identified by the Ratioscore Method. There was little difference in the performance of the two machines when used to classify the different case-control combinations. One advantage of the SVM-based approach is that it can be used to classify more than two groups. As an example of classification into three groups, we considered data for UC (N=40), CD (N=46), and CTRL (N=113). Using gene ratios determined by comparing CTRL (controls) to UC+CD (cases), the SVM identified 99.8% of CTRL, 72.5% of UC, and 56.5% of the CD. Hence, the performance of the tertiary classification was not as accurate as the binary classifications. However, the tertiary classification was improved by using a different set of gene ratios, e.g., the union of the set from CTRL vs. CD, CTRL vs. UC, and CD vs. UC. In this case, the SVM identified 99.1% of CTRL, 100% of UC, and 84.8% of CD. One factor that may contribute to this increased accuracy is that the number of gene ratios used in the training of the SVM was increased from 23 ratios to 49 thus introducing additional parameters into the SVM structure.


Discussion


IBS and IBD can exhibit overlapping clinical symptoms making diagnosis difficult without invasive procedures [4,12,34]. Therapy and medication for IBS and IBD are vastly different and incorrect diagnosis and treatment plans have significant consequences. Differentiation between UC and CD can also be difficult, having important implications when considering medical and operative treatment options. For example, ASCA and p-ANCA have clinical utility in diagnosing IBD. ASCA IgA is found in 35-50% of patients with CD but <1% of patients with UC. ASCA IgG is found in 50-80% of patients with CD but only 20% of patients with UC. In contrast, atypical p-ANCA is found in 70% of UC patients but only 20% of CD patients [19]. Here, we describe a relatively non-invasive procedure capable of accurately discriminating between (a) IBS and IBD, and (b) the two forms of IBD, UC and CD, using three independent methods based upon transcript levels in blood of a discrete set of genes. Each method employs the same input, which are multiple ratios of expression levels of two genes. The analytic methods, ratioscore, two SVM methods, and logistic regression, produce similar levels of overall accuracy determined by ROC curves which exceed 95%. We have summarized the overall process of going from the raw samples to classification in FIG. 7.


In contrast, biomarkers for IBS are non-existent and diagnosis largely depends upon the absence of pathological findings in the colon. Previously identified experimental biomarkers to distinguish UC and CD clearly do not perform with the same degree of accuracy as experimental approaches described here. Thus, we propose these gene expression ratio tests using the Ratioscore Method, SVM, or logistic regression for analysis represent simple non-invasive tests that could accurately classify patients to IBS or IBD categories and IBD patients to UC or CD categories even without colonoscopy or sigmoidoscopy and tissue biopsy.


UC and CD are chronic inflammatory autoimmune diseases. Using various strategies, numerous studies have identified unique gene-expression signatures in blood or peripheral blood mononuclear cells (PBMC) associated with different autoimmune diseases [22]. Some are unique to a single autoimmune disease, some discriminate between two autoimmune diseases and some are shared among multiple autoimmune diseases. Thus perhaps it is not too surprising that we could employ a similar strategy to identify gene-expression signatures capable of discriminating the two forms of IBD, UC and CD, or IBD from CTRL or IBD from IBS.


Somewhat surprising is that IBS can be readily distinguished from CTRL. IBS is a disorder whose etiology and pathogenic mechanisms are incompletely understood [4]. Our results clearly demonstrate that IBS possesses an underlying gene-expression signature. One possibility is that IBS possesses an unrecognized mucosal pathology sensed by the immune system and expressed by changes in transcript levels of specific genes. Another possibility is that IBS generates expression of cytokines, chemokines, adhesion molecules, neurotransmitters or other mediators read by the immune system. In support of this notion, over-expression of PGK1 is associated with IBS, CeD, CD, and UC and PGK1 is known to be induced by hypoxia and may be induced by other forms of stress, inflammation or generalized mucosal irritation [35]. Further, ABR, ACTR1A, EXT2, HRAS, and KRAS are over-expressed in both IBS and CeD but not CD and UC. In contrast, APOBEC3F, ASL and SPIB are under-expressed in CD and UC, but not IBS and CeD. Thus, the IBS gene-expression signature is more similar to the CeD gene-expression signature and the UC signature is more similar to the CD signature. It is uncertain if this suggests that IBS may bear additional relationships to CeD. An improved understanding of mechanisms producing differences in levels of specific gene transcripts in IBS may further our understanding of the pathogenesis of IBS.


Conclusions

Limitations to our study include selection of patients with pre-existing diagnoses of IBS and IBD, as this may not completely represent patients in the general population in whom these tests may be performed. However, in other studies we have shown that subjects with clinically isolated syndrome, a precursor of multiple sclerosis, who progress to a diagnosis of multiple sclerosis score positive in ratioscore- or SVM-based analyses, similar to those described here. This may suggest that subjects with initial clinical symptoms associated with IBD or IBS, CD or UC, may be discriminated by this approach. Future longitudinal approaches are planned to evaluate utility of these tests. Additional methods, such as analysis of gene-expression ratios in multi-dimensional space rather than binary space may improve the diagnostic capabilities of these tests. We employed three independent approaches to evaluate the ability of gene-expression ratios to discriminate subjects with gastro-intestinal diseases with overlapping clinical symptoms and each produced high degrees of specificity and sensitivity. Thus, these minimally invasive tests may assist in excluding or establishing a diagnosis of IBS or IBD, CD or UC.


Throughout this document, various references are mentioned. All such references are incorporated herein by reference, including the references set forth in the following list:


REFERENCES



  • 1. Vasiliauskas E: Recent advances in the diagnosis and classification of inflammatory bowel disease. Curr Gastroenterol Rep 2003, 5:493-500.

  • 2. Loftus E V, Sandborn E J: Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am 2002, 31:1-20.

  • 3. Ray S, Britschgi M, Herbert C, et al: Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med 2007, 13:1359-1362.

  • 4. Torpy J M, Golub R M: JAMA patient page. Irritable bowel syndrome. JAMA 2011, 306:1501.

  • 5. Schoepfer A M, Trummler M, Seeholzer P, et al: Discriminating IBD from IBS: comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm Bowel Dis 2008, 14:32-39.

  • 6. Hammerle C W, Crowe S E: When to reconsider the diagnosis of irritable bowel syndrome. Gastroenterol Clin North Am 2011, 40:291-307. vii.

  • 7. Geboes K, Colombel J F, Greenstein A, et al: Indeterminate colitis: a review of the concept—what's in a name? Inflamm Bowel Dis 2008, 14:850-857.

  • 8. Tekkis P P, Heriot A G, Smith O, et al: Long-term outcomes of restorative proctocolectomy for Crohn's disease and indeterminate colitis. Colorectal Dis 2005, 7:218-223.

  • 9. Landers C J, Cohavy O, Misra R, et al: Selected loss of tolerance evidenced by Crohn's disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002, 123:689-699.

  • 10. Targan S R, Landers C J, Yang H, et al: Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn's disease. Gastroenterology 2005, 128:2020-2028.

  • 11. Hui T, Landers C, Vasiliauskas E, et al: Serologic responses in indeterminate colitis patients before ileal pouch-anal anastomosis may determine those at risk for continuous pouch inflammation. Dis Colon Rectum 2005, 48:1254-1262.

  • 12. Tamboli C P, Doman D B, Patel A: Current and future role of biomarkers in Crohn's disease risk assessment and treatment. Clin Exp Gastroenterol 2001, 4:127-140.

  • 13. Barrett J C, Hansoul S, Nicolae D, et al: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008, 40:955-962.

  • 14. Burczynski M E, Dorner A J: Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 2006, 7:187-202.

  • 15. Burczynski M E, Peterson R L, Twine N C, et al: Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 2006, 8:51-61.

  • 16. Franke A, Balschun T, Sina C, et al: Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet 2010, 42:292-294.

  • 17. Harris V K, Sadiq S A: Disease biomarkers: Potential for use in therapeutic decision making. Mol Diagn Ther 2009, 13:225-244.

  • 18. Hugot J P, Chamaillard M, Zouali H, et al: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001, 411:599-603.

  • 19. Jaskowski T D, Litwin C M, Hill H R: Analysis of serum antibodies in patients suspected of having inflammatory bowel disease. Clin Vaccine Immunol 2006, 13:655-660.

  • 20. Maas K, Chan S, Parker J, et al: Cutting edge: molecular portrait of human autoimmune disease. J Immunol 2002, 169:5-9.

  • 21. Mannick E E, Bonomolo J C, Horswell R, et al: Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 2004,112:247-257.

  • 22. Pascual V, Chaussabel D, Banchereau J: A genomic approach to human autoimmune diseases. Annu Rev Immunol 2010, 28:535-571.

  • 23. Quackenbush J: Microarray Analysis and Tumor Classification. N Engl J Med 2006, 354:2463-2472.

  • 24. Quintana F J, Farez M F, Viglietta V, et al: Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci USA 2008, 105:18889-18894.

  • 25. Fossey S C, Vnencak-Jones C L, Olsen N J, et al: Identification of molecular biomarkers for multiple sclerosis. J Mol Diagn 2007, 9:197-204.

  • 26. Tossberg J T, Crooke P S, Henderson M A, et al: Gene-expression signatures: biomarkers toward diagnosing multiple sclerosis. Genes Immun 2012, 13:146-154.

  • 27. Abdi H: The Bonferonni and Sidak corrections for multiple comparisons. Sage; 2007:1-9.

  • 28. Ochs R L, Stein T W, Chan E K, et al: cDNA cloning and characterization of a novel nucleolar protein. Mol Biol Cell 1996, 7:1015-1024.

  • 29. Pines J: Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 2011, 12:427-438.

  • 30. Moshe Y, Bar-On O, Ganoth D, et al: Regulation of the action of early mitotic inhibitor 1 on the anaphase-promoting complex/cyclosome by cyclin-dependent kinases. J Biol Chem 2011, 286:16647-16657.

  • 31. Arnaoutov A, Dasso M: The Ran GTPase regulates kinetochore function. Dev Cell 2003, 5:99-111.

  • 32. Qiao X, Pham D N, Luo H, et al: Ran overexpression leads to diminished T cell responses and selectively modulates nuclear levels of c-Jun and c-Fos. J Biol Chem 2010, 285:5488-5496.

  • 33. Quimby B B, Dasso M: The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol 2003, 15:338-344.

  • 34. Spiller R C: Irritable bowel syndrome: gender, infection, lifestyle or what else. Dig Dis 2011, 29:215-221.

  • 35. Lam W, Leung C-H, Bussom S, et al: The impact of hypoxic treatment on the expression of phosphogycerate kinase and the cytotoxicity of troxacitabine and gemcitabine. Mol Pharm 2007, 72:536-544.



It will be understood that various details of the presently disclosed subject matter can be changed without departing from the scope of the subject matter disclosed herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.


SEQUENCES

The following are complementary DNA (cDNA) sequences of genes-of-interest identified in Table A. The portion of the sequences bolded and underlined are Applied BioSystems context sequences, the region of that can be amplified in some embodiments of the presently-disclosed subject matter. ABI assay numbers for the sequences are provided in Table A.










SEQ ID NO: 1




Homo sapiens active BCR-related gene (ABR), transcript variant 3, mRNA




GGACTGCAGAGGGAACTTGCCTTGAAGAGGCCTGGTCCTTAAAGAGACACAGCACACACGGCCCGACCGG





CAGCCCCAGAGCAGAGGCTCCACTGATGGCAGGCGCCCCTGGCTAGGCTCTGAGGTTCCTTTGCCCTCGC





CTTGCTGAATGGTGAGCCGCTGCCTCTCGGAGCCCGTCTCCTTGACAGCCTGCCCTCGGCTCCTGCAGCC





ACTCCTGGGCCTGATGGGGACAGGGCCAGCCTGGTGGGTGGTGTCAGAGGTCCTGGCAGAGCAGCGTAGG





CCTGGGATGCGTCTGCAGAATTCTGGCTGAACGAGCGAGGAGCACGGCCAGCTTCGGGGCCGTCGTGACC





ACAGGAGGGCAGAGGGCCAGCCCGTGAGCTCTGACCCCAGCTGGACGTGCTCTTGTTTCCCTTGGGGCTA





AGGAGATTGGAGCCACTGAACTGAATCTCTGGGTTTTGGAGACTTAGAGAATCCATTGGACTCTTCTGCT





GGCGTCTTTCTGAATGCTGATGGGGACTTGGTGACTTCAGCTACGGGACGGACGAGTACGACGGAGAGGG





GAATGAGGAGCAGAAGGGGCCCCCGGAGGGCTCAGAGACCATGCCGTACATCGATGAGTCGCCCACCATG





TCCCCGCAGCTCAGCGCCCGCAGCCAGGGCGGGGGGGATGGCGTCTCCCCGACTCCACCTGAGGGACTGG







CTCCTGGGGTGGAAGCAGGGAAA
GGCCTGGAGATGAGGAAGCTGGTTCTCTCGGGGTTCTTGGCCAGCGA






AGAGATCTACATTAACCAGCTGGAAGCCCTGTTGCTGCCCATGAAACCCCTGAAGGCCACCGCCACCACC





TCCCAGCCCGTGCTCACCATCCAGCAGATCGAGACCATCTTCTACAAGATCCAGGACATCTATGAGATCC





ACAAGGAGTTCTATGACAACCTGTGCCCCAAGGTGCAACAGTGGGACAGCCAGGTCACCATGGGCCACCT





CTTCCAGAAGCTGGCCAGCCAGCTCGGTGTGTACAAAGCGTTTGTCGATAACTATAAAGTCGCTCTGGAG





ACAGCTGAGAAGTGCAGCCAGTCCAACAACCAGTTCCAGAAGATCTCAGAGGAACTCAAAGTGAAAGGTC





CCAAGGACTCCAAGGACAGCCACACGTCTGTCACCATGGAAGCTCTGCTCTACAAGCCCATTGACCGGGT





CACTCGGAGCACCCTAGTCCTACACGACCTGCTGAAGCACACACCTGTGGACCACCCCGACTACCCGCTG





CTGCAGGATGCCCTCCGCATCTCCCAGAACTTCCTGTCCAGCATCAACGAGGACATCGACCCCCGCCGGA





CTGCAGTGACAACGCCCAAGGGGGAGACGCGACAGCTGGTGAAGGACGGCTTCCTGGTGGAAGTGTCAGA





GAGCTCCCGGAAGCTGCGGCACGTCTTCCTCTTTACAGATGTCCTACTGTGTGCCAAGCTGAAGAAGACC





TCTGCAGGGAAGCACCAGCAGTATGACTGTAAGTGGTACATCCCCCTGGCCGACCTGGTGTTTCCATCCC





CCGAGGAGTCTGAGGCCAGCCCCCAGGTGCACCCCTTCCCAGACCATGAGCTGGAGGACATGAAGATGAA





GATCTCTGCCCTCAAGAGTGAAATCCAGAAGGAGAAAGCCAACAAAGGCCAGAGCCGGGCCATCGAGCGC





CTGAAGAAGAAGATGTTTGAGAATGAGTTCCTGCTGCTGCTCAACTCCCCCACAATCCCGTTCAGGATCC





ACAATCGGAATGGAAAGAGTTACCTGTTCCTACTGTCCTCGGACTACGAGAGGTCAGAGTGGAGAGAAGC





AATTCAGAAACTACAGAAGAAGGATCTCCAGGCCTTTGTCCTGAGCTCAGTGGAGCTCCAGGTGCTCACA





GGATCCTGTTTCAAGCTTAGGACTGTACACAACATTCCTGTCACCAGCAATAAAGACGACGATGAGTCTC





CAGGACTCTATGGCTTCCTTCATGTCATCGTCCACTCTGCCAAGGGATTTAAGCAATCAGCCAACCTGTA





CTGTACCCTGGAGGTGGATTCCTTCGGCTATTTTGTCAGCAAAGCCAAAACCAGGGTGTTCCGGGACACA





GCGGAGCCCAAGTGGGATGAGGAGTTTGAGATCGAGCTGGAGGGCTCCCAGTCCCTGAGGATCCTGTGCT





ATGAGAAGTGCTATGACAAGACCAAGGTCAACAAGGACAACAATGAGATCGTGGACAAGATCATGGGCAA





AGGACAGATCCAGCTGGACCCACAAACCGTGGAGACCAAGAACTGGCACACGGACGTGATTGAGATGAAC





GGGATCAAAGTGGAATTTTCCATGAAATTCACCAGCCGAGATATGAGCCTGAAGAGGACCCCGTCCAAAA





AGCAGACCGGCGTCTTCGGTGTGAAGATCAGCGTGGTGACGAAGCGGGAGCGCTCCAAGGTGCCCTACAT





CGTCCGGCAGTGTGTGGAGGAGGTGGAGAAGAGGGGTATCGAGGAGGTTGGCATCTACAGGATATCGGGC





GTGGCCACGGACATCCAGGCGCTCAAGGCCGTCTTCGATGCCAATAACAAGGACATCCTGCTGATGCTGA





GTGACATGGACATCAACGCCATCGCCGGGACGCTCAAGCTGTACTTCCGGGAACTGCCCGAGCCGCTCCT





CACGGACCGACTCTACCCAGCCTTCATGGAGGGCATCGCCCTGTCAGACCCTGCTGCCAAGGAAAACTGC





ATGATGCACCTGCTCCGCTCCCTGCCCGACCCCAACCTCATCACCTTCCTCTTCCTGCTGGAACACTTGA





AAAGGGTTGCCGAGAAGGAGCCCATCAACAAAATGTCACTTCACAACCTGGCTACCGTGTTTGGACCCAC





GTTACTGAGACCCTCAGAAGTGGAGAGCAAAGCACACCTCACCTCGGCTGCGGACATCTGGTCCCATGAC





GTCATGGCGCAGGTCCAGGTCCTCCTCTACTACCTGCAGCACCCCCCCATTTCCTTCGCAGAACTCAAGC





GGAACACACTGTACTTCTCCACCGACGTGTAGCCCGAGGCAGGGTGGCTGCGGGCGGGTGGTGGAACCAG





CCCCTCCAGCCTGGGGTCCAACTCAGACTTGAAAGACTGCAATAGAAAACTCCCAAACCCAGCACTCCAG





ACTCGAGGGAAGCCAGCTTCCAAGAACTGGAATGCGTACGTCTTTTGTGCCACCTTGTACAAAGCCGGCT





GCCCAGCCCCAGCCTCACCACCGCATCCCACCTCCTGCCCTCCATACCTCTAGTTGTGTCTGATGCTCCG





TGCTGTTCGGGAATTGTTTTATGTACACTTGTCAGGCAGAAAAGGTAGTGACCGGCCCGGCGTGGGCACA





CAGACAGCCCGCTTTGTTCTTTCATTTCCTCCAGCACTTTCTTTCCGCCTGAGTCCAGCCCAAGGCCTTT





TATTTTGCGCTGTGTAACTGCTGCCAGCTTCTCTCTTGGCCCTGCTCCCAGATGGCGGTCTCCTGGCAGC





CTCCCCTCAGTCTTCCTCCACCCGCTCTTCCTTCCCAGCCTGCCTGCATGCATGTGCACCCTTGGTCTTC





GCTCCATCGCCTTGAAAGCTCTGAAGAGGCCCTGGGTTGCCGCGGCAGCAGTGGTCTGTTTGATGCTGCC





GTTTGCCGCTGCCGGCCCCTCCTCAGACTCCGCCTTTGGGAGCACACCTGCTTTGCCTTGCTGCCTGTGC





AAATGTTGGACAAGCAGACACACTCACACTCGTCCCCAGCTTAGCACAGAGCTGGAGCGCCCATTTCTGG





AATTTTCCGTTTGGGAATCTCCACTTCTGGGGTTTACCTGTTCGGCCTCCTGTCTATCAGTGAGGCATCT





CTGACTGTTTCTTCTACTGCTTTTCAGTTCCCTTCCCTGCTGTTCTATTTCCTTTGAGTGTAAAGACTCA





CAGGTGACCTGCTATCGAGATAGCCAGAGGGTCAGGAGAGAATGGGGGAGGAGGCGGTCAGGCTGCTGAG





GAAACACCACAGGCTGAACGGGGGAGGAATGCACATGCCACGCTGGGTGTCCCGGGTCGCGGGGAGGCAG





CTCAGCTCTTAGGAGCAAGTTGTGGGGGCTTTTCAAGAGGGGCCAGGCTTCCTGGAGGGTGACTGATGTG





GCCGAAGCAGGTGTCCAGGCAGGTAGGCTGCAGCCAGGAGCTCCCTGGCACCGCAGGACCTCGTGGTACT





CTTGCCTTAGATTTTACACACACTCCACAGCCAAGCACTGCCACGGTCCTCCAGGACCTGGGAAGCAAAG





GCACAGGCCCACGGTGGCCAGCCATTGTGGTGCCGCCCCAGCTTCTGGATACAGCCTTTTGGGTAAACAC





TGGGAACTCCAGAAGTTGTGGGGAGAGTGGGGAATCAGACAGCCGCCTCTAGGGGCTGGGTTCTGCTGGG





GCCTCCTTGTTGGTGCTGTAGGCACCCGCCAGGGAGCAGGGACCCGACTTGCAGACGCATTGCCCGGTAC





TAGGAAGGAGTGAGGTGTGTTCCCACCGTACACTTCCCACACGAGCTGCGGCTGCCAGCCTCGGGCCATC





AGCCTAGGAGAGCAGATGCAGCTCCAGGGGCTCGACTTATAGCCAGTTACAGCTCCCCGGCTCTTCTGTG





TGGCAGAGCGTCGTTTCCGGGCCCTCAGGGCTGGGGAGCTCAGTTCCCATTGCTTGTGCTCAGGGCTGAG





TCTTAAAGAAGGGTTTGCCGGCCCTAACGCTGCAGCGCGTGCGCGGTGAGAGGCCCTTTTTGAGCCTGTT





TACTCCTGTGGCCTTGGGCAGAACAGTAAATACTCTGTGCACGGAGGAAAGACATGCCCAAGAGGAAGGA





AGTACTGACCATCGGCTGCCTGTGAGCAGCTTAGCAAGGAGCCCTTGCTCCCTGGGAAAGGCGGTGAACT





TGAGTCTAAAGATGCAGTGCCTGGCCCTTCCTAAGGTCCCTGCCTGGCATCCGAGTGTCGGTGTGTGGCA





CAGAAGGCTCCTGCTTGCTTCCAAAGTGATGGACAGGAAGGGGCAGAGTGAGTCACGGCCCAGACTGGGC





ACCTTCGCGTCTCAGCCTCAGGGAGCCCCACAGCCCCAAGCTCGCTGAGGCAACGTGAGAACAGGCTATG





GGAAGGCTGCAAAGGCTGAGAAATGCAAAGGCTCATATTTATAAATCCCACCCCCAGAGTGGGGAGGGTC





AGGTGCCAGACCTGGACTAAACTGCACCAAGGAAACACCCAGCAGGGTCTCCTGTGAGCCGGGGACCATG





CAGCCCGAAACCTCCAGTCACTGCGCCCGGCAGGAGTCAGGAGCCAGGGACTGTGCAGCCTGGAACCTCC





AGTCACTGTGCCCAGCAGGGTGGGCTGTGCCCAGCAGGAGTCAGGCTAAGAAACGCCAGGTCTGCCTGTT





CTTGCTGGGCAATGGCTGATGGCTGCCAGTTTCTGCTGATACACAGGTAGGATGGGACCCTTCATGAATA





TCTGACTTTAATAAGTTGGTAAGGATATATTTTTTTGTCTATGTTCTGTTTCAACTTATGTAGATTATTA





TAAATTGATGTAAACCACGTGAGAGGAAAATGTTAATAAAAAATGCAAAGCCCCATCATTTGCACAAAAC





TCA





SEQ ID NO: 2




Homo sapiens actin, beta (ACTB), mRNA




ACCGCCGAGACCGCGTCCGCCCCGCGAGCACAGAGCCTCGCCTTTGCCGATCCGCCGCCCGTCCACACCC





GCCGCCAGCTCACCATGGATGATGATATCGCCGCGCTCGTCGTCGACAACGGCTCCGGCATGTGCAAGGC





CGGCTTCGCGGGCGACGATGCCCCCCGGGCCGTCTTCCCCTCCATCGTGGGGCGCCCCAGGCACCAGGGC





GTGATGGTGGGCATGGGTCAGAAGGATTCCTATGTGGGCGACGAGGCCCAGAGCAAGAGAGGCATCCTCA





CCCTGAAGTACCCCATCGAGCACGGCATCGTCACCAACTGGGACGACATGGAGAAAATCTGGCACCACAC





CTTCTACAATGAGCTGCGTGTGGCTCCCGAGGAGCACCCCGTGCTGCTGACCGAGGCCCCCCTGAACCCC





AAGGCCAACCGCGAGAAGATGACCCAGATCATGTTTGAGACCTTCAACACCCCAGCCATGTACGTTGCTA





TCCAGGCTGTGCTATCCCTGTACGCCTCTGGCCGTACCACTGGCATCGTGATGGACTCCGGTGACGGGGT





CACCCACACTGTGCCCATCTACGAGGGGTATGCCCTCCCCCATGCCATCCTGCGTCTGGACCTGGCTGGC





CGGGACCTGACTGACTACCTCATGAAGATCCTCACCGAGCGCGGCTACAGCTTCACCACCACGGCCGAGC





GGGAAATCGTGCGTGACATTAAGGAGAAGCTGTGCTACGTCGCCCTGGACTTCGAGCAAGAGATGGCCAC





GGCTGCTTCCAGCTCCTCCCTGGAGAAGAGCTACGAGCTGCCTGACGGCCAGGTCATCACCATTGGCAAT





GAGCGGTTCCGCTGCCCTGAGGCACTCTTCCAGCCTTCCTTCCTGGGCATGGAGTCCTGTGGCATCCACG





AAACTACCTTCAACTCCATCATGAAGTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACAGTGCT





GTCTGGCGGCACCACCATGTACCCTGGCATTGCCGACAGGATGCAGAAGGAGATCACTGCCCTGGCACCC





AGCACAATGAAGATCAAGATCATTGCTCCTCCTGAGCGCAAGTACTCCGTGTGGATCGGCGGCTCCATCC





TGGCCTCGCTGTCCACCTTCCAGCAGATGTGGATCAGCAAGCAGGAGTATGACGAGTCCGGCCCCTCCAT





CGTCCACCGCAAATGCTTCTAGGCGGACTATGACTTAGTTGCGTTACACCCTTTCTTGACAAAACCTAAC





TTGCGCAGAAAACAAGATGAGATTGGCATGGCTTTATTTGTTTTTTTTGTTTTGTTTTGGTTTTTTTTTT





TTTTTTGGCTTGACTCAGGATTTAAAAACTGGAACGGTGAAGGTGACAGCAGTCGGTTGGAGCGAGCATC





CCCCAAAGTTCACAATGTGGCCGAGGACTTTGATTGCACATTGTTGTTTTTTTAATAGTCATTCCAAATA





TGAGATGCGTTGTTACAGGAAGTCCCTTGCCATCCTAAAAGCCACCCCACTTCTCTCTAAGGAGAATGGC





CCAGTCCTCTCCCAAGTCCACACAGGGGAGGTGATAGCATTGCTTTCGTGTAAATTATGTAATGCAAAAT





TTTTTTAATCTTCGCCTTAATACTTTTTTATTTTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCT





TCCCCCTTTTTTGTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGGGTGGAGGCAG





CCAGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAAAAGTGCACACCTTAAAAATGAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 3




Homo sapiens ARP1 actin-related protein 1 homolog A, centractin alpha




(yeast) (ACTR1A), mRNA


GCTCCCTCGCCGCCCTGAACCGGCGGCTAGACTGCGCATGCGTGTCAGTGGCGCTAGCGGCGGACCCGGC





TGGGCAGTTCCTTCCCCAGAAGGAGAGATTCCTCTGCCATGGAGTCCTACGATGTGATCGCCAACCAGCC





TGTCGTGATCGACAACGGATCCGGTGTGATTAAAGCTGGTTTTGCTGGTGATCAGATCCCCAAATACTGC





TTTCCAAACTATGTGGGCCGACCCAAGCACGTTCGTGTCATGGCAGGAGCCCTTGAAGGCGACATCTTCA





TTGGCCCCAAAGCTGAGGAGCACCGAGGGCTGCTTTCAATCCGCTATCCCATGGAGCATGGCATCGTCAA





GGATTGGAACGACATGGAACGCATTTGGCAATATGTCTATTCTAAGGACCAGCTGCAGACTTTCTCAGAG





GAGCATCCTGTGCTCCTGACTGAGGCGCCTTTAAACCCACGAAAAAACCGGGAACGAGCTGCCGAAGTTT





TCTTCGAGACCTTCAATGTGCCCGCTCTTTTCATCTCCATGCAAGCTGTACTCAGCCTTTACGCTACAGG





CAGGACCACAGGGGTGGTGCTGGATTCTGGGGATGGAGTCACCCATGCTGTGCCCATCTATGAGGGCTTT





GCCATGCCCCACTCCATCATGCGCATCGACATCGCGGGCCGGGACGTCTCTCGCTTCCTGCGCCTCTACC





TGCGTAAGGAGGGCTACGACTTCCACTCATCCTCTGAGTTTGAGATTGTCAAGGCCATAAAAGAAAGAGC







CTGTTA
CCTATCCATAAACCCCCAAAAGGATGAGACGCTAGAGACAGAGAAAGCTCAGTACTACCTGCCT






GATGGCAGCACCATTGAGATTGGTCCTTCCCGATTCCGGGCCCCTGAGTTGCTCTTCAGGCCAGATTTGA





TTGGAGAGGAGAGTGAAGGCATCCACGAGGTCCTGGTGTTCGCCATTCAGAAGTCAGACATGGACCTGCG





GCGCACGCTTTTCTCTAACATTGTCCTCTCAGGAGGCTCTACCCTGTTCAAAGGTTTTGGTGACAGGCTC





CTGAGTGAAGTGAAGAAACTAGCTCCAAAAGATGTGAAGATCAGGATATCTGCACCTCAGGAGAGACTGT





ATTCCACGTGGATTGGGGGCTCCATCCTTGCCTCCCTGGACACCTTTAAGAAGATGTGGGTCTCCAAAAA





GGAATATGAGGAAGACGGTGCCCGATCCATCCACAGAAAAACCTTCTAATGTCGGGACATCATCTTCACC





TCTCTCTGAAGTTAACTCCACTTTAAAACTCGCTTTCTTGAGTCGGAGTGTTTGCGAGGAACTGCCTGTG





TGTGAGTGCGTGTGTGGATATGAGTGTGTGTGCACATGCGAGTGCCGTGTGGCCCTGGGACCCTGGGCCC





AGAAAGGACGATGAACTACCTGCAGTGGTGATGGCCTGAGGCCTGGGGTTGACCACTAACTGGCTCCTGA





CAGGGAAGAGCGCTGGCAGAGGCTGTGCTCCCTCCTCAGGTGGCCTCTGGCTGGCTGTGGGGGACTCCGT





TTACTACCACAGGGAGACAGAGGGAGGTAAGCCATCCCCCGGGAGACCTTGCTGCTGACCATCCTAGGCT





GGGCTGGCCCCACCCTCACCCCCACCCCCAGGGTGCCCTGAGGCCCCAGGCAGCTGCTGCCTCCACTATC





GATGCCTCCTGACTGCACACTGAGGACTGGGACTGGGGTTGAGTTCTGTCTGGTTTTGTTGCCATTTTGG





TTTGGGAGGCTGGAAAAGCACCCCAAGAGCTATTACAGAGACTGGAGTCAGGAGAGAGCAGGAGGCCCTC





ATGTTCACCAGGGAACAGGACCACACCGGCCACTGGAGGAGGGCAGGAGCAGTCCTCACTCTGAATGGCT





GCAGAGTTAATGTTCCCAGCCCAGTCCCCTTTCGGGGGCCTTGGGAGAGTTTAAGGCACCTGCTGGTTCC





AGGACCTCGCTTTCCATCTGTTCTTGTTGCAATGCCATCTTCAAACCGTTTTATTTATTGAAGTGTTTGT





TCAGTTAGGGGCTGGAGAGAGGGAGCTTGCTGCCTCCTGCCTTGCTACACTAATGTTTACAGCACCTAAG





CTTAGCCTCCAGGGCCCCACCTCTCCCAGCTGATGGTGAGCTGACAGTGTCCACAGGTTCCAGGACCATT





TGAGATTGGAAGCTACACTCAAAGACACTCCCACCAGGCTCTTTCTCCCTTTTCCTCTTGCTCACTGCCC





TGGAATCAACAGGCTGGTTGCTGGTTAGATTTTCTGAAACAGGAGGTAAAATTTTTCTTTGGCAGAGGCC





CCTAAGCAAGGGAGGGGTGTTGGAGAGCCAGTGCCCTTAAGACTGGAGAAAGCTGCAATTTACCAAGTTG





CCTTTTGCCACTGTAGCTGACCAGGGGACTAGGTTGTAGAGGTGGGAAGGCCCCCTCTGGGCTGATCTTG





TGCCATTCTTGACCTTGGACCTGCTTGGTTAAGGAGGGAGTGGGCCAGACCAGAGTGCCAGGAGCTAATG





GAGCCAGGCCTGACTCCTAGGAGTGGTCCAAAGGCCTTCAGCCTAGATGGTGCAAAGCTGGGGCCAGCCT





GTCTTCACCGGCACCCTCACCTGTGACACCAAGACCCACCCCAATCCCAGACTTCACACAGTATTCTCCC





CCACGCCGTCCTATGACCAAAGGCCCCTGCCAGGTGTGGGCCACAGCAGCAGGTATGTGTGAAAGCAACG





TAGCGCCCCGCGGACTGCAGTGCGCTTAACCAACTCACCTCCCTTCTCTTAGCCCAAGCCTGTCCCTCGC





ACAGCCTCGCACAAACCACATTGCCTGGTGGGGCCCAGTGTACTGAAATAAAGTCGTTCCGATAGACACG





TCAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 4




Homo sapiens ADAMTS-like 4 (ADAMTSL4), transcript variant 1, mRNA




CCGCCGCGGAGCGAGGTTGCCTGGAGAGAGCGCCTGGGCGCAGAAGGGTTAACGGGCCACCGGGGGCTCG





CAGAGCAGGAGGGTGCTCTCGGACGGTGTGTCCCCCACTGCACTCCTGAACTTGGAGGACAGGGTCGCCG





CGAGGGACGCAGAGAGCACCCTCCACGCCCAGATGCCTGCGTAGTTTTTGTGACCAGTCCGCTCCTGCCT





CCCCCTGGGGCAGTAGAGGGGGAGCGATGGAGAACTGGACTGGCAGGCCCTGGCTGTATCTGCTGCTGCT





TCTGTCCCTCCCTCAGCTCTGCTTGGATCAGGAGGTGTTGTCCGGACACTCTCTTCAGACACCTACAGAG





GAGGGCCAGGGCCCCGAAGGTGTCTGGGGACCTTGGGTCCAGTGGGCCTCTTGCTCCCAGCCCTGCGGGG





TGGGGGTGCAGCGCAGGAGCCGGACATGTCAGCTCCCTACAGTGCAGCTCCACCCGAGTCTGCCCCTCCC





TCCCCGGCCCCCAAGACATCCAGAAGCCCTCCTCCCCCGGGGCCAGGGTCCCAGACCCCAGACTTCTCCA





GAAACCCTCCCCTTGTACAGGACACAGTCTCGGGGAAGGGGTGGCCCACTTCGAGGTCCCGCTTCCCACC





TAGGGAGAGAGGAGACCCAGGAGATTCGAGCGGCCAGGAGGTCCCGGCTTCGAGACCCCATCAAGCCAGG





AATGTTCGGTTATGGGAGAGTGCCCTTTGCATTGCCACTGCACCGGAACCGCAGGCACCCTCGGAGCCCA





CCCAGATCTGAGCTGTCCCTGATCTCTTCTAGAGGGGAAGAGGCTATTCCGTCCCCTACTCCAAGAGCAG





AGCCATTCTCCGCAAACGGCAGCCCCCAAACTGAGCTCCCTCCCACAGAACTGTCTGTCCACACCCCATC





CCCCCAAGCAGAACCTCTAAGCCCTGAAACTGCTCAGACAGAGGTGGCCCCCAGAACCAGGCCTGCCCCC





CTACGGCATCACCCCAGAGCCCAGGCCTCTGGCACAGAGCCCCCCTCACCCACGCACTCCTTAGGAGAAG





GTGGCTTCTTCCGTGCATCCCCTCAGCCACGAAGGCCAAGTTCCCAGGGTTGGGCCAGTCCCCAGGTAGC





AGGGAGACGCCCTGATCCTTTTCCTTCGGTCCCTCGGGGCCGAGGCCAGCAGGGCCAAGGGCCTTGGGGA





ACGGGGGGGACTCCTCACGGGCCCCGCCTGGAGCCTGACCCTCAGCACCCGGGCGCCTGGCTGCCCCTGC





TGAGCAACGGCCCCCATGCCAGCTCCCTCTGGAGCCTCTTTGCTCCCAGTAGCCCTATTCCAAGATGTTC





TGGGGAGAGTGAACAGCTAAGAGCCTGCAGCCAAGCGCCCTGCCCCCCTGAGCAGCCAGACCCCCGGGCC





CTGCAGTGCGCAGCCTTTAACTCCCAGGAATTCATGGGCCAGCTGTATCAGTGGGAGCCCTTCACTGAAG





TCCAGGGCTCCCAGCGCTGTGAACTGAACTGCCGGCCCCGTGGCTTCCGCTTCTATGTCCGTCACACTGA





AAAGGTCCAGGATGGGACCCTGTGTCAGCCTGGAGCCCCTGACATCTGTGTGGCTGGACGCTGTCTGAGC





CCCGGCTGTGATGGGATCCTTGGCTCTGGCAGGCGTCCTGATGGCTGTGGAGTCTGTGGGGGTGATGATT





CTACCTGTCGCCTTGTTTCGGGGAACCTCACTGACCGAGGGGGCCCCCTGGGCTATCAGAAGATCTTGTG





GATTCCAGCGGGAGCCTTGCGGCTCCAGATTGCCCAGCTCCGGCCTAGCTCCAACTACCTGGCACTTCGT





GGCCCTGGGGGCCGGTCCATCATCAATGGGAACTGGGCTGTGGATCCCCCTGGGTCCTACAGGGCCGGCG





GGACCGTCTTTCGATATAACCGTCCTCCCAGGGAGGAGGGCAAAGGGGAGAGTCTGTCGGCTGAAGGCCC





CACCACCCAGCCTGTGGATGTCTATATGATCTTTCAGGAGGAAAACCCAGGCGTTTTTTATCAGTATGTC





ATCTCTTCACCTCCTCCAATCCTTGAGAACCCCACCCCAGAGCCCCCTGTCCCCCAGCTTCAGCCGGAGA





TTCTGAGGGTGGAGCCCCCACTTGCTCCGGCACCCCGCCCAGCCCGGACCCCAGGCACCCTCCAGCGTCA





GGTGCGGATCCCCCAGATGCCCGCCCCGCCCCATCCCAGGACACCCCTGGGGTCTCCAGCTGCGTACTGG





AAACGAGTGGGACACTCTGCATGCTCAGCGTCCTGCGGGAAAGGTGTCTGGCGCCCCATTTTCCTCTGCA





TCTCCCGTGAGTCGGGAGAGGAACTGGATGAACGCAGCTGTGCCGCGGGTGCCAGGCCCCCAGCCTCCCC





TGAACCCTGCCACGGCACCCCATGCCCCCCATACTGGGAGGCTGGCGAGTGGACATCCTGCAGCCGCTCC





TGTGGCCCCGGCACCCAGCACCGCCAGCTGCAGTGCCGGCAGGAATTTGGGGGGGGTGGCTCCTCGGTGC





CCCCGGAGCGCTGTGGACATCTCCCCCGGCCCAACATCACCCAGTCTTGCCAGCTGCGCCTCTGTGGCCA





TTGGGAAGTTGGCTCTCCTTGGAGCCAGTGCTCCGTGCGGTGCGGCCGGGGCCAGAGAAGCCGGCAGGTT





CGCTGTGTTGGGAACAATGGTGATGAAGTGAGCGAGCAGGAGTGTGCGTCAGGCCCCCCGCAGCCCCCCA





GCAGAGAGGCCTGTGACATGGGGCCCTGTACTACTGCCTGGTTCCACAGCGACTGGAGCTCCAAGTGCTC





AGCCGAGTGTGGGACGGGAATCCAGCGGCGCTCTGTGGTCTGCCTTGGGAGTGGGGCAGCCCTCGGGCCA





GGCCAGGGGGAAGCAGGAGCAGGAACTGGGCAGAGCTGTCCAACAGGAAGCCGGCCCCCTGACATGCGCG





CCTGCAGCCTGGGGCCCTGTGAGAGAACTTGGCGCTGGTACACAGGGCCCTGGGGTGAGTGCTCCTCCGA





ATGTGGCTCTGGCACACAGCGTAGAGACATCATCTGTGTATCCAAACTGGGGACGGAGTTCAACGTGACT





TCTCCGAGCAACTGTTCTCACCTCCCCAGGCCCCCTGCCCTGCAGCCCTGTCAAGGGCAGGCCTGCCAGG





ACCGATGGTTTTCCACGCCCTGGAGCCCATGTTCTCGCTCCTGCCAAGGGGGAACGCAGACACGGGAGGT





CCAGTGCCTGAGCACCAACCAGACCCTCAGCACCCGATGCCCTCCTCAACTGCGGCCCTCCAGGAAGCGC





CCCTGTAACAGCCAACCCTGCAGCCAGCGCCCTGATGATCAATGCAAGGACAGCTCTCCACATTGCCCCC





TGGTGGTACAGGCCCGGCTCTGCGTCTACCCCTACTACACAGCCACCTGTTGCCGCTCTTGCGCACATGT





CCTGGAGCGGTCTCCCCAGGATCCCTCCTGAAAGGGGTCCGGGGCACCTTCACGGTTTTCTGTGCCACCA





TCGGTCACCCATTGATCGGCCCACTCTGAACCCCCTGGCTCTCCAGCCTGTCCCAGTCTCAGCAGGGATG





TCCTCCAGGTGACAGAGGGTGGCAAGGTGACTGACACAAAGTGACTTTCAGGGCTGTGGTCAGGCCCATG





TGGTGGTGTGATGGGTGTGTGCACATATGCCTCAGGTGTGCTTTTGGGACTGCATGGATATGTGTGTGCT





CAAACGTGTATCACTTTTCAAAAAGAGGTTACACAGACTGAGAAGGACAAGACCTGTTTCCTTGAGACTT





TCCTAGGTGGAAAGGAAAGCAAGTCTGCAGTTCCTTGCTAATCTGAGCTACTTAGAGTGTGGTCTCCCCA





CCAACTCCAGTTTTGTGCCCTAAGCCTCATTTCTCATGTTCAGACCTCACATCTTCTAAGCCGCCCTGTG





TCTCTGACCCCTTCTCATTTGCCTAGTATCTCTGCCCCTGCCTCCCTAATTAGCTAGGGCTGGGGTCAGC





CACTGCCAATCCTGCCTTACTCAGGAAGGCAGGAGGAAAGAGACTGCCTCTCCAGAGCAAGGCCCAGCTG





GGCAGAGGGTGAAAAAGAGAAATGTGAGCATCCGCTCCCCCACCACCCCGCCCAGCCCCTAGCCCCACTC





CCTGCCTCCTGAAATGGTTCCCACCCAGAACTAATTTATTTTTTATTAAAGATGGTCATGACAAATGAGA





AAAAAAAAA





SEQ ID NO: 5




Homo sapiens anaphase promoting complex subunit 1 (ANAPC1), mRNA




CGCGTCCATTTGAACGTCTCGCACGCCTTCCTGCCATTAGCACTCGAGCCCGCTGCTGTTGCCCGTTCTT





CCTCCAGAATAGGGGAGGGAGAGGGAATGAGAAGCTGCTGCGGCCCAAGAGTCACTGTGAAGGACCCCGC





CGCTGCCCTCGGGCCTCCTCGGCCCCTGCGCCTCCGGGGAGCAGCCGGGGCTCGCCGCGCCTGACGCGTC





CCGAGTTATACAGAAATAATGTTGATATTTGGAACCCATGTCGAACTTCTATGAAGAAAGGACAACGATG





ATTGCAGCAAGGGATTTGCAGGAATTTGTTCCTTTTGGTCGAGACCACTGCAAGCACCACCCTAATGCTT





TGAACCTTCAACTTCGCCAGCTGCAGCCAGCTTCTGAATTATGGTCTTCTGATGGTGCTGCTGGCTTGGT





GGGATCCCTTCAGGAGGTTACAATCCACGAGAAACAGAAGGAAAGCTGGCAGTTAAGGAAAGGAGTAAGT





GAAATTGGAGAAGATGTGGACTATGATGAGGAACTCTATGTTGCTGGAAATATGGTGATATGGAGCAAAG





GAAGTAAAAGCCAGGCATTGGCAGTTTATAAAGCATTTACAGTTGACAGTCCTGTTCAGCAGGCATTGTG





GTGTGACTTCATTATATCACAGGATAAGTCTGAAAAGGCCTACAGTAGCAATGAAGTAGAAAAATGCATA





TGTATATTGCAAAGCTCATGTATTAACATGCATAGCATAGAAGGAAAGGATTACATAGCTTCATTACCAT





TTCAGGTTGCAAATGTTTGGCCCACTAAATATGGATTGCTGTTTGAACGAAGCGCTTCTTCACATGAAGT





ACCTCCAGGTTCACCCAGAGAACCTTTACCTACTATGTTCAGCATGCTGCACCCACTAGATGAAATAACT





CCACTTGTTTGTAAATCTGGAAGTCTTTTTGGTTCATCACGGGTGCAATATGTTGTAGATCATGCAATGA





AAATTGTTTTCCTCAATACTGACCCCTCTATTGTAATGACTTATGATGCTGTTCAAAATGTGCATTCTGT





GTGGACTCTCCGGAGAGTCAAATCAGAGGAAGAGAATGTTGTTTTAAAGTTCTCTGAACAGGGGGGAACC





CCACAGAATGTGGCCACTAGCAGCTCCCTCACAGCACATCTCAGAAGCCTCTCCAAAGGAGATTCCCCTG





TGACTTCACCTTTCCAGAATTACTCCTCCATTCACAGCCAGAGTCGCTCAACCTCATCACCCAGTCTACA





TTCTCGCTCACCTTCTATTTCCAACATGGCAGCTCTAAGTCGTGCTCATTCTCCTGCGTTAGGAGTGCAC





TCTTTTTCAGGGGTGCAAAGGTTCAACATTTCAAGCCATAATCAGTCTCCAAAGAGACATAGTATTTCTC





ATTCTCCAAATAGTAATTCTAATGGCTCCTTTCTTGCACCAGAAACGGAGCCAATTGTTCCTGAACTGTG





TATTGACCATTTGTGGACAGAAACGATTACTAATATAAGAGAGAAAAATTCACAAGCCTCAAAAGTGTTT





ATTACATCTGACCTATGTGGGCAAAAGTTCCTGTGCTTTTTAGTAGAGTCCCAGCTCCAGTTACGCTGTG





TAAAGTTTCAAGAGAGTAATGATAAAACCCAGCTCATCTTTGGTTCAGTGACCAACATACCAGCAAAGGA





TGCAGCACCAGTGGAGAAAATAGACACCATGCTGGTCTTGGAAGGCAGTGGAAACCTGGTGCTATACACA





GGAGTGGTTCGGGTGGGAAAGGTTTTTATTCCTGGACTGCCAGCTCCCTCTCTGACGATGTCCAACACAA





TGCCTCGGCCCAGTACTCCACTAGATGGCGTTAGTACTCCAAAGCCTCTTAGTAAACTCCTTGGATCATT





GGACGAGGTTGTTCTGTTGTCCCCAGTTCCAGAACTGAGGGATTCTTCAAAACTTCATGATTCTCTCTAT





AATGAGGATTGTACTTTCCAACAGCTTGGAACTTACATTCATTCTATCAGAGATCCTGTCCATAACAGAG





TCACCCTGGAACTGAGTAATGGCTCCATGGTTAGGATCACTATTCCTGAAATTGCCACCTCTGAGTTAGT





ACAAACGTGTTTGCAAGCAATTAAGTTTATCCTGCCAAAAGAAATAGCAGTTCAGATGCTTGTCAAGTGG





TACAATGTCCACAGTGCTCCAGGAGGACCCAGTTATCACTCAGAGTGGAATTTATTTGTGACTTGTCTCA





TGAACATGATGGGTTATAACACAGACCGCTTAGCATGGACTAGAAATTTTGACTTTGAAGGATCACTTTC





TCCTGTCATTGCGCCCAAAAAAGCAAGGCCTTCCGAGACTGGATCTGATGATGACTGGGAATATTTACTA





AATTCAGACTACCACCAGAATGTTGAGTCTCATCTTTTGAACAGATCTTTATGTCTGAGTCCTTCAGAAG





CTTCACAGATGAAGGATGAGGATTTTTCACAGAATCTCAGTCTGGATTCTTCTACACTTCTCTTTACTCA





CATACCTGCAATTTTTTTCGTTCTTCACCTTGTGTATGAGGAGCTTAAGTTGAATACTCTAATGGGAGAA





GGAATTTGTTCACTTGTTGAACTTCTCGTTCAGTTGGCAAGGGACTTAAAATTGGGGCCTTATGTAGATC





ATTACTATAGAGACTACCCAACGCTTGTCAGAACTACTGGACAAGTGTGCACAATTGATCCAGGTCAAAC





AGGATTTATGCATCATCCATCATTTTTTACGTCTGAGCCACCAAGTATTTATCAGTGGGTGAGTTCTTGT





CTGAAGGGTGAAGGAATGCCACCTTATCCTTACCTCCCTGGAATCTGTGAAAGAAGCAGACTTGTAGTCT





TGAGTATTGCACTGTACATACTTGGTGATGAGAGCTTGGTTTCTGATGAATCCTCACAGTATTTAACCAG





AATAACTATAGCCCCCCAGAAGTTGCAAGTAGAACAAGAGGAAAACAGGTTTAGTTTCAGGCATTCTACA





TCTGTTTCTAGTCTAGCTGAAAGATTGGTTGTCTGGATGACTAATGTAGGATTCACTTTAAGAGATTTGG





AAACTCTTCCCTTTGGAATTGCTCTTCCCATCAGAGATGCAATTTATCACTGTCGTGAGCAGCCTGCCTC





AGACTGGCCAGAAGCTGTCTGTCTCTTGATTGGACGTCAGGATCTTTCCAAGCAGGCCTGCGAAGGAAAC





TTACCCAAAGGGAAGTCTGTGCTCTCATCAGATGTTCCTTCAGGAACAGAAACTGAGGAGGAAGATGACG





GCATGAATGACATGAATCACGAGGTCATGTCATTAATATGGAGTGAAGATTTAAGGGTGCAGGATGTGCG





AAGGCTTCTTCAGAGTGCGCATCCTGTCCGTGTCAACGTAGTGCAGTACCCAGAGCTCAGTGACCACGAG





TTCATCGAGGAAAAGGAAAACAGATTGCTCCAATTGTGTCAGCGAACTATGGCTCTTCCTGTAGGACGAG





GAATGTTTACCTTGTTTTCGTACCATCCTGTTCCAACAGAGCCATTGCCTATTCCTAAATTGAATCTGAC





TGGGCGTGCCCCTCCTCGGAACACAACAGTAGACCTTAATAGTGGAAACATCGATGTGCCTCCCAACATG





ACAAGCTGGGCCAGCTTTCATAATGGTGTGGCTGCTGGCCTGAAGATAGCTCCTGCCTCCCAGATCGACT





CAGCTTGGATTGTTTACAATAAGCCCAAGCATGCTGAGTTGGCCAATGAGTATGCTGGCTTTCTCATGGC





TCTGGGTTTGAATGGGCACCTTACCAAGCTGGCGACTCTCAATATCCATGACTACTTGACCAAGGGCCAT





GAAATGACAAGCATTGGACTGCTACTTGGTGTTTCTGCTGCAAAACTAGGCACCATGGATATGTCTATTA





CTCGGCTTCTTAGCATTCACATTCCTGCTCTCTTACCCCCAACGTCCACAGAGCTGGATGTTCCTCACAA





TGTCCAAGTGGCTGCAGTGGTTGGCATTGGCCTTGTATATCAAGGGACAGCTCACAGACATACTGCAGAA





GTCCTGTTGGCTGAGATAGGACGGCCTCCTGGTCCTGAAATGGAATACTGCACTGACAGAGAGTCATACT





CCTTAGCTGCTGGCTTGGCCCTGGGCATGGTCTGCTTGGGGCATGGCAGCAATTTGATAGGTATGTCTGA





TCTCAATGTGCCTGAGCAGCTCTATCAGTACATGGTTGGAGGACATAGGCGCTTTCAAACAGGAATGCAT





AGGGAGAAACATAAATCACCAAGTTATCAAATCAAAGAAGGAGATACCATAAATGTGGATGTGACTTGTC





CAGGTGCTACTCTAGCTTTGGCTATGATCTACTTAAAAACCAATAACAGATCTATTGCAGATTGGCTCCG





AGCCCCTGACACCATGTATTTGTTGGACTTTGTGAAGCCAGAATTTCTCTTGCTTAGGACACTTGCTCGA





TGCCTGATTTTGTGGGATGATATTTTACCAAATTCCAAGTGGGTTGACAGCAATGTTCCTCAAATTATAA





GAGAAAATAGTATCTCTCTCAGTGAAATCGAATTGCCGTGCTCAGAGGATTTGAATTTGGAAACTTTGTC





CCAAGCACATGTCTACATAATTGCAGGAGCCTGCTTGTCTCTGGGTTTTCGATTTGCTGGCTCAGAAAAC





TTATCAGCATTTAACTGTTTGCATAAATTTGCCAAAGATTTTATGACTTATTTGTCCGCACCTAATGCTT





CTGTTACAGGTCCTCATAACCTAGAAACTTGTCTGAGCGTGGTGCTGCTGTCTCTCGCCATGGTCATGGC





TGGCTCAGGAAACCTAAAGGTTTTGCAGCTTTGTCGCTTCTTACACATGAAAACGGGTGGTGAAATGAAC





TATGGTTTTCACTTAGCCCACCACATGGCCCTTGGACTTCTATTTTTGGGAGGAGGAAGGTACTCTTTGA





GCACATCAAATTCTTCCATTGCCGCTCTTCTCTGTGCCCTTTATCCGCACTTCCCAGCTCACAGCACTGA







CAACCGGTATCATCTCCAGGCTCT
CCGGCACCTCTATGTGCTGGCCGCGGAGCCCAGGCTTCTAGTGCCT






GTGGATGTGGACACAAACACGCCCTGCTATGCCCTCTTAGAAGTTACCTACAAGGGCACTCAGTGGTATG





AACAAACCAAAGAAGAATTGATGGCTCCTACCCTTCTTCCAGAACTCCATCTTTTAAAGCAGATTAAAGT





AAAAGGCCCAAGATACTGGGAACTGCTCATAGATTTAAGCAAAGGAACACAACACTTGAAGTCCATCCTT





TCCAAGGATGGGGTTTTATATGTTAAACTCCGGGCGGGTCAGCTCTCCTACAAAGAAGATCCAATGGGAT





GGCAAAGTTTGTTGGCTCAGACTGTTGCTAACAGGAACTCTGAAGCCCGGGCTTTCAAGCCAGAAACAAT





CTCAGCATTCACTTCTGATCCAGCACTTCTGTCATTTGCTGAATATTTCTGCAAGCCAACTGTGAACATG





GGTCAGAAACAGGAAATTCTGGATCTCTTTTCTTCAGTACTCTATGAATGTGTTACCCAGGAGACCCCAG





AGATGTTGCCTGCATACATAGCAATGGATCAGGCTATAAGAAGACTTGGGAGAAGAGAAATGTCTGAGAC





TTCTGAACTTTGGCAGATAAAGTTGGTGTTAGAGTTTTTCAGCTCCCGAAGCCATCAGGAGCGGCTGCAG





AACCACCCTAAGCGGGGGCTCTTTATGAACTCGGAATTCCTCCCTGTTGTGAAGTGCACCATTGATAATA





CCCTGGACCAGTGGCTACAAGTCGGGGGTGATATGTGTGTGCACGCCTACCTCAGCGGGCAGCCCTTGGA





GGAATCACAGCTGAGCATGCTGGCCTGCTTCCTCGTCTACCACTCTGTGCCAGCTCCACAGCACCTGCCA





CCTATAGGACTAGAAGGGAGCACAAGCTTTGCTGAACTGCTCTTCAAATTTAAGCAGCTAAAAATGCCAG





TGCGAGCTTTGCTGAGATTGGCTCCTTTGCTTCTTGGAAATCCACAGCCAATGGTGATGTGACCGTGTCT





GGCGGTGAACCTACCCTGAAACGTGACTTCTGCACAACAAACGTGACCAAACATCAAAGCTAAAGCAATG





TTTATAAAGTTTTATGGTATAACTAGGGGGAAATGAGCTGCACAAACCTCAATGTATTTTAAATCTGTTG





CTGTCATCATTAACGGTATATGACATATAAAAGCAAGTTAAAATTTACTTTTGTAAATAAAGTTTTTGGT





TTGTTTCCAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 6




Homo sapiens apolipoprotein B mRNA editing enzyme, catalytic polypeptide-




like 3F (APOBEC3F), transcript variant 1, mRNA


TTCCCTTTGCAATTGCCTTGGGTCCTGCCGCACAGAGCGGCCTGTCTTTATCAGAGGTCCCTCTGCCAGG





GGGAGGGCCCCAGAGAAAACCAGAAAGAGGGTGAGAGACTGAGGAAGATAAAGCGTCCCAGGGCCTCCTA





CACCAGCGCCTGAGCAGGAAGGGGGAGGGGCCATGACTACGAGGCCCTGGGAGGTCACTTTAGGGAGGGC





TGTCCTGAAACCTGGAGCCTGGAGCAGAAAGTGAAACCCTGGTGCTCCAGACAAAGATCTTAGTCGGGAC





TAGCCGGCCAAGGATGAAGCCTCACTTCAGAAACACAGTGGAGCGAATGTATCGAGACACATTCTCCTAC





AACTTTTATAATAGACCCATCCTTTCTCGTCGGAATACCGTCTGGCTGTGCTACGAAGTGAAAACAAAGG





GTCCCTCAAGGCCCCGTTTGGACGCAAAGATCTTTCGAGGCCAGGTGTATTCCCAGCCTGAGCACCACGC





AGAAATGTGCTTCCTCTCTTGGTTCTGTGGCAACCAGCTGCCTGCTTACAAGTGTTTCCAGATCACCTGG





TTTGTATCCTGGACCCCCTGCCCGGACTGTGTGGCGAAGCTGGCCGAATTCCTGGCTGAGCACCCCAATG





TCACCCTGACCATCTCCGCCGCCCGCCTCTACTACTACTGGGAAAGAGATTACCGAAGGGCGCTCTGCAG





GCTGAGTCAGGCAGGGGCCCGCGTGAAGATTATGGACGATGAAGAATTTGCATACTGCTGGGAAAACTTT





GTGTACAGTGAAGGTCAGCCATTCATGCCTTGGTACAAATTCGATGACAATTATGCATTCCTGCACCGCA





CGCTAAAGGAGATTCTCAGAAACCCGATGGAGGCAATGTATCCACACATATTCTACTTCCACTTTAAAAA





CCTACGCAAAGCCTATGGTCGGAACGAAAGCTGGCTGTGCTTCACCATGGAAGTTGTAAAGCACCACTCA





CCTGTCTCCTGGAAGAGGGGCGTCTTCCGAAACCAGGTGGATCCTGAGACCCATTGTCATGCAGAAAGGT





GCTTCCTCTCTTGGTTCTGTGACGACATACTGTCTCCTAACACAAACTACGAGGTCACCTGGTACACATC





TTGGAGCCCTTGCCCAGAGTGTGCAGGGGAGGTGGCCGAGTTCCTGGCCAGGCACAGCAACGTGAATCTC





ACCATCTTCACCGCCCGCCTCTACTACTTCTGGGATACAGATTACCAGGAGGGGCTCCGCAGCCTGAGTC





AGGAAGGGGCCTCCGTGGAGATCATGGGCTACAAAGATTTTAAATATTGTTGGGAAAACTTTGTGTACAA





TGATGATGAGCCATTCAAGCCTTGGAAAGGACTAAAATACAACTTTCTATTCCTGGACAGCAAGCTGCAG





GAGATTCTCGAGTGAGGGGTCTCCCCGGGCCTCATGGTCTGTCTCCTCTAGCCTCCTGCTCATGTTGTGC





AGGCCTCCCCTCCATCCTGGACCAGCTGTGCTTTTGCCTGGTCATCCTGAGCCCCTCCTGGCCTCAGGGC





CATTCCATAGTGCTCCCCTGCCTCACCACCTCCTCTCCGCTCTCCCAGGCTCTTCCTGCAGAGGCCTCTT





TCTGCCTCCATGGCTATCCATCCACCCACCAAGACCCTGTTCCCTGAGCCTGCATGCCCCTAACCTGCCT





TTTCCCATCTCCCCAGCATAACCTAATATTTTTTTTTTTTTTTTGAGACGGAATTTCGCTCTGTCACCCA





GACTGGAGTGCAATGGCTTGATCTTGGCTCACTGCAAACTCTGCCTACCAGGTTCAAGCGATTCTCCTGC





CTCCGCCTCCCGAGTAGCTGGAATTACAGACGCCTGCCACCACGCACAGCTAACTTTTTTTTTTTTTGTA





TTTTTAGTAGTGACTGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCAGGTGATCCGC





CTATCTCAGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGGCCCGGCGGCACAACCAAATCTTA





TTAAACTCACCCTAGGCTGGCCGCGGTGACTCATGCCTATAATCCCCCAGCAATTTGGGAGGCAGAGGTG





AGAGAATCGCTTGAGCCCAGGAATTCGAGACCAGCCTGGGCCACATGACAAAGCCCCATCTCTACAAAAA





AATTACAAAAAAAAAAAAAACAGGTGTGGTGGCATGCACCTGTAGTTGAAGCTACTTGGAAGGATGAAGT





GGGAGGATTGCTTGAGCCGGGGAGGTGGAGGCTGCAGTGAACTGAGATCACGTCACTGAACTCCAGTCTG





AGCAACAGATCGAGACCCTGCCTGAAAATAAATCAATAAATAAACTCAACCGAAATGGGTATGAAAGTTG





AAATGGGTATGTAAGTTGAAAACCAGAAGTTTTGAGAAACATCCTTTGTTAACTTTCATCCTACAAATTG





GGTCATTCATGTCCTACGCAGCTAAAACAGAGCCCAGGAGCCAGGGAGGAAAAGCAGTCAGGCCACACAC





CATTGCTCCCAAAATGGACTTCTCTGCAAGCCTGACTCCTGAAACTGTGCATTGTACCCTGAAACCAGCT





TTATCCATAGCTTCTGCAATAAATGGCTGTAAGTCTTGGACTCCTTGCTATAATCGCAGCTATTCAGCAA





TGGAACCTCCCAGTTCCCAACCCTTCCTAGTGCCCATGGGCTTTCCCATAGGACAAGAGAACATTTCTCC





TTTTCTTTTTTTTTTTCTTTGAAATGGAGTCTCGCCCTGTCACCCAGGCTGGAGTGCAATGGTGCGGTCT





CGGCTCACTGCAACCTCTGCCTCCCTTGTTCAAGTGATTCTCCTGTCTCAGCCTCCCGAGTAGCTGGGAT





TACAGGCGTCCACCACCAAACCAGGCTAATTTTTGTATTTTTCATAAAAACGGGTTTCATCATGTTTCCC





AGGCTGGTCTTATTTTTATTTTATTTTTTGAGATGGAGTCTTGCTCTGTTGCCCAGGCTGGGGTGCAGTG





GTGCAATCTGGGTTCACTGCAGCCTCTGCCGCCTGAGTTCAAGCTATTTTCCTACCTAAGCCTCCCAAGT





AGCTGGGATTACATGCGCGTGCCACCACGCCTAGCTAATTTTTGTGTTTTTAGTAGAGACGGGGTTTCAA





CATCTTGACCAGGCTGGTCTTGAACTCCTGACCTCGTGATCCACCCGTCTCGGCCTCCCAAAGTGCTGGG





ATTACAGGCGTGAGCCACCTGGCCAGGCTTAGGCTGGTCTTAAACTCCTGACCTCAAGTGATCCAACCTC





CTTGGCCTCCCAAATTGCTGGGATTGCTGGTGTGAGCCACAGCGCCTAGCCCATTTCTCCTTTTAATAGG





ACCTGTTGCTGTCTCTGTTCTCCCAACATGGTGAACACCACCCGGACTGCGTGTATGTCCCAAATTACAA





TTCTTTCTTTGCAAATGAAATGTGAAATTTAGAGGCCCTTCTCCACACTTTAAATTTGACTTGACATTTT





CTAGGCAGATATAAGTTATTAGAGAATGAGATTCTCTATAAAAATGATCCCTTCATGCTGTGGCCTCCAC





AGAAGATGCCCTGGGCCAGGTGCCCACATGAATAATGCGGGCCACAGGCAGGCATTTATTTTCTCACAGA





TATGGAGGCTACAAGTCCAAGGTGGAGGGGTCGGCGGGGTTGTTTGCTCTGAGGCCGCTCCTCCTGGATG





GCAGGGATCCCTTCTGGCTGTGTCCTCTGTGGCCTTTCCTCTATGAACCTGTACTGTACCTCTGGGGTCT





CTCTGCTTCCAAATATCTTTTTTTTTTTTTTCAGACAGTTTTGCTCTTGTTTTCTAGGCTGGAGTGCAAT





GGCACAATCTCAGCTCACTGCAACCTCTGCCTTCCGAGTTCAAGCGATTCTCGTGCCTCAGCCTCCTGAG





TAGCTGGGACTACAGGCGTGTGCCACCACGCCTGGCTAATTTTGTAGTTTTAGTAGAGACGGGGTTTCTC





CATGTTGCTCAGGCTGGTCTTGAACTCATGAGCTCAGGCGATCCACTCTCCTCAGCCTCCCAAAGTGCTG





GGATTACAGATATAAGCCACCATACACAACTTTTTTTTTTTTTTGAGATGGAGTTTCACTCTGTTGCCCA





GGCTGGAGTGCTAAATAGCAGAATCACTGCTCACTGCAACCTCTGCCTGCTGGGTTCAAGCAATTCTCCC





ACCTCAGCCTCCTGAGTAGCTGGGATTACAGATGCCCAGAACCAATCTCTGCTAATTTTTCTATTTTTTA





GTAGAGATGGGGTTTCACTGAGGAAGGAGACCACCTCTCTCATTGTCTCCTATTTCAGAAGGAAGCAAAA





AGTTAGAAAGATGCAGAAGTAAGATCAATGGCCAGACTGTTTGGCGCTGCTACCTGGGCCTGGTAGTTAA





AGATCAACTCCTGACCTGACCGCTTGTTTTATCTAAAGATTCCAGACATTGTATGAGGAAGCATTGTGAA





ACTTTCTGGTCTGTTCTGCTAGCCCCCACCACTGATGCATGTAGCCCCCCAGTCACGTAGCCCACGCTTG





CACAATCTATCACGACCCTTTCACGTGGACCCCTTAGAATTGTAAGCCCTTAAAAGGGCCAGGGACTTCT





TCAGGGAGCTCCAATCTTCAGATGCAAGTCTGTCAACGCTCCCAGCTGATTAAAGCCTCTTCCTTCCTAA





AAAAAAAAAAAAAAAA





SEQ ID NO: 7




Homo sapiens argininosuccinate lyase (ASL), transcript variant 1, mRNA




CCAGGCGGAGGTGAGTGCGCGGCGGCCGGATGGGCGGGACGGGCGTGGAGGACGCCGAGCACCGTGGCGC





GCGCTCACGTCCGCGTCCCCAAGGGCTGCGCTCCCTCAAGCGCAGTGCCCAGAACTCGGAGCCAGCCCGG





CCCGGGGGACCCTGCTGGCCAAGGAGGTCGTCAGTCCGGTCTTGTCTTCCAGACCCGGAGGACCGAAGCT





TCCGGACGACGAGGAACCGCCCAACATGGCCTCGGAGAGTGGGAAGCTTTGGGGTGGCCGGTTTGTGGGT





GCAGTGGACCCCATCATGGAGAAGTTCAACGCGTCCATTGCCTACGACCGGCACCTTTGGGAGGTGGATG





TTCAAGGCAGCAAAGCCTACAGCAGGGGCCTGGAGAAGGCAGGGCTCCTCACCAAGGCCGAGATGGACCA





GATACTCCATGGCCTAGACAAGGTGGCTGAGGAGTGGGCCCAGGGCACCTTCAAACTGAACTCCAATGAT





GAGGACATCCACACAGCCAATGAGCGCCGCCTGAAGGAGCTCATTGGTGCAACGGCAGGGAAGCTGCACA





CGGGACGGAGCCGGAATGACCAGGTGGTCACAGACCTCAGGCTGTGGATGCGGCAGACCTGCTCCACGCT





CTCGGGCCTCCTCTGGGAGCTCATTAGGACCATGGTGGATCGGGCAGAGGCGGAACGTGATGTTCTCTTC





CCGGGGTACACCCATTTGCAGAGGGCCCAGCCCATCCGCTGGAGCCACTGGATTCTGAGCCACGCCGTGG





CACTGACCCGAGACTCTGAGCGGCTGCTGGAGGTGCGGAAGCGGATCAATGTCCTGCCCCTGGGGAGTGG





GGCCATTGCAGGCAATCCCCTGGGTGTGGACCGAGAGCTGCTCCGAGCAGAACTCAACTTTGGGGCCATC





ACTCTCAACAGCATGGATGCCACTAGTGAGCGGGACTTTGTGGCCGAGTTCCTGTTCTGGGCTTCGCTGT





GCATGACCCATCTCAGCAGGATGGCCGAGGACCTCATCCTCTACTGCACCAAGGAATTCAGCTTCGTGCA





GCTCTCAGATGCCTACAGCACGGGAAGCAGCCTGATGCCCCAGAAGAAAAACCCCGACAGTTTGGAGCTG





ATCCGGAGCAAGGCTGGGCGTGTGTTTGGGCGGTGTGCCGGGCTCCTGATGACCCTCAAGGGACTTCCCA





GCACCTACAACAAAGACTTACAGGAGGACAAGGAAGCTGTGTTTGAAGTGTCAGACACTATGAGTGCCGT





GCTCCAGGTGGCCACTGGCGTCATCTCTACGCTGCAGATTCACCAAGAGAACATGGGACAGGCTCTCAGC





CCCGACATGCTGGCCACTGACCTTGCCTATTACCTGGTCCGCAAAGGGATGCCATTCCGCCAGGCCCACG





AGGCCTCCGGGAAAGCTGTGTTCATGGCCGAGACCAAGGGGGTCGCCCTCAACCAGCTGTCACTGCAGGA





GCTGCAGACCATCAGCCCCCTGTTCTCGGGCGACGTGATCTGCGTGTGGGACTACGGGCACAGTGTGGAG





CAGTATGGTGCCCTGGGCGGCACTGCGCGCTCCAGCGTCGACTGGCAGATCCGCCAGGTGCGGGCGCTAC





TGCAGGCACAGCAGGCCTAGGTCCTCCCACACCTGCCCCCTAATAAAGTGGGCGCGAGAGGAGGCTGCTG





TGTGTTTCCTGCCCCAGCCTGGCTCCCTCGTTGCTGGGCTTTCGGGGCTGGCCAGTGGGGACAGTCAGGG





ACTGGAGAGGCAGGGCAGGGTGGCCTGTAATCCCAGCACTTTGGAAGGGCAAGGTGCGAGGATGCTTGAG





GCCAGGAGTTTGACACAGCCTGGGCAACACAGGGAGACCCCCATCTCTACTCAATAATAAAACAAATAGC





CTGGCGTGGTGGCCCATGCATATAGTCCCAGCTACTTGTAAGGCTGAGGTGAGAGGACACTTGTGCCCAG





GAGTGGAGGCTGCAGTGAGCTATGATCACGCCACTGCATTCCAGCCTGGATAACAGAGTGAGAACCTATC





TCTAAAAATAAATAAATAAACGAAAAATAAA





SEQ ID NO: 8




Homo sapiens beta-2-microglobulin (B2M), mRNA




AATATAAGTGGAGGCGTCGCGCTGGCGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAGATGTCTCGCT





CCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGAT





TCAGGTTTACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTT





CATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACT





TGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGA





GTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGATCGAGACATGTAA







G
CAGCATCATGGAGGTTTGAAGATGCCGCATTTGGATTGGATGAATTCCAAATTCTGCTTGCTTGCTTTT






TAATATTGATATGCTTATACACTTACACTTTATGCACAAAATGTAGGGTTATAATAATGTTAACATGGAC





ATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCCATGTTTGATGTATCTGAGCAGGTTGCTCCACA





GGTAGCTCTAGGAGGGCTGGCAACTTAGAGGTGGGGAGCAGAGAATTCTCTTATCCAACATCAACATCTT





GGTCAGATTTGAACTCTTCAATCTCTTGCACTCAAAGCTTGTTAAGATAGTTAAGCGTGCATAAGTTAAC





TTCCAATTTACATACTCTGCTTAGAATTTGGGGGAAAATTTAGAAATATAATTGACAGGATTATTGGAAA





TTTGTTATAATGAATGAAACATTTTGTCATATAAGATTCATATTTACTTCTTATACATTTGATAAAGTAA





GGCATGGTTGTGGTTAATCTGGTTTATTTTTGTTCCACAAGTTAAATAAATCATAAAACTTGATGTGTTA





TCTCTTA





SEQ ID NO: 9




Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant




6, non-coding RNA


AGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGGTAGTAGAGTCCCGGGA





AAGGGACAGGGGGCCCAAGTGATGCTCTGGGGTACTGGCGTGGGAGAGTGGATTTCCGAAGCTGACAGAT





GGTTCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATG





CTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGA





CCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACAGTGTCCTTTA





TGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTCA





GCTTGACACAGGTTTGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAACTCTCCTGAACAT





CTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTG





AACCCGAAAATCCTTCCTTGGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCT





GAGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAA





GATACCGTTAATAAGGCAACTTATTGCAGTGTGGGAGATCAAGAATTGTTACAAATCACCCCTCAAGGAA





CCAGGGATGAAATCAGTTTGGATTCTGCAAAAAAGGCTGCTTGTGAATTTTCTGAGACGGATGTAACAAA





TACTGAACATCATCAACCCAGTAATAATGATTTGAACACCACTGAGAAGCGTGCAGCTGAGAGGCATCCA





GAAAAGTATCAGGGTAGTTCTGTTTCAAACTTGCATGTGGAGCCATGTGGCACAAATACTCATGCCAGCT





CATTACAGCATGAGAACAGCAGTTTATTACTCACTAAAGACAGAATGAATGTAGAAAAGGCTGAATTCTG





TAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAACATAACAGATGGGCTGGAAGTAAGGAAACATGT





AATGATAGGCGGACTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCCTGTGTGAGAGAAAAG





AATGGAATAAGCAGAAACTGCCATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGATAACACT





AAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGAACTGTTAGGTTCTGATGACTCA





CATGATGGGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACGTTCTAAATGAGGTAGATGAAT





ATTCTGGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCCTCATGAGGCTTTAATATGTAAAAGTGA





AAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAG





GCAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATCTAATTATAGGAGCATTTGTTACTGAGCCACAGA





TAATACAAGAGCGTCCCCTCACAAATAAATTAAAGCGTAAAAGGAGACCTACATCAGGCCTTCATCCTGA





GGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATCAGGGAACTAACCAA





ACGGAGCAGAATGGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGATTCTA





TTCAGAATGAGAAAAATCCTAACCCAATAGAATCACTCGAAAAAGAATCTGCTTTCAAAACGAAAGCTGA





ACCTATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCCACAATTCAAAAGCACCTAAAAAG





AATAGGCTGAGGAGGAAGTCTTCTACCAGGCATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAA





GCCCACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGTGAAGAGATAAAGAAAAAAAAGTA





CAACCAAATGCCAGTCAGGCACAGCAGAAACCTACAACTCATGGAAGGTAAAGAACCTGCAACTGGAGCC





AAGAAGAGTAACAAGCCAAATGAACAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTGAAGT





TAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAAATACCAGTGAACTTAAAGAATTTGTCAATCCTAG





CCTTCCAAGAGAAGAAAAAGAAGAGAAACTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA





GATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGG





TACCTGGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGGGAAGGCAAA





AACAGAACCAAATAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGT





TCCAAAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGACATGAAGTTAACCACAGTCGGG





AAACAAGCATAGAAATGGAAGAAAGTGAACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA





GCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCTCTGCCCAC





TCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAA





AGAATGAGTCTAATATCAAGCCTGTACAGACAGTTAATATCACTGCAGGCTTTCCTGTGGTTGGTCAGAA





AGATAAGCCAGTTGATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCTATCATCTCAGTTC





AGAGGCAACGAAACTGGACTCATTACTCCAAATAAACATGGACTTTTACAAAACCCATATCGTATACCAC





CACTTTTTCCCATCAAGTCATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAACTTTGAGGA





ACATTCAATGTCACCTGAAAGAGAAATGGGAAATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGT





AATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGGTTCCAGTACTA





ATGAAGTGGGCTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTAGAAA





CAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCTATAAACAAAGTCTT





CCTGGAAGTAATTGTAAGCATCCTGAAATAAAAAAGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATA





CAGATTTCTCTCCATATCTGATTTCAGATAACTTAGAACAGCCTATGGGAAGTAGTCATGCATCTCAGGT





TTGTTCTGAGACACCTGATGACCTGTTAGATGATGGTGAAATAAAGGAAGATACTAGTTTTGCTGAAAAT





GACATTAAGGAAAGTTCTGCTGTTTTTAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCC





CTTTCACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAGAAGAGAA





CTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCCAACACTTGTTATTTGGTAAAGTAAACAATATACCT





TCTCAGTCTACTAGGCATAGCACCGTTGCTACCGAGTGTCTGTCTAAGAACACAGAGGAGAATTTATTAT





CATTGAAGAATAGCTTAAATGACTGCAGTAACCAGGTAATATTGGCAAAGGCATCTCAGGAACATCACCT





TAGTGAGGAAACAAAATGTTCTGCTAGCTTGTTTTCTTCACAGTGCAGTGAATTGGAAGACTTGACTGCA





AATACAAACACCCAGGATCCTTTCTTGATTGGTTCTTCCAAACAAATGAGGCATCAGTCTGAAAGCCAGG





GAGTTGGTCTGAGTGACAAGGAATTGGTTTCAGATGATGAAGAAAGAGGAACGGGCTTGGAAGAAAATAA





TCAAGAAGAGCAAAGCATGGATTCAAACTTAGGTGAAGCAGCATCTGGGTGTGAGAGTGAAACAAGCGTC





TCTGAAGACTGCTCAGGGCTATCCTCTCAGAGTGACATTTTAACCACTCAGCAGAGGGATACCATGCAAC





ATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAAGCTGTGTTAGAACAGCATGGGAGCCAGCC





TTCTAACAGCTACCCTTCCATCATAAGTGACTCTTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGC





ACATCAGAAAAAGCAGTATTAACTTCACAGAAAAGTAGTGAATACCCTATAAGCCAGAATCCAGAAGGCC





TTTCTGCTGACAAGTTTGAGGTGTCTGCAGATAGTTCTACCAGTAAAAATAAAGAACCAGGAGTGGAAAG





GTCATCCCCTTCTAAATGCCCATCATTAGATGATAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAG





AATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTGGAGGAGCAACAGCTGGAAGAGT





CTGGGCCACACGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCTAGAGGGAACCCCTTACCTGGA





ATCTGGAATCAGCCTCTTCTCTGATGACCCTGAATCTGATCCTTCTGAAGACAGAGCCCCAGAGTCAGCT





CGTGTTGGCAACATACCATCTTCAACCTCTGCATTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCC





AGAGTCCAGCTGCTGCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGA





GAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACC







CCAGAAGAATTTATGCTCGTGT
ACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTG






AAGAGACTACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCT





AGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGGGTGACCCAGTCTATTAAAGAAAGAAAAATG





CTGAATGAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCCAAAGCGAG





CAAGAGAATCCCAGGACAGAAAGATCTTCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACCAACAT





GCCCACAGATCAACTGGAATGGATGGTACAGCTGTGTGGTGCTTCTGTGGTGAAGGAGCTTTCATCATTC





ACCCTTGGCACAGGTGTCCACCCAATTGTGGTTGTGCAGCCAGATGCCTGGACAGAGGACAATGGCTTCC





ATGCAATTGGGCAGATGTGTGAGGCACCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTCTA





CCAGTGCCAGGAGCTGGACACCTACCTGATACCCCAGATCCCCCACAGCCACTACTGACTGCAGCCAGCC





ACAGGTACAGAGCCACAGGACCCCAAGAATGAGCTTACAAAGTGGCCTTTCCAGGCCCTGGGAGCTCCTC





TCACTCTTCAGTCCTTCTACTGTCCTGGCTACTAAATATTTTATGTACATCAGCCTGAAAAGGACTTCTG





GCTATGCAAGGGTCCCTTAAAGATTTTCTGCTTGAAGTCTCCCTTGGAAATCTGCCATGAGCACAAAATT





ATGGTAATTTTTCACCTGAGAAGATTTTAAAACCATTTAAACGCCACCAATTGAGCAAGATGCTGATTCA





TTATTTATCAGCCCTATTCTTTCTATTCAGGCTGTTGTTGGCTTAGGGCTGGAAGCACAGAGTGGCTTGG





CCTCAAGAGAATAGCTGGTTTCCCTAAGTTTACTTCTCTAAAACCCTGTGTTCACAAAGGCAGAGAGTCA





GACCCTTCAATGGAAGGAGAGTGCTTGGGATCGATTATGTGACTTAAAGTCAGAATAGTCCTTGGGCAGT





TCTCAAATGTTGGAGTGGAACATTGGGGAGGAAATTCTGAGGCAGGTATTAGAAATGAAAAGGAAACTTG





AAACCTGGGCATGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGCAGATCACTGGA





GGTCAGGAGTTCGAAACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAAAATACAGAAATTAGC





CGGTCATGGTGGTGGACACCTGTAATCCCAGCTACTCAGGTGGCTAAGGCAGGAGAATCACTTCAGCCCG





GGAGGTGGAGGTTGCAGTGAGCCAAGATCATACCACGGCACTCCAGCCTGGGTGACAGTGAGACTGTGGC





TCAAAAAAAAAAAAAAAAAAAAAAAAATGAAACTAGAAGAGATTTCTAAAAGTCTGAGATATATTTGCTA





GATTTCTAAAGAATGTGTTCTAAAACAGCAGAAGATTTTCAAGAACCGGTTTCCAAAGACAGTCTTCTAA





TTCCTCATTAGTAATAAGTAAAATGTTTATTGTTGTAGCTCTGGTATATAATCCATTCCTCTTAAAATAT





AAGACCTCTGGCATGAATATTTCATATCTATAAAATGACAGATCCCACCAGGAAGGAAGCTGTTGCTTTC





TTTGAGGTGATTTTTTTCCTTTGCTCCCTGTTGCTGAAACCATACAGCTTCATAAATAATTTTGCTTGCT





GAAGGAAGAAAAAGTGTTTTTCATAAACCCATTATCCAGGACTGTTTATAGCTGTTGGAAGGACTAGGTC





TTCCCTAGCCCCCCCAGTGTGCAAGGGCAGTGAAGACTTGATTGTACAAAATACGTTTTGTAAATGTTGT





GCTGTTAACACTGCAAATAAACTTGGTAGCAAACACTTCCAAAAAAAAAAAAAAAAAA





SEQ ID NO: 10




Homo sapiens CD55 molecule, decay accelerating factor for complement




(Cromer blood group)(CD55), transcript variant 1, mRNA


AGCGAGCTCCTCCTCCTTCCCCTCCCCACTCTCCCCGAGTCTAGGGCCCCCGGGGCGTATGACGCCGGAG





CCCTCTGACCGCACCTCTGACCACAACAAACCCCTACTCCACCCGTCTTGTTTGTCCCACCCTTGGTGAC





GCAGAGCCCCAGCCCAGACCCCGCCCAAAGCACTCATTTAACTGGTATTGCGGAGCCACGAGGCTTCTGC





TTACTGCAACTCGCTCCGGCCGCTGGGCGTAGCTGCGACTCGGCGGAGTCCCGGCGGCGCGTCCTTGTTC





TAACCCGGCGCGCCATGACCGTCGCGCGGCCGAGCGTGCCCGCGGCGCTGCCCCTCCTCGGGGAGCTGCC





CCGGCTGCTGCTGCTGGTGCTGTTGTGCCTGCCGGCCGTGTGGGGTGACTGTGGCCTTCCCCCAGATGTA





CCTAATGCCCAGCCAGCTTTGGAAGGCCGTACAAGTTTTCCCGAGGATACTGTAATAACGTACAAATGTG





AAGAAAGCTTTGTGAAAATTCCTGGCGAGAAGGACTCAGTGATCTGCCTTAAGGGCAGTCAATGGTCAGA





TATTGAAGAGTTCTGCAATCGTAGCTGCGAGGTGCCAACAAGGCTAAATTCTGCATCCCTCAAACAGCCT





TATATCACTCAGAATTATTTTCCAGTCGGTACTGTTGTGGAATATGAGTGCCGTCCAGGTTACAGAAGAG





AACCTTCTCTATCACCAAAACTAACTTGCCTTCAGAATTTAAAATGGTCCACAGCAGTCGAATTTTGTAA





AAAGAAATCATGCCCTAATCCGGGAGAAATACGAAATGGTCAGATTGATGTACCAGGTGGCATATTATTT





GGTGCAACCATCTCCTTCTCATGTAACACAGGGTACAAATTATTTGGCTCGACTTCTAGTTTTTGTCTTA





TTTCAGGCAGCTCTGTCCAGTGGAGTGACCCGTTGCCAGAGTGCAGAGAAATTTATTGTCCAGCACCACC





ACAAATTGACAATGGAATAATTCAAGGGGAACGTGACCATTATGGATATAGACAGTCTGTAACGTATGCA





TGTAATAAAGGATTCACCATGATTGGAGAGCACTCTATTTATTGTACTGTGAATAATGATGAAGGAGAGT





GGAGTGGCCCACCACCTGAATGCAGAGGAAAATCTCTAACTTCCAAGGTCCCACCAACAGTTCAGAAACC





TACCACAGTAAATGTTCCAACTACAGAAGTCTCACCAACTTCTCAGAAAACCACCACAAAAACCACCACA





CCAAATGCTCAAGCAACACGGAGTACACCTGTTTCCAGGACAACCAAGCATTTTCATGAAACAACCCCAA





ATAAAGGAAGTGGAACCACTTCAGGTACTACCCGTCTTCTATCTGGGCACACGTGTTTCACGTTGACAGG





TTTGCTTGGGACGCTAGTAACCATGGGCTTGCTGACTTAGCCAAAGAAGAGTTAAGAAGAAAATACACAC





AAGTATACAGACTGTTCCTAGTTTCTTAGACTTATCTGCATATTGGATAAAATAAATGCAATTGTGCTCT





TCATTTAGGATGCTTTCATTGTCTTTAAGATGTGTTAGGAATGTCAACAGAGCAAGGAGAAAAAAGGCAG





TCCTGGAATCACATTCTTAGCACACCTACACCTCTTGAAAATAGAACAACTTGCAGAATTGAGAGTGATT





CCTTTCCTAAAAGTGTAAGAAAGCATAGAGATTTGTTCGTATTTAGAATGGGATCACGAGGAAAAGAGAA





GGAAAGTGATTTTTTTCCACAAGATCTGTAATGTTATTTCCACTTATAAAGGAAATAAAAAATGAAAAAC





ATTATTTGGATATCAAAAGCAAATAAAAACCCAATTCAGTCTCTTCTAAGCAAAATTGCTAAAGAGAGAT





GAACCACATTATAAAGTAATCTTTGGCTGTAAGGCATTTTCATCTTTCCTTCGGGTTGGCAAAATATTTT





AAAGGTAAAACATGCTGGTGAACCAGGGGTGTTGATGGTGATAAGGGAGGAATATAGAATGAAAGACTGA





ATCTTCCTTTGTTGCACAAATAGAGTTTGGAAAAAGCCTGTGAAAGGTGTCTTCTTTGACTTAATGTCTT





TAAAAGTATCCAGAGATACTACAATATTAACATAAGAAAAGATTATATATTATTTCTGAATCGAGATGTC





CATAGTCAAATTTGTAAATCTTATTCTTTTGTAATATTTATTTATATTTATTTATGACAGTGAACATTCT





GATTTTACATGTAAAACAAGAAAAGTTGAAGAAGATATGTGAAGAAAAATGTATTTTTCCTAAATAGAAA





TAAATGATCCCATTTTTTGGTATCATGTAGTATGTGAAATTTATTCTTAAACGTGACTACTTTATTTCTA





AATAAGAAATTCCCTACCTGCTTCCTACAAGCAGTTCAGAATGCCATGCCTTGGTTGTCCTAGTGTGAAT





AATTTTCAGCTACTTTAAAATTATATTGTACTTTCTCAAGCATGTCATATCCTTTCCTATTAGAGTATCT





ATATTACTTGTTACTGATTTACCTGAAGGCAATCTGATTAATTTCTAGGTTTTTACCATATTCTTGTCAT





CTTGCCAATTACATTTTAAGTGTTAGACTAGACTAAGATGTACTAGTTGTATAGAATATAACTAGATTTA





TTATGGCAATGTTTATTTTGTCATTTTGCTTCATCTGTTTTGTTGTTGAAGTACTTTAAATTTCATACGT





TCATGGCATTTCACTGTAAAGACTTTAATGTGTATTTCTTAAAATAAAACTTTTTTTCCTCCTTAAAAAA





AAAAAAAAAAAA





SEQ ID NO: 11




Homo sapiens cadherin 1, type 1, E-cadherin (epithelial)(CDH1), mRNA




AGTGGCGTCGGAACTGCAAAGCACCTGTGAGCTTGCGGAAGTCAGTTCAGACTCCAGCCCGCTCCAGCCC





GGCCCGACCCGACCGCACCCGGCGCCTGCCCTCGCTCGGCGTCCCCGGCCAGCCATGGGCCCTTGGAGCC





GCAGCCTCTCGGCGCTGCTGCTGCTGCTGCAGGTCTCCTCTTGGCTCTGCCAGGAGCCGGAGCCCTGCCA





CCCTGGCTTTGACGCCGAGAGCTACACGTTCACGGTGCCCCGGCGCCACCTGGAGAGAGGCCGCGTCCTG





GGCAGAGTGAATTTTGAAGATTGCACCGGTCGACAAAGGACAGCCTATTTTTCCCTCGACACCCGATTCA





AAGTGGGCACAGATGGTGTGATTACAGTCAAAAGGCCTCTACGGTTTCATAACCCACAGATCCATTTCTT





GGTCTACGCCTGGGACTCCACCTACAGAAAGTTTTCCACCAAAGTCACGCTGAATACAGTGGGGCACCAC





CACCGCCCCCCGCCCCATCAGGCCTCCGTTTCTGGAATCCAAGCAGAATTGCTCACATTTCCCAACTCCT





CTCCTGGCCTCAGAAGACAGAAGAGAGACTGGGTTATTCCTCCCATCAGCTGCCCAGAAAATGAAAAAGG





CCCATTTCCTAAAAACCTGGTTCAGATCAAATCCAACAAAGACAAAGAAGGCAAGGTTTTCTACAGCATC





ACTGGCCAAGGAGCTGACACACCCCCTGTTGGTGTCTTTATTATTGAAAGAGAAACAGGATGGCTGAAGG





TGACAGAGCCTCTGGATAGAGAACGCATTGCCACATACACTCTCTTCTCTCACGCTGTGTCATCCAACGG





GAATGCAGTTGAGGATCCAATGGAGATTTTGATCACGGTAACCGATCAGAATGACAACAAGCCCGAATTC





ACCCAGGAGGTCTTTAAGGGGTCTGTCATGGAAGGTGCTCTTCCAGGAACCTCTGTGATGGAGGTCACAG





CCACAGACGCGGACGATGATGTGAACACCTACAATGCCGCCATCGCTTACACCATCCTCAGCCAAGATCC





TGAGCTCCCTGACAAAAATATGTTCACCATTAACAGGAACACAGGAGTCATCAGTGTGGTCACCACTGGG





CTGGACCGAGAGAGTTTCCCTACGTATACCCTGGTGGTTCAAGCTGCTGACCTTCAAGGTGAGGGGTTAA





GCACAACAGCAACAGCTGTGATCACAGTCACTGACACCAACGATAATCCTCCGATCTTCAATCCCACCAC





GTACAAGGGTCAGGTGCCTGAGAACGAGGCTAACGTCGTAATCACCACACTGAAAGTGACTGATGCTGAT





GCCCCCAATACCCCAGCGTGGGAGGCTGTATACACCATATTGAATGATGATGGTGGACAATTTGTCGTCA





CCACAAATCCAGTGAACAACGATGGCATTTTGAAAACAGCAAAGGGCTTGGATTTTGAGGCCAAGCAGCA





GTACATTCTACACGTAGCAGTGACGAATGTGGTACCTTTTGAGGTCTCTCTCACCACCTCCACAGCCACC





GTCACCGTGGATGTGCTGGATGTGAATGAAGCCCCCATCTTTGTGCCTCCTGAAAAGAGAGTGGAAGTGT





CCGAGGACTTTGGCGTGGGCCAGGAAATCACATCCTACACTGCCCAGGAGCCAGACACATTTATGGAACA





GAAAATAACATATCGGATTTGGAGAGACACTGCCAACTGGCTGGAGATTAATCCGGACACTGGTGCCATT





TCCACTCGGGCTGAGCTGGACAGGGAGGATTTTGAGCACGTGAAGAACAGCACGTACACAGCCCTAATCA





TAGCTACAGACAATGGTTCTCCAGTTGCTACTGGAACAGGGACACTTCTGCTGATCCTGTCTGATGTGAA





TGACAACGCCCCCATACCAGAACCTCGAACTATATTCTTCTGTGAGAGGAATCCAAAGCCTCAGGTCATA





AACATCATTGATGCAGACCTTCCTCCCAATACATCTCCCTTCACAGCAGAACTAACACACGGGGCGAGTG





CCAACTGGACCATTCAGTACAACGACCCAACCCAAGAATCTATCATTTTGAAGCCAAAGATGGCCTTAGA





GGTGGGTGACTACAAAATCAATCTCAAGCTCATGGATAACCAGAATAAAGACCAAGTGACCACCTTAGAG





GTCAGCGTGTGTGACTGTGAAGGGGCCGCTGGCGTCTGTAGGAAGGCACAGCCTGTCGAAGCAGGATTGC





AAATTCCTGCCATTCTGGGGATTCTTGGAGGAATTCTTGCTTTGCTAATTCTGATTCTGCTGCTCTTGCT





GTTTCTTCGGAGGAGAGCGGTGGTCAAAGAGCCCTTACTGCCCCCAGAGGATGACACCCGGGACAACGTT





TATTACTATGATGAAGAAGGAGGCGGAGAAGAGGACCAGGACTTTGACTTGAGCCAGCTGCACAGGGGCC





TGGACGCTCGGCCTGAAGTGACTCGTAACGACGTTGCACCAACCCTCATGAGTGTCCCCCGGTATCTTCC





CCGCCCTGCCAATCCCGATGAAATTGGAAATTTTATTGATGAAAATCTGAAAGCGGCTGATACTGACCCC





ACAGCCCCGCCTTATGATTCTCTGCTCGTGTTTGACTATGAAGGAAGCGGTTCCGAAGCTGCTAGTCTGA





GCTCCCTGAACTCCTCAGAGTCAGACAAAGACCAGGACTATGACTACTTGAACGAATGGGGCAATCGCTT





CAAGAAGCTGGCTGACATGTACGGAGGCGGCGAGGACGACTAGGGGACTCGAGAGAGGCGGGCCCCAGAC





CCATGTGCTGGGAAATGCAGAAATCACGTTGCTGGTGGTTTTTCAGCTCCCTTCCCTTGAGATGAGTTTC





TGGGGAAAAAAAAGAGACTGGTTAGTGATGCAGTTAGTATAGCTTTATACTCTCTCCACTTTATAGCTCT





AATAAGTTTGTGTTAGAAAAGTTTCGACTTATTTCTTAAAGCTTTTTTTTTTTTCCCATCACTCTTTACA





TGGTGGTGATGTCCAAAAGATACCCAAATTTTAATATTCCAGAAGAACAACTTTAGCATCAGAAGGTTCA





CCCAGCACCTTGCAGATTTTCTTAAGGAATTTTGTCTCACTTTTAAAAAGAAGGGGAGAAGTCAGCTACT





CTAGTTCTGTTGTTTTGTGTATATAATTTTTTAAAAAAAATTTGTGTGCTTCTGCTCATTACTACACTGG





TGTGTCCCTCTGCCTTTTTTTTTTTTTTAAGACAGGGTCTCATTCTATCGGCCAGGCTGGAGTGCAGTGG





TGCAATCACAGCTCACTGCAGCCTTGTCCTCCCAGGCTCAAGCTATCCTTGCACCTCAGCCTCCCAAGTA





GCTGGGACCACAGGCATGCACCACTACGCATGACTAATTTTTTAAATATTTGAGACGGGGTCTCCCTGTG





TTACCCAGGCTGGTCTCAAACTCCTGGGCTCAAGTGATCCTCCCATCTTGGCCTCCCAGAGTATTGGGAT





TACAGACATGAGCCACTGCACCTGCCCAGCTCCCCAACTCCCTGCCATTTTTTAAGAGACAGTTTCGCTC





CATCGCCCAGGCCTGGGATGCAGTGATGTGATCATAGCTCACTGTAACCTCAAACTCTGGGGCTCAAGCA





GTTCTCCCACCAGCCTCCTTTTTATTTTTTTGTACAGATGGGGTCTTGCTATGTTGCCCAAGCTGGTCTT





AAACTCCTGGCCTCAAGCAATCCTTCTGCCTTGGCCCCCCAAAGTGCTGGGATTGTGGGCATGAGCTGCT





GTGCCCAGCCTCCATGTTTTAATATCAACTCTCACTCCTGAATTCAGTTGCTTTGCCCAAGATAGGAGTT





CTCTGATGCAGAAATTATTGGGCTCTTTTAGGGTAAGAAGTTTGTGTCTTTGTCTGGCCACATCTTGACT





AGGTATTGTCTACTCTGAAGACCTTTAATGGCTTCCCTCTTTCATCTCCTGAGTATGTAACTTGCAATGG





GCAGCTATCCAGTGACTTGTTCTGAGTAAGTGTGTTCATTAATGTTTATTTAGCTCTGAAGCAAGAGTGA





TATACTCCAGGACTTAGAATAGTGCCTAAAGTGCTGCAGCCAAAGACAGAGCGGAACTATGAAAAGTGGG





CTTGGAGATGGCAGGAGAGCTTGTCATTGAGCCTGGCAATTTAGCAAACTGATGCTGAGGATGATTGAGG





TGGGTCTACCTCATCTCTGAAAATTCTGGAAGGAATGGAGGAGTCTCAACATGTGTTTCTGACACAAGAT





CCGTGGTTTGTACTCAAAGCCCAGAATCCCCAAGTGCCTGCTTTTGATGATGTCTACAGAAAATGCTGGC





TGAGCTGAACACATTTGCCCAATTCCAGGTGTGCACAGAAAACCGAGAATATTCAAAATTCCAAATTTTT





TTCTTAGGAGCAAGAAGAAAATGTGGCCCTAAAGGGGGTTAGTTGAGGGGTAGGGGGTAGTGAGGATCTT





GATTTGGATCTCTTTTTATTTAAATGTGAATTTCAACTTTTGACAATCAAAGAAAAGACTTTTGTTGAAA





TAGCTTTACTGTTTCTCAAGTGTTTTGGAGAAAAAAATCAACCCTGCAATCACTTTTTGGAATTGTCTTG





ATTTTTCGGCAGTTCAAGCTATATCGAATATAGTTCTGTGTAGAGAATGTCACTGTAGTTTTGAGTGTAT





ACATGTGTGGGTGCTGATAATTGTGTATTTTCTTTGGGGGTGGAAAAGGAAAACAATTCAAGCTGAGAAA





AGTATTCTCAAAGATGCATTTTTATAAATTTTATTAAACAATTTTGTTAAACCAT





SEQ ID NO: 12




Homo sapiens cyclin-dependent kinase inhibitor 1B (p27, Kip1)(CDKN1B),




mRNA


CTTCTTCGTCAGCCTCCCTTCCACCGCCATATTGGGCCACTAAAAAAAGGGGGCTCGTCTTTTCGGGGTG





TTTTTCTCCCCCTCCCCTGTCCCCGCTTGCTCACGGCTCTGCGACTCCGACGCCGGCAAGGTTTGGAGAG





CGGCTGGGTTCGCGGGACCCGCGGGCTTGCACCCGCCCAGACTCGGACGGGCTTTGCCACCCTCTCCGCT





TGCCTGGTCCCCTCTCCTCTCCGCCCTCCCGCTCGCCAGTCCATTTGATCAGCGGAGACTCGGCGGCCGG





GCCGGGGCTTCCCCGCAGCCCCTGCGCGCTCCTAGAGCTCGGGCCGTGGCTCGTCGGGGTCTGTGTCTTT





TGGCTCCGAGGGCAGTCGCTGGGCTTCCGAGAGGGGTTCGGGCTGCGTAGGGGCGCTTTGTTTTGTTCGG





TTTTGTTTTTTTGAGAGTGCGAGAGAGGCGGTCGTGCAGACCCGGGAGAAAGATGTCAAACGTGCGAGTG





TCTAACGGGAGCCCTAGCCTGGAGCGGATGGACGCCAGGCAGGCGGAGCACCCCAAGCCCTCGGCCTGCA





GGAACCTCTTCGGCCCGGTGGACCACGAAGAGTTAACCCGGGACTTGGAGAAGCACTGCAGAGACATGGA





AGAGGCGAGCCAGCGCAAGTGGAATTTCGATTTTCAGAATCACAAACCCCTAGAGGGCAAGTACGAGTGG





CAAGAGGTGGAGAAGGGCAGCTTGCCCGAGTTCTACTACAGACCCCCGCGGCCCCCCAAAGGTGCCTGCA





AGGTGCCGGCGCAGGAGAGCCAGGATGTCAGCGGGAGCCGCCCGGCGGCGCCTTTAATTGGGGCTCCGGC





TAACTCTGAGGACACGCATTTGGTGGACCCAAAGACTGATCCGTCGGACAGCCAGACGGGGTTAGCGGAG





CAATGCGCAGGAATAAGGAAGCGACCTGCAACCGACGATTCTTCTACTCAAAACAAAAGAGCCAACAGAA





CAGAAGAAAATGTTTCAGACGGTTCCCCAAATGCCGGTTCTGTGGAGCAGACGCCCAAGAAGCCTGGCCT





CAGAAGACGTCAAACGTAAACAGCTCGAATTAAGAATATGTTTCCTTGTTTATCAGATACATCACTGCTT





GATGAAGCAAGGAAGATATACATGAAAATTTTAAAAATACATATCGCTGACTTCATGGAATGGACATCCT





GTATAAGCACTGAAAAACAACAACACAATAACACTAAAATTTTAGGCACTCTTAAATGATCTGCCTCTAA





AAGCGTTGGATGTAGCATTATGCAATTAGGTTTTTCCTTATTTGCTTCATTGTACTACCTGTGTATATAG





TTTTTACCTTTTATGTAGCACATAAACTTTGGGGAAGGGAGGGCAGGGTGGGGCTGAGGAACTGACGTGG





AGCGGGGTATGAAGAGCTTGCTTTGATTTACAGCAAGTAGATAAATATTTGACTTGCATGAAGAGAAGCA





ATTTTGGGGAAGGGTTTGAATTGTTTTCTTTAAAGATGTAATGTCCCTTTCAGAGACAGCTGATACTTCA





TTTAAAAAAATCACAAAAATTTGAACACTGGCTAAAGATAATTGCTATTTATTTTTACAAGAAGTTTATT





CTCATTTGGGAGATCTGGTGATCTCCCAAGCTATCTAAAGTTTGTTAGATAGCTGCATGTGGCTTTTTTA





AAAAAGCAACAGAAACCTATCCTCACTGCCCTCCCCAGTCTCTCTTAAAGTTGGAATTTACCAGTTAATT





ACTCAGCAGAATGGTGATCACTCCAGGTAGTTTGGGGCAAAAATCCGAGGTGCTTGGGAGTTTTGAATGT





TAAGAATTGACCATCTGCTTTTATTAAATTTGTTGACAAAATTTTCTCATTTTCTTTTCACTTCGGGCTG





TGTAAACACAGTCAAAATAATTCTAAATCCCTCGATATTTTTAAAGATCTGTAAGTAACTTCACATTAAA





AAATGAAATATTTTTTAATTTAAAGCTTACTCTGTCCATTTATCCACAGGAAAGTGTTATTTTTCAAGGA





AGGTTCATGTAGAGAAAAGCACACTTGTAGGATAAGTGAAATGGATACTACATCTTTAAACAGTATTTCA





TTGCCTGTGTATGGAAAAACCATTTGAAGTGTACCTGTGTACATAACTCTGTAAAAACACTGAAAAATTA





TACTAACTTATTTATGTTAAAAGATTTTTTTTAATCTAGACAATATACAAGCCAAAGTGGCATGTTTTGT





GCATTTGTAAATGCTGTGTTGGGTAGAATAGGTTTTCCCCTCTTTTGTTAAATAATATGGCTATGCTTAA





AAGGTTGCATACTGAGCCAAGTATAATTTTTTGTAATGTGTGAAAAAGATGCCAATTATTGTTACACATT





AAGTAATCAATAAAGAAAACTTCCATAGCTATT





SEQ ID NO: 13




Homo sapiens checkpoint kinase 2 (CHEK2), transcript variant 3, mRNA




GCAGGTTTAGCGCCACTCTGCTGGCTGAGGCTGCGGAGAGTGTGCGGCTCCAGGTGGGCTCACGCGGTCG





TGATGTCTCGGGAGTCGGATGTTGAGGCTCAGCAGTCTCATGGCAGCAGTGCCTGTTCACAGCCCCATGG





CAGCGTTACCCAGTCCCAAGGCTCCTCCTCACAGTCCCAGGGCATATCCAGCTCCTCTACCAGCACGATG





CCAAACTCCAGCCAGTCCTCTCACTCCAGCTCTGGGACACTGAGCTCCTTAGAGACAGTGTCCACTCAGG





AACTCTATTCTATTCCTGAGGACCAAGAACCTGAGGACCAAGAACCTGAGGAGCCTACCCCTGCCCCCTG





GGCTCGATTATGGGCCCTTCAGGATGGATTTGCCAATCTTGAGACAGAGTCTGGCCATGTTACCCAATCT





GATCTTGAACTCCTGCTGTCATCTGATCCTCCTGCCTCAGCCTCCCAAAGTGCTGGGATAAGAGGTGTGA





GGCACCATCCCCGGCCAGTTTGCAGTCTAAAATGTGTGAATGACAACTACTGGTTTGGGAGGGACAAAAG





CTGTGAATATTGCTTTGATGAACCACTGCTGAAAAGAACAGATAAATACCGAACATACAGCAAGAAACAC





TTTCGGATTTTCAGGGAAGTGGGTCCTAAAAACTCTTACATTGCATACATAGAAGATCACAGTGGCAATG





GAACCTTTGTAAATACAGAGCTTGTAGGGAAAGGAAAACGCCGTCCTTTGAATAACAATTCTGAAATTGC





ACTGTCACTAAGCAGAAATAAAGTTTTTGTCTTTTTTGATCTGACTGTAGATGATCAGTCAGTTTATCCT





AAGGCATTAAGAGATGAATACATCATGTCAAAAACTCTTGGAAGTGGTGCCTGTGGAGAGGTAAAGCTGG





CTTTCGAGAGGAAAACATGTAAGAAAGTAGCCATAAAGATCATCAGCAAAAGGAAGTTTGCTATTGGTTC





AGCAAGAGAGGCAGACCCAGCTCTCAATGTTGAAACAGAAATAGAAATTTTGAAAAAGCTAAATCATCCT





TGCATCATCAAGATTAAAAACTTTTTTGATGCAGAAGATTATTATATTGTTTTGGAATTGATGGAAGGGG







G
AGAGCTGTTTGACAAAGTGGTGGGGAATAAACGCCTGAAAGAAGCTACCTGCAAGCTCTATTTTTACCA






GATGCTCTTGGCTGTGCAGTACCTTCATGAAAACGGTATTATACACCGTGACTTAAAGCCAGAGAATGTT





TTACTGTCATCTCAAGAAGAGGACTGTCTTATAAAGATTACTGATTTTGGGCACTCCAAGATTTTGGGAG





AGACCTCTCTCATGAGAACCTTATGTGGAACCCCCACCTACTTGGCGCCTGAAGTTCTTGTTTCTGTTGG





GACTGCTGGGTATAACCGTGCTGTGGACTGCTGGAGTTTAGGAGTTATTCTTTTTATCTGCCTTAGTGGG





TATCCACCTTTCTCTGAGCATAGGACTCAAGTGTCACTGAAGGATCAGATCACCAGTGGAAAATACAACT





TCATTCCTGAAGTCTGGGCAGAAGTCTCAGAGAAAGCTCTGGACCTTGTCAAGAAGTTGTTGGTAGTGGA





TCCAAAGGCACGTTTTACGACAGAAGAAGCCTTAAGACACCCGTGGCTTCAGGATGAAGACATGAAGAGA





AAGTTTCAAGATCTTCTGTCTGAGGAAAATGAATCCACAGCTCTACCCCAGGTTCTAGCCCAGCCTTCTA





CTAGTCGAAAGCGGCCCCGTGAAGGGGAAGCCGAGGGTGCCGAGACCACAAAGCGCCCAGCTGTGTGTGC





TGCTGTGTTGTGAACTCCGTGGTTTGAACACGAAAGAAATGTACCTTCTTTCACTCTGTCATCTTTCTTT





TCTTTGAGTCTGTTTTTTTATAGTTTGTATTTTAATTATGGGAATAATTGCTTTTTCACAGTCACTGATG





TACAATTAAAAACCTGATGGAACCTGGAAAA





SEQ ID NO: 14




Homo sapiens colony stimulating factor 3 receptor (granulocyte)(CSF3R),




transcript variant 3, mRNA


GAGTACTGTGAAGATGTGGTCCCCAAGGCTAGAGCTGAAAAGAGGCTTAGGGCCGGGTGAGCCTTCCAGC





CAGGGCCTGCCTCCAAGTGATGCTCCCCCAGGGCAGGGGGCATAAGGATGGCACCCAGCCAGGTGGGAGC





CTGGGCCCTGCCCAGCCTCAAAGCTTTGAGCTCAGGAAATCCGGAGGCAGGGGAGGGGGACATCGTTGCC





ACATTCCCCAGCCCTTTAAGACCCCCAAGGCAGGAAGGCTGCCCGGGCCTCACCAGCTTCCCTCACAGGC





TCCTTCCTGGGAGGAAGGGGCTGCCTGTGCCCTCGAAGGCGCAAGGGAGGGCAGGAGGGAGGCTCGGAAG





GTGTTGCAATCCCCAGCCCCCGGGCCTGTCAGAGGCTGAGCCATTAACGACAGAGCTCGGGGAGAGAAGC





TGGACTGCAGCTGGTTTCAGGAACTTCTCTTGACGAGAAGAGAGACCAAGGAGGCCAAGCAGGGGCTGGG





CCAGAGGTGCCAACATGGGGAAACTGAGGCTCGGCTCGGAAAGGTGAAGTAACTTGTCCAAGATCACAAA





GCTGGTGAACATCAAGTTGGTGCTATGGCAAGGCTGGGAAACTGCAGCCTGACTTGGGCTGCCCTGATCA





TCCTGCTGCTCCCCGGAAGTCTGGAGGAGTGCGGGCACATCAGTGTCTCAGCCCCCATCGTCCACCTGGG





GGATCCCATCACAGCCTCCTGCATCATCAAGCAGAACTGCAGCCATCTGGACCCGGAGCCACAGATTCTG





TGGAGACTGGGAGCAGAGCTTCAGCCCGGGGGCAGGCAGCAGCGTCTGTCTGATGGGACCCAGGAATCTA





TCATCACCCTGCCCCACCTCAACCACACTCAGGCCTTTCTCTCCTGCTGCCTGAACTGGGGCAACAGCCT





GCAGATCCTGGACCAGGTTGAGCTGCGCGCAGGCTACCCTCCAGCCATACCCCACAACCTCTCCTGCCTC





ATGAACCTCACAACCAGCAGCCTCATCTGCCAGTGGGAGCCAGGACCTGAGACCCACCTACCCACCAGCT





TCACTCTGAAGAGTTTCAAGAGCCGGGGCAACTGTCAGACCCAAGGGGACTCCATCCTGGACTGCGTGCC





CAAGGACGGGCAGAGCCACTGCTGCATCCCACGCAAACACCTGCTGTTGTACCAGAATATGGGCATCTGG





GTGCAGGCAGAGAATGCGCTGGGGACCAGCATGTCCCCACAACTGTGTCTTGATCCCATGGATGTTGTGA





AACTGGAGCCCCCCATGCTGCGGACCATGGACCCCAGCCCTGAAGCGGCCCCTCCCCAGGCAGGCTGCCT





ACAGCTGTGCTGGGAGCCATGGCAGCCAGGCCTGCACATAAATCAGAAGTGTGAGCTGCGCCACAAGCCG





CAGCGTGGAGAAGCCAGCTGGGCACTGGTGGGCCCCCTCCCCTTGGAGGCCCTTCAGTATGAGCTCTGCG





GGCTCCTCCCAGCCACGGCCTACACCCTGCAGATACGCTGCATCCGCTGGCCCCTGCCTGGCCACTGGAG





CGACTGGAGCCCCAGCCTGGAGCTGAGAACTACCGAACGGGCCCCCACTGTCAGACTGGACACATGGTGG





CGGCAGAGGCAGCTGGACCCCAGGACAGTGCAGCTGTTCTGGAAGCCAGTGCCCCTGGAGGAAGACAGCG





GACGGATCCAAGGTTATGTGGTTTCTTGGAGACCCTCAGGCCAGGCTGGGGCCATCCTGCCCCTCTGCAA





CACCACAGAGCTCAGCTGCACCTTCCACCTGCCTTCAGAAGCCCAGGAGGTGGCCCTTGTGGCCTATAAC





TCAGCCGGGACCTCTCGTCCCACTCCGGTGGTCTTCTCAGAAAGCAGAGGCCCAGCTCTGACCAGACTCC





ATGCCATGGCCCGAGACCCTCACAGCCTCTGGGTAGGCTGGGAGCCCCCCAATCCATGGCCTCAGGGCTA





TGTGATTGAGTGGGGCCTGGGCCCCCCCAGCGCGAGCAATAGCAACAAGACCTGGAGGATGGAACAGAAT





GGGAGAGCCACGGGGTTTCTGCTGAAGGAGAACATCAGGCCCTTTCAGCTCTATGAGATCATCGTGACTC





CCTTGTACCAGGACACCATGGGACCCTCCCAGCATGTCTATGCCTACTCTCAAGAAATGGCTCCCTCCCA





TGCCCCAGAGCTGCATCTAAAGCACATTGGCAAGACCTGGGCACAGCTGGAGTGGGTGCCTGAGCCCCCT





GAGCTGGGGAAGAGCCCCCTTACCCACTACACCATCTTCTGGACCAACGCTCAGAACCAGTCCTTCTCCG





CCATCCTGAATGCCTCCTCCCGTGGCTTTGTCCTCCATGGCCTGGAGCCCGCCAGTCTGTATCACATCCA





CCTCATGGCTGCCAGCCAGGCTGGGGCCACCAACAGTACAGTCCTCACCCTGATGACCTTGACCCCAGAG





GGGTCGGAGCTACACATCATCCTGGGCCTGTTCGGCCTCCTGCTGTTGCTCACCTGCCTCTGTGGAACTG





CCTGGCTCTGTTGCAGCCCCAACAGGAAGAATCCCCTCTGGCCAAGTGTCCCAGACCCAGCTCACAGCAG





CCTGGGCTCCTGGGTGCCCACAATCATGGAGGAGCTGCCCGGACCCAGACAGGGACAGTGGCTGGGGCAG





ACATCTGAAATGAGCCGTGCTCTCACCCCACATCCTTGTGTGCAGGATGCCTTCCAGCTGCCCGGCCTTG





GCACGCCACCCATCACCAAGCTCACAGTGCTGGAGGAGGATGAAAAGAAGCCGGTGCCCTGGGAGTCCCA





TAACAGCTCAGAGACCTGTGGCCTCCCCACTCTGGTCCAGACCTATGTGCTCCAGGGGGACCCAAGAGCA





GTTTCCACCCAGCCCCAATCCCAGTCTGGCACCAGCGATCAGGTCCTTTATGGGCAGCTGCTGGGCAGCC





CCACAAGCCCAGGGCCAGGGCACTATCTCCGCTGTGACTCCACTCAGCCCCTCTTGGCGGGCCTCACCCC





CAGCCCCAAGTCCTATGAGAACCTCTGGTTCCAGGCCAGCCCCTTGGGGACCCTGGTAACCCCAGCCCCA





AGCCAGGAGGACGACTGTGTCTTTGGGCCACTGCTCAACTTCCCCCTCCTGCAGGGGATCCGGGTCCATG





GGATGGAGGCGCTGGGGAGCTTCTAGGGCTTCCTGGGGTTCCCTTCTTGGGCCTGCCTCTTAAAGGCCTG





AGCTAGCTGGAGAAGAGGGGAGGGTCCATAAGCCCATGACTAAAAACTACCCCAGCCCAGGCTCTCACCA





TCTCCAGTCACCAGCATCTCCCTCTCCTCCCAATCTCCATAGGCTGGGCCTCCCAGGCGATCTGCATACT





TTAAGGACCAGATCATGCTCCATCCAGCCCCACCCAATGGCCTTTTGTGCTTGTTTCCTATAACTTCAGT





ATTGTAAACTAGTTTTTGGTTTGCAGTTTTTGTTGTTGTTTATAGACACTCTTGGGTGTAAAAAAAAAAA





SEQ ID NO: 15



CYHomo sapiens cathepsin S (CTSS), transcript variant 1, mRNA



GACAAGGGCTCTTCTTGATGGCTTACTGTATCCACTTTGTCCCCAAGACCATAGGGAAATGACTAGAGGT





GACTGTACTAGCTAGATTTTAAATGAAACTGAAATGAAAGTTCACTTCCTCATTTTGAGTACCTCATGTG





ACAAGTTCCAATTTCTTTTCAAGTCAATTGAACTGAAATCTCCTTGTTGCTTTGAAATCTTAGAAGAGAG





CCCACTAATTCAAGGACTCTTACTGTGGGAGCAACTGCTGGTTCTATCACAATGAAACGGCTGGTTTGTG





TGCTCTTGGTGTGCTCCTCTGCAGTGGCACAGTTGCATAAAGATCCTACCCTGGATCACCACTGGCATCT





CTGGAAGAAAACCTATGGCAAACAATACAAGGAAAAGAATGAAGAAGCAGTACGACGTCTCATCTGGGAA





AAGAATCTAAAGTTTGTGATGCTTCACAACCTGGAGCATTCAATGGGAATGCACTCATACGATCTGGGCA





TGAACCACCTGGGAGACATGACCAGTGAAGAAGTGATGTCTTTGATGAGTTCCCTGAGAGTTCCCAGCCA





GTGGCAGAGAAATATCACATATAAGTCAAACCCTAATCGGATATTGCCTGATTCTGTGGACTGGAGAGAG





AAAGGGTGTGTTACTGAAGTGAAATATCAAGGTTCTTGTGGTGCTTGCTGGGCTTTCAGTGCTGTGGGGG





CCCTGGAAGCACAGCTGAAGCTGAAAACAGGAAAGCTGGTGTCTCTCAGTGCCCAGAACCTGGTGGATTG





CTCAACTGAAAAATATGGAAACAAAGGCTGCAATGGTGGCTTCATGACAACGGCTTTCCAGTACATCATT





GATAACAAGGGCATCGACTCAGACGCTTCCTATCCCTACAAAGCCATGGATCAGAAATGTCAATATGACT





CAAAATATCGTGCTGCCACATGTTCAAAGTACACTGAACTTCCTTATGGCAGAGAAGATGTCCTGAAAGA





AGCTGTGGCCAATAAAGGCCCAGTGTCTGTTGGTGTAGATGCGCGTCATCCTTCTTTCTTCCTCTACAGA





AGTGGTGTCTACTATGAACCATCCTGTACTCAGAATGTGAATCATGGTGTACTTGTGGTTGGCTATGGTG





ATCTTAATGGGAAAGAATACTGGCTTGTGAAAAACAGCTGGGGCCACAACTTTGGTGAAGAAGGATATAT





TCGGATGGCAAGAAATAAAGGAAATCATTGTGGGATTGCTAGCTTTCCCTCTTACCCAGAAATCTAGAGG





ATCTCTCCTTTTTATAACAAATCAAGAAATATGAAGCACTTTCTCTTAACTTAATTTTTCCTGCTGTATC





CAGAAGAAATAATTGTGTCATGATTAATGTGTATTTACTGTACTAATTAGAAAATATAGTTTGAGGCCGG





GCACGGTGGCTCACGCCTGTAATCCCAGTACTTGGGAGGCCAAGGCAGGCATATCAACTTGAGGCCAGGA





GTTAAAGAGCAGCCTGGCTAACATGGTGAAACCCCATCTCTACTAAAAATACAAAAAATTAGCCGAGCAC





GGTGGTGCATGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCACGAGATTCCTTGAACCCAAGAGGTTG





AGGCTATGTTGAGCTGAGATCACACCACTGTACTCCAGCCTGGATGACAGAGTGGAGACTCTGTTTCAAA





AAAACAGAAAAGAAAATATAGTTTGATTCTTCATTTTTTTAAATTTGCAAATCTCAGGATAAAGTTTGCT





AAGTAAATTAGTAATGTACTATAGATATAACTGTACAAAAATTGTTCAACCTAAAACAATCTGTAATTGC





TTATTGTTTTATTGTATACTCTTTGTCTTTTTAAGACCCCTAATAGCCTTTTGTAACTTGATGGCTTAAA





AATACTTAATAAATCTGCCATTTCAAATTTCTATCATTGCCACATACCATTCTTATTCCTAGGCAACTAT





TAATAATCTATCCTGAGAATATTAATTGTGGTATTCTGGTGATGGGGTTTAGCAACTTTGATGGAAGAAA





ATATTAGGCTATAAATGTCCTAAGGACTCAGATTGTATCTTTGTACAGAAGAGGATTCAAAACGCCACGT





GTAGTGGCTCATGCCTGTAATCCCAACACTTTGGGAGGCTGAAGTAGGAGGATCGTCTTGAGCCCAGGAG





TTCAAGACCAGCCTGGACAACATAGTGAGACCTTGTCTCCACAAAAATAAAAAAGAAACTATCCAGGAGT





GGTGGTGTGTGCCTGTGGTCCCTGCTATGCAGATGTCTAAGACAGGAGGATCACAAGAGCCCAGGAGGTT





GAGAATGCAGTGAGCTTGTAATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGTCTTAA





AAAAAGAGGATTCAACACATATTTTTATATTATGTTAAAGTAAAGAAATGCATAAAAGACAAGCACTTTG





GAAGAATTATTTTAATGATCAACAATTTAATGTATTAGTCCAAATTATTTTTACGTAGTCATCAACAATT





TGACCAGGGCCTTTATTTGGCAAATAACTGAGCCAACCAGAATAAAATAACCAATACTCCACTGCTCATA





TTTTTATCTAATTCAGATGGATCTTCCTTACAACTGCTCTAGATTAGTAGATGCATCTAAGCAGGCAGCA





GGAACTTTAAATTTTTTAAGTTCATGTCTATGACATGAACAATGTGTGGGATAATGTCATTAATATATCC





TAAATTAACCTAAACGTATTTCACTAACTCTGGCTCCTTCTCCATAAAGCACATTTTAAGGAACAAGAAT





TGCTAAATATAAAAACATAAATAATACCATAATACATGGCTATCATCAAAAGTGTATAGAATATTATAGT





TTAAAAGTATTTAGTTGATTACTTTTCAGTTTTGTTTTGTTTTTTGAGACGGAGTCTCACTCTGTTGCCC





AGGCTGGAGTGCAGTGGCACCATCTCAGTTCACTGCAACTTCTGCCTCCCGAGTTCAAGCGATTCTCCTG





CCTCAGCCTCCCGAGTAGCTGGAATTATAGGCGTGCACCACCACGCCCAGCTAATTTTTGTATTTTTAGT





AAAGACAGGGTTTTGCCACATTAGCCAGGCTGGTCTCAAACTCCTGACCTCAGGTGATCCACCCACCCCA





GCCTCCCAAAGTGCTAAGATTACAGGCGTGAGCCACTGAGCCCAGCCTACTTTTCAGTTTTTAACATAAT





TTTTGTTTTATCCACAACTTTTCAAGTATTGAAAGTAGAATAAAAACATGGGTTCTTAGTCTTTAGCTAT





CTGTTAAAGCCTATGAATGCCTTCTTAAAATCATGTTTTTAAATGCATAAAATATATAGGATTACAAAGG





AATCTAATTATATCGAAATACAGTTATTAAAATGTTAAAAGATAAGTTTGTTATATATTAATATGCATGC





TTCTTTATAAATGCATTAAATAAGAGTTAATAGCTATCCTAAATTTGAAATAGTGATAAGCATAATGAAA





ATAGATGCAAAAAACTAATGTGATATGAAAATATCTGGGTTTTTCTTTTGATGATGAAGTATTGCTAATA





TTACCGTGGTTTATGAACTATGTTCAGAATTGAAGAAAATCCTAACTTTCAGTTAGAGGTTAGTGACGGG





GTTCAGGACACCCTACACAAAATACAGCACTTTGACATATTGAATATTTTAAGCTGAAGGCATTTGAGGA





AATTGCAGAAGCAGGAAGGTGACTCTGACCTTCTGCCTGCTGTTCTCCCCAGAAGCAGCCATAAAACCTG





GGAAGGATTTTCTGACCTTCCCCTGAAGTAGATCATAAGACTGTCATGTAAGAGGTGCTCTCCTGGCACC





CAGAGAAAAGGAGCATCCTTACCTCCAAAAGCACAGGGACACAAAGAGGAATCTAAACAAACAGGCCTCT





CAGTTTCCCCCAGTTTATTACATTTAGCTTGTTCACACTTTGCCCTATGACATTTCTACATCACTGGCTG





CTCTTCATCAAACCTACTATAAAAAACATTCAAGTTCAACTGTTTCTTTGGGCCTTTATTTCCTTATGGA





GCCCCTCGTGTCGTGTAAAACTTATATTAAATAAATGTGCATGCTTT





SEQ ID NO: 16




Homo sapiens epoxide hydrolase 2, cytoplasmic (EPHX2), mRNA




CTGGGCGGGTCATGCGCCCTGGCCTTCGCGCATCTCCCAGGTTAGCTGCGTGTCCGGGTGCTAGGCTGCA





GACCCGCCGCCATGACGCTGCGCGCGGCCGTCTTCGACCTTGACGGGGTGCTGGCGCTGCCAGCGGTGTT





CGGCGTCCTCGGCCGCACGGAGGAGGCCCTGGCGCTGCCCAGAGGACTTCTGAATGATGCTTTCCAGAAA





GGGGGACCAGAGGGTGCCACTACCCGGCTTATGAAAGGAGAGATCACACTTTCCCAGTGGATACCACTCA





TGGAAGAAAACTGCAGGAAGTGCTCCGAGACCGCTAAAGTCTGCCTCCCCAAGAATTTCTCCATAAAAGA





AATCTTTGACAAGGCGATTTCAGCCAGAAAGATCAACCGCCCCATGCTCCAGGCAGCTCTCATGCTCAGG





AAGAAAGGATTCACTACTGCCATCCTCACCAACACCTGGCTGGACGACCGTGCTGAGAGAGATGGCCTGG





CCCAGCTGATGTGTGAGCTGAAGATGCACTTTGACTTCCTGATAGAGTCGTGTCAGGTGGGAATGGTCAA





ACCTGAACCTCAGATCTACAAGTTTCTGCTGGACACCCTGAAGGCCAGCCCCAGTGAGGTCGTTTTTTTG





GATGACATCGGGGCTAATCTGAAGCCAGCCCGTGACTTGGGAATGGTCACCATCCTGGTCCAGGACACTG





ACACGGCCCTGAAAGAACTGGAGAAAGTGACCGGAATCCAGCTTCTCAATACCCCGGCCCCTCTGCCGAC





CTCTTGCAATCCAAGTGACATGAGCCATGGGTACGTGACAGTAAAGCCCAGGGTCCGTCTGCATTTTGTG





GAGCTGGGCTCCGGCCCTGCTGTGTGCCTCTGCCATGGATTTCCCGAGAGTTGGTATTCTTGGAGGTACC





AGATCCCTGCTCTGGCCCAGGCAGGTTACCGGGTCCTAGCTATGGACATGAAAGGCTATGGAGAGTCATC





TGCTCCTCCCGAAATAGAAGAATATTGCATGGAAGTGTTATGTAAGGAGATGGTAACCTTCCTGGATAAA





CTGGGCCTCTCTCAAGCAGTGTTCATTGGCCATGACTGGGGTGGCATGCTGGTGTGGTACATGGCTCTCT





TCTACCCCGAGAGAGTGAGGGCGGTGGCCAGTTTGAATACTCCCTTCATACCAGCAAATCCCAACATGTC





CCCTTTGGAGAGTATCAAAGCCAACCCAGTATTTGATTACCAGCTCTACTTCCAAGAACCAGGAGTGGCT





GAGGCTGAACTGGAACAGAACCTGAGTCGGACTTTCAAAAGCCTCTTCAGAGCAAGCGATGAGAGTGTTT





TATCCATGCATAAAGTCTGTGAAGCGGGAGGACTTTTTGTAAATAGCCCAGAAGAGCCCAGCCTCAGCAG





GATGGTCACTGAGGAGGAAATCCAGTTCTATGTGCAGCAGTTCAAGAAGTCTGGTTTCAGAGGTCCTCTA





AACTGGTACCGAAACATGGAAAGGAACTGGAAGTGGGCTTGCAAAAGCTTGGGACGGAAGATCCTGATTC





CGGCCCTGATGGTCACGGCGGAGAAGGACTTCGTGCTCGTTCCTCAGATGTCCCAGCACATGGAGGACTG





GATTCCCCACCTGAAAAGGGGACACATTGAGGACTGTGGGCACTGGACACAGATGGACAAGCCAACCGAG





GTGAATCAGATCCTCATTAAGTGGCTGGATTCTGATGCCCGGAACCCACCGGTGGTCTCAAAGATGTAGA





ACGCAGCGTGTGCCCACGCTCAGCAGGTGTGCCATCCTTCCACCTGCTGGGGCACCATTCTTAGTATACA





GAGGTGGCCTTACACACATCTTGCATGGATGGCAGCATTGTTCTGAAGGGGTTTGCAGAAAAAAAAGATT





TTCTTTACATAAAGTGAATCAAATTTGACATTATTTTAGATCCCAGAGAAATCAGGTGTGATTAGTTCTC





CAGGCATGAATGCATCGTCCCTTTATCTGTAAGAACCCTTAGTGTCCTGTAGGGGGACAGAATGGGGTGG





CCAGGTGGTGATTTCTCTTTGACCAATGCATAGTTTGGCAGAAAAATCAGCCGTTCATTTAGAAGAATCT





TAGCAGAGATTGGGATGCCTTACTCAATAAAGCTAAGATGACTATGCTGCTGGCTGTCTTTGTTCTTGGA





GAGGTGGAGTGACTGTTCACGGAGAA





SEQ ID NO: 17




Homo sapiens exostosin 2 (EXT2), transcript variant 2, mRNA




CTGTCTGAGCATTTCACTGCGGAGCCTGAGCGCGCCTGCCTGGGAAAACACTGCAGCGGTGCTCGGACTC





CTCCTGTCCAGCAGGAGGCGCGGCCCGGCAGCTCCCGCATGCGCAGTGCGCTCGGTGTCAGACGGCCCGG





ATCCCGGTTACCGGCCCCTCGCTCGCTGCTCGCCAGCCCAGACTCGGCCCTGGCAGTGGCGGCTGGCGAT





TCGGACCGATCCGACCTGGGCGGAGGTGGCCCGCGCCCCGCGGCATGAGCCGGTGACCAAGCTCGGGGCC





GAGCGGGAGGCAGCCGTGGCCGAGGAGTGTGAGGAAGAGGCTGTCTGTGTCATTATGTGTGCGTCGGTCA





AGTATAATATCCGGGGTCCTGCCCTCATCCCAAGAATGAAGACCAAGCACCGAATCTACTATATCACCCT





CTTCTCCATTGTCCTCCTGGGCCTCATTGCCACTGGCATGTTTCAGTTTTGGCCCCATTCTATCGAGTCC





TCAAATGACTGGAATGTAGAGAAGCGCAGCATCCGTGATGTGCCGGTTGTTAGGCTGCCAGCCGACAGTC





CCATCCCAGAGCGGGGGGATCTCAGTTGCAGAATGCACACGTGTTTTGATGTCTATCGCTGTGGCTTCAA





CCCAAAGAACAAAATCAAGGTGTATATCTATGCTCTGAAAAAGTACGTGGATGACTTTGGCGTCTCTGTC





AGCAACACCATCTCCCGGGAGTATAATGAACTGCTCATGGCCATCTCAGACAGTGACTACTACACTGATG





ACATCAACCGGGCCTGTCTGTTTGTTCCCTCCATCGATGTGCTTAACCAGAACACACTGCGCATCAAGGA





GACAGCACAAGCGATGGCCCAGCTCTCTAGGTGGGATCGAGGTACGAATCACCTGTTGTTCAACATGTTG





CCTGGAGGTCCCCCAGATTATAACACAGCCCTGGATGTCCCCAGAGACAGGGCCCTGTTGGCTGGTGGCG





GCTTTTCTACGTGGACTTACCGGCAAGGCTACGATGTCAGCATTCCTGTCTATAGTCCACTGTCAGCTGA





GGTGGATCTTCCAGAGAAAGGACCAGGTCCACGGCAATACTTCCTCCTGTCATCTCAGGTGGGTCTCCAT





CCTGAGTACAGAGAGGACCTAGAAGCCCTCCAGGTCAAACATGGAGAGTCAGTGTTAGTACTCGATAAAT





GCACCAACCTCTCAGAGGGTGTCCTTTCTGTCCGTAAGCGCTGCCACAAGCACCAGGTCTTCGATTACCC





ACAGGTGCTACAGGAGGCTACTTTCTGTGTGGTTCTTCGTGGAGCTCGGCTGGGCCAGGCAGTATTGAGC





GATGTGTTACAAGCTGGCTGTGTCCCGGTTGTCATTGCAGACTCCTATATTTTGCCTTTCTCTGAAGTTC





TTGACTGGAAGAGAGCATCTGTGGTTGTACCAGAAGAAAAGATGTCAGATGTGTACAGTATTTTGCAGAG





CATCCCCCAAAGACAGATTGAAGAAATGCAGAGACAGGCCCGGTGGTTCTGGGAAGCGTACTTCCAGTCA





ATTAAAGCCATTGCCCTGGCCACCCTGCAGATTATCAATGACCGGATCTATCCATATGCTGCCATCTCCT





ATGAAGAATGGAATGACCCTCCTGCTGTGAAGTGGGGCAGCGTGAGCAATCCACTCTTCCTCCCGCTGAT





CCCACCACAGTCTCAAGGGTTCACCGCCATAGTCCTCACCTACGACCGAGTAGAGAGCCTCTTCCGGGTC





ATCACTGAAGTGTCCAAGGTGCCCAGTCTATCCAAACTACTTGTCGTCTGGAATAATCAGAATAAAAACC





CTCCAGAAGATTCTCTCTGGCCCAAAATCCGGGTTCCATTAAAAGTTGTGAGGACTGCTGAAAACAAGTT





AAGTAACCGTTTCTTCCCTTATGATGAAATCGAGACAGAAGCTGTTCTGGCCATTGATGATGATATCATT





ATGCTGACCTCTGACGAGCTGCAATTTGGTTATGAGGTCTGGCGGGAATTTCCTGACCGGTTGGTGGGTT





ACCCGGGTCGTCTGCATCTCTGGGACCATGAGATGAATAAGTGGAAGTATGAGTCTGAGTGGACGAATGA





AGTGTCCATGGTGCTCACTGGGGCAGCTTTTTATCACAAGTATTTTAATTACCTGTATACCTACAAAATG





CCTGGGGATATCAAGAACTGGGTAGATGCTCATATGAACTGTGAAGATATTGCCATGAACTTCCTGGTGG





CCAACGTCACGGGAAAAGCAGTTATCAAGGTAACCCCACGAAAGAAATTCAAGTGTCCTGAGTGCACAGC





CATAGATGGGCTTTCACTAGACCAAACACACATGGTGGAGAGGTCAGAGTGCATCAACAAGTTTGCTTCA





GTCTTCGGGACCATGCCTCTCAAGGTGGTGGAACACCGAGCTGACCCTGTCCTGTACAAAGATGACTTTC





CTGAGAAGCTGAAGAGCTTCCCCAACATTGGCAGCTTATGAAACGTGTCATTGGTGGAGGTCTGAATGTG





AGGCTGGGACAGAGGGAGAGAACAAGGCCTCCCAGCACTCTGATGTCAGAGTAGTAGGTTAAGGGTGGAA





GGTTGACCTACTTGGATCTTGGCATGCACCCACCTAACCCACTTTCTCAAGAACAAGAACCTAGAATGAA





TATCCAAGCACCTCGAGCTATGCAACCTCTGTTCTTGTATTTCTTATGATCTCTGATGGGTTCTTCTCGA





AAATGCCAAGTGGAAGACTTTGTGGCATGCTCCAGATTTAAATCCAGCTGAGGCTCCCTTTGTTTTCAGT





TCCATGTAACAATCTGGAAGGAAACTTCACGGACAGGAAGACTGCTGGAGAAGAGAAGCGTGTTAGCCCA





TTTGAGGTCTGGGGAATCATGTAAAGGGTACCCAGACCTCACTTTTAGTTATTTACATCAATGAGTTCTT





TCAGGGAACCAAACCCAGAATTCGGTGCAAAAGCCAAACATCTTGGTGGGATTTGATAAATGCCTTGGGA





CCTGGAGTGCTGGGCTTGTGCACAGGAAGAGCACCAGCCGCTGAGTCAGGATCCTGTCAGTTCCATGAGC





TATTCCTCTTTGGTTTGGCTTTTTGATATGATTAAAATTATTTTTTATTCCTTTTTCTACTGTGTCTTAA





ACACCAATTCCTGATAGTCCAAGGAACCACCTTTCTCCCTTGATATATTTAACTCCGTCTTTGGCCTGAC





AACAGTCTTCTGCCCATGTCTGGGAACACACGCCAGGAGGAATGTCTGATACCCTCTGCATCAAGCGTAA





GAAGGTCCCAAATCATAACCATTTTAAGAACAGATGACTCAGAAACCTCCAGAGGAATCTGTTTGCTTCC





TGATTAGATCCAGTCAATGTTTTAAAGGTATTGTCAGAGAAAAACAGAGGGTCTGTACTAGCCATGCAAG





GAGTCGCTCTAGCTGGTACCCGTAAAAGTTGTGGGAATTGTGACCCCCATCCCAAGGGGATGCCAAAATT





TCTCTCATTCTTTTGGTATAAACTTAACATTAGCCAGGGAGGTTCTGGCTAACGTTAAATGCTGCTATAC





AACTGCTTTGCAACAGTTGCTGGTATATTTAAATCATTAAATTTCAGCATTTACTAATACTGCAAAAAAA





AAAAAAAAAAA





SEQ ID NO: 18




Homo sapiens FBJ murine osteosarcoma viral oncogene homolog (FOS), mRNA




ATTCATAAAACGCTTGTTATAAAAGCAGTGGCTGCGGCGCCTCGTACTCCAACCGCATCTGCAGCGAGCA





TCTGAGAAGCCAAGACTGAGCCGGCGGCCGCGGCGCAGCGAACGAGCAGTGACCGTGCTCCTACCCAGCT





CTGCTCCACAGCGCCCACCTGTCTCCGCCCCTCGGCCCCTCGCCCGGCTTTGCCTAACCGCCACGATGAT





GTTCTCGGGCTTCAACGCAGACTACGAGGCGTCATCCTCCCGCTGCAGCAGCGCGTCCCCGGCCGGGGAT





AGCCTCTCTTACTACCACTCACCCGCAGACTCCTTCTCCAGCATGGGCTCGCCTGTCAACGCGCAGGACT







TCTGCACGGACCTG
GCCGTCTCCAGTGCCAACTTCATTCCCACGGTCACTGCCATCTCGACCAGTCCGGA






CCTGCAGTGGCTGGTGCAGCCCGCCCTCGTCTCCTCCGTGGCCCCATCGCAGACCAGAGCCCCTCACCCT





TTCGGAGTCCCCGCCCCCTCCGCTGGGGCTTACTCCAGGGCTGGCGTTGTGAAGACCATGACAGGAGGCC





GAGCGCAGAGCATTGGCAGGAGGGGCAAGGTGGAACAGTTATCTCCAGAAGAAGAAGAGAAAAGGAGAAT





CCGAAGGGAAAGGAATAAGATGGCTGCAGCCAAATGCCGCAACCGGAGGAGGGAGCTGACTGATACACTC





CAAGCGGAGACAGACCAACTAGAAGATGAGAAGTCTGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGG





AGAAGGAAAAACTAGAGTTCATCCTGGCAGCTCACCGACCTGCCTGCAAGATCCCTGATGACCTGGGCTT





CCCAGAAGAGATGTCTGTGGCTTCCCTTGATCTGACTGGGGGCCTGCCAGAGGTTGCCACCCCGGAGTCT





GAGGAGGCCTTCACCCTGCCTCTCCTCAATGACCCTGAGCCCAAGCCCTCAGTGGAACCTGTCAAGAGCA





TCAGCAGCATGGAGCTGAAGACCGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAGGCCCAGTGG





CTCTGAGACAGCCCGCTCCGTGCCAGACATGGACCTATCTGGGTCCTTCTATGCAGCAGACTGGGAGCCT





CTGCACAGTGGCTCCCTGGGGATGGGGCCCATGGCCACAGAGCTGGAGCCCCTGTGCACTCCGGTGGTCA





CCTGTACTCCCAGCTGCACTGCTTACACGTCTTCCTTCGTCTTCACCTACCCCGAGGCTGACTCCTTCCC





CAGCTGTGCAGCTGCCCACCGCAAGGGCAGCAGCAGCAATGAGCCTTCCTCTGACTCGCTCAGCTCACCC





ACGCTGCTGGCCCTGTGAGGGGGCAGGGAAGGGGAGGCAGCCGGCACCCACAAGTGCCACTGCCCGAGCT





GGTGCATTACAGAGAGGAGAAACACATCTTCCCTAGAGGGTTCCTGTAGACCTAGGGAGGACCTTATCTG





TGCGTGAAACACACCAGGCTGTGGGCCTCAAGGACTTGAAAGCATCCATGTGTGGACTCAAGTCCTTACC





TCTTCCGGAGATGTAGCAAAACGCATGGAGTGTGTATTGTTCCCAGTGACACTTCAGAGAGCTGGTAGTT





AGTAGCATGTTGAGCCAGGCCTGGGTCTGTGTCTCTTTTCTCTTTCTCCTTAGTCTTCTCATAGCATTAA





CTAATCTATTGGGTTCATTATTGGAATTAACCTGGTGCTGGATATTTTCAAATTGTATCTAGTGCAGCTG





ATTTTAACAATAACTACTGTGTTCCTGGCAATAGTGTGTTCTGATTAGAAATGACCAATATTATACTAAG





AAAAGATACGACTTTATTTTCTGGTAGATAGAAATAAATAGCTATATCCATGTACTGTAGTTTTTCTTCA





ACATCAATGTTCATTGTAATGTTACTGATCATGCATTGTTGAGGTGGTCTGAATGTTCTGACATTAACAG





TTTTCCATGAAAACGTTTTATTGTGTTTTTAATTTATTTATTAAGATGGATTCTCAGATATTTATATTTT





TATTTTATTTTTTTCTACCTTGAGGTCTTTTGACATGTGGAAAGTGAATTTGAATGAAAAATTTAAGCAT





TGTTTGCTTATTGTTCCAAGACATTGTCAATAAAAGCATTTAAGTTGAATGCGACCAA





SEQ ID NO: 19




Homo sapiens FOS-like antigen 1 (FOSL1), mRNA




ACGGGCCAAGGCGGCGCGTCTCGGGGGTGGAGCCTGGAGGTGACCGCGCCGCTGCAACGCCCCCACCCCC





CGCGGTCGCAGTGGTTCAGCCCGAGAACTTTTCATTCATAAAAAGAAAAGACTCCGCACGGCGCGGGTGA





GTCAGAACCCAGCAGCCGTGTACCCCGCAGAGCCGCCAGCCCCGGGCATGTTCCGAGACTTCGGGGAACC





CGGCCCGAGCTCCGGGAACGGCGGCGGGTACGGCGGCCCCGCGCAGCCCCCGGCCGCAGCGCAGGCAGCC





CAGCAGAAGTTCCACCTGGTGCCAAGCATCAACACCATGAGTGGCAGTCAGGAGCTGCAGTGGATGGTAC





AGCCTCATTTCCTGGGGCCCAGCAGTTACCCCAGGCCTCTGACCTACCCTCAGTACAGCCCCCCACAACC





CCGGCCAGGAGTCATCCGGGCCCTGGGGCCGCCTCCAGGGGTACGTCGAAGGCCTTGTGAACAGATCAGC





CCGGAGGAAGAGGAGCGCCGCCGAGTAAGGCGCGAGCGGAACAAGCTGGCTGCGGCCAAGTGCAGGAACC





GGAGGAAGGAACTGACCGACTTCCTGCAGGCGGAGACTGACAAACTGGAAGATGAGAAATCTGGGCTGCA





GCGAGAGATTGAGGAGCTGCAGAAGCAGAAGGAGCGCCTAGAGCTGGTGCTGGAAGCCCACCGACCCATC





TGCAAAATCCCGGAAGGAGCCAAGGAGGGGGACACAGGCAGTACCAGTGGCACCAGCAGCCCACCAGCCC





CCTGCCGCCCTGTACCTTGTATCTCCCTTTCCCCAGGGCCTGTGCTTGAACCTGAGGCACTGCACACCCC





CACACTCATGACCACACCCTCCCTAACTCCTTTCACCCCCAGCCTGGTCTTCACCTACCCCAGCACTCCT





GAGCCTTGTGCCTCAGCTCATCGCAAGAGTAGCAGCAGCAGCGGAGACCCATCCTCTGACCCCCTTGGCT





CTCCAACCCTCCTCGCTTTGTGAGGCGCCTGAGCCCTACTCCCTGCAGATGCCACCCTAGCCAATGTCTC





CTCCCCTTCCCCCACCGGTCCAGCTGGCCTGGACAGTATCCCACATCCAACTCCAGCAACTTCTTCTCCA







T
CCCTCTAATGAGACTGACCATATTGTGCTTCACAGTAGAGCCAGCTTGGGGCCACCAAAGCTGCCCACT






GTTTCTCTTGAGCTGGCCTCTCTAGCACAATTTGCACTAAATCAGAGACAAAATATTTCCCATTTGTGCC





AGAGGAATCCTGGCAGCCCAGAGACTTTGTAGATCCTTAGAGGTCCTCTGGAGCCCTAACCCCTTCCAGA





TCACTGCCACACTCTCCATCACCCTCTTCCTGTGATCCACCCAACCCTATCTCCTGACAGAAGGTGCCAC





TTTACCCACCTAGAACACTAACTCACCAGCCCCACTGCCAGCAGCAGCAGGTGATTGGACCAGGCCATTC





TGCCGCCCCCTCCTGAACCGCACAGCTCAGGAGGCGCCCTTGGCTTCTGTGATGAGCTGATCTGCGGATC





TCAGCTTTGAGAAGCCTTCAGCTCCAGGGAATCCAAGCCTCCACAGCGAGGGCAGCTGCTATTTATTTTC





CTAAAGAGAGTATTTTTATACAAACCTACCAAAATGGAATAAAAGGCTTGAAGCTGTG





SEQ ID NO: 20




Homo sapiens forkhead box N3 (FOXN3), transcript variant 1, mRNA




CGCGATCTGCTGCAGCTCGGCCGGGAGACGGCGCGACCCGGCGGCGGGGCCACCCGCGAGTCCAGCGTCG





CCGCAGCCCCCCAATGCGGCCGCGAGAAGCAGCGGGGGGGCAGGCGATCGAAGGAGCCTTCACGTAAATG





GGTCCAGTCATGCCTCCCAGTAAGAAGCCAGAAAGCTCAGGAATTAGTGTCTCCAGTGGACTGAGTCAGT





GTTACGGGGGCAGCGGTTTCTCCAAGGCCCTTCAGGAAGACGATGACCTCGACTTTTCTCTGCCTGACAT





CCGATTAGAAGAGGGGGCCATGGAAGATGAAGAGCTGACCAACCTGAACTGGCTGCACGAGAGCAAGAAC





TTGCTGAAGAGCTTTGGGGAGTCGGTCCTCAGGAGTGTCAGCCCCGTCCAGGACCTGGACGATGACACCC





CCCCATCCCCTGCCCACTCTGACATGCCCTACGATGCCAGGCAGAACCCCAACTGCAAACCCCCCTACTC





CTTCAGCTGCCTCATATTTATGGCCATCGAGGACTCTCCAACCAAGCGCCTGCCAGTGAAGGATATCTAC





AACTGGATCTTGGAACATTTTCCGTATTTTGCAAATGCACCTACTGGGTGGAAAAACTCAGTGAGACACA





ATTTATCATTGAATAAGTGTTTTAAGAAAGTGGACAAAGAGAGGAGTCAGAGTATTGGGAAAGGGTCGTT





GTGGTGCATAGACCCAGAGTATAGACAAAATCTAATTCAGGCTTTGAAAAAGACACCTTATCACCCACAC





CCACACGTGTTCAATACACCTCCCACCTGTCCTCAGGCATATCAAAGCACATCAGGTCCACCCATCTGGC





CGGGCAGTACCTTCTTCAAGAGAAATGGAGCCCTTCTCCAAGATCCTGACATTGATGCTGCCAGTGCCAT





GATGCTTTTGAATACTCCCCCTGAGATACAAGCAGGTTTTCCTCCAGGAGTGATCCAAAATGGAGCGCGG





GTCCTGAGCCGAGGGCTGTTTCCTGGCGTGCGGCCGCTGCCAATCACTCCCATTGGGGTGACAGCGGCCA





TGAGGAATGGCATCACCAGCTGCCGGATGCGGACTGAGAGTGAGCCATCTTGTGGCTCCCCAGTGGTCAG





CGGAGACCCCAAGGAGGATCACAACTACAGCAGTGCCAAGTCCTCCAACGCCCGGAGCACCTCGCCCACC





AGCGACTCCATCTCCTCCTCCTCCTCCTCAGCCGACGACCACTATGAGTTTGCCACCAAGGGGAGCCAGG





AGGGCAGCGAGGGCAGCGAGGGGAGCTTCCGGAGCCACGAGAGCCCCAGCGACACGGAAGAGGACGACAG





GAAGCACAGCCAGAAGGAGCCCAAGGATTCTCTGGGGGACAGCGGGTACGCATCCCAGCACAAGAAGCGC





CAGCACTTCGCCAAGGCCAGGAAGGTCCCCAGCGACACACTGCCCCTCAAAAAGAGACGCACCGAAAAGC





CCCCCGAGAGCGATGATGAGGAGATGAAAGAAGCGGCAGGGTCCCTCCTGCACTTAGCAGGGATCCGGTC





CTGTTTGAATAACATCACCAATCGGACGGCAAAGGGGCAGAAAGAGCAAAAGGAAACCACAAAAAATTAA





AAACAAGTCACTGATTTGTTTTGAACTTACGACCATTTGGTTTCAGCATGTCAGGAGATTTCTAATGATT





TGTGGCAATATCAGCAATTTTTTTTCTTTTTTCTTGTTTTTGGTTTGGTTTTCTTTCTTTTCTTTTCCTT





TTATTTTGTTTTAATTTGCCCCCTCTTCTTTGTTTTGGACCCTTAAGAATTTTATTTTTAAAGGAGATTG





AAGCCATAGAACTCATATTGACACTCAGCTGTTTTACAAAAGCTTTTCATTATCTGAAGACAAAACCGAA





AAAGCCAAAATTACCATTGCTTCCTCCAGCTTGTCAGAAACCTGTGGCTGAATCCGCAGGGATGTCAACG





TCAATATCACAGGAACACACATTCGGCACCTAGAAGGCACGTGGGCAAAGTAATCATCGTTCAGGCCCAA





CCCTTAGGTTTAAAAAGTCAGGTTGTCCATCCCATTGGGTTCACTGAGTGAAGGCACATAAAGCAATTGA





GGAGGAGGAGGAACCCCTCGTCCCCCTAGGAGCAGACCCAAGCTTGTGGCACCAGGCATCTGATGGTGCC





AGGAAAGCCACTGGAATTGTCACACGGCGAGCACAGAGGGCCGGCCACCAGTCCTCGATGCTTCTGAACC





CTGAAGCCCGATGACATCTTACGAGGTGGACGTTGGACTGTTCATGCGCATCGGGTGTCAGTGACTCATG





GAGAAGAAATGGGGTAAATTTTTAGTGATGTTGCTAATCATTGAATTCTGTTCTCTATTAAATTAAGAAA





ATGTTCCAAAAGCCATAAGCCTGAAGATTGGCCCTGTGCACGCACGCACACACACACACACACACACACA





CACACACACACACACACGAAGGAGAGAGAGAGAAAACTGATGGGGAAAACAAGCTGTGTCTTCTTAACTG





CCCAAGTGAAAAGCAACCAAGTCCAGGAAATTACAATAGCTGTTAAGGAAAGGAAATAATGGTACAGATC





TTTTTCTGTCTATCAAAACTATTTGATCCAAGTGAAAAAAAAAAAAAAACTAGAAAGCTACGGAACCTGC





CATTAGTATTGTGGTGTATTTTTAAGATTAAAGGTACACTGATGGACAAAAAAAAAAAGTAAAACATGGC





AAAAAATAAAATAACTCCTATACTGCCCTCAAAATGGAGTTTGCAATTAATATCAGGATTTATCTTTGCA





AAAATCAGTGATTTCCACATTCAGCCAGTATAGCCAGCAGAAATTTCTGATCCACAATGCATGGATTCCT





TTGAGAAAAAAAAAGAAAAAGAGAAAAAAATCACAAAAACAAACTTTTTTTATTCAAAAGTAACAAAGTT





CTTGTAAGGTAAATAATGTATTTAGCATGAAGCATGAATTATTTTCATATAAATATAGAAAATAGAGAAA





AGGCTATGCCTGTAATTTTTAAGCCCTTAGGCTTAGAGTTTCTTTTGGTTTTCTTCTTTTTTCTTTCCTT





TTCTTTGCTTTCTTTTTTTCCTTTTTGTTTTTGTTTTTGTTTTTTGTTTTTGTTTTTTTTTCGGGTTATT





TTGTTTTGGTTTTTTGAAGCAGGTGTTTAAGGTTTAACCTTCTTCAGGGACAAATTCTGACTGTTGGGGA





ACTTACTCTGCAATATAAAAATATCTTCATGCTCTGGTAGGGCTTGGATGGTTGAACTCTGTACTGCCTT





GTGTGCACTTCAGCCCCGACCCCCTCTGATTCTCTGTTGAAAAGTGTGTCCTTTCTCTCTGTCTGTACAT





GTTTAACATGACGCAATAATTTGAGGGCAAACTTAGTAGTGAGTGTGTATGATAGAATCAAGAGAATTAT





GGGACGCTTACTTGAGAAAATCATTACCATGATTTGGTTCTAGGAAAAAGGCAGTGAATAATTATGCAAA





TTAGCCAGAAGAAGGGGAACCGTGCTAATGGGCCTTATTGGGTGAGGGGACGAGATGGGGTTCATGTGAA





GGAGGAAGCGATGCCGAGGTAGGAAAGGCCAGCCCCAGACATCCTATCGCCACAATGCCATGTCGCAATA





GGAAGCAGGGGCCGGCCATCGCTACCTTCAGCACACTGACCAACCTGGAATTAAGACCACCTAGATTGCG





AGAGCTGAATTTAGAAACCAGACAACGTCATGCAGCCCAGAAACTCCTGTTGTTACCTTTGCCTAAGAAA





TTTTCTTTAATGGCGGGGGCGGGGGGCGGGGGTACAAAGAGAAATCTCTAAAAGAATATGATCTTCCATC





CAAGTGGAGGGAAACTTTAAAACAAAAACACCCAGTACTGTGGCTCAGGATATGATGCGTGAGGAGAGGG





AGGGAACAGAGATGACCTTAACTTTTAAAAAAGGGACTGCTGTGGGCCAAAGCCAAGCCCATCTGCCAGG





ACGAGGTAATGTCAGAGCTCCATCAGCCCGGACAGTGGGAACTAACTGGTGCATTCCCCACACTTACCTT





CCGGTGGGTTGCTGATGAGAGAACCTGAAAAAACCTACACCTCTACAGCAGGTCGAATTCATGACCTGAA





GCTGAATACTTCCAGCATATTTATTCAGGGTGTAGGTGGGAATAAAGTATCTTCGCAGTGCTCTGTTCCC





TCCGTCTCCCCAGACATCTGACACCCTAAAAGCCATCCACAGCTATGGAACCTGAGCGACACCTTGATTT





GTGTTGTCACCTGACCAAGCCTAAAGACCTCCAGCTCAGTCCCCCACCTTCATCCCACCCCACAGATGAT





AAAATTCAGACCTCTCTCCTGAAAGGCAGAGGTTCAACATTCAGGACTGTTTCTGGCCGAGGACTTCTTC





CAATTAAAACCCCCACCGTGGGCTGTCTCCCCTCATTTCATTTTTCTAAAGGGGCAGAGGCCTCTTTTAG





AAAATAATAAAATGCAATGTGTGTGATTTACTTTTCTGATCTCTTTGAGAAATAGAGAAATATAAAAGTG





TGTTCTTAACTCCAGAACCACTCTTTTTGCATAAATACCTCATCGGGCAGCTTTCTAAGTGTGATTTTCC





TGAGTCTCCCTTCGTTGGATCTGCCGGAAGACTTGTCGGGGAACCTTTAGTGAGGGTACTTCTTCCTATT





TTTCTTCTGTTTTTGGAGGCATACACATTATGCATAACCAAAACAATGGCTCAATTGTGTTTAACTTTGT





ATTTTGATTGTTGAGAACAAAAACAAAAAGTATCAATGTGTATGTGGCTGTTTGTAGTGAATTTATTGGA





GAATGAGGTTGTCCGTGTCCTTAACAAGCCAAGGGGCAGGAGGCACCCTCTCTTATCCCCTCCTCCAAGA





GCAGTAGAGAATTTAAGCACAAGCCTATTTGTGAAAGAATATTTTGCTTAAGTGTCATTCACTTTAGTCT





TGGAATTCCTTCCCAAACGTCAGGTGTTCTTTTAGCTTCCAAACTAGCATATGTATCCATTAGTCTGACA





GATCGCCTGAACACCATTAAGAGGTGTGGCGTTTTTGCTTTCATTTCTCCTGCTGGGAGAAGTGGCGGTT





CATGTGTCATTCCAGTATCTCACATACTCACACGGGGCAGGGGGGAGGGGGAAACGGGGAACTATAGCAA





TATTTAAAGATGCTTTGGAAACCAACCGTGAACACATCAACACCACGACGTCTACGATTACTTGCTATTG





GCCCTCGGATACATTTAAGAGAAAGAGACAGTCACTCTTTTTTTTCTTAAATGATATACATATAAACAGT





TATTTTTATCCTATTATAATTGTCTTTTGTCTTTATCTAGTACTATGTGGAAAGGGTTTGCATCATAGAT





TTTTCCCAGCCTTATAATATACCATAAGCTCCTACTTCCCTGCCCCTCCCTAATCAGTATTCTTTCAAGA





GTTCTTTGGTGAAGCCATCTATCTGAAACTAAAATGAACCAAACCCATATTTCACTGGTGGTTGGAGAAA





ACCATGGCCAAAACGATTGTGGCAGGTCTCAATCTTGGGAGTTTTTAAGAAGGAATGTGCCAGAGGCCGA





TTCCCAAGAACAGAGTTTTCTTTTGTTTTGCAGAGGCATTCAATGTGTCTAGTGCTTGCTGGCCACAGCA





GTTACTACCACAGAGCCTTCTGGGAGGGGCCGTTGTGTTGAAGGAGGCTCCTGCCTGAGGGACAGCATCA





GGCAGTGGGCTCTGTAGAGTGAGAACCAGGTGGAGGCCTTCTGTGCCCAGCTCAGAGTTCTGCACCACGC





CAGGACTGCCCAGGCCAAGGGCTACTGACGCAAGTTCCACTCATTCCACTCTGTGGGGGGCGCCTTGGGC





CTCTCCTGGAAGGGCTCTTGGAGAAGGAATTGGAGTTACGTACAAGTGACCTAAATGGGAAGCTTTTCTA





GATGAGATTGGATTAAATTCCATGTGATTTCTCTTTCCCTTTAATCCAGGTTGGGACTCGTTTCTTTCTG





GTGGATCACAGCTGCCCAGATGTTGCAATTGATTTTTATGTTTCTGTAGAGAAGTATTTTTCTTTCATCT





TCAGGATTTTTTTTGCCACCAAAAGAAAACATTGGAACTCTGTGTTTCCTCTTGATTGTGACTTCCCAGT





GTTGACAGTTAAGTCCTTAGTGTCGTAGGTCCCAGCCCACCAATACTATATCAAACACTGTTATGCACAT





AATGCAGCACTGTGATCTAATTTAAATAATACTTTTTTATTATTTATACTACTATATATAATATACATCA





ACACTTTTGCTATATAACCTAAGTGATAACCCTCTTTTAGTTACCTGCCAAACTCTGGACTTGGTTTATA





TTGCAGTTAACACAGTTACAAAGCTGTAATGGTGTCTTTTTTTCCTTTGTAACGGAATGTGTAAATCAAA





GTATATACATTGTGTGGTGTTCCTGTTTCTGGAGTTTCATGAGGATTTACACATGGCATTCAGTGTTCTG





TATAGATCTGCCTACCTTTGTGAATTCATCTGTTAACCCCTCTTCCTTTGAGAGAGCACCGGCGATGGTG





GTTAACTCCTTGTGTTTTCTCTCTCTCCTACTGGTTATTCTTGAATTAAGCACAGACTCGTCAGCTCGGT





TGCTTTATCATGAATAATGTGTGTGACCTTGCAGTTCTTCCACAGTTCAGCAAACAAGTGCTAGCTTCAC





TGACCAAAAATTAAGGAAGGAAAACACAGTTTTTAAAACGATCCATCTTTTAACAGCCGAAACCGATGTG





TCTATGGTGCTGCACCTTGCTGTTGTACTTCTGAAATCAGACGTGTGTGAACGATCATTTCTGACTTAAC





CGTGAGATGCTCACGAGTACCCTTCCTGTTGTTTTGTTAGCATTGAAATCGAGACTATTTATTTGGAATA





TATACAACAGTGTTTTTCCACTGTATTTCATTTGCAAAAGTTGAGAACTGCTTTCTCTACCTTTTGCAAA





ATAATTGATATTCCATATTGGATTCTCAAAGACTTCGATATGGTGAACCTATTAAACCTAGAAATTGTAT





TCATCCTTTCATGACTGTGGCCTGAGTTCCCCAGCCCCTCTCCTCCTTTTTTTTAGATGAGATTTAGCAC





ACTCTCAGTTATTTAAACATGCAACATTTCTTGAGTATGTATGTTGAGGCCATCTGAGCTCATAGCTGAT





TCAGTAACCAGTTTCATGCTGTGTCATTCACACTCACTACTTAATACTGCCATGGTGAAAATGTGGAGGA





AAAATGTATCCATGTGTGTCTGGGAAGCATATACACTTGTACATTTTTTAATACTCTGATTCTGTAACAT





TTCTGAGTTTTGTTTTGTTTTACAGAAAAAAAAAAAAAGTGATAAAGCAATCAGAAGACCAAGAGGTTTA





CTATTGATGCTTAGGGTCGTCTGACCTTGGCTGGCCAATAGACCTACACGGCCAAATTAATTTACGAGAG





TAATAATTTTTCAAAAGCCAATTTTTTTTCTGTATTTTCTGTATGAAACTGCCAATATCATGAATAGAAA





GGGAGAACCATAAAGGAGAAAGAACGTGATGTTCTGTTATGTTCATGTAAACCTAAAGAAACAGTGTGGA





GGCAGGCGCGATCAGCCGAACTCTAGGGACTTGGTGTTGCTTGGAAGGCATCCATACCTGCATTTTGCAT





TCTTCGTATGTAATCATATTGCCAAAGACAAACTATTTCATCATTTATTGTAAATAACACTTTTCCCCAG





ACCTACCATAAAGTTTCTGTGATGTATTGTCTTCCAGTTGCAATAAAAATTACTGAGTTGCATCAATTGA





AGAAAAACACCAAAAA





SEQ ID NO: 21




Homo sapiens glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mRNA




AAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTG





CGTCGCCAGCCGAGCCACATCGCTCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCG





TATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCC





TTCATTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCG





TCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTC





CAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG





AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCA





TGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCAC





CACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACC





ACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCC





GCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGA





GCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC





TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCC





TCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTC





CACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAAC





GAATTTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGA





CCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCA





GTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA





GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACC





SEQ ID NO: 22




Homo sapiens glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mRNA




AAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTG





CGTCGCCAGCCGAGCCACATCGCTCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCG





TATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCC





TTCATTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCG





TCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTC





CAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG





AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCA





TGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCAC





CACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACC





ACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCC





GCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGA





GCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC





TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCC





TCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTC





CACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAAC





GAATTTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGA





CCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCA





GTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA





GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACC





SEQ ID NO: 23




Homo sapiens GATA binding protein 3 (GATA3), transcript variant 1, mRNA




GGCGCCGTCTTGATACTTTCAGAGATGCATTCCCTGTAAAAAAAAAAAAAAAAAAATACTGAGAGAGGGA





GAGAGAGAGAGAAGAAGAGAGAGAGACGGAGGGAGAGCGAGACAGAGCGAGCAACGCAATCTGACCGAGC





AGGTCGTACGCCGCCGCCTCCTCCTCCTCTCTGCTCTTCGCTACCCAGGTGACCCGAGGAGGGACTCCGC





CTCCGAGCGGCTGAGGACCCCGGTGCAGAGGAGCCTGGCTCGCAGAATTGCAGAGTCGTCGCCCCTTTTT





ACAACCTGGTCCCGTTTTATTCTGCCGTACCCAGTTTTTGGATTTTTGTCTTCCCCTTCTTCTCTTTGCT





AAACGACCCCTCCAAGATAATTTTTAAAAAACCTTCTCCTTTGCTCACCTTTGCTTCCCAGCCTTCCCAT





CCCCCCACCGAAAGCAAATCATTCAACGACCCCCGACCCTCCGACGGCAGGAGCCCCCCGACCTCCCAGG





CGGACCGCCCTCCCTCCCCGCGCGCGGGTTCCGGGCCCGGCGAGAGGGCGCGAGCACAGCCGAGGCCATG





GAGGTGACGGCGGACCAGCCGCGCTGGGTGAGCCACCACCACCCCGCCGTGCTCAACGGGCAGCACCCGG





ACACGCACCACCCGGGCCTCAGCCACTCCTACATGGACGCGGCGCAGTACCCGCTGCCGGAGGAGGTGGA





TGTGCTTTTTAACATCGACGGTCAAGGCAACCACGTCCCGCCCTACTACGGAAACTCGGTCAGGGCCACG





GTGCAGAGGTACCCTCCGACCCACCACGGGAGCCAGGTGTGCCGCCCGCCTCTGCTTCATGGATCCCTAC





CCTGGCTGGACGGCGGCAAAGCCCTGGGCAGCCACCACACCGCCTCCCCCTGGAATCTCAGCCCCTTCTC





CAAGACGTCCATCCACCACGGCTCCCCGGGGCCCCTCTCCGTCTACCCCCCGGCCTCGTCCTCCTCCTTG





TCGGGGGGCCACGCCAGCCCGCACCTCTTCACCTTCCCGCCCACCCCGCCGAAGGACGTCTCCCCGGACC





CATCGCTGTCCACCCCAGGCTCGGCCGGCTCGGCCCGGCAGGACGAGAAAGAGTGCCTCAAGTACCAGGT





GCCCCTGCCCGACAGCATGAAGCTGGAGTCGTCCCACTCCCGTGGCAGCATGACCGCCCTGGGTGGAGCC





TCCTCGTCGACCCACCACCCCATCACCACCTACCCGCCCTACGTGCCCGAGTACAGCTCCGGACTCTTCC





CCCCCAGCAGCCTGCTGGGCGGCTCCCCCACCGGCTTCGGATGCAAGTCCAGGCCCAAGGCCCGGTCCAG





CACAGAAGGCAGGGAGTGTGTGAACTGTGGGGCAACCTCGACCCCACTGTGGCGGCGAGATGGCACGGGA





CACTACCTGTGCAACGCCTGCGGGCTCTATCACAAAATGAACGGACAGAACCGGCCCCTCATTAAGCCCA





AGCGAAGGCTGTCTGCAGCCAGGAGAGCAGGGACGTCCTGTGCGAACTGTCAGACCACCACAACCACACT





CTGGAGGAGGAATGCCAATGGGGACCCTGTCTGCAATGCCTGTGGGCTCTACTACAAGCTTCACAATATT





AACAGACCCCTGACTATGAAGAAGGAAGGCATCCAGACCAGAAACCGAAAAATGTCTAGCAAATCCAAAA





AGTGCAAAAAAGTGCATGACTCACTGGAGGACTTCCCCAAGAACAGCTCGTTTAACCCGGCCGCCCTCTC





CAGACACATGTCCTCCCTGAGCCACATCTCGCCCTTCAGCCACTCCAGCCACATGCTGACCACGCCCACG





CCGATGCACCCGCCATCCAGCCTGTCCTTTGGACCACACCACCCCTCCAGCATGGTCACCGCCATGGGTT





AGAGCCCTGCTCGATGCTCACAGGGCCCCCAGCGAGAGTCCCTGCAGTCCCTTTCGACTTGCATTTTTGC





AGGAGCAGTATCATGAAGCCTAAACGCGATGGATATATGTTTTTGAAGGCAGAAAGCAAAATTATGTTTG





CCACTTTGCAAAGGAGCTCACTGTGGTGTCTGTGTTCCAACCACTGAATCTGGACCCCATCTGTGAATAA





GCCATTCTGACTCATATCCCCTATTTAACAGGGTCTCTAGTGCTGTGAAAAAAAAAATGCTGAACATTGC





ATATAACTTATATTGTAAGAAATACTGTACAATGACTTTATTGCATCTGGGTAGCTGTAAGGCATGAAGG





ATGCCAAGAAGTTTAAGGAATATGGGAGAAATAGTGTGGAAATTAAGAAGAAACTAGGTCTGATATTCAA





ATGGACAAACTGCCAGTTTTGTTTCCTTTCACTGGCCACAGTTGTTTGATGCATTAAAAGAAAATAAAAA





AAAGAAAAAAGAGAAAAGAAAAAAAAAGAAAAAAGTTGTAGGCGAATCATTTGTTCAAAGCTGTTGGCCT





CTGCAAAGGAAATACCAGTTCTGGGCAATCAGTGTTACCGTTCACCAGTTGCCGTTGAGGGTTTCAGAGA





GCCTTTTTCTAGGCCTACATGCTTTGTGAACAAGTCCCTGTAATTGTTGTTTGTATGTATAATTCAAAGC





ACCAAAATAAGAAAAGATGTAGATTTATTTCATCATATTATACAGACCGAACTGTTGTATAAATTTATTT





ACTGCTAGTCTTAAGAACTGCTTTCTTTCGTTTGTTTGTTTCAATATTTTCCTTCTCTCTCAATTTTTGG





TTGAATAAACTAGATTACATTCAGTTGGCCTAAGGTGGTTGTGCTCGGAGGGTTTCTTGTTTCTTTTCCA





TTTTGTTTTTGGATGATATTTATTAAATAGCTTCTAAGAGTCCGGCGGCATCTGTCTTGTCCCTATTCCT





GCAGCCTGTGCTGAGGGTAGCAGTGTATGAGCTACCAGCGTGCATGTCAGCGACCCTGGCCCGACAGGCC





ACGTCCTGCAATCGGCCCGGCTGCCTCTTCGCCCTGTCGTGTTCTGTGTTAGTGATCACTGCCTTTAATA





CAGTCTGTTGGAATAATATTATAAGCATAATAATAAAGTGAAAATATTTTAAAACTACAA





SEQ ID NO: 24




Homo sapiens guanine nucleotide binding protein (G protein), beta 5




(GNB5), transcript variant 1, mRNA


CCGGGGACGGCTGCTGGAGCGGCGCCCGCCGCGGCTCAGCGCATTCCCGCTCTCCGCTTCCCTCTCCGCT





GCGTCCCCGCGCGAAGATGGCAACCGAGGGGCTGCACGAGAACGAGACGCTGGCGTCGCTGAAGAGCGAG





GCCGAGAGCCTCAAGGGCAAGCTGGAGGAGGAGCGAGCCAAGCTGCACGATGTGGAGCTGCACCAGGTGG





CGGAGCGGGTGGAGGCCCTGGGGCAGTTTGTCATGAAGACCAGAAGGACCCTCAAAGGCCACGGGAACAA





AGTCCTGTGCATGGACTGGTGCAAAGATAAGAGGAGGATCGTGAGCTCGTCACAGGATGGGAAGGTGATC





GTGTGGGATTCCTTCACCACAAACAAGGAGCACGCGGTCACCATGCCCTGCACGTGGGTGATGGCATGTG





CTTATGCCCCATCGGGATGTGCCATTGCTTGTGGTGGTTTGGATAATAAGTGTTCTGTGTACCCCTTGAC





GTTTGACAAAAATGAAAACATGGCTGCCAAAAAGAAGTCTGTTGCTATGCACACCAACTACCTGTCGGCC





TGCAGCTTCACCAACTCTGACATGCAGATCCTGACAGCGAGCGGCGATGGCACATGTGCCCTGTGGGACG





TGGAGAGCGGGCAGCTGCTGCAGAGCTTCCACGGACATGGGGCTGACGTCCTCTGCTTGGACCTGGCCCC





CTCAGAAACTGGAAACACCTTCGTGTCTGGGGGATGTGACAAGAAAGCCATGGTGTGGGACATGCGCTCC





GGCCAGTGCGTGCAGGCCTTTGAAACACATGAATCTGACATCAACAGTGTCCGGTACTACCCCAGTGGAG





ATGCCTTTGCTTCAGGGTCAGATGACGCTACGTGTCGCCTCTATGACCTGCGGGCAGATAGGGAGGTTGC





CATCTATTCCAAAGAAAGCATCATATTTGGAGCATCCAGCGTGGACTTCTCCCTCAGTGGTCGCCTGCTG





TTTGCTGGATACAATGATTACACTATCAACGTCTGGGATGTTCTCAAAGGGTCCCGGGTCTCCATCCTGT





TTGGACATGAAAACCGCGTTAGCACTCTACGAGTTTCCCCCGATGGGACTGCTTTCTGCTCTGGATCATG





GGATCATACCCTCAGAGTCTGGGCCTAATCATCTTCTGACAGTGCACTCATGTATACCTGAGAATTTGAA





ATCTTCACATGTAAATAGATATTACTTCTAGAGGAGCTTAGAGTTTATTGCAGTGTAGCTTAGGGGAGCA





ACCCATGGCTCACAGGTCACTAAGCGTCTCCAATATGACTATTAAAACTGTCACCTCTGGAAATACACTA





GTGTGAGCCTTCAGCACTGCGAGAATACCTTCAAGTACAGTATTTTTCTTTTGGAACACTTTTTAAAATG





TATCTGTTTTTAAGGTTATTCTAAATTATAGTAGCCTCAACTCATTCTGTCACCAGTAGAATTCAGCAGT





TAATATATTCCATATTATTTCTTTGAATCAATTCATTTTCAGAGCACTTTAAAGTCTGATATTTCTCGAT





GTGCACTGTGATGCCTGGAACCTTCCTCTGGAAGTGCTGATTTTATGGACTGAGGACTGGTGACTGGTCT





GTGATAGAAGCAAATTCCAATTCCAAATGTAATTAGACAAAAATCATTTTTTTAGAATGTGTTTTTATTG





TAAAAGTATCTTTTTCAGCTTCCTGTTCTATTGTCTTTTTTCAGATACAACATTTTTGTCTATGGTGAAC





TGCTGTAAATGACGCAGAGAAATGCCTAAAAAGGACAGGTGGTTTGACTCATGGATGATGATGATGTCAC





TGTGCCACTTGGACAGGGCGTTTTCTCTGAATTGAAGGGAAAGCCAATGGTGTTTGTAAACAAATGCTTC





TGAGAGCAAAGAAAAGTCTTCTGTGTGGGAACACAAGATAGTAAACTTATTTAAAAACCTATTAGTAGAA





TTAGTGGAAACACTTAGGTTAAAGTGAATCTTGTCCATATAAATTATATTCATGGCCGGGCGCGGTGGCT





CACGCTTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGTTCGAGACCACG





GTGAAACCCTGTCTCTACTAAAAAATACAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAG





CTACTCGGAGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGTGGAGCTTGCAGTGAGCCGAGGTCG





AGCCACTGCAGCCTGGGTGACAGCGAGACTCCGTCTCAAAAAAAAAAAAAAAAATTATATTCATATGTAT





TGCATTGCAATTATAATTACATATGCAGATTGATTGATAGTCATGAATAATAACGTCTGCTCCTCTTACA





TAGAAAAACGATATTAAAAGAAGATCTTCTCTTTATTTGAGACTCAGAATTCCTTCTAGAAGAAGGAAGT





GCTTTTTGTTATAGGATCCCTTCTTTTCCTTTTTTTGTTTTTTTGTAAGATGTAGATGCTTATTCTTTGC





TTTAGAAAACTTCTCACTTAAAAAGATGGCATGCACCTAGGGGAATAAAAGGTCACCTCAGACACCAGGT





GTCATTCCTGGTGAGGCCTGCCTCGTCGGTGGCCTGGGGTCTGCCGGCAGGTTCTGGCTGCACCTGAAGG





CTGCGTGCACCTTGTCCCCTGGACAGGTCTCCTTTCCTGGCCCTGCTCCAGCCCAGCCCTTCTTCTAGTG





GTAGCTCTGGCTTTGCAGGCCCAGCTCCAGGCCCTGCTCCTCAGAGAGACTCTTCCAGAGCTGGAGCTGG





GCACAGCCATAAGACAGGACTGGACCAGATGCTCCTGTAAACATCCAGGGGTGTGCCAGGCCCACCCTCA





CAACTGCTTGTTCAGGTATCGTGATGGGCCACTCGGTCCAAAATCAGCCAGGCCATCTTTTCCATCATCT





CACTTCAAATAAACATAATAATTATATTTGATCATTTGC





SEQ ID NO: 25




Homo sapiens glutathione S-transferase mu 4 (GSTM4), transcript variant




2, mRNA


AAGCTGGCGAGGCCGAGCCCCTCCTAGTGCTTCCGGACCTTGCTCCCTGAACACTCGGAGGTGGCGGTGG





ATCTTACTCCTTCCAGCCAGTGAGGATCCAGCAACCTGCTCCGTGCCTCCCGCGCCTGTTGGTTGGAAGT





GACGACCTTGAAGATCGGCCGGTTGGAAGTGACGACCTTGAAGATCGGCGGGCGCAGCGGGGCCGAGGGG





GCGGGTCTGGCGCTAGGTCCAGCCCCTGCGTGCCGGGAACCCCAGAGGAGGTCGCAGTTCAGCCCAGCTG





AGGCCTGTCTGCAGAATCGACACCAACCAGCATCATGTCCATGACACTGGGGTACTGGGACATCCGCGGG





CTGGCCCACGCCATCCGCCTGCTCCTGGAATACACAGACTCAAGCTACGAGGAAAAGAAGTATACGATGG





GGGACGCTCCTGACTATGACAGAAGCCAGTGGCTGAATGAAAAATTCAAGCTGGGCCTGGACTTTCCCAA





TCTGCCCTACTTGATTGATGGGGCTCACAAGATCACCCAGAGCAACGCCATCCTGTGCTACATTGCCCGC





AAGCACAACCTGTGTGGGGAGACAGAAGAGGAGAAGATTCGTGTGGACATTTTGGAGAACCAGGCTATGG





ACGTCTCCAATCAGCTGGCCAGAGTCTGCTACAGCCCTGACTTTGAGAAACTGAAGCCAGAATACTTGGA





GGAACTTCCTACAATGATGCAGCACTTCTCACAGTTCCTGGGGAAGAGGCCATGGTTTGTTGGAGACAAG





ATCACCTTTGTAGATTTCCTCGCCTATGATGTCCTTGACCTCCACCGTATATTTGAGCCCAACTGCTTGG





ACGCCTTTCCAAATCTGAAGGACTTCATCTCCCGCTTTGAGGTTTCCTGTGGCATAATGTGATGGTCAAT





TTTCTGCATCAACTTGACTGGGCTAAGGGATGCTCAGATGGCAGGTAAAATCATTGTGCTTGTGAGGGTG





TTTCCAGAAGAGATTTGCCTTTGAATCAGAAGACAGCAAAGATTTCCTTCAGCAATGAAGGAGGCATCCA





CCAAACTGTCAGGGCCCAGAGAGAAGAAAAAGACAGGAAGGGTGAATTTGACCTCTCTGACTGGGACATC





CATCTCTGCCTATCCTGGGACCTCCACACTCCTGGTTCTCTGGCCTTCAGACTTGATCAGGGACTAACAC





CATCGCCTCCCACCCCCACCTTTGTTCTGAGGCCTTTAGCCTCTGAATGATACCACTGGCTTTCCTGCTT





CTCTATCCTGCAGTCGGCAGATCATGGGACTTCTTCACTCCAAAATTGTGTGAGCCAATTCCCATAACAG





ATAGATAAATTTATAAATAAACACACAAATTTCCTACAGCCT





SEQ ID NO: 26




Homo sapiens major histocompatibility complex, class II, DR alpha




(HLA-DRA), mRNA


TTTTAATGGTCAGACTCTATTACACCCCACATTCTCTTTTCTTTTATTCTTGTCTGTTCTGCCTCACTCC





CGAGCTCTACTGACTCCCAACAGAGCGCCCAAGAAGAAAATGGCCATAAGTGGAGTCCCTGTGCTAGGAT





TTTTCATCATAGCTGTGCTGATGAGCGCTCAGGAATCATGGGCTATCAAAGAAGAACATGTGATCATCCA





GGCCGAGTTCTATCTGAATCCTGACCAATCAGGCGAGTTTATGTTTGACTTTGATGGTGATGAGATTTTC





CATGTGGATATGGCAAAGAAGGAGACGGTCTGGCGGCTTGAAGAATTTGGACGATTTGCCAGCTTTGAGG





CTCAAGGTGCATTGGCCAACATAGCTGTGGACAAAGCCAACCTGGAAATCATGACAAAGCGCTCCAACTA





TACTCCGATCACCAATGTACCTCCAGAGGTAACTGTGCTCACAAACAGCCCTGTGGAACTGAGAGAGCCC





AACGTCCTCATCTGTTTCATAGACAAGTTCACCCCACCAGTGGTCAATGTCACGTGGCTTCGAAATGGAA





AACCTGTCACCACAGGAGTGTCAGAGACAGTCTTCCTGCCCAGGGAAGACCACCTTTTCCGCAAGTTCCA





CTATCTCCCCTTCCTGCCCTCAACTGAGGACGTTTACGACTGCAGGGTGGAGCACTGGGGCTTGGATGAG





CCTCTTCTCAAGCACTGGGAGTTTGATGCTCCAAGCCCTCTCCCAGAGACTACAGAGAACGTGGTGTGTG





CCCTGGGCCTGACTGTGGGTCTGGTGGGCATCATTATTGGGACCATCTTCATCATCAAGGGATTGCGCAA





AAGCAATGCAGCAGAACGCAGGGGGCCTCTGTAAGGCACATGGAGGTGATGGTGTTTCTTAGAGAGAAGA





TCACTGAAGAAACTTCTGCTTTAATGGCTTTACAAAGCTGGCAATATTACAATCCTTGACCTCAGTGAAA





GCAGTCATCTTCAGCATTTTCCAGCCCTATAGCCACCCCAAGTGTGGATATGCCTCTTCGATTGCTCCGT





ACTCTAACATCTAGCTGGCTTCCCTGTCTATTGCCTTTTCCTGTATCTATTTTCCTCTATTTCCTATCAT





TTTATTATCACCATGCAATGCCTCTGGAATAAAACATACAGGAGTCTGTCTCTGCTATGGAATGCCCCAT





GGGGCATCTCTTGTGTACTTATTGTTTAAGGTTTCCTCAAACTGTGATTTTTCTGAACACAATAAACTAT





TTTGATGATCTTGGGTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 27




Homo sapiens v-Ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS),




transcript variant 3, mRNA


TGCCCTGCGCCCGCAACCCGAGCCGCACCCGCCGCGGACGGAGCCCATGCGCGGGGCGAACCGCGCGCCC





CCGCCCCCGCCCCGCCCCGGCCTCGGCCCCGGCCCTGGCCCCGGGGGCAGTCGCGCCTGTGAACGGTGGG





GCAGGAGACCCTGTAGGAGGACCCCGGGCCGCAGGCCCCTGAGGAGCGATGACGGAATATAAGCTGGTGG





TGGTGGGCGCCGGCGGTGTGGGCAAGAGTGCGCTGACCATCCAGCTGATCCAGAACCATTTTGTGGACGA





ATACGACCCCACTATAGAGGATTCCTACCGGAAGCAGGTGGTCATTGATGGGGAGACGTGCCTGTTGGAC





ATCCTGGATACCGCCGGCCAGGAGGAGTACAGCGCCATGCGGGACCAGTACATGCGCACCGGGGAGGGCT





TCCTGTGTGTGTTTGCCATCAACAACACCAAGTCTTTTGAGGACATCCACCAGTACAGGGAGCAGATCAA





ACGGGTGAAGGACTCGGATGACGTGCCCATGGTGCTGGTGGGGAACAAGTGTGACCTGGCTGCACGCACT





GTGGAATCTCGGCAGGCTCAGGACCTCGCCCGAAGCTACGGCATCCCCTACATCGAGACCTCGGCCAAGA







CCCGGCAGGGAGTGGAGGATG
CCTTCTACACGTTGGTGCGTGAGATCCGGCAGCACAAGCTGCGGAAGCT






GAACCCTCCTGATGAGAGTGGCCCCGGCTGCATGAGCTGCAAGTGTGTGCTCTCCTGACGCAGGTGAGGG





GGACTCCCAGGGCGGCCGCCACGCCCACCGGATGACCCCGGCTCCCCGCCCCTGCCGGTCTCCTGGCCTG





CGGTCAGCAGCCTCCCTTGTGCCCCGCCCAGCACAAGCTCAGGACATGGAGGTGCCGGATGCAGGAAGGA





GGTGCAGACGGAAGGAGGAGGAAGGAAGGACGGAAGCAAGGAAGGAAGGAAGGGCTGCTGGAGCCCAGTC





ACCCCGGGACCGTGGGCCGAGGTGACTGCAGACCCTCCCAGGGAGGCTGTGCACAGACTGTCTTGAACAT





CCCAAATGCCACCGGAACCCCAGCCCTTAGCTCCCCTCCCAGGCCTCTGTGGGCCCTTGTCGGGCACAGA





TGGGATCACAGTAATTATTGGATGGTCTTGAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 28




Homo sapiens interferon, alpha-inducible protein 27 (TF127), transcript




variant 1, mRNA


GGGAACACATCCAAGCTTAAGACGGTGAGGTCAGCTTCACATTCTCAGGAACTCTCCTTCTTTGGGTCTG





GCTGAAGTTGAGGATCTCTTACTCTCTAGGCCACGGAATTAACCCGAGCAGGCATGGAGGCCTCTGCTCT





CACCTCATCAGCAGTGACCAGTGTGGCCAAAGTGGTCAGGGTGGCCTCTGGCTCTGCCGTAGTTTTGCCC







CTGGCCAGGATTGCTACAGTT
GTGATTGGAGGAGTTGTGGCCATGGCGGCTGTGCCCATGGTGCTCAGTG






CCATGGGCTTCACTGCGGCGGGAATCGCCTCGTCCTCCATAGCAGCCAAGATGATGTCCGCGGCGGCCAT





TGCCAATGGGGGTGGAGTTGCCTCGGGCAGCCTTGTGGCTACTCTGCAGTCACTGGGAGCAACTGGACTC





TCCGGATTGACCAAGTTCATCCTGGGCTCCATTGGGTCTGCCATTGCGGCTGTCATTGCGAGGTTCTACT





AGCTCCCTGCCCCTCGCCCTGCAGAGAAGAGAACCATGCCAGGGGAGAAGGCACCCAGCCATCCTGACCC





AGCGAGGAGCCAACTATCCCAAATATACCTGGGGTGAAATATACCAAATTCTGCATCTCCAGAGGAAAAT





AAGAAATAAAGATGAATTGTTGCAACTCTTCAAAA





SEQ ID NO: 29




Homo sapiens interleukin 11 receptor, alpha (IL11RA), transcript variant




3, mRNA


AGAGGGCGAGGGCGAGGGCAGAGGGCGCTGGCGGCAGCGGCCGCGGAAGATGAGCAGCAGCTGCTCAGGG





CTGAGCAGGGTCCTGGTGGCCGTGGCTACAGCCCTGGTGTCTGCCTCCTCCCCCTGCCCCCAGGCCTGGG





GCCCCCCAGGGGTCCAGTATGGGCAGCCAGGCAGGTCCGTGAAGCTGTGTTGTCCTGGAGTGACTGCCGG





GGACCCAGTGTCCTGGTTTCGGGATGGGGAGCCAAAGCTGCTCCAGGGACCTGACTCTGGGCTAGGGCAT





GAACTGGTCCTGGCCCAGGCAGACAGCACTGATGAGGGCACCTACATCTGCCAGACCCTGGATGGTGCAC





TTGGGGGCACAGTGACCCTGCAGCTGGGCTACCCTCCAGCCCGCCCTGTTGTCTCCTGCCAAGCAGCCGA





CTATGAGAACTTCTCTTGCACTTGGAGTCCCAGCCAGATCAGCGGTTTACCCACCCGCTACCTCACCTCC





TACAGGAAGAAGACAGTCCTAGGAGCTGATAGCCAGAGGAGGAGTCCATCCACAGGGCCCTGGCCATGCC





CACAGGATCCCCTAGGGGCTGCCCGCTGTGTTGTCCACGGGGCTGAGTTCTGGAGCCAGTACCGGATTAA





TGTGACTGAGGTGAACCCACTGGGTGCCAGCACACGCCTGCTGGATGTGAGCTTGCAGAGCATCTTGCGC







CCTGACCC
ACCCCAGGGCCTGCGGGTAGAGTCAGTACCAGGTTACCCCCGACGCCTGCGAGCCAGCTGGA






CATACCCTGCCTCCTGGCCGTGCCAGCCCCACTTCCTGCTCAAGTTCCGTTTGCAGTACCGTCCGGCGCA





GCATCCAGCCTGGTCCACGGTGGAGCCAGCTGGACTGGAGGAGGTGATCACAGATGCTGTGGCTGGGCTG





CCCCATGCTGTACGAGTCAGTGCCCGGGACTTTCTAGATGCTGGCACCTGGAGCACCTGGAGCCCGGAGG





CCTGGGGAACTCCGAGCACTGGGACCATACCAAAGGAGATACCAGCATGGGGCCAGCTACACACGCAGCC





AGAGGTGGAGCCTCAGGTGGACAGCCCTGCTCCTCCAAGGCCCTCCCTCCAACCACACCCTCGGCTACTT





GATCACAGGGACTCTGTGGAGCAGGTAGCTGTGCTGGCGTCTTTGGGAATCCTTTCTTTCCTGGGACTGG





TGGCTGGGGCCCTGGCACTGGGGCTCTGGCTGAGGCTGAGACGGGGTGGGAAGGATGGATCCCCAAAGCC





TGGGTTCTTGGCCTCAGTGATTCCAGTGGACAGGCGTCCAGGAGCTCCAAACCTGTAGAGGACCCAGGAG





GGCTTCGGCAGATTCCACCTATAATTCTGTCTTGCTGGTGTGGATAGAAACCAGGCAGGACAGTAGATCC





CTATGGTTGGATCTCAGCTGGAAGTTCTGTTTGGAGCCCATTTCTGTGAGACCCTGTATTTCAAATTTGC





AGCTGAAAGGTGCTTGTACCTCTGATTTCACCCCAGAGTTGGAGTTCTGCTCAAGGAACGTGTGTAATGT





GTACATCTGTGTCCATGTGTGACCATGTGTCTGTGAGGCAGGGAACATGTATTCTCTGCATGCATGTATG





TAGGTGCCTGGGGAGTGTGTGTGGGTCCTTGGCTCTTGGCCTTTCCCCTTGCAGGGGTTGTGCAGGTGTG





AATAAAGAGAATAAGGAAGTTCTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAA





SEQ ID NO: 30




Homo sapiens jun proto-oncogene (JUN), mRNA




GACATCATGGGCTATTTTTAGGGGTTGACTGGTAGCAGATAAGTGTTGAGCTCGGGCTGGATAAGGGCTC





AGAGTTGCACTGAGTGTGGCTGAAGCAGCGAGGCGGGAGTGGAGGTGCGCGGAGTCAGGCAGACAGACAG





ACACAGCCAGCCAGCCAGGTCGGCAGTATAGTCCGAACTGCAAATCTTATTTTCTTTTCACCTTCTCTCT





AACTGCCCAGAGCTAGCGCCTGTGGCTCCCGGGCTGGTGTTTCGGGAGTGTCCAGAGAGCCTGGTCTCCA





GCCGCCCCCGGGAGGAGAGCCCTGCTGCCCAGGCGCTGTTGACAGCGGCGGAAAGCAGCGGTACCCACGC





GCCCGCCGGGGGAAGTCGGCGAGCGGCTGCAGCAGCAAAGAACTTTCCCGGCTGGGAGGACCGGAGACAA





GTGGCAGAGTCCCGGAGCGAACTTTTGCAAGCCTTTCCTGCGTCTTAGGCTTCTCCACGGCGGTAAAGAC





CAGAAGGCGGCGGAGAGCCACGCAAGAGAAGAAGGACGTGCGCTCAGCTTCGCTCGCACCGGTTGTTGAA





CTTGGGCGAGCGCGAGCCGCGGCTGCCGGGCGCCCCCTCCCCCTAGCAGCGGAGGAGGGGACAAGTCGTC





GGAGTCCGGGCGGCCAAGACCCGCCGCCGGCCGGCCACTGCAGGGTCCGCACTGATCCGCTCCGCGGGGA





GAGCCGCTGCTCTGGGAAGTGAGTTCGCCTGCGGACTCCGAGGAACCGCTGCGCCCGAAGAGCGCTCAGT





GAGTGACCGCGACTTTTCAAAGCCGGGTAGCGCGCGCGAGTCGACAAGTAAGAGTGCGGGAGGCATCTTA





ATTAACCCTGCGCTCCCTGGAGCGAGCTGGTGAGGAGGGCGCAGCGGGGACGACAGCCAGCGGGTGCGTG





CGCTCTTAGAGAAACTTTCCCTGTCAAAGGCTCCGGGGGGCGCGGGTGTCCCCCGCTTGCCAGAGCCCTG





TTGCGGCCCCGAAACTTGTGCGCGCAGCCCAAACTAACCTCACGTGAAGTGACGGACTGTTCTATGACTG





CAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCTTA





TGGCTACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGGGAGCCTG





AAGCCGCACCTCCGCGCCAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAGCTGGCGT





CGCCCGAGCTGGAGCGCCTGATAATCCAGTCCAGCAACGGGCACATCACCACCACGCCGACCCCCACCCA





GTTCCTGTGCCCCAAGAACGTGACAGATGAGCAGGAGGGCTTCGCCGAGGGCTTCGTGCGCGCCCTGGCC





GAACTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGTCAACGGGGCAGGCATGG





TGGCTCCCGCGGTAGCCTCGGTGGCAGGGGGCAGCGGCAGCGGCGGCTTCAGCGCCAGCCTGCACAGCGA





GCCGCCGGTCTACGCAAACCTCAGCAACTTCAACCCAGGCGCGCTGAGCAGCGGCGGCGGGGCGCCCTCC





TACGGCGCGGCCGGCCTGGCCTTTCCCGCGCAACCCCAGCAGCAGCAGCAGCCGCCGCACCACCTGCCCC





AGCAGATGCCCGTGCAGCACCCGCGGCTGCAGGCCCTGAAGGAGGAGCCTCAGACAGTGCCCGAGATGCC





CGGCGAGACACCGCCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGATCAAGGCGGAGAGGAAGCGC





ATGAGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGCTGGAGAGAATCGCCCGGCTGGAGGAAA





AAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATGCTCAGGGAACAGGTGGC





ACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCAGTTGCAA





ACATTTTGAAGAGAGACCGTCGGGGGCTGAGGGGCAACGAAGAAAAAAAATAACACAGAGAGACAGACTT





GAGAACTTGACAAGTTGCGACGGAGAGAAAAAAGAAGTGTCCGAGAACTAAAGCCAAGGGTATCCAAGTT





GGACTGGGTTGCGTCCTGACGGCGCCCCCAGTGTGCACGAGTGGGAAGGACTTGGCGCGCCCTCCCTTGG





CGTGGAGCCAGGGAGCGGCCGCCTGCGGGCTGCCCCGCTTTGCGGACGGGCTGTCCCCGCGCGAACGGAA





CGTTGGACTTTTCGTTAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTCATTCAGTATTAAAG





GGGGGAGGGGGAGGGGGTTACAAACTGCAATAGAGACTGTAGATTGCTTCTGTAGTACTCCTTAAGAACA





CAAAGCGGGGGGAGGGTTGGGGAGGGGCGGCAGGAGGGAGGTTTGTGAGAGCGAGGCTGAGCCTACAGAT





GAACTCTTTCTGGCCTGCCTTCGTTAACTGTGTATGTACATATATATATTTTTTAATTTGATGAAAGCTG





ATTACTGTCAATAAACAGCTTCATGCCTTTGTAAGTTATTTCTTGTTTGTTTGTTTGGGTATCCTGCCCA





GTGTTGTTTGTAAATAAGAGATTTGGAGCACTCTGAGTTTACCATTTGTAATAAAGTATATAATTTTTTT





ATGTTTTGTTTCTGAAAATTCCAGAAAGGATATTTAAGAAAATACAATAAACTATTGGAAAGTACTCCCC





TAACCTCTTTTCTGCATCATCTGTAGATACTAGCTATCTAGGTGGAGTTGAAAGAGTTAAGAATGTCGAT





TAAAATCACTCTCAGTGCTTCTTACTATTAAGCAGTAAAAACTGTTCTCTATTAGACTTTAGAAATAAAT





GTACCTGATGTACCTGATGCTATGGTCAGGTTATACTCCTCCTCCCCCAGCTATCTATATGGAATTGCTT





ACCAAAGGATAGTGCGATGTTTCAGGAGGCTGGAGGAAGGGGGGTTGCAGTGGAGAGGGACAGCCCACTG





AGAAGTCAAACATTTCAAAGTTTGGATTGTATCAAGTGGCATGTGCTGTGACCATTTATAATGTTAGTAG





AAATTTTACAATAGGTGCTTATTCTCAAAGCAGGAATTGGTGGCAGATTTTACAAAAGATGTATCCTTCC





AATTTGGAATCTTCTCTTTGACAATTCCTAGATAAAAAGATGGCCTTTGCTTATGAATATTTATAACAGC





ATTCTTGTCACAATAAATGTATTCAAATACCAAAAAAAAAAAAAAAAA





SEQ ID NO: 31




Homo sapiens v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS),




transcript variant b, mRNA


GGCCGCGGCGGCGGAGGCAGCAGCGGCGGCGGCAGTGGCGGCGGCGAAGGTGGCGGCGGCTCGGCCAGTA





CTCCCGGCCCCCGCCATTTCGGACTGGGAGCGAGCGCGGCGCAGGCACTGAAGGCGGCGGCGGGGCCAGA





GGCTCAGCGGCTCCCAGGTGCGGGAGAGAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGG





AGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTGGACGAATATGAT





CCAACAATAGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCG





ACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACCAGTACATGAGGACTGGGGAGGGCTTTCTTTG





TGTATTTGCCATAAATAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTAAAAGAGTT





AAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCTAGAACAGTAGACA





CAAAACAGGCTCAGGACTTAGCAAGAAGTTATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACA







GGGTGTTGAT
GATGCCTTCTATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAGATGAGCAAAGAT






GGTAAAAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAAATACAATTTGTACTTTTTTCTT





AAGGCATACTAGTACAAGTGGTAATTTTTGTACATTACACTAAATTATTAGCATTTGTTTTAGCATTACC





TAATTTTTTTCCTGCTCCATGCAGACTGTTAGCTTTTACCTTAAATGCTTATTTTAAAATGACAGTGGAA





GTTTTTTTTTCCTCTAAGTGCCAGTATTCCCAGAGTTTTGGTTTTTGAACTAGCAATGCCTGTGAAAAAG





AAACTGAATACCTAAGATTTCTGTCTTGGGGTTTTTGGTGCATGCAGTTGATTACTTCTTATTTTTCTTA





CCAATTGTGAATGTTGGTGTGAAACAAATTAATGAAGCTTTTGAATCATCCCTATTCTGTGTTTTATCTA





GTCACATAAATGGATTAATTACTAATTTCAGTTGAGACCTTCTAATTGGTTTTTACTGAAACATTGAGGG





AACACAAATTTATGGGCTTCCTGATGATGATTCTTCTAGGCATCATGTCCTATAGTTTGTCATCCCTGAT





GAATGTAAAGTTACACTGTTCACAAAGGTTTTGTCTCCTTTCCACTGCTATTAGTCATGGTCACTCTCCC





CAAAATATTATATTTTTTCTATAAAAAGAAAAAAATGGAAAAAAATTACAAGGCAATGGAAACTATTATA





AGGCCATTTCCTTTTCACATTAGATAAATTACTATAAAGACTCCTAATAGCTTTTCCTGTTAAGGCAGAC





CCAGTATGAAATGGGGATTATTATAGCAACCATTTTGGGGCTATATTTACATGCTACTAAATTTTTATAA





TAATTGAAAAGATTTTAACAAGTATAAAAAATTCTCATAGGAATTAAATGTAGTCTCCCTGTGTCAGACT





GCTCTTTCATAGTATAACTTTAAATCTTTTCTTCAACTTGAGTCTTTGAAGATAGTTTTAATTCTGCTTG





TGACATTAAAAGATTATTTGGGCCAGTTATAGCTTATTAGGTGTTGAAGAGACCAAGGTTGCAAGGCCAG





GCCCTGTGTGAACCTTTGAGCTTTCATAGAGAGTTTCACAGCATGGACTGTGTCCCCACGGTCATCCAGT





GTTGTCATGCATTGGTTAGTCAAAATGGGGAGGGACTAGGGCAGTTTGGATAGCTCAACAAGATACAATC





TCACTCTGTGGTGGTCCTGCTGACAAATCAAGAGCATTGCTTTTGTTTCTTAAGAAAACAAACTCTTTTT





TAAAAATTACTTTTAAATATTAACTCAAAAGTTGAGATTTTGGGGTGGTGGTGTGCCAAGACATTAATTT





TTTTTTTAAACAATGAAGTGAAAAAGTTTTACAATCTCTAGGTTTGGCTAGTTCTCTTAACACTGGTTAA





ATTAACATTGCATAAACACTTTTCAAGTCTGATCCATATTTAATAATGCTTTAAAATAAAAATAAAAACA





ATCCTTTTGATAAATTTAAAATGTTACTTATTTTAAAATAAATGAAGTGAGATGGCATGGTGAGGTGAAA





GTATCACTGGACTAGGAAGAAGGTGACTTAGGTTCTAGATAGGTGTCTTTTAGGACTCTGATTTTGAGGA





CATCACTTACTATCCATTTCTTCATGTTAAAAGAAGTCATCTCAAACTCTTAGTTTTTTTTTTTTACAAC





TATGTAATTTATATTCCATTTACATAAGGATACACTTATTTGTCAAGCTCAGCACAATCTGTAAATTTTT





AACCTATGTTACACCATCTTCAGTGCCAGTCTTGGGCAAAATTGTGCAAGAGGTGAAGTTTATATTTGAA





TATCCATTCTCGTTTTAGGACTCTTCTTCCATATTAGTGTCATCTTGCCTCCCTACCTTCCACATGCCCC





ATGACTTGATGCAGTTTTAATACTTGTAATTCCCCTAACCATAAGATTTACTGCTGCTGTGGATATCTCC





ATGAAGTTTTCCCACTGAGTCACATCAGAAATGCCCTACATCTTATTTCCTCAGGGCTCAAGAGAATCTG





ACAGATACCATAAAGGGATTTGACCTAATCACTAATTTTCAGGTGGTGGCTGATGCTTTGAACATCTCTT





TGCTGCCCAATCCATTAGCGACAGTAGGATTTTTCAAACCTGGTATGAATAGACAGAACCCTATCCAGTG





GAAGGAGAATTTAATAAAGATAGTGCTGAAAGAATTCCTTAGGTAATCTATAACTAGGACTACTCCTGGT





AACAGTAATACATTCCATTGTTTTAGTAACCAGAAATCTTCATGCAATGAAAAATACTTTAATTCATGAA





GCTTACTTTTTTTTTTTGGTGTCAGAGTCTCGCTCTTGTCACCCAGGCTGGAATGCAGTGGCGCCATCTC





AGCTCACTGCAACCTCCATCTCCCAGGTTCAAGCGATTCTCGTGCCTCGGCCTCCTGAGTAGCTGGGATT





ACAGGCGTGTGCCACTACACTCAACTAATTTTTGTATTTTTAGGAGAGACGGGGTTTCACCCTGTTGGCC





AGGCTGGTCTCGAACTCCTGACCTCAAGTGATTCACCCACCTTGGCCTCATAAACCTGTTTTGCAGAACT





CATTTATTCAGCAAATATTTATTGAGTGCCTACCAGATGCCAGTCACCGCACAAGGCACTGGGTATATGG





TATCCCCAAACAAGAGACATAATCCCGGTCCTTAGGTAGTGCTAGTGTGGTCTGTAATATCTTACTAAGG





CCTTTGGTATACGACCCAGAGATAACACGATGCGTATTTTAGTTTTGCAAAGAAGGGGTTTGGTCTCTGT





GCCAGCTCTATAATTGTTTTGCTACGATTCCACTGAAACTCTTCGATCAAGCTACTTTATGTAAATCACT





TCATTGTTTTAAAGGAATAAACTTGATTATATTGTTTTTTTATTTGGCATAACTGTGATTCTTTTAGGAC





AATTACTGTACACATTAAGGTGTATGTCAGATATTCATATTGACCCAAATGTGTAATATTCCAGTTTTCT





CTGCATAAGTAATTAAAATATACTTAAAAATTAATAGTTTTATCTGGGTACAAATAAACAGGTGCCTGAA





CTAGTTCACAGACAAGGAAACTTCTATGTAAAAATCACTATGATTTCTGAATTGCTATGTGAAACTACAG





ATCTTTGGAACACTGTTTAGGTAGGGTGTTAAGACTTACACAGTACCTCGTTTCTACACAGAGAAAGAAA





TGGCCATACTTCAGGAACTGCAGTGCTTATGAGGGGATATTTAGGCCTCTTGAATTTTTGATGTAGATGG





GCATTTTTTTAAGGTAGTGGTTAATTACCTTTATGTGAACTTTGAATGGTTTAACAAAAGATTTGTTTTT





GTAGAGATTTTAAAGGGGGAGAATTCTAGAAATAAATGTTACCTAATTATTACAGCCTTAAAGACAAAAA





TCCTTGTTGAAGTTTTTTTAAAAAAAGCTAAATTACATAGACTTAGGCATTAACATGTTTGTGGAAGAAT





ATAGCAGACGTATATTGTATCATTTGAGTGAATGTTCCCAAGTAGGCATTCTAGGCTCTATTTAACTGAG





TCACACTGCATAGGAATTTAGAACCTAACTTTTATAGGTTATCAAAACTGTTGTCACCATTGCACAATTT





TGTCCTAATATATACATAGAAACTTTGTGGGGCATGTTAAGTTACAGTTTGCACAAGTTCATCTCATTTG





TATTCCATTGATTTTTTTTTTCTTCTAAACATTTTTTCTTCAAACAGTATATAACTTTTTTTAGGGGATT





TTTTTTTAGACAGCAAAAACTATCTGAAGATTTCCATTTGTCAAAAAGTAATGATTTCTTGATAATTGTG





TAGTAATGTTTTTTAGAACCCAGCAGTTACCTTAAAGCTGAATTTATATTTAGTAACTTCTGTGTTAATA





CTGGATAGCATGAATTCTGCATTGAGAAACTGAATAGCTGTCATAAAATGAAACTTTCTTTCTAAAGAAA





GATACTCACATGAGTTCTTGAAGAATAGTCATAACTAGATTAAGATCTGTGTTTTAGTTTAATAGTTTGA





AGTGCCTGTTTGGGATAATGATAGGTAATTTAGATGAATTTAGGGGAAAAAAAAGTTATCTGCAGATATG





TTGAGGGCCCATCTCTCCCCCCACACCCCCACAGAGCTAACTGGGTTACAGTGTTTTATCCGAAAGTTTC





CAATTCCACTGTCTTGTGTTTTCATGTTGAAAATACTTTTGCATTTTTCCTTTGAGTGCCAATTTCTTAC





TAGTACTATTTCTTAATGTAACATGTTTACCTGGAATGTATTTTAACTATTTTTGTATAGTGTAAACTGA





AACATGCACATTTTGTACATTGTGCTTTCTTTTGTGGGACATATGCAGTGTGATCCAGTTGTTTTCCATC





ATTTGGTTGCGCTGACCTAGGAATGTTGGTCATATCAAACATTAAAAATGACCACTCTTTTAATTGAAAT





TAACTTTTAAATGTTTATAGGAGTATGTGCTGTGAAGTGATCTAAAATTTGTAATATTTTTGTCATGAAC





TGTACTACTCCTAATTATTGTAATGTAATAAAAATAGTTACAGTGACAAAAAAAAAAAAAAA





SEQ ID NO: 32




Homo sapiens leprecan-like 4 (LEPREL4), mRNA




GCTTCCTGGGCTTCCCATCTCTGGCGGGAAGCGCTCCCCGACGCATTCTCTACCTAGGGGACACCCCCAA





GGCAGGAGCCCGGGCCGACGGAGAGGACTTAACGACACTATCGGACCCTCTGGGAAAAGAGGGGAGACGT





CGTGACCCAGGCCCCGCCCCACCTTGCCGCCTCGTGCCCGGCGCTAAGACCCAGCGGGCGCGCCGCCCGC





CCGGGGCCCGGCCCTGTCCCCTTCCGTCCGCGGGGCAGCCAGCTCAGCTCCGGAGAGCCGGCGGCGCGGC





GGGCATGGCTCGGGTGGCGTGGGGGCTGCTGTGGTTGCTGCTGGGCAGCGCCGGGGCGCAGTACGAGAAG





TACAGCTTCCGGGGCTTCCCGCCCGAGGACCTGATGCCGCTGGCCGCGGCGTACGGGCACGCTCTGGAGC





AGTACGAGGGAGAGAGCTGGCGCGAGAGCGCGCGCTACCTGGAGGCGGCGCTGCGGCTGCACCGGCTCCT





GCGCGACAGCGAGGCCTTCTGCCACGCCAACTGCAGCGGCCCCGCGCCCGCGGCCAAGCCCGATCCCGAC





GGCGGCCGCGCAGACGAGTGGGCCTGCGAGCTGCGGCTCTTCGGCCGCGTCCTGGAGCGAGCCGCCTGCC





TGCGGCGCTGCAAGCGGACGCTGCCCGCCTTCCAGGTGCCCTACCCGCCGCGGCAGCTGCTGCGTGACTT





CCAGAGCCGCCTGCCCTACCAGTACCTGCACTACGCGCTGTTCAAGGCTAACCGGCTGGAGAAGGCGGTG





GCGGCGGCCTACACCTTCCTCCAGAGGAACCCGAAGCACGAGCTGACCGCCAAGTATCTCAACTACTATC





AGGGGATGCTGGACGTCGCCGACGAGTCCCTCACGGACCTAGAGGCCCAGCCCTACGAGGCCGTGTTCCT





CCGGGCTGTGAAGCTCTACAACAGCGGGGATTTCCGCAGCAGCACGGAGGACATGGAGCGGGCCTTGTCA





GAGTACCTGGCAGTCTTTGCCCGGTGCCTGGCCGGCTGTGAAGGGGCCCATGAGCAGGTGGACTTCAAGG





ACTTCTACCCGGCCATAGCAGATCTCTTTGCAGAGTCCCTGCAGTGCAAGGTGGACTGTGAGGCCAATTT





GACCCCCAATGTGGGTGGCTACTTCGTGGACAAGTTCGTGGCCACCATGTACCACTACCTGCAGTTTGCC





TACTATAAGTTGAATGATGTGCGCCAGGCTGCCCGCAGCGCCGCCAGCTACATGCTCTTCGACCCCAAGG





ACAGCGTCATGCAGCAGAACCTGGTGTATTACCGGTTCCACCGGGCTCGCTGGGGCCTGGAAGAGGAGGA





CTTCCAGCCCCGGGAGGAGGCCATGCTCTACCACAACCAGACCGCCGAGCTGCGGGAGCTGCTGGAGTTC





ACCCACATGTACCTGCAGTCAGATGATGAGATGGAGCTGGAGGAGACAGAACCGCCCCTGGAGCCTGAGG





ATGCCCTATCTGACGCCGAGTTTGAGGGGGAGGGTGACTACGAGGAGGGCATGTATGCTGACTGGTGGCA





GGAGCCGGATGCCAAGGGTGACGAGGCCGAGGCTGAGCCAGAGCCTGAACTCGCATGAGAAGGGGACACC





CCACACCGCTCAAGCTTGGGAAGCCTGGTGCCGATGGCCCCACCCTCACCAGCCTGGGCAGCAGCAAGAA





CTATTTATTAAAAACTTAAGATGGGCCAGGTGCGGTGGCTCACACCTGTAATCCCAGCATTTTGGGAGGC





CAAGGTGGGTGGATCACTTGAGGCCAGGAGTTCAAGACCAGCCTGGCCAACATGATGAGACCTCCGTCTC





TACTAAAATACATAAATTAGCCGGGTGTGGTGGCAGGCGCCTGAAATCCCAGCTACTCAAGAGGCTGAGG





CAGGAGAATCGCTTGAACCTGGGAGGCAAAGGTTGCAGTGAACTGAGATTGCGCCACCGCACTCCAGCCT





GGGCGACAGAGCGAGACTCCATCTTTAAAAAAAAACAAGACGGGCCGGCACGGTGGCTCACGCCTGTAAT





CCCAGCACTGAGAGGCCGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCC





ATCTCTACTAAAAAATACAAAAATTAGCCAGGCATGGTGGCACACACCTGTAATCGTAGCTGAGGCAGGA





GAATCGCCTGAACCCAGGAGGCGGAGCTTGCAGTGAGCCGAGATCGTGCCACTGCACTCCAGCCTGGGCG





ACAGAGTGAGACTCCATCTCAAAAAAAAAAAAAAAAACTTAAGATGGACACAGCTGACTGGACCCCCATC





CTGCCTCACCCATGGGTGCTGCACCCCAGACCCATCCTGCCACTTCTATGTCTCTGGACCACAGGATGGT





GGTGGCATTGCAGGTTGGCAAGTGGGCTGATGGGGTCCGCCCTCCTCACTGCTGAGCTCCTCACCTGGAC





AGTCTCCTGGACAAGGAGTTTCCAGCTGCTGGCTGGAGTCTCAGGCCAAATTGCAGAGGGTCCTCCAGGG





TCCTGAAGAGCACTGGACTAAGAGTCTAGTGGTTCCAGGGCCCTGACCAGTAGGTGCTCAATAAATGTTT





GTTGTTGAATGAAAAAAAAAAAAAAAAAA





SEQ ID NO: 33




Homo sapiens lethal giant larvae homolog 2 (Drosophila) (LLGL2),




transcript variant 2, mRNA


GGAGGTGAGCAGGAAGGAGACGGCCGCCCAGCAGCCCGTGGGCAGGCGCGGCGGAGCGAGCGGGGCCGGC





GGCGGGCGCCGAGGGACGCCGAGGCCTCGGGCGGGGGCTGGCCCGGGGTTCCAGGTCTCCAGTGGGGGCT





GCAGACTAAGCAAAATGAGGCGGTTCCTGAGGCCAGGGCATGACCCTGTGCGGGAGAGGCTCAAGCGGGA





CCTGTTCCAGTTTAACAAGACGGTGGAGCATGGCTTCCCGCACCAGCCCAGCGCCCTCGGCTACAGCCCG





TCCCTGCGCATCCTGGCCATCGGCACCCGTTCTGGAGCCATCAAGCTCTACGGAGCCCCAGGCGTGGAGT





TCATGGGGCTGCACCAGGAGAACAACGCTGTGACGCAGATCCACCTCCTGCCCGGCCAGTGCCAGCTGGT





CACCCTGCTGGATGACAACAGCCTGCACCTTTGGAGCCTGAAGGTCAAGGGCGGGGCATCGGAGCTGCAG





GAGGATGAGAGCTTCACACTGCGTGGACCCCCAGGGGCTGCCCCCAGTGCCACACAGATCACCGTGGTCC





TGCCACATTCCTCCTGCGAGCTGCTCTACCTGGGCACCGAGAGTGGCAACGTGTTTGTGGTGCAGCTGCC





AGCTTTTCGTGCGCTGGAGGACCGGACCATCAGCTCGGACGCGGTGCTGCAGCGGTTGCCAGAGGAGGCC







CG
CCACCGGCGTGTGTTCGAGATGGTGGAGGCACTGCAGGAGCACCCTCGAGACCCCAACCAGATCCTGA






TCGGCTACAGCCGAGGCCTCGTTGTCATCTGGGACCTACAGGGCAGCCGCGTGCTCTACCACTTCCTCAG





CAGCCAGCAACTGGAGAACATCTGGTGGCAGCGGGACGGCCGCCTGCTCGTCAGCTGTCACTCTGACGGC





AGCTACTGCCAGTGGCCCGTGTCCAGCGAAGCCCAGCAACCAGAGCCCCTCCGCAGCCTCGTGCCTTACG





GTCCCTTTCCTTGCAAAGCGATTACCAGAATCCTCTGGCTGACCACTAGGCAGGGGTTGCCCTTCACCAT





CTTCCAGGGTGGCATGCCACGGGCCAGCTACGGGGACCGCCACTGCATCTCAGTGATCCACGATGGCCAG





CAGACGGCCTTCGACTTCACCTCCCGTGTCATCGGCTTCACTGTCCTCACAGAGGCAGACCCTGCAGCCA





GTAGGAGAGCTTCGGGAGTGGGTGCCCAGGGTTAGGTGTGGGAGGCATGGGGCAGGACCATCAGTAAAGA





CAGGGCCAGGTGCAGTGGCTCCTGCCTGTAACCCCAGTGCTGTGGGAGGCCAAGGTGGTAGGATCGCTTG





AACCCAGGAGTTCAAGTCCAGCCTGGACAACGTAGGGAGACCCTTGTCTCTACAAAAAATAAAAAAATTA





GCCAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 34




Homo sapiens neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS),




mRNA


GAAACGTCCCGTGTGGGAGGGGCGGGTCTGGGTGCGGCCTGCCGCATGACTCGTGGTTCGGAGGCCCACG





TGGCCGGGGCGGGGACTCAGGCGCCTGGGGCGCCGACTGATTACGTAGCGGGCGGGGCCGGAAGTGCCGC





TCCTTGGTGGGGGCTGTTCATGGCGGTTCCGGGGTCTCCAACATTTTTCCCGGCTGTGGTCCTAAATCTG





TCCAAAGCAGAGGCAGTGGAGCTTGAGGTTCTTGCTGGTGTGAAATGACTGAGTACAAACTGGTGGTGGT





TGGAGCAGGTGGTGTTGGGAAAAGCGCACTGACAATCCAGCTAATCCAGAACCACTTTGTAGATGAATAT





GATCCCACCATAGAGGATTCTTACAGAAAACAAGTGGTTATAGATGGTGAAACCTGTTTGTTGGACATAC





TGGATACAGCTGGACAAGAAGAGTACAGTGCCATGAGAGACCAATACATGAGGACAGGCGAAGGCTTCCT





CTGTGTATTTGCCATCAATAATAGCAAGTCATTTGCGGATATTAACCTCTACAGGGAGCAGATTAAGCGA





GTAAAAGACTCGGATGATGTACCTATGGTGCTAGTGGGAAACAAGTGTGATTTGCCAACAAGGACAGTTG





ATACAAAACAAGCCCACGAACTGGCCAAGAGTTACGGGATTCCATTCATTGAAACCTCAGCCAAGACCAG







ACAGGGTGTTGA
AGATGCTTTTTACACACTGGTAAGAGAAATACGCCAGTACCGAATGAAAAAACTCAAC






AGCAGTGATGATGGGACTCAGGGTTGTATGGGATTGCCATGTGTGGTGATGTAACAAGATACTTTTAAAG





TTTTGTCAGAAAAGAGCCACTTTCAAGCTGCACTGACACCCTGGTCCTGACTTCCCTGGAGGAGAAGTAT





TCCTGTTGCTGTCTTCAGTCTCACAGAGAAGCTCCTGCTACTTCCCCAGCTCTCAGTAGTTTAGTACAAT





AATCTCTATTTGAGAAGTTCTCAGAATAACTACCTCCTCACTTGGCTGTCTGACCAGAGAATGCACCTCT





TGTTACTCCCTGTTATTTTTCTGCCCTGGGTTCTTCCACAGCACAAACACACCTCTGCCACCCCAGGTTT





TTCATCTGAAAAGCAGTTCATGTCTGAAACAGAGAACCAAACCGCAAACGTGAAATTCTATTGAAAACAG





TGTCTTGAGCTCTAAAGTAGCAACTGCTGGTGATTTTTTTTTTCTTTTTACTGTTGAACTTAGAACTATG





CTAATTTTTGGAGAAATGTCATAAATTACTGTTTTGCCAAGAATATAGTTATTATTGCTGTTTGGTTTGT





TTATAATGTTATCGGCTCTATTCTCTAAACTGGCATCTGCTCTAGATTCATAAATACAAAAATGAATACT





GAATTTTGAGTCTATCCTAGTCTTCACAACTTTGACGTAATTAAATCCAACTTTCACAGTGAAGTGCCTT





TTTCCTAGAAGTGGTTTGTAGACTTCCTTTATAATATTTCAGTGGAATAGATGTCTCAAAAATCCTTATG





CATGAAATGAATGTCTGAGATACGTCTGTGACTTATCTACCATTGAAGGAAAGCTATATCTATTTGAGAG





CAGATGCCATTTTGTACATGTATGAAATTGGTTTTCCAGAGGCCTGTTTTGGGGCTTTCCCAGGAGAAAG





ATGAAACTGAAAGCACATGAATAATTTCACTTAATAATTTTTACCTAATCTCCACTTTTTTCATAGGTTA





CTACCTATACAATGTATGTAATTTGTTTCCCCTAGCTTACTGATAAACCTAATATTCAATGAACTTCCAT





TTGTATTCAAATTTGTGTCATACCAGAAAGCTCTACATTTGCAGATGTTCAAATATTGTAAAACTTTGGT





GCATTGTTATTTAATAGCTGTGATCAGTGATTTTCAAACCTCAAATATAGTATATTAACAAATTACATTT





TCACTGTATATCATGGTATCTTAATGATGTATATAATTGCCTTCAATCCCCTTCTCACCCCACCCTCTAC





AGCTTCCCCCACAGCAATAGGGGCTTGATTATTTCAGTTGAGTAAAGCATGGTGCTAATGGACCAGGGTC





ACAGTTTCAAAACTTGAACAATCCAGTTAGCATCACAGAGAAAGAAATTCTTCTGCATTTGCTCATTGCA





CCAGTAACTCCAGCTAGTAATTTTGCTAGGTAGCTGCAGTTAGCCCTGCAAGGAAAGAAGAGGTCAGTTA





GCACAAACCCTTTACCATGACTGGAAAACTCAGTATCACGTATTTAAACATTTTTTTTTCTTTTAGCCAT





GTAGAAACTCTAAATTAAGCCAATATTCTCATTTGAGAATGAGGATGTCTCAGCTGAGAAACGTTTTAAA





TTCTCTTTATTCATAATGTTCTTTGAAGGGTTTAAAACAAGATGTTGATAAATCTAAGCTGATGAGTTTG





CTCAAAACAGGAAGTTGAAATTGTTGAGACAGGAATGGAAAATATAATTAATTGATACCTATGAGGATTT





GGAGGCTTGGCATTTTAATTTGCAGATAATACCCTGGTAATTCTCATGAAAAATAGACTTGGATAACTTT





TGATAAAAGACTAATTCCAAAATGGCCACTTTGTTCCTGTCTTTAATATCTAAATACTTACTGAGGTCCT





CCATCTTCTATATTATGAATTTTCATTTATTAAGCAAATGTCATATTACCTTGAAATTCAGAAGAGAAGA





AACATATACTGTGTCCAGAGTATAATGAACCTGCAGAGTTGTGCTTCTTACTGCTAATTCTGGGAGCTTT





CACAGTACTGTCATCATTTGTAAATGGAAATTCTGCTTTTCTGTTTCTGCTCCTTCTGGAGCAGTGCTAC





TCTGTAATTTTCCTGAGGCTTATCACCTCAGTCATTTCTTTTTTAAATGTCTGTGACTGGCAGTGATTCT





TTTTCTTAAAAATCTATTAAATTTGATGTCAAATTAGGGAGAAAGATAGTTACTCATCTTGGGCTCTTGT





GCCAATAGCCCTTGTATGTATGTACTTAGAGTTTTCCAAGTATGTTCTAAGCACAGAAGTTTCTAAATGG





GGCCAAAATTCAGACTTGAGTATGTTCTTTGAATACCTTAAGAAGTTACAATTAGCCGGGCATGGTGGCC





CGTGCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGCAGGAGAATCACTTCAACCCAGGAGGTGGAGGTTA





CAGTGAGCAGAGATCGTGCCACTGCACTCCAGCCTGGGTGACAAGAGAGACTTGTCTCCAAAAAAAAAGT





TACACCTAGGTGTGAATTTTGGCACAAAGGAGTGACAAACTTATAGTTAAAAGCTGAATAACTTCAGTGT





GGTATAAAACGTGGTTTTTAGGCTATGTTTGTGATTGCTGAAAAGAATTCTAGTTTACCTCAAAATCCTT





CTCTTTCCCCAAATTAAGTGCCTGGCCAGCTGTCATAAATTACATATTCCTTTTGGTTTTTTTAAAGGTT





ACATGTTCAAGAGTGAAAATAAGATGTTCTGTCTGAAGGCTACCATGCCGGATCTGTAAATGAACCTGTT





AAATGCTGTATTTGCTCCAACGGCTTACTATAGAATGTTACTTAATACAATATCATACTTATTACAATTT





TTACTATAGGAGTGTAATAGGTAAAATTAATCTCTATTTTAGTGGGCCCATGTTTAGTCTTTCACCATCC





TTTAAACTGCTGTGAATTTTTTTGTCATGACTTGAAAGCAAGGATAGAGAAACACTTTAGAGATATGTGG





GGTTTTTTTACCATTCCAGAGCTTGTGAGCATAATCATATTTGCTTTATATTTATAGTCATGAACTCCTA





AGTTGGCAGCTACAACCAAGAACCAAAAAATGGTGCGTTCTGCTTCTTGTAATTCATCTCTGCTAATAAA





TTATAAGAAGCAAGGAAAATTAGGGAAAATATTTTATTTGGATGGTTTCTATAAACAAGGGACTATAATT





CTTGTACATTATTTTTCATCTTTGCTGTTTCTTTGAGCAGTCTAATGTGCCACACAATTATCTAAGGTAT





TTGTTTTCTATAAGAATTGTTTTAAAAGTATTCTTGTTACCAGAGTAGTTGTATTATATTTCAAAACGTA





AGATGATTTTTAAAAGCCTGAGTACTGACCTAAGATGGAATTGTATGAACTCTGCTCTGGAGGGAGGGGA





GGATGTCCGTGGAAGTTGTAAGACTTTTATTTTTTTGTGCCATCAAATATAGGTAAAAATAATTGTGCAA





TTCTGCTGTTTAAACAGGAACTATTGGCCTCCTTGGCCCTAAATGGAAGGGCCGATATTTTAAGTTGATT





ATTTTATTGTAAATTAATCCAACCTAGTTCTTTTTAATTTGGTTGAATGTTTTTTCTTGTTAAATGATGT





TTAAAAAATAAAAACTGGAAGTTCTTGGCTTAGTCATAATTCTT





SEQ ID NO: 35




Homo sapiens 2′-5′-oligoadenylate synthetase 1, 40/46 kDa (OAS1),




transcript variant 3, mRNA


TCCCTTCTGAGGAAACGAAACCAACAGCAGTCCAAGCTCAGTCAGCAGAAGAGATAAAAGCAAACAGGTC





TGGGAGGCAGTTCTGTTGCCACTCTCTCTCCTGTCAATGATGGATCTCAGAAATACCCCAGCCAAATCTC





TGGACAAGTTCATTGAAGACTATCTCTTGCCAGACACGTGTTTCCGCATGCAAATCAACCATGCCATTGA





CATCATCTGTGGGTTCCTGAAGGAAAGGTGCTTCCGAGGTAGCTCCTACCCTGTGTGTGTGTCCAAGGTG





GTAAAGGGTGGCTCCTCAGGCAAGGGCACCACCCTCAGAGGCCGATCTGACGCTGACCTGGTTGTCTTCC





TCAGTCCTCTCACCACTTTTCAGGATCAGTTAAATCGCCGGGGAGAGTTCATCCAGGAAATTAGGAGACA





GCTGGAAGCCTGTCAAAGAGAGAGAGCATTTTCCGTGAAGTTTGAGGTCCAGGCTCCACGCTGGGGCAAC





CCCCGTGCGCTCAGCTTCGTACTGAGTTCGCTCCAGCTCGGGGAGGGGGTGGAGTTCGATGTGCTGCCTG





CCTTTGATGCCCTGGGTCAGTTGACTGGCGGCTATAAACCTAACCCCCAAATCTATGTCAAGCTCATCGA





GGAGTGCACCGACCTGCAGAAAGAGGGCGAGTTCTCCACCTGCTTCACAGAACTACAGAGAGACTTCCTG





AAGCAGCGCCCCACCAAGCTCAAGAGCCTCATCCGCCTAGTCAAGCACTGGTACCAAAATTGTAAGAAGA





AGCTTGGGAAGCTGCCACCTCAGTATGCCCTGGAGCTCCTGACGGTCTATGCTTGGGAGCGAGGGAGCAT





GAAAACACATTTCAACACAGCCCAGGGATTTCGGACGGTCTTGGAATTAGTCATAAACTACCAGCAACTC





TGCATCTACTGGACAAAGTATTATGACTTTAAAAACCCCATTATTGAAAAGTACCTGAGAAGGCAGCTCA





CGAAACCCAGGCCTGTGATCCTGGACCCGGCGGACCCTACAGGAAACTTGGGTGGTGGAGACCCAAAGGG





TTGGAGGCAGCTGGCACAAGAGGCTGAGGCCTGGCTGAATTACCCATGCTTTAAGAATTGGGATGGGTCC





CCAGTGAGCTCCTGGATTCTGCTGACCCAGCACACTCCAGGCAGCATCCACCCCACAGGCAGAAGAGGAC





TGGACCTGCACCATCCTCTGAATGCCAGTGCATCTTGGGGGAAAGGGCTCCAGTGTTATCTGGACCAGTT





CCTTCATTTTCAGGTGGGACTCTTGATCCAGAGAGGACAAAGCTCCTCAGTGAGCTGGTGTATAATCCAG





GACAGAACCCAGGTCTCCTGACTCCTGGCCTTCTATGCCCTCTATCCTATCATAGATAACATTCTCCACA





GCCTCACTTCATTCCACCTATTCTCTGAAAATATTCCCTGAGAGAGAACAGAGAGATTTAGATAAGAGAA





TGAAATTCCAGCCTTGACTTTCTTCTGTGCACCTGATGGGAGGGTAATGTCTAATGTATTATCAATAACA





ATAAAAATAAAGCAAATACCATTTAAAAAAAAAAA





SEQ ID NO: 36




Homo sapiens origin recognition complex, subunit 1 (ORC1), transcript




variant 3, mRNA


ACGGTCTGGGGGCGGGGCCACGCCGATTGGCGCGAAGTTTTCTTTTCTCCTTCCACCTTCTTTTCATTTC





TAGTGAGACACACGCTTTGGTCCTGGCTTTCGGCCCGTAGTTGTAGAAGGAGCCCTGCTGGTGCAGGTTA





GAGGTGCCGCATCCCCCGGAGCTCTCGAAGTGGAGGCGGTAGGAAACGGAGGGCTTGCGGCTAGCCGGAG





GAAGCTTTGGAGCCGGAAGCCATGGCACACTACCCCACAAGGCTGAAGACCAGAAAAACTTATTCATGGG





TTGGCAGGCCCTTGTTGGATCGAAAACTGCACTACCAAACCTATAGAGAAATGTGTGTGAAAACAGAAGG





TTGTTCCACCGAGATTCACATCCAGATTGGACAGTTTGTGTTGATTGAAGGGGATGATGATGAAAACCCG





TATGTTGCTAAATTGCTTGAGTTGTTCGAAGATGACTCTGATCCTCCTCCTAAGAAACGTGCTCGAGTAC





AGTGGTTTGTCCGATTCTGTGAAGTCCCTGCCTGTAAACGGCATTTGTTGGGCCGGAAGCCTGGTGCACA





GGAAATATTCTGGTATGATTACCCGGCCTGTGACAGCAACATTAATGCGGAGACCATCATTGGCCTTGTT





CGGGTGATACCTTTAGCCCCAAAGGATGTGGTACCGACGAATCTGAAAAATGAGAAGACACTCTTTGTGA





AACTATCCTGGAATGAGAAGAAATTCAGGCCACTTTCCTCAGAACTATTTGCGGAGTTGAATAAACCACA





AGAGAGTGCAGCCAAGTGCCAGAAACCCGTGAGAGCCAAGAGTAAGAGTGCAGAGAGCCCTTCTTGGACC





CCAGCAGAACATGTGGCCAAAAGGATTGAATCAAGGCACTCCGCCTCCAAATCTCGCCAAACTCCTACCC





ATCCTCTTACCCCAAGAGCCAGAAAGAGGCTGGAGCTTGGCAACTTAGGTAACCCTCAGATGTCCCAGCA





GACTTCATGTGCCTCCTTGGATTCTCCAGGAAGAATAAAACGGAAAGTGGCCTTCTCGGAGATCACCTCA





CCTTCTAAGAGATCTCAGCCTGATAAACTTCAAACCTTGTCTCCAGCTCTGAAAGCCCCAGAGAAAACCA





GAGAGACTGGACTCTCTTATACTGAGGATGACAAGAAGGCTTCACCTGAACATCGCATAATCCTGAGAAC





CCGAATTGCAGCTTCGAAAACCATAGACATTAGAGAGGAGAGAACACTTACCCCTATCAGTGGGGGACAG





AGATCTTCAGTGGTGCCATCCGTGATTCTGAAACCAGAAAACATCAAAAAGAGGGATGCAAAAGAAGCAA





AAGCCCAGAATGAAGCGACCTCTACTCCCCATCGTATCCGCAGAAAGAGTTCTGTCTTGACTATGAATCG





GATTAGGCAGCAGCTTCGGTTTCTAGGTAATAGTAAAAGTGACCAAGAAGAGAAAGAGATTCTGCCAGCA





GCAGAGATTTCAGACTCTAGCAGTGACGAAGAAGAGGCTTCCACACCGCCCCTTCCAAGGAGAGCACCCA





GAACTGTGTCCAGGAACCTGCGATCTTCCTTGAAGTCATCCTTACATACCCTCACGAAGCTCAAGCCTAG





AACGCCACGTTGTGCCGCTCCTCAGATCCGTAGTCGAAGCCTGGCTGCCCAGGAGCCAGCCAGTGTGCTG





GAGGAAGCCCGACTGAGGCTGCATGTTTCTGCTGTACCTGAGTCTCTTCCCTGTCGGGAACAGGAATTCC





AAGACATCTACAATTTTGTGGAAAGCAAACTCCTTGACCATACCGGAGGGTGCATGTACATCTCCGGTGT





CCCTGGGACAGGGAAGACTGCCACTGTTCATGAAGTGATACGCTGCCTGCAGCAGGCAGCCCAAGCCAAT





GATGTTCCTCCCTTTCAATACATTGAGGTCAATGGCATGAAGCTGACGGAGCCCCACCAAGTCTATGTGC





AAATCTTGCAGAAGCTAACAGGCCAAAAAGCAACAGCCAACCATGCGGCAGAACTGCTGGCAAAGCAATT





CTGCACCCGAGGGTCACCTCAGGAAACCACCGTCCTGCTTGTGGATGAGCTCGACCTTCTGTGGACTCAC





AAACAAGACATAATGTACAATCTCTTTGACTGGCCCACTCATAAGGAGGCCCGGCTTGTGGTCCTGGCAA





TTGCCAACACAATGGACCTGCCAGAGCGAATCATGATGAACCGGGTGTCCAGCCGACTGGGTCTTACCAG





GATGTGCTTCCAGCCCTATACATATAGCCAGCTGCAGCAGATCCTAAGGTCCCGGCTCAAGCATCTAAAG





GCCTTTGAAGATGATGCCATCCAGCTGGTAGCCAGGAAGGTAGCAGCACTGTCTGGAGATGCACGACGGT





GCCTGGACATCTGCAGGCGTGCCACAGAGATCTGTGAGTTCTCCCAGCAGAAGCCTGACTCCCCTGGCCT





GGTCACCATAGCCCACTCAATGGAAGCTGTGGATGAGATGTTTTCATCATCATACATCACGGCCATCAAA





AATTCCTCTGTTCTGGAACAGAGCTTCCTGAGAGCCATCCTCGCAGAGTTCCGTCGATCAGGACTGGAGG





AAGCCACGTTTCAACAGATATATAGTCAACATGTGGCACTGTGCAGAATGGAGGGACTGCCGTACCCCAC





CATGTCAGAGACCATGGCCGTGTGTTCTCACCTGGGCTCCTGTCGCCTCCTGCTTGTGGAGCCCAGCAGG





AACGATCTGCTCCTTCGGGTGCGGCTCAACGTCAGCCAGGATGATGTGCTGTATGCGCTGAAAGACGAGT





AAAGGGGCTTCACAAGTTAAAAGACTGGGGTCTTGCTGGGTTTTGTTTTTTGAGACAGGGTCTTGCTCTG





TCGCCCAGGCTGGAGTGCAGTGGCACGATCATGGCTCACTGCAGCCTTGACTTCTCAGGCTTAGGTGACC





CCCCAACCTCATCCTCCCAGGTGGCTGAAACTACAGGCACATGCCACCATGCCCAGCTGATTTTTTGTAG





AGACAGGGCTTCACCATGTTGCCAAGCTAGTCTACAAAGCATCTGATTTTGGAAGTACATGGAATTGTTG





TAACAAAGTATATTGAATGGAAATGGCTCTCATGTATTTTGGAATTTTCCATTAAATAATTTGCTTTTTC





CTGAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 37




Homo sapiens phosphoglycerate kinase 1 (PGK1), mRNA




GAGAGCAGCGGCCGGGAAGGGGCGGTGCGGGAGGCGGGGTGTGGGGCGGTAGTGTGGGCCCTGTTCCTGC





CCGCGCGGTGTTCCGCATTCTGCAAGCCTCCGGAGCGCACGTCGGCAGTCGGCTCCCTCGTTGACCGAAT





CACCGACCTCTCTCCCCAGCTGTATTTCCAAAATGTCGCTTTCTAACAAGCTGACGCTGGACAAGCTGGA





CGTTAAAGGGAAGCGGGTCGTTATGAGAGTCGACTTCAATGTTCCTATGAAGAACAACCAGATAACAAAC





AACCAGAGGATTAAGGCTGCTGTCCCAAGCATCAAATTCTGCTTGGACAATGGAGCCAAGTCGGTAGTCC





TTATGAGCCACCTAGGCCGGCCTGATGGTGTGCCCATGCCTGACAAGTACTCCTTAGAGCCAGTTGCTGT





AGAACTCAAATCTCTGCTGGGCAAGGATGTTCTGTTCTTGAAGGACTGTGTAGGCCCAGAAGTGGAGAAA





GCCTGTGCCAACCCAGCTGCTGGGTCTGTCATCCTGCTGGAGAACCTCCGCTTTCATGTGGAGGAAGAAG





GGAAGGGAAAAGATGCTTCTGGGAACAAGGTTAAAGCCGAGCCAGCCAAAATAGAAGCTTTCCGAGCTTC





ACTTTCCAAGCTAGGGGATGTCTATGTCAATGATGCTTTTGGCACTGCTCACAGAGCCCACAGCTCCATG





GTAGGAGTCAATCTGCCACAGAAGGCTGGTGGGTTTTTGATGAAGAAGGAGCTGAACTACTTTGCAAAGG





CCTTGGAGAGCCCAGAGCGACCCTTCCTGGCCATCCTGGGCGGAGCTAAAGTTGCAGACAAGATCCAGCT





CATCAATAATATGCTGGACAAAGTCAATGAGATGATTATTGGTGGTGGAATGGCTTTTACCTTCCTTAAG





GTGCTCAACAACATGGAGATTGGCACTTCTCTGTTTGATGAAGAGGGAGCCAAGATTGTCAAAGACCTAA





TGTCCAAAGCTGAGAAGAATGGTGTGAAGATTACCTTGCCTGTTGACTTTGTCACTGCTGACAAGTTTGA





TGAGAATGCCAAGACTGGCCAAGCCACTGTGGCTTCTGGCATACCTGCTGGCTGGATGGGCTTGGACTGT





GGTCCTGAAAGCAGCAAGAAGTATGCTGAGGCTGTCACTCGGGCTAAGCAGATTGTGTGGAATGGTCCTG





TGGGGGTATTTGAATGGGAAGCTTTTGCCCGGGGAACCAAAGCTCTCATGGATGAGGTGGTGAAAGCCAC





TTCTAGGGGCTGCATCACCATCATAGGTGGTGGAGACACTGCCACTTGCTGTGCCAAATGGAACACGGAG





GATAAAGTCAGCCATGTGAGCACTGGGGGTGGTGCCAGTTTGGAGCTCCTGGAAGGTAAAGTCCTTCCTG





GGGTGGATGCTCTCAGCAATATTTAGTACTTTCCTGCCTTTTAGTTCCTGTGCACAGCCCCTAAGTCAAC





TTAGCATTTTCTGCATCTCCACTTGGCATTAGCTAAAACCTTCCATGTCAAGATTCAGCTAGTGGCCAAG





AGATGCAGTGCCAGGAACCCTTAAACAGTTGCACAGCATCTCAGCTCATCTTCACTGCACCCTGGATTTG





CATACATTCTTCAAGATCCCATTTGAATTTTTTAGTGACTAAACCATTGTGCATTCTAGAGTGCATATAT





TTATATTTTGCCTGTTAAAAAGAAAGTGAGCAGTGTTAGCTTAGTTCTCTTTTGATGTAGGTTATTATGA





TTAGCTTTGTCACTGTTTCACTACTCAGCATGGAAACAAGATGAAATTCCATTTGTAGGTAGTGAGACAA





AATTGATGATCCATTAAGTAAACAATAAAAGTGTCCATTGAAACCGTGATTTTTTTTTTTTTCCTGTCAT





ACTTTGTTAGGAAGGGTGAGAATAGAATCTTGAGGAACGGATCAGATGTCTATATTGCTGAATGCAAGAA





GTGGGGCAGCAGCAGTGGAGAGATGGGACAATTAGATAAATGTCCATTCTTTATCAAGGGCCTACTTTAT





GGCAGACATTGTGCTAGTGCTTTTATTCTAACTTTTATTTTTATCAGTTACACATGATCATAATTTAAAA





AGTCAAGGCTTATAACAAAAAAGCCCCAGCCCATTCCTCCCATTCAAGATTCCCACTCCCCAGAGGTGAC





CACTTTCAACTCTTGAGTTTTTCAGGTATATACCTCCATGTTTCTAAGTAATATGCTTATATTGTTCACT





TCTTTTTTTTTTATTTTTTAAAGAAATCTATTTCATACCATGGAGGAAGGCTCTGTTCCACATATATTTC





CACTTCTTCATTCTCTCGGTATAGTTTTGTCACAATTATAGATTAGATCAAAAGTCTACATAACTAATAC





AGCTGAGCTATGTAGTATGCTATGATTAAATTTACTTATGTAAAAAAAAAAAAAAAAAA





SEQ ID NO: 38




Homo sapiens phorbol-12-myristate-13-acetate-induced protein 1 (PMATP1),




mRNA


ACTGGACAAAAGCGTGGTCTCTGGCGCGGGGATCTCAGAGTTTCCCGGGCACTCACCGTGTGTAGTTGGC





ATCTCCGCGCGTCCGGACACCCGATCCCAGCATCCCTGCCTGCAGGACTGTTCGTGTTCAGCTCGCGTCC





TGCAGCTGTCCGAGGTGCTCCAGTTGGAGGCTGAGGTTCCCGGGCTCTGTAGCTGAGTGGGCGGCGGCAC





CGGCGGAGATGCCTGGGAAGAAGGCGCGCAAGAACGCTCAACCGAGCCCCGCGCGGGCTCCAGCAGAGCT







GGAAGTCGA
GTGTGCTACTCAACTCAGGAGATTTGGAGACAAACTGAACTTCCGGCAGAAACTTCTGAAT






CTGATATCCAAACTCTTCTGCTCAGGAACCTGACTGCATCAAAAACTTGCATGAGGGGACTCCTTCAAAA





GAGTTTTCTCAGGAGGTGCACGTTTCATCAATTTGAAGAAAGACTGCATTGTAATTGAGAGGAATGTGAA





GGTGCATTCATGGGTGCCCTTGGAAACGGAAGATGGAATACATCAAAGTGAATTTCTGTTCAAGTTTTCC





CAGATTATCATTCTTTGGGATGAGAGAACATTATAAAACCACTTTGTTTATTTTAAAGCAAGAATGGAAG





ACCCTTGAAAATAAAGAAGTAATTATTGACACATTTCTTTTTTACTTAGAGAATCGTTCTAGTGTTTTTG





CCGAAGATTACCGCTGGCCTACTGTGAAGGGAGATGACCTGTGATTAGACTGGGCGGCTGGGGAGAAACA





GTTCAGTGCATTGTTGTTGTTGCTGTTTTTGGTGTTTTGCTTTTCAGTGCCAACTCAGCACATTGTATAT





GATTCGGTTTATACATATTACCTTGTTATAATGAAAAAACTCATTCTGAGAACACTGAAATGTTATACTC





AGTGTTGATTTCTTCGGTCACTACACAACGTAAAATCATTTGTTTCTTTTGACTCAAATTGTATTGCTTC





TGTTCAGATGATCTTTCATTCAATGTGTTCCTGTTGGGCGTTACTAGAAACTATGGAAAACTGGAAAATA





ACTTTGAAAAAATTGGATAAAGTATAGGAGGGTTACTTGGGGCCAGTAAATCAGTAGACTGAACATTCAA





TATAATAAAAGAACATGGGGATTTTGTATAACCAGGGATAATAAAAAGAAAAAAGAAGTTAATTTTTAAT





TGATGTTTTTGAAACTTAGTAGAACAAATATTCAGAAGTAACTTGATAAGATATGAATGTTTCTAAAGAA





GTTTCTAAAGGTTCGGAAAATGCTCCTTGTCACATTAGTGTGCATCCTACAAAAAGTGATCTCTTAATGT





AAATTAAGAATATTTTCATAATTGGAATATACTTTTCTTAAAAAAAAGGAACAGTTAGTTCTCATCTAGA





ATGAAAGTTCCATATATGCATTGGTGAATATATATGTATACACATACTTACATACTTATATGGGTATCTG





TATAGATAATTTGTATTAGAGTATTATATAGCTTCTTAGTAGGGTCTCAAGTAAGTTTCATTTTTTTTAT





CTGGGCTATATACAGTCCTCAAATAAATAATGTCTTGATTTTATTTCAGCAGGAATAATTTTATTTATTT





TGCCTATTTATAATTAAAGTATTTTTCTTTAGTTTGAAAATGTGTATTAAAGTTACATTTTTGAGTTACA





AGAGTCTTATAACTACTTGAATTTTTAGTTAAAATGTCTTAATGTAGGTTGTAGTCACTTTAGATGGAAA





ATTACCTCACATCTGTTTTCTTCAGTATTACTTAAGATTGTTTATTTAGTGGTAGAGAGTTTTTTTTTTC





AGCCTAGAGGCAGCTATTTTACCATCTGGTATTTATGGTCTAATTTGTATTTAAACATATGCACACATAT





AAAAGTTGATACTGTGGCAGTAAACTATTAAAAGTTTTCACTGTTCAAAAAAAAAAAAAAAAAA





SEQ ID NO: 39




Homo sapiens POU class 6 homeobox 1 (POU6F1), transcript variant 2, non-




coding RNA


AATCGGTGGCCGCCAGACACCCGCGGCGAAGGCGGCTCGGGCTCGGGCTCCGGATGTGCTAGGTGTGGGC





CGGCCCCCACCCGACCCTGACAAGTGACCATGGATCCTGGAGCCGGGTCAGAGACATCTCTGACTGTCAA





TGAGCAGGTCATCGTGATGTCAGGTCATGAGACCATCCGAGTGCTGGAAGTCGGAGTGGATGCCCAACTC





CCTGCTGAGGAAGAGAGCAAAGGACTGGAGGGTGTGGCCGCCGAGGGCTCCCAGAGCGGAGACCCTGCTG





AAGCCAGTCAAGCTGCTGGTGAAGCTGGGCCAGACAACCTGGGCTCCTCTGCAGAGGCAACTGTGAAGTC





ACCCCCGGGGATCCCTCCGAGCCCTGCCCCTGCCATTGCCACCTTCAGCCAAGCCCCAAGCCAGCCTCAG





GCATCGCAGACCCTGACGCCACTGGCTGTACAAGCTGCCCCCCAGTATTGCAGGTCAAGTGGCTGGTCAG





CAGGGGCTGGCCGTGTGGACAATTCCTACAGCAACTGTGGCTGCCCTCCCAGGACTGACCGCTGCTTCTC





CTACGGGGGGAGTGTTCAAGCCACCTTTAGCCGGTCTCCAAGCAGCTGCTGTGCTGAACACCGCTCTTCC





GGCACCGGTACAAGCTGCCGCACCAGTACAGGCCTCCTCGACGGCCCAACCCCGGCCACCAGCCCAGCCC





CAGACGCTGTTCCAGACCCAGCCGCTGCTGCAGACCACACCTGCCATCCTCCCGCAGCCCACTGCTGCCA





CCGCTGCTGCCCCTACCCCCAAGCCAGTGGACACCCCCCCACAGATCACCGTCCAGCCTGCAGGCTTCGC





ATTTAGCCCAGGAATCATCAGTGCTGCTTCCCTCGGGGGACAGACCCAGATCCTGGGGTCCCTCACTACA





GCTCCAGTCATTACCAGCGCCATTCCCAGCATGCCAGGGATCAGCAGTCAGATCCTCACCAATGCTCAGG





GACAGGTTATTGGAACCCTTCCATGGGTAGTGAACTCAGCTAGTGTGGCGGCCCCAGCACCAGCCCAAAG





CCTGCAGGTCCAGGCCGTGACCCCCCAGCTGTTGTTGAACGCCCAGGGCCAGGTGATTGCGACCCTGGCT





AGCAGCCCCCTGCCTCCACCTGTGGCTGTCCGGAAGCCAAGCACACCTGAGTCCCCTGCTAAGAGTGAGG







TGCAGCCCATCCA
GCCCACACCAACCGTGCCCCAGCCTGCTGTGGTCATTGCCAGCCCAGCTCCAGCCGC






CAAGCCATCTGCCTCTGCTCCTATCCCAATTACCTGCTCAGAGACCCCCACCGTCAGCCAGTTGGTGTCC





AAGCCACATACTCCAAGTCTGGATGAGGATGGGATCAACTTAGAAGAGATCCGGGAGTTTGCCAAGAACT





TTAAGATCCGGCGGCTCTCGCTGGGCCTTACACAGACCCAGGTGGGTCAGGCTCTGACTGCAACGGAAGG





TCCAGCCTACAGCCAGTCAGCCATCTGCCGGTTCGAGAAGCTAGACATCACACCCAAGAGTGCCCAGAAG





CTAAAGCCGGTGCTGGAAAAGTGGCTAAACGAAGCTGAACTGCGGAACCAGGAAGGCCAGCAGAACCTGA





TGGAGTTTGTGGGAGGCGAGCCCTCCAAGAAACGCAAACGCCGCACCTCCTTCACCCCCCAGGCCATAGA





GGCTCTCAATGCCTATTTTGAGAAGAACCCACTGCCCACAGGCCAGGAGATCACTGAAATTGCTAAGGAG





CTCAACTACGACCGTGAGGTAGTGCGGGTCTGGTTCTGCAATCGGCGCCAGACGCTCAAGAACACCAGCA





AGCTGAACGTCTTTCAGATCCCTTAGGGCTCAGCCCCTGGCCCTGTGTTCTAGCACTTTGTCCATTTCCC





GTGGCATCCGGCTGCAGCCACTGCCATGACAGCACCTGTCATTTTGCCACGTGCAGCTGTGCTCACCCCA





GGTCATCAGACTCCACCGTGTGCATGTGCATCAATGTCCCTCTTTTCTCCCACACATCTCACATCATGGG





GAGGCCAGAGGGGGCCACACGAGAGCTCCAGGCTCTGGGCTGGTCACTCCGAAGAAGAGGATTTGTGACG





TCACTTAGAGAAGCACCTTGCTAGCATGGTTTCTGAAGGGTGAATTCTGGTGGGGAACCAGAAACTCCCT





GTCTTTGGGGCAGGGCTAAAGCAGCTCCTAAGGACCACTGGCCATTAGCTCTTGCTTTTGATGGCATTCT





CTTTCCACCTTGTCTTCTCCTTTGCTCCTCTGTGTTAGTGTGGCAGGTATGACAACTCATCCAGTGGAAA





CACAGCCTCACACTGCCCTTCCGCCCCCCACACTTTGCCTGCAGGTGCACCGAAAGGACCTGGGAGATAA





AATTCAAAAAAGTGTGATGTGCTGCTCAGAAGGTCAGACTCCATGTCTGCCTTGACCTCAAGGTCAGAAG





GTTCCCAAACCCCTGGGGCTGGAACATGGGATCTCCTCTTCCACCTCTTCCTGGTTCCTTTGCGGGGAAA





ATTGCACTAAAACAGAACCTTTTCTTAATCCATGTTGGAAGGAAGCAACAGTGAACTCTACCTGTTCTGG





AGTTCTCCTGGGTCTGCAGAAGGTTGGGAATTTAGAAAATAAGGCTGTTCTTTCATATTTTAATTTAATC





TCTGTCAATGGCCATCCCTCCCACAAAAAAACGTGGGTTAAGAGAACTTGCAGACTGGATATGCAAGCAA





ACGGGCAACTCTGGAGAAAAATAAGGAAAGGAATGCTGACTTTCTCTTTCTTTCTCTTGTCCCCACACCC





ATTCCCAACCCAATACTGGGGCCTTCTCAAAAGGAGCAAATTAAACAATAAACCAGACAGCAAGGCCCTG





GGGGAAAGGACAACATCCTGAAATAAATGATGGAGCCCAGGAAGGTCTCTTGTGGAAGTTGACTTAACTC





TAATTTTCTTTGTAACTTTAAGCCTTGGATACGGGAGGAGAAATCTCATTTTGTCGAGTCTCAGACCATG





TCTGTGTGTAAGCAATCCCCACAGTGTCCTCTGAGCCAAGGACACCCCCAGATCAGATTGAGTTTTGCTT





CTAGACGGGGTAGCTATGGTACCTTGGGGGTTAGCTCTCATCCAAGCTGTTAAGTGAGTTTCCAGCCTCA





CTGTGGCTGGAAAGCCCCTAAAATTCAGTATGTAACTCCAGGAAGTCAGGAGAGAACTGAGATTTGCCTA





GATGACCACAGGCTTGCGGTGTAGATTATCCCTAAAGGGCCCCAAGTCACGGGGGTCAACCACCCCTGTC





TTCAGTACTCTTATCCTTACAGAGGCTGGTCTCTAACAGCTGCCTCCAGTGGACCTCCCATGATCCACCC





TGAGGGAAGGACCGTCAGCTGGGGACACATCACCACCTCTGTCAGTCACTGGTGCAGAGCCACCTCCTAG





CCTAGCTTCCTCTGGTGTCCTGTTTCCTTTCCCACTTACTGTTGGTGCCTCCCAGGCCCTGCAGTGCCAG





CGTGGCCACCCTCTTGGTAGCCTGGCCAGTAAGAGGAGGACAGTTGTGTGCTGAATTAGCACACGCACGT





GCAGCGCGCACAGACGCGCGCACACACACACACATACACGCTCTGCTGCATTTGGACAAACCATGCCTGC





CAGAGTGTAGCAGAGGTGAGGAAGCAGGTGGGCAGCTTGCCTGACCCAGCTTTTCAGGAGAGCGTGTCTC





CAACAGAGAGTCTCCACACTCTAGTTCAGGGTTATCGACCTGCCTCAATGAGATGACAGACTCATTTGGG





AGGGGTGTTGCAAACAAGTTTTCAGTGAGAATAGTTAAGTTCCAGAGCTTGTAAAGGATTCAGTGACTGA





CACTTCAGTAAATTAGGCCAGGCACATTGGCTTATGCCTGTAATTCCAACACTTTGGAAGGCCGAGGTGG





GCGGATCATTTGAGGTCTGGAGTTCGAGACCAGCCTGACCAACATGGTGAAACCCCGTCTCTACTAAAAA





TACAAAAATTAGCCAGGTGTGGTAGTGCACATCTGTAATCCCAGCTACTTGGGAGGTGGAGGCAGGAGAA





TTGCTTGAACCCTGGAGGTTGCAATGAGCTGAGATCACACTACTTCACTCCAGCCTGGGTGACAGAGCAA





GACTCGGTCTCAAACAAACAAAAACTTATGGCGATGCAGGTTTTCATGCTCAGACGCTTGCATTCAGGTA





TGCTTTCTTTTTTGAGAGAGACAAATGGGTCACAGCTGGCACCCTGGGAATAGCACATAATCCAGGGTGT





GTCTGTGGTGGTGGACGTGCAGGGGAACACCATCTGTCCTGTGTCATGATGGGAAAACAATCATGAACCA





CTGGTCTAAATTAGGCCTGGCCATGCTTTCTCAGCCCCTCCCTCATTTAAATTTGTCTTCCCAAAGCTGA





GCTAAAACTAAACCATTTCTCCTCTGCTGGAATGATGGATTGGTCATTCAGAGGAACAATACCAGGGGTG





GGAGGTTTGCAGGCTGAGTTCCCCAGGCATGGGGGTGCAGGGTGTCCCTGAGGTTTACCCAAAGCACAGC





TCGCTGGCCTGTGACCTCTGCCCTTCCTCCCACAGTGTAAGACCCCCCAGGAAGCAGCTGGGGCCTGAAC





CTCTCACCTAGGAGGTAGGTTTATTTTATTTTTTGTTAGCATCAGGCTCTGAAGGAGTTGGTATACATTT





TGTTTTGAAAACATCTTCTGGACTTACACCAGAGCTTAGTGTCGTCTTTACTATGGAAAGAGAGGAGAAT





GGACAGAAATGGTTTAACTGTGTGGAGTTTTGTTTGTTTTGTTTTAAATGGAAGAAAGACCAAAACTTTC





CTGGTGGATCAGCTAGGGCCTTTGACCCTGCATTACCACGGCATTTTATCCAGGTGAAGTCCAGGGAAAG





AACTCAGCCAAATGGACTAAGGAACACACGAGTTTGGAATGCGAGACTCTGACATTTTTGTGTTCTTGGA





AATCCAATTACCTTCCCATGCCCAGATTTCCTTCCTGCCTCTTGGACCAGGCTCTGGCACTGAGGTTCTC





ACTGTTCCCAACACAGACAAAGCTTCCTGAGGGCTGGAGGGGCAGCAAGGGGAGAGGAGAATGGGGAAGA





AGCGCTTGATGTAGTTGTGTGGAATAAACAGTATTTTTTCTTTTGTAAAAAAAAAAAAAAAAA





SEQ ID NO: 40




Homo sapiens Ran GTPase activating protein 1 (RANGAP1), mRNA




AAATCCTCCTCCTCCGCCATCATCCGCCGCGGTGCGGAGAGCAGGTGGTGCTGGAAGCGCGTGAGGCCGG





GAGCTCGAGAGAGCTAACAGACTAGCCGGCTGGACATCTGGACCGCTGGATCCGGAGGTGGCGACCCCGG





CCTGACCCGGACCCTAAATCCGTCCCCGCCCCAGAGGGCGGAGGCGCGCGCTCGATTCCCCCCACGCGGC





GGCGCCGCCTGTTTACGTCTGCAGATCTCCAGGGGAGCCCACCAGCCTAGTCAACATGGCCTCGGAAGAC





ATTGCCAAGCTGGCAGAGACACTTGCCAAGACTCAGGTGGCCGGGGGACAGCTGAGTTTCAAAGGCAAGA





GCCTCAAACTCAACACTGCAGAAGATGCTAAAGATGTGATTAAAGAGATTGAAGACTTTGACAGCTTGGA





GGCTCTGCGTCTGGAAGGCAACACAGTGGGCGTGGAAGCAGCCAGGGTCATCGCCAAGGCCTTAGAGAAG





AAGTCGGAGTTGAAGCGCTGCCACTGGAGTGACATGTTCACGGGAAGGCTGCGGACCGAGATCCCACCAG







CCCTGATCTCACTAG
GGGAAGGACTCATCACAGCTGGGGCTCAGCTGGTGGAGCTGGACTTAAGCGACAA






CGCATTCGGGCCCGACGGTGTGCAAGGCTTCGAGGCCCTGCTCAAGAGCTCAGCCTGCTTCACCCTGCAG





GAACTCAAGCTCAACAACTGTGGCATGGGCATTGGCGGCGGCAAGATCCTGGCTGCAGCTCTGACCGAAT





GTCACCGGAAATCCAGTGCCCAAGGCAAGCCTCTGGCCCTGAAGGTCTTTGTGGCTGGCAGAAACCGTCT





GGAGAATGATGGCGCCACTGCCTTGGCAGAAGCTTTTAGGGTCATCGGGACCCTGGAGGAGGTCCACATG





CCACAGAATGGGATCAACCACCCTGGCATCACTGCCCTGGCCCAGGCTTTCGCTGTCAACCCCCTGCTGC





GGGTCATCAACCTGAATGACAACACCTTCACTGAGAAGGGCGCCGTGGCCATGGCCGAGACCTTGAAGAC





CTTGCGGCAGGTGGAGGTGATTAATTTTGGGGACTGCCTGGTGCGCTCCAAGGGTGCAGTTGCCATTGCA





GATGCCATCCGCGGCGGCCTGCCCAAGCTAAAGGAGCTGAACTTGTCATTCTGTGAAATCAAGAGGGATG





CTGCCCTGGCTGTTGCTGAGGCCATGGCAGACAAAGCTGAGCTGGAGAAGCTGGACCTGAATGGCAACAC





CCTGGGAGAAGAAGGCTGTGAACAGCTTCAGGAGGTGCTGGAGGGCTTCAACATGGCCAAGGTGCTGGCG





TCCCTCAGTGATGACGAGGACGAGGAGGAGGAGGAGGAAGGAGAAGAGGAAGAAGAGGAAGCAGAAGAAG





AGGAGGAGGAAGATGAGGAAGAGGAGGAAGAAGAGGAGGAGGAGGAGGAAGAAGAGCCTCAGCAGCGAGG





GCAGGGAGAGAAGTCAGCCACGCCCTCACGGAAGATTCTGGACCCTAACACTGGGGAGCCAGCTCCCGTG





CTGTCCTCCCCACCTCCTGCAGACGTCTCCACCTTCCTGGCTTTTCCCTCTCCAGAGAAGCTGCTGCGCC





TAGGGCCCAAGAGCTCCGTGCTGATAGCCCAGCAGACTGACACGTCTGACCCCGAGAAGGTGGTCTCTGC





CTTCCTAAAGGTGTCATCTGTGTTCAAGGACGAAGCTACTGTGAGGATGGCAGTGCAGGATGCAGTAGAT





GCCCTGATGCAGAAGGCTTTCAACTCCTCGTCCTTCAACTCCAACACCTTCCTCACCAGGCTGCTCGTGC





ACATGGGTCTGCTCAAGAGTGAAGACAAGGTCAAGGCCATTGCCAACCTGTACGGCCCCCTGATGGCGCT





GAACCACATGGTGCAGCAGGACTATTTCCCCAAGGCCCTTGCACCCCTGCTGCTGGCGTTCGTGACCAAG





CCCAACAGCGCCCTGGAATCCTGCTCCTTCGCCCGCCACAGTCTGCTGCAGACGCTGTACAAGGTCTAGA





CTCAAAGCCTCTCCCATCCCTTGGCCTGGACCAGTGAGCTGGGGAGGGACTCGGATGAACTGAGGCGCAG





CCTACGCCATTGCCTTGGACAGGACTCTGGCCACAGGCAGGGCGGGTCTGTGTCCCATGTGTCCTGTCAG





TCCCCTGAGTATGTGTGTGGGTGTGGCGCATGTGCAGGTCTGTGCCTCCTGTCGGGATTTGGGTTTTAAC





GTCTTCTGCTGGCCCAGCCCTGCTCTGTTGTGGGGAGTTGGCCCCCAGGGGAAAGGGCTGTGAGCTGCTC





CGCCATTAAACTCACCTCCACCTGAGGGCGCTCTGCTGATCTCCGCCTGGGCCCTGATGGCCGTCCCCAC





CCACCTGCCTTCCGGCCCGGCTCCCTGGCGGAGCCAGAACCCAGGGAGTTGCCCGCGTGCTGTCCTTCCC





CTCTGTGTTGTGATTGGGTTGTTTCCTGCCCTGCCTGGGGCTGCTTCTCGTCACCAAGCCCTGGTCCTGC





GGCAGCTGTCACCCCTACCATCCATACCACTGTGCTGACCGCTCAGCCTGAAGAGCAGAGAATGCCATGG





GTGGGACTGTGGGGGTCGGATCGTGGGGTTGTTGGCAGAGGGCAACCCTGGGCCCCACACCGTGTGGACA





GGCAGACACCAGATTGTCCAGGAGCAGGAGCTGCTGGGACTGCGCTGGCCCCGGACCTAGTGGGCCTTCT





CCTGGCTGCTGAGATGTCGTCTGTGACTGGCCTGGCTGGAGGGGGAGTGTTGACAACCCAAAGCTGTTCT





CCAGTCTGGGGAGGGAGAGGCAGGGTCCCCAATGTCCGAGCTGCATCTGGACGCTGCTCTTAAAGGACCT





CCTGGGGCAGGGGAGCGGTAGGGTCTGGACTGGGCAGATGCTGTATGACCTCCCTGAGCACCCGTGACTG





CCCCATGCTTTCCCCTTTGTGCTCTGTGTGTGTCTGGGCTGTGCCCGGGGGCTTCACAAATAAAGTCGTG





TGGCAGCTTCAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 41




Homo sapiens Spi-B transcription factor (Spi-1/PU.1 related) (SPTB),




mRNA


GGCAAACAGCCCGCCCGGCACCACCATGCTCGCCCTGGAGGCTGCACAGCTCGACGGGCCACACTTCAGC







TGTCTGTACCCAG
ATGGCGTCTTCTATGACCTGGACAGCTGCAAGCATTCCAGCTACCCTGATTCAGAGG






GGGCTCCTGACTCCCTGTGGGACTGGACTGTGGCCCCACCTGTCCCAGCCACCCCCTATGAAGCCTTCGA





CCCGGCAGCAGCCGCTTTTAGCCACCCCCAGGCTGCCCAGCTCTGCTACGAACCCCCCACCTACAGCCCT





GCAGGGAACCTCGAACTGGCCCCCAGCCTGGAGGCCCCGGGGCCTGGCCTCCCCGCATACCCCACGGAGA





ACTTCGCTAGCCAGACCCTGGTTCCCCCGGCATATGCCCCGTACCCCAGCCCTGTGCTATCAGAGGAGGA





AGACTTACCGTTGGACAGCCCTGCCCTGGAGGTCTCGGACAGCGAGTCGGATGAGGCCCTCGTGGCTGGC





CCCGAGGGGAAGGGATCCGAGGCAGGGACTCGCAAGAAGCTGCGCCTGTACCAGTTCCTGCTGGGGCTAC





TGACGCGCGGGGACATGCGTGAGTGCGTGTGGTGGGTGGAGCCAGGCGCCGGCGTCTTCCAGTTCTCCTC





CAAGCACAAGGAACTCCTGGCGCGCCGCTGGGGCCAGCAGAAGGGGAACCGCAAGCGCATGACCTACCAG





AAGCTGGCGCGCGCCCTCCGAAACTACGCCAAGACCGGCGAGATCCGCAAGGTCAAGCGCAAGCTCACCT





ACCAGTTCGACAGCGCGCTGCTGCCTGCAGTCCGCCGGGCCTGAGCACACCCGAGGCTCCCACCTGCGGA





GCCGCTGGGGGACCTCACGTCCCAGCCAGGATCCCCCTGGAAGAAAAAGGGCGTCCCCACACTCTAGGTG





ATAGGACTTACGCATCCCCACCTTTTGGGGTAAGGGGAGTGCTGCCCTGCCATAATCCCCAAGCCCAGCC





CGGGCCTGTCTGGGATTCCCCACTTGTGCCTGGGGTCCCTCTGGGATTTCTTTGTCATGTACAGACTCCC





TGGGATCCTCATGTTTTGGGTGACAGGACCTATGGACCACTATACTCGGGGAGGCAGGGTAGCAGTTCTT





CCAGAATCCCAAGAGCTTCTCTGGGATTTTCTTGTGATATCTGATTCCCCAGTGAGGCCTGGGACGTTTT





TAAGATCGCTGTGTGTCTGTAAACCCTGAATCTCATCTGGGGTGGGGGCCCTGCTGGCAACCCTGAGCCC





TGTCCAAGGTTCCCTCTTGTCAGATCTGAGATTTCCTAGTTATGTCTGGGGCCCTCTGGGAGCTGTTATC





ATCTCAGATCTCTTCGCCCATCTATGGCTGTGTTGTCACATCTGTCCCCTCATTTTTGAGATCCCCCAAT





TCTCTGGAACTATTCTGCTGCCCCTTTTTATGTGTCTGGAGTTCCCCAATCACATCTAGGGCTCCTCCAA





GAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 42




Homo sapiens TAF11 RNA polymerase II, TATA box binding protein (TBP)-




associated factor, 28 kDa (TAF11), mRNA


AAGATCCTGGCCTGTGCAGCTCGGGTTTCCGAGCTTCTGCCTCAGGCATCTCCGCGATCTCCTCTCCCCT





CCAATCCTATCCGTGATGGACGATGCCCACGAGTCGCCCTCCGACAAAGGTGGAGAGACAGGGGAGTCGG





ATGAGACGGCCGCTGTGCCCGGGGACCCGGGGGCTACCGACACCGATGGAATCCCAGAGGAAACTGACGG





AGACGCAGATGTGGACTTGAAAGAAGCTGCAGCGGAGGAAGGCGAGCTCGAGAGTCAGGATGTCTCAGAT





TTAACAACAGTTGAAAGGGAAGACTCATCATTACTTAATCCTGCAGCCAAAAAACTGAAAATAGATACCA





AAGAAAAGAAAGAGAAAAAGCAGAAAGTAGATGAAGATGAGATTCAGAAGATGCAAATCCTGGTTTCTTC





TTTTTCTGAGGAGCAGCTGAACCGTTATGAAATGTATCGCCGCTCAGCTTTCCCTAAGGCAGCCATCAAA





AGGCTGATCCAGTCCATCACTGGCACCTCTGTGTCTCAGAATGTTGTTATTGCTATGTCTGGTATTTCCA





AGGTTTTCGTCGGGGAGGTGGTAGAAGAAGCACTGGATGTGTGTGAGAAGTGGGGAGAAATGCCACCACT





ACAACCCAAACATATGAGGGAAGCCGTTAGAAGGTTAAAGTCAAAAGGACAGATCCCTAACTCGAAGCAC





AAAAAAATCATCTTCTTCTAGACCAAAGTCTAGAAAGGCCTATGTTACTGACGGAAGAAGTATTGGTTCC





AGACTTCCTATAAGACTGTCTGCATTGGTGCTTTAGTATCTCAGGCCTCCAAGGATTCCATGATGATTTT





AATGTCTTTCTCAAAACTCTGATATTTGTCACACCTAGAAAGTATGTAGCCTGATTGATACTTGCCTTGA





CTAAATTTTGGGACCTCTTGGGGCATTTTGAAGTATTTAACTGTCTTGACCAGTTGGAAGAAGATACGTG





GGCCATAAGCATCTTCTGGACAGGGGAACTGCTTTCAGAGAGAAAACCTTTCCAAGAGAGTTTTGTTTTG





TTTTGGTTTCGTTTTGTTTGAGATAGGGTCTTGCTCTATCACCTAGGCTGGAGTGCAGCGGCATGACTGC





AGCCTTGAACTCCTGGGCTTAAGTGACCCTCCCACCTCAGTCTCCTGAGTAGCTAGGACTACAGGCACAC





ACTACTGTGCCCAGCTAACTTATTTTTATTTTTTATGGAGATGGGGTCTTGCTTTGTTGCCCAGGCTGGT





CGTGAACTCCTGGCTTCAAGCAGTCCTCCTGCCTCAGCCTCCTAAAGTGCCGAGGGCTTTAATGGTTTCA





CATTGAAGCCTGAAGTTGCTAAGACTTAGGTTGTTTCTTATATCTGGTTTTAAGTAGATGAAACAACCAG





AAACTTTTACTTGTGATACTCTACCATGAAGGATGCGGTAATGGCAGGAATAGCAGAATAATTGGTGCTT





GTAAACATTTAAGATTCTCCTGTGGATTTTGGTGAGTGATCATTAAACTGTTTTCCAACTTGCAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 43




Homo sapiens TATA box binding protein (TBP), transcript variant 2, mRNA




GGCGGAAGTGACATTATCAACGCGCGCCAGGGGTTCAGTGAGGTCGGGCAGGTTCGCTGTGGCGGGCGCC





TGGGCCGCCGGCTGTTTAACTTCGCTTCCGCTGGCCCATAGTGATCTTTGCAGTGACCCAGGGTGCCATG





ACTCCCGGAATCCCTATCTTTAGTCCAATGATGCCTTATGGCACTGGACTGACCCCACAGCCTATTCAGA





ACACCAATAGTCTGTCTATTTTGGAAGAGCAACAAAGGCAGCAGCAGCAACAACAACAGCAGCAGCAGCA





GCAGCAGCAGCAACAGCAACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG





CAGCAGCAACAGGCAGTGGCAGCTGCAGCCGTTCAGCAGTCAACGTCCCAGCAGGCAACACAGGGAACCT





CAGGCCAGGCACCACAGCTCTTCCACTCACAGACTCTCACAACTGCACCCTTGCCGGGCACCACTCCACT





GTATCCCTCCCCCATGACTCCCATGACCCCCATCACTCCTGCCACGCCAGCTTCGGAGAGTTCTGGGATT





GTACCGCAGCTGCAAAATATTGTATCCACAGTGAATCTTGGTTGTAAACTTGACCTAAAGACCATTGCAC





TTCGTGCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTAATCATGAGGATAAGAGAGCCACG





AACCACGGCACTGATTTTCAGTTCTGGGAAAATGGTGTGCACAGGAGCCAAGAGTGAAGAACAGTCCAGA





CTGGCAGCAAGAAAATATGCTAGAGTTGTACAGAAGTTGGGTTTTCCAGCTAAGTTCTTGGACTTCAAGA





TTCAGAATATGGTGGGGAGCTGTGATGTGAAGTTTCCTATAAGGTTAGAAGGCCTTGTGCTCACCCACCA





ACAATTTAGTAGTTATGAGCCAGAGTTATTTCCTGGTTTAATCTACAGAATGATCAAACCCAGAATTGTT





CTCCTTATTTTTGTTTCTGGAAAAGTTGTATTAACAGGTGCTAAAGTCAGAGCAGAAATTTATGAAGCAT





TTGAAAACATCTACCCTATTCTAAAGGGATTCAGGAAGACGACGTAATGGCTCTCATGTACCCTTGCCTC





CCCCACCCCCTTCTTTTTTTTTTTTTAAACAAATCAGTTTGTTTTGGTACCTTTAAATGGTGGTGTTGTG





AGAAGATGGATGTTGAGTTGCAGGGTGTGGCACCAGGTGATGCCCTTCTGTAAGTGCCCACCGCGGGATG





CCGGGAAGGGGCATTATTTGTGCACTGAGAACACCGCGCAGCGTGACTGTGAGTTGCTCATACCGTGCTG





CTATCTGGGCAGCGCTGCCCATTTATTTATATGTAGATTTTAAACACTGCTGTTGACAAGTTGGTTTGAG





GGAGAAAACTTTAAGTGTTAAAGCCACCTCTATAATTGATTGGACTTTTTAATTTTAATGTTTTTCCCCA





TGAACCACAGTTTTTATATTTCTACCAGAAAAGTAAAAATCTTTTTTAAAAGTGTTGTTTTTCTAATTTA





TAACTCCTAGGGGTTATTTCTGTGCCAGACACATTCCACCTCTCCAGTATTGCAGGACAGAATATATGTG





TTAATGAAAATGAATGGCTGTACATATTTTTTTCTTTCTTCAGAGTACTCTGTACAATAAATGCAGTTTA





TAAAAGTGTTAGATTGTTGTTAAAAAAAAAAAAAA





SEQ ID NO: 44




Homo sapiens transforming growth factor, beta receptor II (70/80 kDa)




(TGFBR2), transcript variant 1, mRNA


GGAGAGGGAGAAGGCTCTCGGGCGGAGAGAGGTCCTGCCCAGCTGTTGGCGAGGAGTTTCCTGTTTCCCC





CGCAGCGCTGAGTTGAAGTTGAGTGAGTCACTCGCGCGCACGGAGCGACGACACCCCCGCGCGTGCACCC





GCTCGGGACAGGAGCCGGACTCCTGTGCAGCTTCCCTCGGCCGCCGGGGGCCTCCCCGCGCCTCGCCGGC





CTCCAGGCCCCCTCCTGGCTGGCGAGCGGGCGCCACATCTGGCCCGCACATCTGCGCTGCCGGCCCGGCG





CGGGGTCCGGAGAGGGCGCGGCGCGGAGGCGCAGCCAGGGGTCCGGGAAGGCGCCGTCCGCTGCGCTGGG





GGCTCGGTCTATGACGAGCAGCGGGGTCTGCCATGGGTCGGGGGCTGCTCAGGGGCCTGTGGCCGCTGCA





CATCGTCCTGTGGACGCGTATCGCCAGCACGATCCCACCGCACGTTCAGAAGTCGGATGTGGAAATGGAG





GCCCAGAAAGATGAAATCATCTGCCCCAGCTGTAATAGGACTGCCCATCCACTGAGACATATTAATAACG





ACATGATAGTCACTGACAACAACGGTGCAGTCAAGTTTCCACAACTGTGTAAATTTTGTGATGTGAGATT





TTCCACCTGTGACAACCAGAAATCCTGCATGAGCAACTGCAGCATCACCTCCATCTGTGAGAAGCCACAG





GAAGTCTGTGTGGCTGTATGGAGAAAGAATGACGAGAACATAACACTAGAGACAGTTTGCCATGACCCCA





AGCTCCCCTACCATGACTTTATTCTGGAAGATGCTGCTTCTCCAAAGTGCATTATGAAGGAAAAAAAAAA





GCCTGGTGAGACTTTCTTCATGTGTTCCTGTAGCTCTGATGAGTGCAATGACAACATCATCTTCTCAGAA





GAATATAACACCAGCAATCCTGACTTGTTGCTAGTCATATTTCAAGTGACAGGCATCAGCCTCCTGCCAC





CACTGGGAGTTGCCATATCTGTCATCATCATCTTCTACTGCTACCGCGTTAACCGGCAGCAGAAGCTGAG





TTCAACCTGGGAAACCGGCAAGACGCGGAAGCTCATGGAGTTCAGCGAGCACTGTGCCATCATCCTGGAA





GATGACCGCTCTGACATCAGCTCCACGTGTGCCAACAACATCAACCACAACACAGAGCTGCTGCCCATTG





AGCTGGACACCCTGGTGGGGAAAGGTCGCTTTGCTGAGGTCTATAAGGCCAAGCTGAAGCAGAACACTTC





AGAGCAGTTTGAGACAGTGGCAGTCAAGATCTTTCCCTATGAGGAGTATGCCTCTTGGAAGACAGAGAAG





GACATCTTCTCAGACATCAATCTGAAGCATGAGAACATACTCCAGTTCCTGACGGCTGAGGAGCGGAAGA





CGGAGTTGGGGAAACAATACTGGCTGATCACCGCCTTCCACGCCAAGGGCAACCTACAGGAGTACCTGAC





GCGGCATGTCATCAGCTGGGAGGACCTGCGCAAGCTGGGCAGCTCCCTCGCCCGGGGGATTGCTCACCTC





CACAGTGATCACACTCCATGTGGGAGGCCCAAGATGCCCATCGTGCACAGGGACCTCAAGAGCTCCAATA





TCCTCGTGAAGAACGACCTAACCTGCTGCCTGTGTGACTTTGGGCTTTCCCTGCGTCTGGACCCTACTCT





GTCTGTGGATGACCTGGCTAACAGTGGGCAGGTGGGAACTGCAAGATACATGGCTCCAGAAGTCCTAGAA





TCCAGGATGAATTTGGAGAATGTTGAGTCCTTCAAGCAGACCGATGTCTACTCCATGGCTCTGGTGCTCT





GGGAAATGACATCTCGCTGTAATGCAGTGGGAGAAGTAAAAGATTATGAGCCTCCATTTGGTTCCAAGGT





GCGGGAGCACCCCTGTGTCGAAAGCATGAAGGACAACGTGTTGAGAGATCGAGGGCGACCAGAAATTCCC





AGCTTCTGGCTCAACCACCAGGGCATCCAGATGGTGTGTGAGACGTTGACTGAGTGCTGGGACCACGACC





CAGAGGCCCGTCTCACAGCCCAGTGTGTGGCAGAACGCTTCAGTGAGCTGGAGCATCTGGACAGGCTCTC





GGGGAGGAGCTGCTCGGAGGAGAAGATTCCTGAAGACGGCTCCCTAAACACTACCAAATAGCTCTTCTGG





GGCAGGCTGGGCCATGTCCAAAGAGGCTGCCCCTCTCACCAAAGAACAGAGGCAGCAGGAAGCTGCCCCT





GAACTGATGCTTCCTGGAAAACCAAGGGGGTCACTCCCCTCCCTGTAAGCTGTGGGGATAAGCAGAAACA





ACAGCAGCAGGGAGTGGGTGACATAGAGCATTCTATGCCTTTGACATTGTCATAGGATAAGCTGTGTTAG





CACTTCCTCAGGAAATGAGATTGATTTTTACAATAGCCAATAACATTTGCACTTTATTAATGCCTGTATA





TAAATATGAATAGCTATGTTTTATATATATATATATATATCTATATATGTCTATAGCTCTATATATATAG





CCATACCTTGAAAAGAGACAAGGAAAAACATCAAATATTCCCAGGAAATTGGTTTTATTGGAGAACTCCA





GAACCAAGCAGAGAAGGAAGGGACCCATGACAGCATTAGCATTTGACAATCACACATGCAGTGGTTCTCT





GACTGTAAAACAGTGAACTTTGCATGAGGAAAGAGGCTCCATGTCTCACAGCCAGCTATGACCACATTGC





ACTTGCTTTTGCAAAATAATCATTCCCTGCCTAGCACTTCTCTTCTGGCCATGGAACTAAGTACAGTGGC





ACTGTTTGAGGACCAGTGTTCCCGGGGTTCCTGTGTGCCCTTATTTCTCCTGGACTTTTCATTTAAGCTC





CAAGCCCCAAATCTGGGGGGCTAGTTTAGAAACTCTCCCTCAACCTAGTTTAGAAACTCTACCCCATCTT





TAATACCTTGAATGTTTTGAACCCCACTTTTTACCTTCATGGGTTGCAGAAAAATCAGAACAGATGTCCC





CATCCATGCGATTGCCCCACCATCTACTAATGAAAAATTGTTCTTTTTTTCATCTTTCCCCTGCACTTAT





GTTACTATTCTCTGCTCCCAGCCTTCATCCTTTTCTAAAAAGGAGCAAATTCTCACTCTAGGCTTTATCG





TGTTTACTTTTTCATTACACTTGACTTGATTTTCTAGTTTTCTATACAAACACCAATGGGTTCCATCTTT





CTGGGCTCCTGATTGCTCAAGCACAGTTTGGCCTGATGAAGAGGATTTCAACTACACAATACTATCATTG





TCAGGACTATGACCTCAGGCACTCTAAACATATGTTTTGTTTGGTCAGCACAGCGTTTCAAAAAGTGAAG





CCACTTTATAAATATTTGGAGATTTTGCAGGAAAATCTGGATCCCCAGGTAAGGATAGCAGATGGTTTTC





AGTTATCTCCAGTCCACGTTCACAAAATGTGAAGGTGTGGAGACACTTACAAAGCTGCCTCACTTCTCAC





TGTAAACATTAGCTCTTTCCACTGCCTACCTGGACCCCAGTCTAGGAATTAAATCTGCACCTAACCAAGG





TCCCTTGTAAGAAATGTCCATTCAAGCAGTCATTCTCTGGGTATATAATATGATTTTGACTACCTTATCT





GGTGTTAAGATTTGAAGTTGGCCTTTTATTGGACTAAAGGGGAACTCCTTTAAGGGTCTCAGTTAGCCCA





AGTTTCTTTTGCTTATATGTTAATAGTTTTACCCTCTGCATTGGAGAGAGGAGTGCTTTACTCCAAGAAG





CTTTCCTCATGGTTACCGTTCTCTCCATCATGCCAGCCTTCTCAACCTTTGCAGAAATTACTAGAGAGGA





TTTGAATGTGGGACACAAAGGTCCCATTTGCAGTTAGAAAATTTGTGTCCACAAGGACAAGAACAAAGTA





TGAGCTTTAAAACTCCATAGGAAACTTGTTAATCAACAAAGAAGTGTTAATGCTGCAAGTAATCTCTTTT





TTAAAACTTTTTGAAGCTACTTATTTTCAGCCAAATAGGAATATTAGAGAGGGACTGGTAGTGAGAATAT





CAGCTCTGTTTGGATGGTGGAAGGTCTCATTTTATTGAGATTTTTAAGATACATGCAAAGGTTTGGAAAT





AGAACCTCTAGGCACCCTCCTCAGTGTGGGTGGGCTGAGAGTTAAAGACAGTGTGGCTGCAGTAGCATAG





AGGCGCCTAGAAATTCCACTTGCACCGTAGGGCATGCTGATACCATCCCAATAGCTGTTGCCCATTGACC





TCTAGTGGTGAGTTTCTAGAATACTGGTCCATTCATGAGATATTCAAGATTCAAGAGTATTCTCACTTCT





GGGTTATCAGCATAAACTGGAATGTAGTGTCAGAGGATACTGTGGCTTGTTTTGTTTATGTTTTTTTTTC





TTATTCAAGAAAAAAGACCAAGGAATAACATTCTGTAGTTCCTAAAAATACTGACTTTTTTCACTACTAT





ACATAAAGGGAAAGTTTTATTCTTTTATGGAACACTTCAGCTGTACTCATGTATTAAAATAGGAATGTGA





ATGCTATATACTCTTTTTATATCAAAAGTCTCAAGCACTTATTTTTATTCTATGCATTGTTTGTCTTTTA





CATAAATAAAATGTTTATTAGATTGAATAAAGCAAAATACTCAGGTGAGCATCCTGCCTCCTGTTCCCAT





TCCTAGTAGCTAAA





SEQ ID NO: 45




Homo sapiens tumor protein p53 (TP53), transcript variant 4, mRNA




GATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAG





CCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTC





CACGACGGTGACACGCTTCCCTGGATTGGCAGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGC





AGTCAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGA





AAACAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAA





CAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCCCGTGGCCC





CTGCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCC





TTCCCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCT





GTGACTTGCACGTACTCCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGC





TGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCA





CATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCT





CAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACATA





GTGTGGTGGTGCCCTATGAGCCGCCTGAGGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTG





TAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACTCCAGT





GGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAG





AGGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGCACT





GCCCAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAG





ATGCTACTTGACTTACGATGGTGTTACTTCCTGATAAACTCGTCGTAAGTTGAAAATATTATCCGTGGGC





GTGAGCGCTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGAAGGA





GCCAGGGGGGAGCAGGGCTCACTCCAGCCACCTGAAGTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAA





AAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACTGACATTCTCCACTTCTTGTTCCCCACTGACAGC





CTCCCACCCCCATCTCTCCCTCCCCTGCCATTTTGGGTTTTGGGTCTTTGAACCCTTGCTTGCAATAGGT





GTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGGCTCCACTGAACAAGTTGGCCTGCACT





GGTGTTTTGTTGTGGGGAGGAGGATGGGGAGTAGGACATACCAGCTTAGATTTTAAGGTTTTTACTGTGA





GGGATGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTACAATCAGCCACATTCTAGGT





AGGGGCCCACTTCACCGTACTAACCAGGGAAGCTGTCCCTCACTGTTGAATTTTCTCTAACTTCAAGGCC





CATATCTGTGAAATGCTGGCATTTGCACCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAATAATGTA





CATCTGGCCTTGAAACCACCTTTTATTACATGGGGTCTAGAACTTGACCCCCTTGAGGGTGCTTGTTCCC





TCTCCCTGTTGGTCGGTGGGTTGGTAGTTTCTACAGTTGGGCAGCTGGTTAGGTAGAGGGAGTTGTCAAG





TCTCTGCTGGCCCAGCCAAACCCTGTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGAAATCTCA





CCCCATCCCACACCCTGGAGGATTTCATCTCTTGTATATGATGATCTGGATCCACCAAGACTTGTTTTAT





GCTCAGGGTCAATTTCTTTTTTCTTTTTTTTTTTTTTTTTTCTTTTTCTTTGAGACTGGGTCTCGCTTTG





TTGCCCAGGCTGGAGTGGAGTGGCGTGATCTTGGCTTACTGCAGCCTTTGCCTCCCCGGCTCGAGCAGTC





CTGCCTCAGCCTCCGGAGTAGCTGGGACCACAGGTTCATGCCACCATGGCCAGCCAACTTTTGCATGTTT





TGTAGAGATGGGGTCTCACAGTGTTGCCCAGGCTGGTCTCAAACTCCTGGGCTCAGGCGATCCACCTGTC





TCAGCCTCCCAGAGTGCTGGGATTACAATTGTGAGCCACCACGTCCAGCTGGAAGGGTCAACATCTTTTA





CATTCTGCAAGCACATCTGCATTTTCACCCCACCCTTCCCCTCCTTCTCCCTTTTTATATCCCATTTTTA





TATCGATCTCTTATTTTACAATAAAACTTTGCTGCCACCTGTGTGTCTGAGGGGTG





SEQ ID NO: 46




Homo sapiens tumor protein p53 (TP53), transcript variant 2, mRNA




GATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAG





CCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTC





CACGACGGTGACACGCTTCCCTGGATTGGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGCAGT





CAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGAAAA





CAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAACAA





TGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCCCGTGGCCCCTG





CACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCCTTC





CCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCTGTG







ACTTGCACGTACTCCCCTG
CCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT






GGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACAT





GACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCTCAG





CATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACATAGTG





TGGTGGTGCCCTATGAGCCGCCTGAGGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA





CAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACTCCAGTGGT





AATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGG





AAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGCACTGCC





CAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGATC





CGTGGGCGTGAGCGCTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTG





GGAAGGAGCCAGGGGGGAGCAGGGCTCACTCCAGCCACCTGAAGTCCAAAAAGGGTCAGTCTACCTCCCG





CCATAAAAAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACTGACATTCTCCACTTCTTGTTCCCCAC





TGACAGCCTCCCACCCCCATCTCTCCCTCCCCTGCCATTTTGGGTTTTGGGTCTTTGAACCCTTGCTTGC





AATAGGTGTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGGCTCCACTGAACAAGTTGGC





CTGCACTGGTGTTTTGTTGTGGGGAGGAGGATGGGGAGTAGGACATACCAGCTTAGATTTTAAGGTTTTT





ACTGTGAGGGATGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTACAATCAGCCACAT





TCTAGGTAGGGGCCCACTTCACCGTACTAACCAGGGAAGCTGTCCCTCACTGTTGAATTTTCTCTAACTT





CAAGGCCCATATCTGTGAAATGCTGGCATTTGCACCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAA





TAATGTACATCTGGCCTTGAAACCACCTTTTATTACATGGGGTCTAGAACTTGACCCCCTTGAGGGTGCT





TGTTCCCTCTCCCTGTTGGTCGGTGGGTTGGTAGTTTCTACAGTTGGGCAGCTGGTTAGGTAGAGGGAGT





TGTCAAGTCTCTGCTGGCCCAGCCAAACCCTGTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGA





AATCTCACCCCATCCCACACCCTGGAGGATTTCATCTCTTGTATATGATGATCTGGATCCACCAAGACTT





GTTTTATGCTCAGGGTCAATTTCTTTTTTCTTTTTTTTTTTTTTTTTTCTTTTTCTTTGAGACTGGGTCT





CGCTTTGTTGCCCAGGCTGGAGTGGAGTGGCGTGATCTTGGCTTACTGCAGCCTTTGCCTCCCCGGCTCG





AGCAGTCCTGCCTCAGCCTCCGGAGTAGCTGGGACCACAGGTTCATGCCACCATGGCCAGCCAACTTTTG





CATGTTTTGTAGAGATGGGGTCTCACAGTGTTGCCCAGGCTGGTCTCAAACTCCTGGGCTCAGGCGATCC





ACCTGTCTCAGCCTCCCAGAGTGCTGGGATTACAATTGTGAGCCACCACGTCCAGCTGGAAGGGTCAACA





TCTTTTACATTCTGCAAGCACATCTGCATTTTCACCCCACCCTTCCCCTCCTTCTCCCTTTTTATATCCC





ATTTTTATATCGATCTCTTATTTTACAATAAAACTTTGCTGCCACCTGTGTGTCTGAGGGGTG





SEQ ID NO: 47




Homo sapiens TXK tyrosine kinase (TXK), mRNA




GATTTCAGTTGAAAGATGTGTTTTTGTGAGTAGAGCACCGCAGAAGAACTGAAGACTGTTGTGTGCTCCC





CGCAGAAGGGGCTACCATGATCCTTTCCTCCTATAACACCATCCAGTCGGTTTTCTGTTGCTGCTGTTGC





TGTTCAGTGCAGAAGCGACAAATGAGAACACAGATAAGCCTGAGCACAGATGAAGAGCTTCCAGAAAAAT





ACACCCAGCGTCGCAGGCCGTGGCTCAGCCAATTGTCAAATAAGAAGCAATCCAACACGGGCCGTGTGCA





GCCGTCAAAACGAAAGCCACTGCCTCCCCTCCCACCCTCTGAGGTTGCTGAAGAGAAGATCCAAGTCAAG





GCACTTTATGATTTTCTGCCCAGAGAACCCTGTAATTTAGCCTTAAGGAGAGCAGAAGAATACCTGATAC





TGGAGAAATACAATCCTCACTGGTGGAAGGCAAGAGACCGTTTGGGGAATGAAGGCTTAATCCCAAGCAA





CTATGTGACTGAAAACAAAATAACTAATTTAGAAATATATGAGTGGTACCATAGAAACATTACCAGAAAT





CAGGCAGAACATCTATTGAGACAAGAGTCTAAAGAAGGTGCATTTATTGTCAGAGATTCAAGACATTTAG





GATCCTACACAATTTCCGTATTTATGGGAGCTAGAAGAAGTACGGAGGCTGCCATAAAACATTATCAGAT





AAAAAAGAATGACTCAGGACAGTGGTATGTGGCTGAAAGACACGCCTTTCAATCAATCCCTGAGTTAATC





TGGTATCACCAGCACAATGCAGCCGGTCTCATGACTCGTCTCCGATATCCAGTTGGGCTGATGGGCAGTT





GTTTACCAGCCACAGCTGGGTTTAGCTACGAAAAGTGGGAGATAGATCCATCTGAGTTGGCTTTTATAAA





GGAGATTGGAAGCGGTCAGTTTGGAGTGGTCCATTTAGGTGAATGGCGGTCACATATCCAGGTAGCTATC





AAGGCCATCAATGAAGGCTCCATGTCTGAAGAGGATTTCATTGAAGAGGCCAAAGTGATGATGAAATTAT





CTCATTCAAAGCTAGTGCAACTTTATGGAGTCTGTATACAGCGGAAGCCCCTTTACATTGTGACAGAGTT





CATGGAAAATGGCTGCCTGCTTAACTATCTCAGGGAGAATAAAGGAAAGCTTAGGAAGGAAATGCTACTG






AGTGTATGCCAGGATATATGTGAAGGAATGGAATATCTGGAGAGGAATGGCTATATTCATAG
GGATTTGG








CGGCAAGGAATTGTTTG
GTCAGTTCAACATGCATAGTAAAAATTTCAGACTTTGGAATGACAAGGTACGT






TTTGGATGATGAGTATGTCAGTTCTTTTGGAGCCAAGTTCCCAATCAAGTGGTCCCCTCCTGAAGTTTTT





CTTTTCAATAAGTACAGCAGTAAATCTGATGTCTGGTCATTTGGAGTTTTAATGTGGGAAGTTTTTACAG





AAGGAAAAATGCCTTTTGAAAATAAGTCAAATTTGCAAGTCGTGGAAGCTATTTCTGAAGGCTTCAGGCT





ATATCGCCCTCACCTGGCACCAATGTCCATATATGAAGTCATGTACAGCTGCTGGCATGAGAAACCTGAA





GGCCGCCCTACATTTGCCGAGCTGCTGCGGGCTGTCACAGAGATTGCGGAAACCTGGTGACCGGAAACAG





AATGCCAACCCAAAGAGTCATCTTGCAAAACTGTCATTTATTGTGAATATCTTCACCATATGGGGTCACT





TATGGTGAATATCTTTCTTCAGAGTTGCTGACTCTTGAAAACAGTGCAAAGATCACAGTTTTTAAAAGTT





TTAAAAATTTAAGAATATTCACACAATCGTTTTTCTATGTGTGAGAGGGATTTGCACACTCTTATTTTTC





TGTAAAATATTTCACATCCCAAATGTGAAGAAGTGAAAAAGACTTCGCAGCAGTCTTCATTGTGGTGCTC





TTCATGATCATAGCCCCAGGAACCCTTGAGGTTCTTCTTCACAAGGCTGAGAGTGCTTCCTTCTTGAAGA





CGAGTGACATTCATCACTTCAGTGATCCATGCATAGAATATGAAAATAAATTCTTCCAACTCATGGGATA





AAGGGGACTCCCTTGAAGAATTTCATGTTTTTGGGCTGTATAGCTCTTTACAGAAAATGCACCTTTATAA





ATCACATGAATGTTAGTATTCTGGAAATGTCTTTTGTTAATATAATCTTCCCATGTTATTTAACAAATTG





TTTTTGCACATATCTGATTATATTGAAAGCAGTTTTTTGCATTCGAGTTTTAAACACTGTTATAAAATGT





AGCCAAAGCTCACCTTTGAACAGATCCCGGTGACATTCTATTTCCAGGAAAATCCGGAACCTGATTTTAG





TTCTGTGATTTTACACTTTTTACATGTGAGATTGGACAGTTTCAGAGGCCTTATTTTGTCATACTAAGTG





TCTCCTGTAATTTTCAGGAAGATGATTTGTTCTTTCCAGAAGAGGAGACAAAAGCAAGATAGCCAAATGT





GACATCAAGCTCCATTGTTTCGGAAATCCAGGATTTTGAATTCGAGATGAAACAACCAGCAATCACAGTT





AAATCTTAACTTTGCCTGCACTCTTTGTAGGAATGATCAGAAATTTATCTTTATCATTCTGAGTGCTTCA





GGAGTACAATAGGAAGAAAGATACTGGAGAAAGCACTAATGTAATCACCATGAAGTCTGACAACAGGAGC





CCATTATTTGCGTACTGTCCCACCCTGTATCATGGTTCTCTGGGAACAAGCTTTATGATTCTCATTAGAG





TTTATTTGTTGATTGTCAGTAGTTGCGACTTTTAAATTATATTTCCCCCACTCAAAGAATGGTATCTTTA





TATATCAATGACATTCAATAAATGTGTATTATTTCTAATGAGAA





Claims
  • 1. A method of detecting expression levels of biomarkers in a human subject suspected of having IBS, comprising: (a) providing a blood sample from the human subject;(b) detecting expression levels of biomarkers in the blood sample by performing a RT-PCR assay on the blood sample to measure the expression level of the biomarkers consisting of: PGK1, POU6F1*, ACTR1A*, TBP, JUN, CD55 molecule, decay accelerating factor for complement (Cromer blood group) (CD55), IL11RA, TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor (TAF11), TP53, v-Ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS), origin recognition complex, subunit 1 (ORC1L), KRAS, APOBEC3F, ADAMTS-like 4 (ADAMTSL4), ASL, ANAPC1, GSTM4, ABR, LLGL2, colony stimulating factor 3 receptor (CSF3R), transforming growth factor, beta receptor II (TGFBR2), OAS1, tyrosine kinase (TXK), and NRAS.
  • 2. The method of claim 1, and further comprising providing a series of biological sample obtained from the human subject; and determining a presence of any change in the expression levels of biomarkers in each of the biological samples from the series.
  • 3. The method of claim 1, wherein the detecting is of the expression levels of genes consisting of SEQ ID NOs: 1, 3-7, 10, 14, 25, 27, 29-31, 33-37, 39, 42-44, 45 and 47.
  • 4. A method of detecting expression levels of biomarkers in a human subject suspected of having IBS or IBD, comprising: (a) providing a blood sample from the human subject;(b) detecting expression levels of biomarkers in the blood sample by performing a RT-PCR assay on the blood sample to measure the level of the biomarkers consisting of: HRAS, GAPDH, TBP, major histocompatibility complex, class II, DR alpha (HLA-DRA), ORC1L, ABR, OAS1, JUN, cathepsin S, transcript variant 1 (CTSS), CD55, CDH1, PGK1, ACTR1A, TP53, SPIB, EXT2, APOBEC3F, TAF11, ADAMTSL4, cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), IL11RA, SC65, CSF3R, ACTB, FOS, ASL, GATA binding protein 3 (GATA3), and guanine nucleotide binding protein (G protein), beta 5, transcript variant 1 (GNB5).
  • 5. The method of claim 4, and further comprising providing a series of biological sample obtained from the human subject; and determining a presence of any change in the expression levels of biomarkers in each of the biological samples from the series.
  • 6. The method of claim 4, wherein the detecting is of the expression levels of genes comprising SEQ ID NOs: 1-4, 6, 7, 10-12, 14, 15, 17, 18, 21-24, 26, 27, 29, 30, 35-38, 41-43 and 45.
  • 7. A method of detecting expression levels of biomarkers in a human subject suspected of having Ulcerative Colitis (UC) or Crohn's Disease (CD), comprising: (a) providing a blood sample from the human subject;(b) detecting expression levels of biomarkers in the blood sample by performing a RT-PCR assay on the blood sample to measure the level of the biomarkers consisting of: POU6F1, ANAPC1, GAPDH, TBP, GNB5, ORC1L, TP53, CDH1, NRAS, EXT2, APOBEC3F, GATA3, ASL, LLGL2, JUN, ADAMTSL4, KRAS, CHEK2, IL11RA, PMAIP1, OAS1, and interferon, alpha-inducible protein 27 transcript variant 1 (IFI27).
  • 8. The method of claim 7, and further comprising providing a series of biological sample obtained from the human subject; and determining a presence of any change in the expression levels of biomarkers in each of the biological samples from the series.
  • 9. The method of claim 7, wherein the detecting is of the expression levels of genes comprising SEQ ID NOs: 4-7, 11, 13, 17, 21, 23, 34, 28, 29, 30, 31, 33-36, 38, 39, 43 and 45.
RELATED APPLICATIONS

This application claims priority from U.S. patent application Ser. No. 14/089,102 filed Nov. 25, 2013, which claims priority from U.S. Provisional Application No. 61/731,265 filed Nov. 29, 2012, the entire disclosures of which are incorporated herein by this reference.

GOVERNMENT INTEREST

This invention was made with government support under AI53984 and A1044924 awarded by the National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
61731265 Nov 2012 US
Continuations (1)
Number Date Country
Parent 14089102 Nov 2013 US
Child 15835268 US