CHARACTERIZING MULTIPLE SCLEROSIS

Information

  • Patent Application
  • 20140329242
  • Publication Number
    20140329242
  • Date Filed
    September 12, 2012
    12 years ago
  • Date Published
    November 06, 2014
    9 years ago
Abstract
A method for characterizing multiple sclerosis in a subject involves comparing ratios of expression levels of genes in a biological sample from a subject to references, wherein the multiple sclerosis is characterized based on a difference in the ratios of the expression values of genes in the biological sample from the subject as compared to the references.
Description
TECHNICAL FIELD

The presently-disclosed subject matter relates to the characterization of multiple sclerosis (MS) in a subject, including diagnosis of MS and exclusion of a diagnosis of MS.


INTRODUCTION

Detection of brain lesions disseminated in space and time by magnetic resonance imaging (MRI) with gadolinium contrast is a cornerstone in the diagnosis of multiple sclerosis (MS)1-3. Laboratory and clinical findings include detection of immunologic abnormalities in cerebrospinal fluid and evoked potential testing4, 5, 31, 32. Clinically isolated syndrome (CIS) is a first neurologic episode lasting at least 24 hours possibly caused by focal inflammation or demyelination33, 34. Approximately 10,000-15,000 new diagnoses of MS are made in the United States each year35. Approximately 2-3 times that number experience a CIS each year indicating that a far greater number of subjects experience a CIS than develop MS36, 37, 38, 39. The cost to healthcare of determining if a subject with a CIS has MS is significant considering the cost of MRI and additional testing that is performed and the fact that many more subjects have a CIS than develop MS.


Therefore, improved tests that can effectively, efficiently, and noninvasively characterize MS are needed, including tests to diagnose MS and/or to exclude a diagnosis of MS.


SUMMARY

The presently-disclosed subject matter meets some or all of the above-identified needs, as will become evident to those of ordinary skill in the art after a study of information provided in this document.


This Summary describes several embodiments of the presently-disclosed subject matter, and in many cases lists variations and permutations of these embodiments. This Summary is merely exemplary of the numerous and varied embodiments. Mention of one or more representative features of a given embodiment is likewise exemplary. Such an embodiment can typically exist with or without the feature(s) mentioned; likewise, those features can be applied to other embodiments of the presently-disclosed subject matter, whether listed in this Summary or not. To avoid excessive repetition, this Summary does not list or suggest all possible combinations of such features.


The presently-disclosed subject matter includes methods useful for characterizing an auto-immune disease, and more particularly, for characterizing multiple sclerosis. The presently-disclosed subject matter further includes kits and devices useful for characterizing an auto-immune disease.


In some embodiments, a method for characterizing multiple sclerosis (MS) in a subject involves providing a biological sample from the subject; determining expression levels of at least two genes in the biological sample; calculating one or more ratios of the expression levels of the at least two genes; and comparing each ratios to a reference, wherein the is multiple sclerosisis characterized based on a difference in the ratios of the expression values of the at least two genes in the biological sample from the subject as compared to the references.


The at least two genes can be selected from those represented by SEQ ID NOs: 1-47, those corresponding to the genes set forth in Table A, or those corresponding to the genes set forth in Table B. In embodiments of the method, the expression levels of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes can be determined. In some embodiments, expression levels of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP are determined. In some embodiments, expression levels of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP are determined.


In accordance with the presently-disclosed subject matter, ratios of expression levels of genes are used to characterize an auto-immune disease. In this regard, ratios of interest for use in characterizing MS in a subject include the one or more ratios of expression levels of genes corresponding to those set forth in Table A, wherein each ratio is calculated by dividing the expression level of a first gene in Table A by the expression level of a second gene in Table A. In some embodiments, the at least one ratio is selected from the ratios set forth in Table B. In some embodiments, the one or more ratios consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, or 83 ratios set forth in Table B. In some embodiments, the one or more ratios consist of the ratios set forth in Column 1 (MS vs. CTRL) of Table B. In some embodiments, the one or more ratios consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42 ratios set forth in Column 1 (MS vs. CTRL) of Table B. In some embodiments, the one or more ratios consist of the ratios set forth in Column 2 (MS vs. OND) of Table B. In some embodiments, the one or more ratios consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, or 41 ratios set forth in Column 2 (MS vs. OND) of Table B.


Various references can be selected for use in accordance with the presently-disclosed subject matter. In some embodiments, the reference is a standard reference ratio or a threshold value. For another example, in some embodiments, the reference is a reference ratio of a comparator group. In some embodiments, a “comparator group” or “reference group” includes individuals having a common characterization, for example, healthy control individuals, individuals who have been diagnosed with a condition often confused with an auto-immune disease of interest in the context of clinical diagnosis, individuals who have been diagnosed with an auto-immune disease of interest, or individuals who have another common characterization of interest. Expression values of biomarkers obtained from biological samples of individuals in a comparator group can be used to calculate reference ratios.


Methods of the presently-disclosed subject matter and also include comparing each subject ratio to a second reference. For example, in some embodiments, the reference can be a healthy control, and the second reference is not a healthy control. In some embodiments, the second reference comprises other neurologic disorders (OND).


Characterizing MS in a subject is inclusive of providing a diagnosis, prognosis and/or theranosis of the condition. As such, in some embodiments, characterization comprises diagnosing or prognosticating MS. In some embodiments, MS is predicted. In some embodiments, MS is not predicted. In some embodiments, the characterization comprises an exclusion of a diagnosis of MS. In some embodiments, the method also includes providing a series of biological sample obtained from the subject over a period of time. A change in the ratios in each of the biological samples from the subject can be useful for characterizing MS in the subject.


The presently-disclosed subject matter further includes kits and devices useful for detecting and/or determining expression levels of at least two genes in a biological sample.


The kits of the presently-disclosed subject matter can include primer pairs for determining expression levels of at least two genes, which can be useful for calculating ratios as disclosed herein. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes corresponding to those set forth in Table A. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


The devices of the presently-disclosed subject matter can include a probe for selectively binding each of at least two gene expression products to detect at least two genes, which can be useful for determining expression levels of the genes and for calculating ratios as disclosed herein. Such probes can selectively bind the gene products, for example, by hybridization of the probe and a nucleotide gene product. In some embodiments, the device includes probes for detecting each of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least two genes corresponding to those set forth in Table A. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A. In some embodiments, the device includes probes for detecting each of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP. In some embodiments, the device includes probes for detecting each of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are used, and the accompanying drawings of which:



FIG. 1 Gene expression profiles across multiple autoimmune diseases. Expression levels of 44 target genes were determined by quantitative RT-PCR and normalized to expression of GAPDH. Expression levels of 31 genes are shown; expression levels of the remainder were not statistically different between CTRL and any disease cohort. Genes are identified that showed statistically significant [P <0.05 after Bonferroni's correction] increased or decreased expression in individual disease cohorts relative to CTRL subjects. Numerical expression ratios [disease group average/CTRL average] are displayed within the colored boxes.



FIG. 2 Discrimination between MS and CTRL subjects with an 8 ratio scoring system. (a) Performance of the single ratio, ANAPC1/CHEK2 to discriminate MS and CTRL subjects. (b) Genes making up 8 unique discriminatory ratios. P values compare expression levels of ratios between MS and CTRL subjects. (c) Increased sensitivity with increasing numbers of ratios. (d) Score distributions among subjects using 8 ratios. (e) Validation of results by analyzing 40 new MS subjects and 40 new CTRL subjects. (f) Score distribution between OND-I and OND-NI subjects. (g) Mean scores±std. dev. among subjects with CIS, initial diagnosis of MS, and established MS. P value is not significant among groups. (h) Mean scores±std. dev. among MS subjects from different geographic locations. P value is not significant among groups.



FIG. 3 Discrimination of MS subjects from subjects with inflammatory neurologic diseases, TM or NMO. Most discriminatory gene expression ratios were identified that segregate MS subjects from TM and NMO subjects (CTRL is included for reference). The point system was applied to combine ratio performance into a single discriminator.



FIG. 4 Discrimination of subjects with Parkinson's disease from MS and CTRL. Most discriminatory gene expression ratios were identified that segregate Parkinson's disease subjects from MS subjects and CTRL subjects. Using the point system, the % of Parkinson's subjects with a score >0, Y-axis, relative to the number of ratios, X-axis, for the different comparator groups was determined.



FIG. 5 Discrimination of MS subjects from heterogeneous comparator groups. The top 15 gene expression ratios with the greatest ability to discriminate MS from OND-I, OND-NI, or ALL (OND-I, OND-NI, and CTRL) were identified. Using the point system, the % of MS subjects with a score >0, Y-axis, relative to the number of ratios, X-axis, for the different comparator groups [CTRL is included for reference] were determined.



FIG. 6 Discrimination between MS and OND-I subjects using 10 gene expression ratios. (a) Genes making up 10 unique discriminatory ratios. P values compare individual ratio values between MS and OND-I subjects. (b) Increasing number of ratios increases sensitivity or ability to discriminate between MS and OND-I subjects. (c) The score distribution in MS and OND-I subjects using 10 ratios. (d) Validation of results by analyzing 40 new MS subjects and 40 new OND-I subjects (20 TM+20 NMO). (e) Mean scores±std. dev. among subjects with CIS, initial diagnosis of MS and established MS. P is not significant for CIS versus MS naïve, 0.03 for CIS versus established MS, and <0.0001 for MS naïve versus established MS. (f) Mean scores±std. dev. among subjects based upon geographic sites. P is not significant for Nashville versus Europe, <0.0001 for Nashville versus U.S. non-Nashville, and <0.0001 for Europe versus U.S. non-Nashville. (g) Score distributions between [CIS and MS-naïve] and established MS.



FIG. 7 Discrimination between MS and OND-NI subjects using 10 gene expression ratios. (a) Identification of genes making up the 10 unique discriminatory ratios. P values compare individual ratio values between MS and OND-NI subjects. (b) Increasing the number of gene expression ratio increases the ability to discriminate between MS and OND-NI subjects. (c) Score distribution using 10 ratios in the training set. (d) Validation of results by analyzing 40 new MS subjects and 40 new OND-NI subjects. (e) Mean scores±std. dev. among subjects with CIS, initial diagnosis of MS and established MS. P values were not significant among any of the comparisons. (f) Mean scores±std. dev. among subjects based upon geographic sites. P values were not significant for any of the comparisons.



FIG. 8 Flow chart describing sample collection and processing, data generation, and methods of data analysis.



FIG. 9 Gene-expression profiles in subjects with CIS, MS-naïve or MS-established. (a) Expression levels of 23 target genes were determined by quantitative reverse-transcription PCR and normalized to expression of GAPDH. Results are expressed as the ratio of the expression level of the indicated genes in the disease cohort relative to the CTRL cohort, log2. Genes are identified that showed statistically significant (P <0.05 after Bonferroni's correction for multiple testing) increased or decreased expression. Numerical expression ratios, log), of the test/CTRL cohorts are displayed within the boxes. (b) Cumulative percentage of over- and under-expressed genes in each disease cohort relative to CTRL. (c) Statistical significance of the expression level of each target gene between each disease cohort and CTRL was determined using Student's T test. P values are expressed as log10.



FIG. 10 (a) Ratios that make up the ratioscore discriminating MS from CTRL. Columns represent individual ratios. Rows represent individual subjects within the MS cohort. Black/dark grey in the heatmap denotes individual subjects with the value of the individual ratio greater than the value of the ratio in all subjects within the CTRL cohort. Light grey/white denotes individual subjects with the value of the individual ratio less than or equal to the highest ratio value in all subjects within the CTRL cohort. (b) Results from inputting independent CIS→MS subjects into the ratioscore algorithm.



FIG. 11 (a) The ratioscore method discriminates between MS and OND subjects. Ratios that make up the ratioscore to discriminate MS from OND. Columns represent individual ratios. Rows represent individual subjects within the MS cohort. Black/dark grey in the heatmap denotes individual subjects with the value of the individual ratio greater than the value of the ratio in all subjects within the CTRL cohort. Light grey/white denotes individual subjects with the value of the individual ratio less than or equal to the highest ratio value in all subjects within the CTRL cohort. (b) Results from inputting independent CIS→MS subjects into the ratioscore algorithm.



FIG. 12
a. Ability of the radioscore method to discriminate between MS and combined CTRL plus OND subjects. Columns represent individual ratios. Rows represent individual subjects within the MS cohort. Black/dark grey in the heatmap denotes individual subject with the value of the individual ratio greater than the value of the ratio in all subjects within the CTRL cohort. Light grey/white denotes individual subjects with the value of the individual ratio less than or equal to the highest ratio value in all subjects within the CTRL cohort. b. Results from inputting independent CIS→MS subjects into the ratioscore alcorithm.



FIG. 13 Ratios making up the ratioscore that discriminate MS from OND-NI or OND-I. a. Optimum ratios to discriminate MS from OND-I. b. Results for individual CIS→MS subjects using the MS: OND-I ratioscore. c. Optimum ratios to discriminate MS from OND-NI. d. Results for individual CIS→MS subjects using the OND-NI ratioscore.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

The details of one or more embodiments of the presently-disclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom. In case of conflict, the specification of this document, including definitions, will control.


The presently-disclosed subject matter includes methods, devices, and kits useful for characterizing an auto-immune disease in a subject and, more particularly, for characterizing multiple sclerosis (MS) in a subject. In some embodiments, the method involves providing a biological sample from the subject; determining expression values of at least two genes in the biological sample; calculating one or more ratios of the expression values of the at least two genes; and comparing each ratios to a reference, wherein the MS is characterized based on a difference in the ratios of the expression values of the at least two genes in the biological sample from the subject as compared to the references. In some embodiments, the biological sample is blood obtained from the subject or another biological sample containing a cell obtained from the subject, e.g., a subject suspected of having MS. The method can be used, in some embodiments, to diagnose the subject with MS. In some embodiments, the method can be used to exclude the subject from a diagnosis of MS.


Methods of the presently-disclosed methods include determining expression values of genes in biological samples. As such, nucleic acid molecules or nucleotides are relevant to the disclosed subject matter. Nucleotides or genes, the expression of which is desired to be determined for characterizing an auto-immune disease, include, but are not limited to those identified in Table A, the isolated nucleic acid molecules of any one of SEQ ID NOs: 1-47, fragments of the isolated nucleic acid molecules of any one of SEQ ID NOs: 1-47 where detection of such fragments are indicative of expression of an associated gene, e.g., as identified in Table A, complementary nucleic acid molecules, isolated nucleic acid molecules capable of hybridizing to any one of the SEQ ID NOs: 1-47 under conditions disclosed herein, and corresponding RNA and/or DNA molecules.


As used herein, “nucleic acid” and “nucleic acid molecule” refer to any of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. The term “isolated”, when used in the context of an isolated DNA molecule or an isolated polypeptide, is a DNA molecule or polypeptide that, by the hand of man, exists apart from its native environment and is therefore not a product of nature.


Unless otherwise indicated, a particular nucleotide sequence also implicitly encompasses complementary sequences, subsequences, elongated sequences, as well as the sequence explicitly indicated. The terms “nucleic acid molecule” or “nucleotide sequence” can also be used in place of “gene”, “cDNA”, or “mRNA”. Nucleic acids can be derived from any source, including any organism. In one embodiment, a nucleic acid is derived from a biological sample isolated from a subject.


The terms “complementary” and “complementary sequences”, as used herein, refer to two nucleotide sequences that comprise antiparallel nucleotide sequences capable of pairing with one another upon formation of hydrogen bonds between base pairs. As used herein, the term “complementary sequences” means nucleotide sequences which are substantially complementary, as can be assessed by the same nucleotide comparison set forth herein, or is defined as being capable of hybridizing to the nucleic acid segment in question under conditions such as those described herein. In one embodiment, a complementary sequence is at least 80% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 85% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 90% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 95% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 98% complementary to the nucleotide sequence with which is it capable of pairing. In another embodiment, a complementary sequence is at least 99% complementary to the nucleotide sequence with which is it capable of pairing. In still another embodiment, a complementary sequence is at 100% complementary to the nucleotide sequence with which is it capable of pairing. A particular example of a complementary nucleic acid segment is an antisense oligonucleotide.


“Stringent hybridization conditions” in the context of nucleic acid hybridization experiments are both sequence- and environment-dependent. Longer sequences hybridize specifically at higher temperatures. Generally, highly stringent hybridization and wash conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Very stringent conditions are selected to be equal to the Tm for a particular probe. Typically, under “stringent conditions” a probe hybridizes specifically to its target sequence, but to no other sequences. An extensive guide to the hybridization of nucleic acids is found in Tijssen 1993, which is incorporated herein by this reference. In general, a signal to noise ratio of 2-fold (or higher) than that observed for a negative control probe in a same hybridization assay indicates detection of specific or substantial hybridization.


It is understood that in order to determine a gene expression level by hybridization, a full-length cDNA need not be employed. To determine the expression level of a gene represented by one of SEQ ID NOs: 1-47, any representative fragment or subsequence of the sequences set forth in SEQ ID NOs: 1-47 can be employed in conjunction with the hybridization conditions disclosed herein. As a result, a nucleic acid sequence used to assay a gene expression level can comprise sequences corresponding to the open reading frame (or a portion thereof), the 5′ untranslated region, and/or the 3′ untranslated region. It is understood that any nucleic acid sequence that allows the expression level of a reference gene to be specifically determined can be employed with the methods and compositions of the presently disclosed subject matter.


As used herein, the terms “corresponding to” and “representing”, “represented by” and grammatical derivatives thereof, when used in the context of a nucleic acid sequence corresponding to or representing a gene, refers to a nucleic acid sequence that results from transcription, reverse transcription, or replication from a particular genetic locus, gene, or gene product (for example, an mRNA). In other words, a partial cDNA, or full-length cDNA corresponding to a particular reference gene is a nucleic acid sequence that one of ordinary skill in the art would recognize as being a product of either transcription or replication of that reference gene (for example, a product produced by transcription of the reference gene). One of ordinary skill in the art would understand that the partial cDNA, or full-length cDNA itself is produced by in vitro manipulation to convert the mRNA into a cDNA, for example by reverse transcription of an isolated RNA molecule that was transcribed from the reference gene. One of ordinary skill in the art will also understand that the product of a reverse transcription is a double-stranded DNA molecule, and that a given strand of that double-stranded molecule can embody either the coding strand or the non-coding strand of the gene. The sequences presented in the Sequence Listing are single-stranded, however, and it is to be understood that the presently claimed subject matter is intended to encompass the genes represented by the sequences presented in SEQ ID NOs: 1-47, including the specific sequences set forth as well as the reverse/complement of each of these sequences.


The term “gene expression” generally refers to the cellular processes by which a biologically active polypeptide is produced from a DNA sequence. Generally, gene expression comprises the processes of transcription and translation, along with those modifications that normally occur in the cell to modify the newly translated protein to an active form and to direct it to its proper subcellular or extracellular location.


The terms “gene expression level” and “expression level” as used herein refer to an amount of gene-specific RNA or polypeptide that is present in a biological sample. When used in relation to an RNA molecule, the term “abundance” can be used interchangeably with the terms “gene expression level” and “expression level”.


Determination of expression levels of genes of interest can be achieved using any technique known the skilled artisan. For example, in some embodiments, RNA can be purified from the biological sample, converted to the more-stable complementary DNA (cDNA), before the gene expression products of genes of interest are detected. As will be recognized by the skilled artisan, where amplification of the sample is desired, polymerase chain reaction amplification can be employed. Determining the expression levels can be achieved, for example, using reverse transcription-polymerase chain reaction (RT-PCR), microarray analysis, or other techniques known to the skilled artisan.


In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, or 47 genes represented by SEQ ID NOs: 1-47. In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A.









TABLE A







Genes











Gene


ABI Assay
SEQ ID


Abbreviation
Gene
NCBI Ref. No.
Number:
NO:














ABR
active BCR-related gene, transcript
NM_001159746.1
Hs00254300_m1
1



variant 3


ACTB
actin, beta
NM_001101.3
Hs99999903_m1
2


ACTR1A
ARP1 actin-related protein 1
NM_005736.3
Hs00194913_m1
3



homolog A, centractin alpha (yeast)


ADAMTSL4
ADAMTS-like 4 (ADAMTSL4),
NM_019032.4
Hs00296775_m1
4



transcript variant 1


ANAPC1
anaphase promoting complex
NM_022662.2
Hs00224096_m1
5



subunit 1


APOBEC3F
apolipoprotein B mRNA editing
NM_145298.5
Hs00272529_m1
6



enzyme, catalytic polypeptide-like



3F


ASL
argininosuccinate lyase
NM_001024943.1
Hs00163695_m1
7


B2M
beta-2-microglobulin
NM_004048.2
Hs99999907_m1
8


BRCA1
breast cancer 1, early onset
NR_027676.1
Hs00173237_m1
9



(BRCA1), transcript variant 6, non-



coding RNA


CD55
CD55 molecule, decay accelerating
NM_000574.3
Hs00167090_m1
10



factor for complement (Cromer



blood group), transcript variant 1


CDH1
cadherin 1, type 1, E-cadherin
NM_004360.3
Hs00170423_m1
11



(epithelial)


CDKN1B
cyclin-dependent kinase inhibitor
NM_004064.3
Hs00153277_m1
12



1B (p27, Kip1)


CHEK2
checkpoint kinase 2 (CHEK2),
NM_001005735.1
Hs00200485_m1
13



transcript variant 3


CSF3R
colony stimulating factor 3 receptor
NM_156039.3
Hs00167918_m1
14



(granulocyte), transcript variant 3


CTSS
cathepsin S, transcript variant 1
NM_004079.4
Hs00175403_m1
15


EPHX2
epoxide hydrolase 2, cytoplasmic
NM_001979.4
Hs00157403_m1
16


EXT2
exostosin 2, transcript variant 2
NM_207122.1
Hs00181158_m1
17


FOS
FBJ murine osteosarcoma viral
NM_005252.3
Hs00170630_m1
18



oncogene homolog


FOSL1
FOS-like antigen 1
NM_005438.3
Hs00759776_s1
19


FOXN3
forkhead box N3, transcript variant 1
NM_001085471.1
Hs00231993_m1
20


GAPDH-1
glyceraldehyde-3-phosphate
NM_002046.3
Hs99999905_m1
21



dehydrogenase


GAPDH-2
glyceraldehyde-3-phosphate
NM_002046.3
Hs99999905_m1
22



dehydrogenase


GATA3
GATA binding protein 3
NM_001002295.1
Hs00231122_m1
23


GNB5
guanine nucleotide binding protein
NM_006578.3
Hs00275095_m1
24



(G protein), beta 5, transcript

and



variant 1

Hs01034253_m1


GSTM4
glutathione S-transferase mu 4,
NM_147148.2
Hs00426432_m1
25



transcript variant 2


HLA-DRA
major histocompatibility complex,
NM_019111.4
Hs00219575_m1
26



class II, DR alpha


HRAS
v-Ha-ras Harvey rat sarcoma viral
NM_001130442.1
Hs00610483_m1
27



oncogene homolog (HRAS),



transcript variant 3


IFI27
interferon, alpha-inducible protein
NM_001130080.1
Hs00271467_m1
28



27 (IFI27), transcript variant 1


IL11RA
interleukin 11 receptor, alpha,
NM_001142784.1
Hs00234415_m1
29



transcript variant 3


JUN
jun proto-oncogene
NM_002228.3
Hs00277190_s1
30


KRAS
v-Ki-ras2 Kirsten rat sarcoma viral
NM_004985.3
Hs00270666_m1
31



oncogene homolog, transcript



variant b


LEPREL4
leprecan-like 4
NM_006455.2
Hs00197668_m1
32


LLGL2
lethal giant larvae homolog 2
NM_001015002.1
Hs00189729_m1
33



(Drosophila), transcript variant 2


NRAS
neuroblastoma RAS viral (v-ras)
NM_002524.4
Hs00180035_m1
34



oncogene homolog


OAS1
2′-5′-oligoadenylate synthetase 1,
NM_001032409.1
Hs00242943_m1
35



40/46 kDa, transcript variant 3,


ORC1
origin recognition complex, subunit
NM_001190819.1
Hs00172751_m1
36



1 (ORC1), transcript variant 3


PGK1
phosphoglycerate kinase 1
NM_000291.3
Hs99999906_m1
37


PMAIP1
phorbol-12-myristate-13-acetate-
NM_021127.2
Hs00560402_m1
38



induced protein 1


POU6F1
POU class 6 homeobox 1,
NR_026893.1
Hs00231276_m1
39



transcript variant 2


RANGAP1
Ran GTPase activating protein 1
NM_002883.2
Hs00610049_m1
40


SPIB
Spi-B transcription factor (Spi-1/PU.1
NM_003121.3
Hs00162150_m1
41



related)


TAF11
TAF11 RNA polymerase II, TATA
NM_005643.2
Hs00194573_m1
42



box binding protein (TBP)-



associated factor, 28 kDa


TBP
TATA box binding protein,
NM_001172085.1
Hs00427620_m1
43



transcript variant 2


TGFBR2
transforming growth factor, beta
NM_001024847.2
Hs00559661_m1
44



receptor II (70/80 kDa), transcript



variant 1


TP53
tumor protein p53 (TP53),
NM_001126113.1
Hs00153340_m1
45



transcript variant 4


TP53-2
tumor protein p53 (TP53),
NM_001126112.1
Hs01034253_m1
46



transcript variant 2


TXK
TXK tyrosine kinase
NM_003328.2
Hs00177433_m1
47


IL11R1









In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP. In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP. In some embodiments, determining the expression levels of genes in the biological sample includes determining the expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


As used herein, a “ratio” or “expression ratio” is the expression value of a first biomarker (numerator) divided by the expression value of a second biomarker (denominator), e.g., Gene A/Gene B. As such, once the expression levels of at least two genes are determined, a ratio can be calculated. Ratios can be calculated using expression levels of genes in a biological sample obtained from a subject. In some embodiments, a reference can be a ratio calculated using expression levels of genes from another source. As such, the term “subject ratio” can used herein to refer to a ratio calculated using expression values of a gene pair in a biological sample obtained from a subject, while the term “reference ratio” can be used to refer to a ratio of the same biomarker pair in a reference sample, which serves as a reference to which the subject ratio is compared.









TABLE B







Ratios












MS vs. CTRL

MS vs. OND




Expression Ratios

Expression Ratios












Numerator
Denominator
Numerator
Denominator







JUN
CD55
PGK1
CTSS



JUN
SPIB
CDKN1B
GAPDH-1



TAF11
FOS
KRAS
CTSS



PMAIP1
TBP
ACTB
TBP



TAF11
FOSL1
APOBEC3F
GAPDH-2



KRAS
ASL
KRAS
OAS1



GATA3
ANAPC1
KRAS
ASL



B2M
FOSL1
CSF3R
CD55



OAS1
GAPDH-2
OAS1
GSTM4



TBP
GSTM4
CSF3R
TBP



CTSS
CDKN1B
APOBEC3F
LLGL2



PMAIP1
ASL
APOBEC3F
TAF11



GSTM4
CDKN1B
TP53-1
CDKN1B



TP53
LLGL2
FOS
CD55



GATA3
LLGL2
APOBEC3F
CDKN1B



GAPDH-2
EXT2
OAS1
B2M



GAPDH-1
EXT2
GNB5
EXT2



RANGAP1
ASL
RANGAP1
IL11RA



TP53
POU6F1
FOS
B2M



CSF3R
LLGL2
TGFBR2
B2M



IL11RA
EXT2
APOBEC3F
ASL



IL11R1
TAF11
TGFBR2
CDKN1B



ANAPC1
LLGL2
ANAPC1
EXT2



FOS
OAS1
APOBEC3F
TBP



ANAPC1
POU6F1
GSTM4
EXT2



CSF3R
CDKN1B
GNB5
CDKN1B



GSTM4
EXT2
TGFBR2
EXT2



ANAPC1
ASL
JUN
PMAIP1



HLA-DRA
GNB5
RANGAP1
TBP



TP53-2
KRAS
ANAPC1
ASL



GSTM4
EPHX2
TP53-2
B2M



GAPDH-1
TBP
TBP
CTSS



EPHX2
OAS1
TP53-2
CTSS



JUN
TAF11
EPHX2
PMAIP1



RANGAP1
EPHX2
ACTB
ASL



CSF3R
TBP
ASL
PMAIP1



HLA-DRA
LLGL2
OAS1
FOSL1



ANAPC1
TBP
CSF3R
TP53-1



ANAPC1
EPHX2
EPHX2
CDKN1B



CTSS
CD55
CTSS
EXT2



TP53-2
ACTB
B2M
CD55



CTSS
PMAIP1










In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios of expression levels of genes corresponding to those set forth in Table A, wherein each ratio is calculated by dividing the expression level of a first gene in Table A by the expression level of a second gene in Table A.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, or 83 ratios set forth in Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 1 (MS vs. CTRL) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, or 42 ratios set forth in Column 1 (MS vs. CTRL) of Table B.


In embodiments of the presently-disclosed subject matter, the method involves calculating one or more ratios set forth in Column 2 (MS vs. OND) of Table B. In some embodiments, the method includes calculating 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, or 41 ratios set forth in Column 2 (MS vs. OND) of Table B.


Various references are appropriate for use in connection with the presently-disclosed subject matter, with non-limiting examples described herein. In some embodiments, the reference comprises a reference ratio calculated using of the expression level of two genes in a biological sample taken from one or more individuals, which two genes are the same two genes used to calculate the subject ratio. The expression levels of genes in biological samples from one or more individuals can be a expression levels from a reference group or comparator group.


In some embodiments, a “comparator group” or “reference group” includes individuals having a common characterization, for example, healthy control individuals, individuals who have been diagnosed with a condition often confused with an auto-immune disease of interest in the context of clinical diagnosis, individuals who have been diagnosed with an auto-immune disease of interest, or individuals who have another common characterization of interest. Expression values of biomarkers obtained from biological samples of individuals in a comparator group can be used to calculate reference ratios. Data associated with one or more comparator groups can be stored, for example, in a database that can be accessed when practicing a method in accordance with the presently-disclosed subject matter.


With reference to Table B, for example, ratios-of-interest are provided for use with a healthy control comparator group (CTRL, column 1) or a comparator group of individuals having other neurologic disorders (OND, column 2). Examples of comparator groups relevant to characterization of MS include, but are not limited to: healthy control (CTRL), clinically isolated syndrome (CIS), CIS later developing MS (CIS→MS), MS diagnosed, newly diagnosed with MS who have not yet begun treatment (MS Naïve), established MS (>1 year), other neurologic disorders (OND), e.g., Alzheimer's disease, ataxia, Bell's palsy, cerebellar ataxia, cerebral bleed, cervical radiculopathy, Charcot-Marie tooth disease, CNS Lupus, dizziness/pituitary, drug-induced movement disorder, drug-induced tremor, dystonia, epilepsy, essential tremor, Huntington's disease, hydrocephalus, median neuropathy, meningioma, meningitis, migraine, Parkinson's disease, peripheral neuropathy, pituitary adenoma, pseudotumor cerebri, RLS, seizures, spasmodic torticollis, stroke, tension headache, Tourette's syndrome, transient ischemic attack, tremor, and trigeminal tremor. For some comparator groups, ONDs can be grouped by those typically considered inflammatory (OND-I) and those typically considered non-inflammatory (OND-NI).


Because a comparator group can include data from multiple individuals, as will be recognized by one of ordinary skill in the art, it is expected that the expression values of biomarkers in biological samples obtained from different individuals in the same comparator group might differ. As such, identification of a reference ratio for a particular gene pair can be made with reference to a “threshold reference ratio” for the gene pair within the comparator group. In some embodiments, for example, the threshold expression ratio could be a median, an average, a value based on statistical analysis of the distribution of ratios of expression levels of the gene pair within the comparator group, or another threshold value, e.g., top value in the group, second highest value in the group, third highest value in the group, etc.


In some embodiments, the reference comprises a reference ratio calculated using a standard sample containing standard biomarker amounts, which can be analyzed in the same manner or even concurrently with the biological sample. In some embodiments, the reference comprises ratio values, such as standard threshold values. Such values can be published in a format useful for the practitioner, such as in a list, table, database, or incorporated into a software or system for use in connection with the presently-disclosed subject matter. Such values can in some cases be based, for example, on information obtained from a comparator group.


Ratios of interest, or ratios of gene pairs that are useful for characterizing MS, have the ability to distinguish to groups, e.g., MS group and health control group. Table B includes examples of ratios of interest for MS vs. healthy control (CTRL) and MS vs. other neurologic disorders (OND). In this regard, an auto-immune disease can be characterized based on a difference in the ratios of the expression values of at least two genes in a biological sample from the subject as compared to a reference ratio.


In some embodiments, it can be useful to compare one or more subject ratios to one or more first reference ratios, e.g., from a first comparator group, and also to compare the one or more subject ratios to one or more second reference ratios, e.g., from a second comparator group. Such a multi-tiered approach can improve the efficacy of the characterization of the MS, as will be explained further in the Examples section.


Characterizing can include providing a diagnosis, prognosis, and/or theragnosis of an auto-immune disease in a subject.


“Making a diagnosis” or “diagnosing,” as used herein, are further inclusive of making a prognosis, which can provide for predicting a clinical outcome (with or without medical treatment), selecting an appropriate treatment (or whether treatment would be effective), or monitoring a potential auto-immune disease, based on calculated ratios of expression levels of genes. Diagnostic testing that involves treatment, such as treatment monitoring or decision making can be referred to as “theranosis.” Further, in some embodiments of the presently disclosed subject matter, multiple determinations of ratios of expression levels of genes over time can be made to facilitate diagnosis (including prognosis), evaluating treatment efficacy, and/or progression of a potential auto-immune disease or auto-immune disease. A temporal change in one or more ratios can be used to predict a clinical outcome, monitor the progression of the condition, and/or efficacy of administered therapies. In such an embodiment for example, one could observe a change in a particular ratio in a biological sample over time during the progression of a condition and/or during the course of a therapy.


The presently disclosed subject matter further provides in some embodiments a method for theranostic testing, such as evaluating progression of a condition and/or treatment efficacy in a subject. In some embodiments, the method comprises providing a series of biological samples over a time period from the subject; determining expression values of at least two genes in each of the biological samples; calculating one or more ratios of the expression values of the at least two genes for each of the biological samples; and determining any measurable change in the ratios in each of the biological samples from the series to thereby evaluate progression of the condition and/or treatment efficacy.


Any changes in the ratios, and changes in the ratios relative to references, over the time period can be used to make a diagnosis, predict clinical outcome, determine whether to initiate or continue the therapy, and whether a current therapy is effectively.


The phrase “determining the prognosis” as used herein refers to methods by which the skilled artisan can predict the course or outcome of a condition in a subject. The term “prognosis” can refer to the ability to predict the course or outcome of a condition with up to 100% accuracy, or predict that a given course or outcome is more or less likely to occur based on the ratios of expression values of genes of interest. The term “prognosis” can also refer to an increased probability that a certain course or outcome will occur; that is, that a course or outcome is more likely to occur in a subject when compared to individuals in a comparator group. For example, in individuals exhibiting subject ratios-of-interest that are higher than reference ratio-of-interest, the chance of a given outcome (e.g., MS diagnosis) may be very high. In certain embodiments, a prognosis is about a 5% chance of a given expected outcome, about a 7% chance, about a 10% chance, about a 12% chance, about a 15% chance, about a 20% chance, about a 25% chance, about a 30% chance, about a 40% chance, about a 50% chance, about a 60% chance, about a 75% chance, about a 90% chance, or about a 95% chance.


The skilled artisan will understand that associating a prognostic indicator with a predisposition to an adverse outcome can be performed using statistical analysis. For example, subject ratios that are higher than reference ratios in some embodiments can signal that a subject is more likely to suffer from an auto-immune disease than subjects with ratios that are substantially equal to reference ratios, as determined by a level of statistical significance. Statistical significance is often determined by comparing two or more populations, and determining a confidence interval and/or a p value. See, e.g., Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York, 1983, incorporated herein by reference in its entirety. Exemplary confidence intervals of the present subject matter are 90%, 95%, 97.5%, 98%, 99%, 99.5%, 99.9% and 99.99%, while exemplary p values are 0.1, 0.05, 0.025, 0.02, 0.01, 0.005, 0.001, and 0.0001. When performing multiple statistical tests, p values can be corrected for multiple comparisons using techniques known in the art.


Further with respect to the methods of the presently disclosed subject matter, a preferred subject is a vertebrate subject. A preferred vertebrate is warm-blooded; a preferred warm-blooded vertebrate is a mammal. A mammal is most preferably a human. As used herein, the term “subject” includes both human and animal subjects. Thus, veterinary therapeutic uses are provided in accordance with the presently disclosed subject matter.


As such, the presently disclosed subject matter provides for the diagnosis of mammals such as humans, as well as those mammals of importance due to being endangered, such as Siberian tigers; of economic importance, such as animals raised on farms for consumption by humans; and/or animals of social importance to humans, such as animals kept as pets or in zoos. Examples of such animals include but are not limited to: carnivores such as cats and dogs; swine, including pigs, hogs, and wild boars; ruminants and/or ungulates such as cattle, oxen, sheep, giraffes, deer, goats, bison, and camels; and horses. Also provided is the treatment of birds, including the treatment of those kinds of birds that are endangered and/or kept in zoos, as well as fowl, and more particularly domesticated fowl, i.e., poultry, such as turkeys, chickens, ducks, geese, guinea fowl, and the like, as they are also of economic importance to humans. Thus, also provided is the treatment of livestock, including, but not limited to, domesticated swine, ruminants, ungulates, horses (including race horses), poultry, and the like.


The presently-disclosed subject matter further includes kits and devices useful for detecting and/or determining expression levels of at least two genes in a biological sample.


The kits of the presently-disclosed subject matter can include primer pairs for determining expression levels of at least two genes, which can be useful for calculating ratios as disclosed herein. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the kit includes primer pairs for determining expression levels of at least two genes corresponding to those set forth in Table A. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP. In some embodiments, the kit includes primer pairs for determining expression levels of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP. In some embodiments, the kit includes primer pairs for determining expression levels of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


The devices of the presently-disclosed subject matter can include a probe for selectively binding each of at least two gene expression products to detect at least two genes, which can be useful for determining expression levels of the genes and for calculating ratios as disclosed herein. Such probes can selectively bind the gene products, for example, by hybridization of the probe and a nucleotide gene product. In some embodiments, the device includes probes for detecting each of at least two genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes represented by SEQ ID NOs: 1-47. In some embodiments, the device includes probes for detecting each of at least two genes corresponding to those set forth in Table A. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, or 48 genes corresponding to those set forth in Table A. In some embodiments, the device includes probes for detecting each of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP. In some embodiments, the device includes probes for detecting each of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP. In some embodiments, the device includes probes for detecting each of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, or 34 genes corresponding to those set forth in Table B.


Some of the gene sequences disclosed herein are cross-referenced to GENBANK® accession numbers. The sequences cross-referenced in the GENBANK® database are expressly incorporated by reference as are equivalent and related sequences present in GENBANK® or other public databases. Also expressly incorporated herein by reference are all annotations present in the GENBANK® database associated with the sequences disclosed herein. Unless otherwise indicated or apparent, the references to the GENBANK® database are references to the most recent version of the database, as of the filing date of this application.


While the terms used herein are believed to be well understood by one of ordinary skill in the art, definitions are set forth to facilitate explanation of the presently-disclosed subject matter.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presently-disclosed subject matter, representative methods, devices, and materials are now described.


Following long-standing patent law convention, the terms “a”, “an”, and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a cell” includes a plurality of such cells, and so forth.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.


As used herein, the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.


As used herein, ranges can be expressed as from “about” one particular value, and/or to “about” another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


The presently-disclosed subject matter is further illustrated by the following specific but non-limiting examples. The following examples may include compilations of data that are representative of data gathered at various times during the course of development and experimentation related to the present invention.


EXAMPLES
Example 1
Gene Expression Patterns in Distinct Neurologic Diseases

Expression patterns of a common set of genes assayed using a common platform in control subjects and subjects with different neurologic conditions, including autoimmune diseases, were measured. Expression levels of individual genes were determined by quantitative RT-PCR by normalization to GAPDH expression levels. A heatmap was employed to depict those genes differentially expressed in individual disease cohorts relative to the control cohort, P <0.05 (after Bonferroni correction for multiple testing) (FIG. 1). Ratios of expression levels of individual genes in the indicated disease cohort relative to the control cohort were calculated and depicted within each colored box. Each disease exhibited an underlying unique pattern of gene expression. However, these profiles were sufficiently overlapping to prohibit accurate discrimination of one disease from another disease using the expression profile alone. For example, LLGL2, RANGAP1, ACTB, and POU6F1 were under-expressed in 4, 3, 4, and 4 of 5 different conditions, respectively. In contrast, other genes, e.g., ANAPC1 in Parkinson's disease, EXT2 and FOS in TM, HRAS in NMO, were only differentially expressed in a single disease cohort. Overall, individual genes were either over-expressed, e.g. B2M, CD55, PMAIP1, or under-expressed, e.g. LLGL2, RANGAP1, ACTB, across multiple disease cohorts. Thus, each gene was differentially expressed in at least one disease cohort relative to the CTRL cohort. However, each individual disease cohort did not possess a unique expression profile distinguishing it from all other disease cohorts.


Discrimination of MS from Homogeneous Comparator Groups: Identification of an Optimum Panel of Gene Expression Ratios


Healthy control subjects, subjects with MS, and subjects with other inflammatory neurologic disorders (OND-I), and subjects with neurologic disorders typically considered non-inflammatory (OND-NI) were recruited from multiple U.S. and European sites (Table 1-A and Table 1-B). Demographic characteristics of the different disease groups, MS, OND-I, or OND-NI were matched to the CTRL cohort (compilation of patient characteristics data not shown). Subjects with MS included subjects with clinically isolated syndrome (CIS), newly diagnosed MS subjects who were treatment naïve and subjects with established disease (>1 yr duration) on different therapies. Expression levels of test and control genes in blood were determined by quantitative reverse transcription polymerase chain reaction (RT-PCR) (Table 1-C).









TABLE 1-A







Characteristics of Subjects









Sites











Nashville
U.S.*
Europe**














MULTIPLE SCLEROSIS (total)
84
81
80


CIS
14

10


Treatment naïve
30
4
55


Established disease (on meds)
40
77
15


OND-I (total)
1
85


Acute disseminated

4


encephalomyelitis


Bell's Palsy

3


CNS lupus

2


Guillaine Barre

4


Myasthenia Gravis

3


Neuromyelitis optica

27


Optic neuritis
1
1


Transverse myelitis

41


OND-NI (total)
1
128


Alzheimer's

6


Cerebral ataxia

2


Cerebral bleed

2


Cervical radiculopathy

6


Drug-induced movement

1


disorder


Dystonia

1


Epilepsy
1
4


Essential tremor

9


Huntington's disease

1


Hydrocephalus

1


Median Neuropathy

2


Meningioma

1


Migraine

30


Parkinson's
3
0


Peripheral Neuropathy

1


Pseudotumor

3


Restless Leg Syndrome

1


Seizures

6


Spasmodic torticollis

1


Stroke

18


Tourette's Syndrome

1


Transient Ischemia

1


CONTROLS
48
61





*six additional sites in U.S.: MA, MD, NY, SC, AZ, TX, CA, samples from sites in MS, MD, NY, AZ, and CA were obtained through the Accelerated Cure Project.


**Denmark, Netherlands













TABLE 1-B







Demographic characteristics of the different subject populations.


















ETHNIC-






GENDER

ITY (%,



AGE
P*
(% F)
P
C/AA/As/H)**
P

















MS
43 ± 10
NS
76
NS
80/20/0/0
NS


OND-NI
46 ± 10
NS
67
NS
68/26/3/1
NS


OND-I
46 ± 10
NS
68
NS
67/33/0/0
NS


CTRL
41 ± 11

77

71/22/3/3





*P calculated by Student's T-test (Age) or Fisher's exact test. NS: P > 0.05.


**C, Caucasian; AA, African American; As, Asian; H, Hispanic.













TABLE 1-C





Gene probes on TLDA plate



















ABR
EPHX2
OAS1



ACTB
EXT2
ORC1L



ACTR1A
FOS
PGK1



ADAMTSL4
FOSL1
PMAIP1



ANAPC1
GAPDH
POU6F1



APOBEC3F
GATA3
RANGAP1



ASL
GNB5
SC65



B2M
GSTM4
SPIB



BRCA1
HLA-DRA
TAF11



CD55
HRAS
TBP



CDH1
IFI27
TGFBR2



CDKN1B
IL11RA
TP53



GAPDH
JUN
TXK



CHEK2
KRAS
GNB5



CSF3R
LLGL2
TP53



CTSS
NRAS










A search algorithm was employed to identify those ratios of gene expression levels in which the greatest number of subjects in the test group possessed a ratio value greater than the highest ratio value in the comparator group. A second algorithm was employed to perform permutation testing of one subject group to identify the optimum set of discriminatory ratios.


It was reasoned that examination of expression levels of ratios of genes rather than individual genes would serve the following purposes. First, calculation of ratios normalized for differences in mRNA or cDNA template quantity and quality among different samples. Second, they obviated the need for inclusion of a ‘housekeeping’ gene in the analysis and the assumption that expression levels of ‘housekeeping’ genes did not vary among different subject populations. Third, comparisons of ratios or combinations of ratios may more accurately identify cellular phenotypes that may contribute to disease. For example, a ratio containing one gene in the numerator that is over-expressed in the test group relative to the comparator group and one gene in the denominator that is under-expressed in the test group relative to the comparator group should produce a greater ratio value difference between individuals in the two groups than a single expression value. A point system was employed to award one point to a subject if a ratio value of the test subject was greater than the ratio values of all subjects in the comparator group.


This approach was applied to determine how accurately it would distinguish subjects with MS from healthy control subjects. First, ratios capable of discriminating MS subjects from control subjects were identified. The single ratio with the greatest discriminatory power was ANAPC1/CHEK2 (FIG. 2a). Fifty % of MS subjects achieved a ratio value higher than all the CTRL subjects and were awarded one point. Second, those ratios that identified fewer than 20% of MS subjects were eliminated. Third, since many ratios identified the same MS subjects, another reduction was performed to preserve only one ratio with this characteristic. A total of 8 ratios remained after this minimization process (FIG. 2b). Using the point system, the combination of these 8 ratios positively identified 97% of MS subjects and eliminated 100% of CTRL subjects (FIG. 2c). The score distribution was 0-6 for MS subjects and 0 for CTRL subjects (FIG. 2d).


Discrimination of MS from Homogeneous Comparator Groups: Validation and Analysis


The analyses depended upon determination of multiple ratios, which may create Type 1 errors. Various methods are available to correct for false discovery rates. Rather than relying upon these methods, which all make underlying assumptions, a second evaluation was performed using an independent cohort of 40 new MS subjects and 40 new CTRL subjects to validate results obtained from the initial training set. These subjects were recruited separately and the PCR analyses were performed separately. The same ratio values were used, as defined from the original CTRL and MS test set to award points to subjects in the validation cohort. All 40 controls were awarded a score of 0 while 4% of MS subjects received a score of 0. The remaining 96% of MS subjects achieved a score of 1-6 and the distribution of scores was similar to that observed in the training set (FIG. 2e). Taken together, this demonstrates that results obtained in the training set can be replicated in an independent cohort of CTRL and MS subjects.


The point system was applied to OND-I and OND-NI subjects. In contrast to CTRL subjects, 90% of OND-I and 59% of OND-NI subjects scored ≧1 (FIG. 2f). Scores among subjects with CIS were compared, with newly diagnosed MS not yet on medications, and with established MS on different medications. Scores did not differ significantly among these three groups (FIG. 2g). Also compared were scores within the MS group as a function of geographic origin. Scores also did not vary significantly among MS subjects from different geographic sites (FIG. 2h). Thus, subjects with CIS or subjects after their initial diagnosis of MS had a similar mean score to subjects with established MS on therapies. However, a high percentage of subjects with other neurologic conditions, especially inflammatory neurologic conditions, also scored ≧0 in this analysis. Given its extremely high specificity and relatively low sensitivity, embodiments of this test have greater application to exclude an individual from the diagnosis of MS rather than to establish a diagnosis of MS.


Further, follow-up clinical information on 8 CIS subjects >2 yr. after the initial consent and blood draw were able to be obtained. Of these subjects, the 7 CIS subjects who achieved a score >0 in the analysis now have documented MS. The 1 CIS subject who achieved a score of 0 does not have a documented case of MS.


NMO and TM are inflammatory neurologic diseases that scored positive in the analysis. Therefore, it was determined whether a similar approach could be employed to discriminate MS from TM and MS from NMO. A series of ratios were identified that, when combined using the point system, were able to discriminate TM from MS and NMO from MS with similar overall accuracy to the MS and CTRL comparisons (FIG. 3). Thus, using the approach, it was possible to distinguish MS from TM and MS from NMO with a similar degree of accuracy as obtained for the comparison of MS to CTRL. However, since each disease possessed a unique signature, it was necessary to employ separate combinations of ratios to accurately distinguish MS from NMO and MS from TM.


Above results demonstrate it is possible to distinguish MS from either a control cohort or even a related inflammatory disease cohort if the disease cohort is a single disease.


Next, it was determined whether MS could be discriminated from Parkinson's disease, a disorder typically considered non-inflammatory. To test this hypothesis in it was determined if subjects with Parkinson's disease (N=24) segregated from MS (N=182) and from CTRL (N=109) using the ratio and point system. Ten (10) ratios capable of discriminating 97% of MS subjects from 100% of Parkinson's subjects and 9 ratios capable of discriminating 88% of Parkinson's patients from 100% of CTRL subjects were identified (FIG. 4). These results demonstrate that subjects with Parkinson's disease express unique gene expression signatures in blood distinguishing them from CTRL and MS subjects.


Discrimination of MS from Heterogeneous Comparator Groups


Next, it was determined whether MS could be distinguished from more heterogeneous groups of subjects. To do so, subjects with neurologic conditions typically considered as inflammatory (other neurologic disorders-inflammatory, OND-I in Table 1-B) were combined into one group. Subjects with neurologic conditions typically considered non-inflammatory (other neurologic disorders-non-inflammatory, OND-NI, OND in Table 1-B) were combined into a second group. A third group consisting of CTRL+OND-I+OND-NI subjects (ALL) was prepared. The 15 best ratios were determined using permutation testing for each comparison. Overall, comparison of MS to these heterogeneous comparator groups resulted in a marked reduction in overall discrimination ability (FIG. 5). It was concluded that a binary comparison such as this exhibits much reduced accuracy as the heterogeneity of the comparator group is increased.


Discrimination of MS from OND-I: Identification of Optimum Panels of Gene Expression Ratios


For additional analysis, OND-I was combined into one group of non-MS inflammatory neurologic disorders and investigated the ability of the approach to discriminate this combination of diseases from MS. The conditions were relaxed somewhat to identify ratios with the ability to detect 0 or 1 non-MS subjects. The best results were obtained with 10 ratios (FIG. 6a). The combination of which identified 86% of MS subjects with a score >0 and only 8% of OND-I subjects with a score >0 (FIG. 6b). Scores ranged from 0-7 for MS subjects and 0-1 for OND-I subjects (FIG. 6c).


Discrimination of MS from OND-I: Validation and Analysis


Additional analyses were performed with 40 new MS subjects and 40 new OND-I subjects (20 NMO and 20 TM) not included in the training set. In the validation set, 88% of MS subjects achieved a score ≧1 and 12% of OND-I subjects achieved a score of 1 (FIG. 6d), which was similar to the score distribution observed in the training set. The mean scores among subjects with CIS were determined, subjects with newly diagnosed MS prior to onset of therapies, and subjects with established MS on therapies using the 10 ratios identified above. Mean scores were significantly higher in the CIS and MS-naïve groups than in the MS group with established disease (FIG. 6e). Mean scores based upon geographic origins of MS subjects were also determined. Subjects from Nashville and Europe had mean scores significantly greater than U.S. subjects from locations other than Nashville (FIG. 6f). These results are consistent with results comparing CIS, MS-naïve, and MS-established. The majority of subjects from U.S. sites outside Nashville had established MS and were on therapies (76 of 80 subjects) while all European subjects were either CIS or newly diagnosed MS subjects not yet on therapies (N=101). The Nashville site also provided more samples with established disease (N=37) compared to CIS or treatment naïve MS (N=16) (P <0.0001, Chi-squared test for independence among three geographic locations). The distribution of scores in the CIS and newly diagnosed MS group was also higher than that found in the established MS group. Greater than 50% of subjects with established MS achieved scores of 0 or 1 while 48% of CIS and newly diagnosed MS subjects achieved scores ≧3 (FIG. 6g). Thus, subjects with CIS, newly diagnosed MS, and established MS from different geographic sites can be distinguished from subjects with OND-I with reasonable accuracy based upon gene expression profiles in whole blood.


Discrimination of MS from OND-NI: Identification of Optimum Panels of Gene Expression Ratios


Next, gene expression differences between MS and OND-NI subjects were compared, which included Parkinson's disease, essential tremors, migraines, and strokes. The same search strategy used to compare MS and OND-I subjects was employed and identified 10 expression ratios to construct the point system. ABOBEC3F, CSF3R, and ANAPC1 were each in the numerators of two ratios and TAF11 was in the denominator of two ratios. Each ratio alone detected >10% of MS subjects relative to OND-NI subjects (FIG. 7a). Combining ratios using the point system improved overall ability to discriminate MS subjects from OND-NI subjects (FIG. 7b). Using the point system, 79% of MS subjects achieved a score ≧1 and 91% of OND-NI subjects achieved a score of 0, 9% achieved a score of 1 (FIG. 7c).


Discrimination of MS from OND-NI: Validation and Analysis


Additional analyses were performed with 40 new MS subjects and 40 new OND-NI subjects not included in the training set as outlined above. In the validation set, 88% of MS subjects achieved a score ≧1 (FIG. 7d), which was a similar frequency to that observed in the training set, and 90% of OND-I subjects achieved a score of 0, 10% achieved a score of 1. As above, mean scores of subjects with CIS, newly diagnosed MS and established MS were determined and these were not statistically different among the three MS groups (FIG. 7e). Similarly, mean scores of MS subjects from different geographic sites were not statistically different (FIG. 7f). Using the point system, ˜80% of MS subjects achieved a score ≧1 and 9% of OND-NI subjects achieved a score=1 in the test set. These results demonstrate that expression in whole blood of a different set of gene ratios discriminated subjects with MS from subjects with OND-NI with reasonable accuracy.


All comparisons in these analyses were binary. Therefore, exclusion of a specific disorder by the analysis may be more accurate than inclusion of a specific disorder (see flow chart).

    • Flow Chart: Tiered approach using expression ratios to determine probability of the presence or absence of MS


Analysis 1: MS versus control

    • score=0: >95% probability subject does not have MS
    • score ≧1: move to analysis 2


Analysis 2A: MS versus OND-I

    • score=0: ˜8-fold greater likelihood of OND-I than MS
    • score ≧1: ˜8-fold greater likelihood of MS than OND-I


Analysis 2B: MS versus OND-NI

    • score=0: ˜8-fold greater likelihood of OND-NI than MS
    • score ≧1: ˜8-fold greater likelihood of OND-NI than MS


Analysis 3A: MS versus NMO

    • score=0: ˜90% probability subject does not have MS
    • score ≧1: ˜90% probability subject does not have NMO


Analysis 3B: MS versus TM

    • score=0: ˜90% probability subject does not have MS
    • score ≧1: ˜90% probability subject does not have TM


Thus, a score of 0 in the MS versus CTRL test decreased the probability that a subject had MS. A second analysis comparing MS to OND-I and MS to OND-NI would be interpreted similarly. Scores of 0 decreased the probability of MS and favored the probability of OND-I or OND-NI, respectively. Finally, specific inflammatory neurologic disorders, NMO or TM, were distinguished from MS with high degrees of accuracy. Thus, results from this single platform can be analyzed in a tiered approach to provide meaningful disease classification.


Discussion


Although the focus was on MS and other inflammatory and non-inflammatory neurologic disorders, the results support the notion that this approach could be applicable to an array of diseases. First, discrimination between MS and healthy controls or subjects with individual diseases can be achieved with a relatively high degree of accuracy. However, subjects with OND-I and OND-NI also scored positive in MS-CTRL comparisons. As such, this single comparison has greater utility as an exclusionary test rather than a test of MS inclusion. Second, it is possible to discriminate MS from groups of diseases, such as inflammatory or non-inflammatory neurologic diseases, and validate results in independent cohorts, although overall accuracy is somewhat compromised. Third, discrimination of MS from a diverse comparator group including CTRL, OND-I, and OND-NI causes a further reduction in overall accuracy. Nevertheless, a score >0 in this analysis is highly predictive of the presence of MS. Fourth, it is possible to identify small numbers of ratios with high degrees of discriminatory power whose accuracy can be validated in independent cohorts analyzed separately.


One interpretation of the results is that many individual diseases express unique but overlapping gene expression signatures in whole blood. Given the attention paid to analyses of autoimmune diseases, it is not surprising that inflammatory neurologic diseases such as NMO and TM also express unique gene expression signatures. Perhaps somewhat surprising is that Parkinson's disease, a disorder typically considered non-inflammatory, also possesses a unique gene expression signature distinguishing it from both CTRL and MS. Implications may be that the immune system can sense specific neurologic damage caused by Parkinson's via responses to cytokine mediators, adhesion molecules, neurotransmitters, or other mediators read by immune cells. Alternatively, genetic risk factors associated with Parkinson's disease may contribute to altered gene expression signatures by either direct or indirect mechanisms.


Mechanisms underlying gene expression differences among study groups or relationships to MS disease mechanism are not altogether clear. However, defects in DNA damage repair, cellular responses to DNA damage, and regulation of cell cycle progression and arrest are common properties of lymphocytes in certain autoimmune diseases, including MS, and ANAPC1, CHEK2, CDKN1B, ACTB, FOSL1, LLGL2, and NRAS encode proteins playing key roles in these fundamental cellular processes23-27. These genes are highly represented in the ratios used to distinguish MS from comparator groups. Genes, such as ADAMTSL4, B2M, IL11RA, TXK and POU6F1, encode proteins playing key functions in regulating cells of both innate and adaptive arms of the immune system28, 29. As such, alterations in expression of these genes may contribute to pathogenesis of MS or may represent an altered response by the immune system to MS pathogenesis.


The follow-up analysis of CIS patients supports the idea that initial scores >0 will correlate with progression to MS. Future longitudinal studies are planned to better evaluate utility of these tests in this setting. Further, the binary analysis is also predicated on the fact that MS is best represented by a single set of gene expression ratios and this may not be the case. Additional analyses, such as analyses of gene expression ratios in multi-dimensional space, will address this possibility. Several different combinations of gene expression ratios were identified, which performed equivalently in their ability to discriminate among subject groups. In conclusion, these minimally invasive and relatively inexpensive tests may have utility to either exclude the diagnosis of MS or to contribute to establishing a diagnosis of MS.


Materials and Methods


Patients.


Blood samples in PAXgene tubes were obtained from patients with a) clinically isolated syndrome (CIS), b) an initial diagnosis of MS before onset of therapy, and c) established relapsing-remitting MS on medication. Blood samples were also obtained from healthy control subjects (CTRL) and subjects with different inflammatory (OND-I) or non-inflammatory (OND-NI) neurologic conditions. MS samples were obtained from a total of 9 different sites in the U.S. and Europe. Samples from subjects with OND-I and OND-NI were obtained from 7 sites in the U.S. CTRL samples were obtained from 3 U.S. sites. Inclusion criteria for MS and other neurologic conditions were diagnosis by a neurologist using established methods and ability to provide informed consent, thus providing an un-biased study cohort. Age, race and gender were not statistically different among the different study groups. Time of the blood draw, e.g. morning/afternoon clinics, was also not statistically different among the different study groups. Relevant institutional review board approval from all participating sites was obtained.


Procedures.


Total RNA, purified using Qiagen's isolation kits by standard protocols, was reverse-transcribed using SuperScript III (Invitrogen). A TaqMan Low Density Array (TLDA) was designed to analyze expression levels of 44 genes previously identified from the microarray analysis and of 4 “housekeeping” genes in 300 ng cDNA per sample. Patient diagnosis was blinded for all experimental procedures. Relative expression levels were determined directly from the observed threshold cycle (CT), the cycle number at which fluorescence generated within reactions crosses an assigned threshold reflecting the point where sufficient amplicons have accumulated to be statistically significant above baseline. Linear expression values were determined using the formula, 2(40-CT).


Identification of Discriminatory Gene Expression Ratios.


A computational algorithm was designed to identify the most discriminatory combinations of ratios22. All possible gene expression ratios were computed (e.g. ACTR1A/BRCA1, TAF11/ACTR1A, etc). To analyze individual results, Ri,jcontrol was used to denote the ith ratio for the jth control and let Ri,kMS was used to denote the ith ratio for the kth MS patient. Here, j=1, . . . , Ncontrol and k=1, . . . , NMS, where Ncontrol equals the total number of controls and NMS equals the total number of MS patients in the data set. The second largest member of each data set of ratios was calculated first by {Ri,1control, Ri,2control, . . . , Ri,Ncontrolcontrol}, and designated Ri(2). This was then applied to the MS data set {Ri,1MS, Ri,2MS, . . . , Ri,NMSMS}. Ci was used to designate the number of MS set of ratios larger than Ri(2) such that 0≦Ci≦NMS. This process was repeated for each possible ratio. The ratio that produced the largest Ci was selected as the discriminator of the two sets. This process was repeated using all possible ratios. Although more than one optimal ratio could be identified for each number of components queried, only one discriminator has been presented for each combination. Ratios were included only if >20% of subjects within the MS group had expression values greater than all subjects in the CTRL group. A scoring system was developed to combine multiple ratios. To do so, subjects were assigned one point for each ratio in which their expression value was higher than the highest expression value within the CTRL subject group. By this approach, it was also possible to relax search criteria by setting cutoffs to the second highest expression ratio, third highest expression ratio, etc., of the comparator subject group. Using these relaxed criteria, an individual was awarded one point if the value of their expression ratio was higher than the second or third, etc., highest expression value of individuals in the comparator group, respectively. These combined ratios established a score discriminating the MS group from comparator groups.


Search Algorithm for Best Ratios.


Let D denote the set of 44 gene-expression levels associated with the disease group and C denote the set of gene-expression levels associated with the control group. For example, when D is the set of MS patients, then D is a set of 182 44-tuples; if C is associated with the Controls, then C is a set of 51 44-tuples. The algorithm that searches for the “best” set of gene ratios is the following:

    • 80% of the control group was randomly selected and compared to the disease group in the following manner. Gene-expression level ratios were formed for elements in D and C. For each ratio, the number of elements in the disease group that were larger than the largest ratio in the control group was computed. The top 500 ratios that separate elements in D and C were saved. This calculation was repeated 200 times resulting in a set of 200 subsets of ratios (each subset having 500 ratios).
    • The 500 subsets were processed to identify the smallest number of ratio, R={r1, r2, . . . , rn}, that produced the maximum of separation of D and C. Associated with each of the ratios in R, there were threshold values, T={t1, t2, . . . , tn}, which corresponded to the highest value in the control group for each of the ratios in R.
    • For each member of the disease group D, the ratios in R were computed, {α1, α2, . . . , αn}. If α1≧t1, then the ratio a was assigned 1; otherwise, it was assigned a 0. In this way, an n-tuple of 1's and 0's was generated for each member of D. For example, if n=6, then a typical 6-tuple would be {1,1,0,0,1,0}. This meant that this individual in the disease group would have 3 ratios that exceeded the corresponding ratios in the control group.
    • Lastly, the percentage of members in the disease group that had nonzero n-tuples was calculated. The larger the percentage, the better the separation of D and C.


Statistical Analysis

The Welch's corrected T-test not assuming equal variances was used to calculate P values in two-way comparisons. The Chi-squared test for independence was used to calculate P values in three-way comparisons. The Bonferroni method was employed to correct for multiple testing30.


Example 2
Using Biomarkers to Predict Progression from Clinically Isolated Syndrome to Multiple Sclerosis

Patients.


A total of 562 subjects were included in the study: 199 with clinically definite MS, 203 with OND segregated into 84 OND-I subjects and 119 OND-NI subjects, 114 healthy control subjects and 46 subjects whose blood sample was obtained at the time of their CIS but who now have progressed to clinically definite MS, CIS→MS (Table 2-A). MS patients were divided into two additional categories: those at their initial diagnosis of MS but before initiation of therapies; MS-naïve, and those ≧1 year after diagnosis of MS and on different therapies; MS-established. The overall laboratory and analytic processes are summarized in FIG. 8.









TABLE 2-A







Demographic characteristics of the different subject populations.




















ETHNIC-







GENDER

ITY (%,



#
AGE
P*
(% F)
P
C/AA/As/H)**
P


















MS
199
43 ± 10
NS
76
NS
80/20/0/0
NS


OND-I
84
46 ± 10
NS
68
NS
67/33/0/0
NS


OND-NI
119
46 ± 10
NS
67
NS
68/26/3/1
NS


CTRL
114
41 ± 11

77

71/22/3/3


CIS →MS
46
35 ± 6 
NS
72
NS
82/14/4/0
NS





MS = MS-treatment naïve (N = 85), MS with established disease on medications (N = 114), OND-I = other inflammatory neurologic disorders, acute disseminated encephalomyelitis (N = 4), Bell's Palsy (N = 3), CNS lupus (N = 2), Guillaine Barre (N = 4), Myasthenia Gravis (N = 3), Neuromyelitis optica (N = 26), Optic neuritis (N = 1), Transverse myelitis_(N = 41), OND-NI = other non-inflammatory neurologic disorders, Alzheimer's (N = 6), cerebral ataxia (N = 2), cerebral bleed (N = 2), cervical radiculopathy (N = 6), drug-induced movement disorder (N = 1), dystonia (N = 1), epilepsy (N = 4), essential tremor (N = 9), Huntington's disease (N = 1), hydrocephalus (N = 1), median neuropathy (N = 2), meningioma (N = 1), migraine (N = 30), Parkinsons (N = 23), peripheral neuropathy (N = 1), pseudotumor (N = 3), restless leg syndrome (N = 6), seizures (N = 9), stroke (N = 10),


CIS →MS: subjects who had clinically isolated syndrome at the time of the blood draw who have developed clinically definite MS.


U.S. sites: TN, MA, MD, NY, SC, AZ, TX, CA, samples from sites in MS, MD, NY, AZ, and CA were obtained through the Accelerated Cure Project, European sites: Denmark, Netherlands


*P calculated by Student's T-test21 or Fisher's exact test, NS: P > 0.05, calculated relative to CTRL.


**C, Caucasian; AA, African American; As, Asian; H, Hispanic.






Transcript Profiles.


The transcript level in blood was determined for each target gene relative to GAPDH in the three study groups, CIS→MS, MS-naïve, MS-established and the CTRL group using TLDA plates. Target genes were selected from previous microarray studies.17-19 The ratio, log2, of the expression level of each gene in each study group was calculated relative to CTRL and results are presented in a heatmap. Numerical ratios, log2, are displayed within each box (FIG. 9a). Transcript profiles in the three study groups, CIS→MS, MS-naïve, and MS-established were highly dynamic. In the CIS→MS cohort, most genes were significantly over-expressed relative to CTRL. In contrast, the majority of target genes were significantly under-expressed in the MS-established cohort. The MS-naïve cohort was intermediate with an almost equal number of over- and under-expressed genes (FIG. 9b). Using the student's T test, P-values, log10, were determined comparing each study group cohort to the CTRL cohort (FIG. 9c). Differences in transcript levels of many genes were highly significant among the different study groups. Of note, the P-value, log10, for PGK1 expression between the CIS→MS cohort and CTRL cohort was −13.3. Similarly, expression differences of LLGL2 was most significant in the MS-naïve cohort, log10=−9.6 and expression differences of POU6F1 was most significant in the MS-established cohort, log10=10.3. One interpretation of these results is that each subject within each of these three disease cohorts, CIS→MS, MS-naïve, and MS-established, has a very similar target gene transcript profile suggesting that each is mediated by a common underlying molecular pathway(s) or event(s). Even though this is a cross-sectional rather than a longitudinal study, a second interpretation of these results is that target gene transcript profiles are highly dynamic as a subject progresses from CIS to clinically definite MS to MS disease of some duration.


Ratioscore Algorithm.


The previously described ratioscore method was used to compute all gene expression ratios and permutation testing to identify the set best able to discriminate the MS cohort, naïve and established combined, from the CTRL cohort40. A heatmap was generated to depict which ratios (columns) were positive for each MS subject (rows) (FIG. 10a). One or more positive ratios produces a score ≧1 making a subject positive for the indicated disease, in this case, MS. A total of 173 of 199 MS subjects (87%) were assigned to the MS category using the ratioscore method and 100% of CTRL subjects were excluded from the MS category. Using these gene expression ratios, data was input from the CIS→MS cohort to determine if these subjects would fall into the MS or CTRL category. As above, a heatmap was constructed to depict which ratios (columns) were positive in each CIS→MS subject (rows). A total of 44 of 46 CIS→MS subjects (96%) were assigned to the MS category using the ratioscore defined for MS (FIG. 10b).


Using a similar approach, the ratioscore algorithm was used to compute ratios to discriminate MS, combined MS-naïve and MS-established from OND. As above, a heatmap was generated to depict which ratios (columns) were positive for each MS subject (rows) (FIG. 11a). A total of 140 of 199 MS subjects (70%) were assigned to the MS category using the ratioscore method and 203 of 203 (100%) of OND subjects were excluded from the MS category. As above, using these gene expression ratios, data was input from the CIS→MS cohort to determine if these subjects would fall into the MS or CTRL category. A similar heatmap was constructed to depict which ratios (columns) were positive in each CIS→MS subject (rows). A total of 46 of 46 CIS→MS subjects (100%) fell into the MS category using the ratioscore method (FIG. 11b).


The rationale for performing this two-tier analysis rather than combining the CTRL and OND subjects into one cohort was that previous studies demonstrated that accuracy was severely compromised. To confirm that this was the case in this analysis the MS cohort was compared to the combined CTRL plus OND cohort and these data were inputted into the ratioscore algorithm. As expected, overall ability to discriminate MS from this combined cohort was compromised. Only 58% of MS subjects were assigned to the MS category while 100% of subjects in the combined CTRL plus OND cohort were excluded from the MS category (FIG. 12a). When data was input from the CIS→MS cohort, only 28 of 46 subjects (61%) were categorized as MS (FIG. 12b). Thus, overall accuracy of the ratioscore method was much improved by performing two tiers of analysis, first MS versus CTRL, then MS versus OND.


The OND cohort was also subdivided into OND-I and OND-NI (Table 2-A) and the ratioscore algorithm was repeated to assess how well these sub-groups could be distinguished from MS (FIG. 13a &13b). In the OND-I versus MS comparison, 90% of MS subjects were assigned to the MS class and 100% of OND-I subjects were excluded from the MS class. When data was input from the CIS→MS cohort, 46 of 46 subjects (100%) were categorized as MS. In the OND-NI versus MS comparison, 86% of MS subjects were assigned to the MS class and 100% of OND-NI subjects were excluded from the MS class. When data was input from the CIS→MS cohort, 46 of 46 subjects (100%) were categorized as MS. It was conclude that this further subdivision of OND subjects produces only limited improvement in overall accuracy.


Accuracy of Ratioscore and SVM Methods.


A support vector machine (SVM) was also trained with ratios identified by the ratioscore method using 60% of CTRL subjects and 60% of cases (see Methods). SVM was validated with the remaining 40% of CTRLs and cases. Subjects within the CIS→MS cohort were input into the SVM to ascertain if the SVM would identify them as controls or cases. New SVMs were created using 60% of OND, OND-NI, and OND-I cohorts as controls, respectively and 60% of MS subjects as the case cohort. SVMs were validated with the remaining 40% of the respective control cohort and remaining 40% of the case cohort20. As above, subjects within the CIS→MS cohort were input into each SVM to ascertain if the SVM would identify them as controls or cases. Results from the SVM method were compared to results from the ratioscore method by calculating sensitivity and specificity (Table 2-B). Overall, ratioscore and SVM produced comparable sensitivity and specificity in control: case comparisons. More relevant, subjects within the CIS→MS cohort were identified as MS by both methods with a high degree of specificity. Thus, this tiered approach, MS:CTRL then MS:OND, could be employed to predict if a subject with CIS will develop MS with a reasonable level of overall accuracy.









TABLE 2-B







Sensitivity and specificity of ratioscore and SVM methods










RATIOSCORE
SVM














sensi-
speci-
sensi-
speci-


CONTROL
CASE
tivity
ficity
tivity
ficity















#1 CONTROL
MS
.87
1.00
0.86
0.93


CONTROL
CIS → MS
.96

0.95


#2 OND
MS
0.70
1.00
0.82
0.78


OND
CIS → MS
1.00

1.00


#3 OND-NI
MS
0.86
1.00
0.84
0.94


OND-NI
CIS → MS
1.00

1.00


#4 OND-I
MS
0.90
1.00
0.77
0.93


OND-I
CIS → MS
1.00

0.98





Optimum ratios for the ratioscore method were from FIGS. 10, 11 and 13. CIS → MS subject data were inputted and scores computed. For the SVM, 60% of controls and cases were randomly selected for the training set and 40% were used for the validation set. Sensitivity and specificity were calculated for the combined sets. These results defined the SVM. CIS → MS subject data were applied to the SVM and subjects received a score of 0 if assigned to the CONTROL cohort or 1 if assigned to the CASE cohort. Sensitivity was calculated from this output.


Sensitivity = # true positives/(# true positives + # false negatives)


Specificity = # true negatives/(# true negatives + # false positives)






To summarize, overall transcript profiles in the CIS→MS, MS-naïve, and MS-established were markedly different and these dynamic transitions may reflect differences in underlying etiology. Studying the molecular origins of the robust transcript signature in CIS→MS subjects may produce insights into the origins of MS. In spite of the differences in overall transcript profiles in these three subject groups, ratioscore and SVM methods were able to assign CIS→MS subjects to the MS category with a high degree of accuracy. This is due, in part, to the fact that the ratioscore method does not require that all subjects within these three cohorts representing three distinct stages of disease progression possess identical gene expression signatures. In contrast, many other standard methods of analysis of gene expression signatures are dependent upon identification of overall differences between or among groups.


This study did not include subjects with an initial CIS that did not develop MS. The rationale for not including this parameter is three-fold. First, there is not a uniform clinical definition of CIS. Second, subjects with a CIS may or may not have MRI findings indicating inflammation or demyelination and the probability that a subject with CIS will develop MS is greater if MRI lesions are also detected. Third, with the current knowledge, it is uncertain if it is experimentally possible to absolutely conclude that a person with CIS will not develop MS. In fact, the period of time between an initial CIS and diagnosis of clinically definite MS is quite variable and can exceed 5 years.


Methods


Patients.


Blood samples in PAXgene tubes were obtained from CTRL, MS, OND-I and OND-NI subjects. Demographic characteristics of these cohorts have been previously described. Age, race and gender were not statistically different among the different study groups. Time of blood draw, for example, morning/afternoon clinics, was also not statistically significant among the different study groups. Relevant institutional review board approval was obtained from all participating sites.


Samples were also obtained from subjects with a clinically isolated syndrome (CIS) at the time of the blood draw. All of these subjects have gone on to develop MS according to the McDonald's criteria for the diagnosis of MS.


Transcript Determinations.


Total RNA purification, cDNA synthesis, and analysis using the 384-well Taqman Low Density Array (TLDA) were as previously described (FIG. 8).40 Patient diagnosis was blinded for all experimental procedures. Relative expression levels were determined directly from the observed threshold cycle (CT). Linear expression levels were determined using the formula, 2(40-CT).


Ratioscore and Support Vector Machine Algorithms.


The identification of the gene expression ratios and permutation testing strategy employed to identify discriminatory combinations of ratios to create the ratioscore have been previously described.40 and Example 1 Briefly, all possible gene-expression ratios of the 35 genes were computed. Ratios in which the greatest number of subjects in case groups possessed a ratio value greater than the highest ratio value in the control group were saved. Permutation testing was performed by randomly selecting 80% of the control group to compare with the case group and repeating this process 200 times producing 200 subsets of ratios. From these subsets of ratios, the smallest number of ratios to identify the ratioscore with maximum separation between case groups and control groups were identified. For example, MS versus CTRL, MS versus OND, etc. were compared. Each comparison produced a unique set of ratios that were used to define the ratioscore algorithm for that pairing of the case-control groups.


A support vector machine (SVM) was created from each set of ratioscores using LS-SVMLab software (http://www.esat.kuleuven.be/sista/Issvmab). For example, the gene-expression ratios from the MS versus CTRL were used to create a SVM for this type of comparison. The SVM was trained with L-fold cross-validation using 60% of the data. In this type of training a certain fraction of the training set was omitted from training and the remaining portion of the partial training set was used to estimate the parameters in the SVM. Once the SVM was trained, the SVM was applied to the total data set. Numbers of correct and incorrect classifications were tabulated for total sets (training and validation), training sets and validation sets. As expected, the overall accuracy in the training sets was greater than overall accuracy of the validation sets.


SEQUENCES

The following are complementary DNA (cDNA) sequences of genes-of-interest identified in Table A. The portion of the sequences bolded and underlined are Applied BioSystems context sequences, the region of that can be amplified in some embodiments of the presently-disclosed subject matter. ABI assay numbers for the sequences are provided in Table A.










SEQ ID NO: 1



- Homo sapiens active BCR-related gene (ABR),



transcript variant 3, mRNA


GGACTGCAGAGGGAACTTGCCTTGAAGAGGCCTGGTCCTTAAAGAGACACAGCACACACGGCCCGACCGG





CAGCCCCAGAGCAGAGGCTCCACTGATGGCAGGCGCCCCTGGCTAGGCTCTGAGGTTCCTTTGCCCTCGC





CTTGCTGAATGGTGAGCCGCTGCCTCTCGGAGCCCGTCTCCTTGACAGCCTGCCCTCGGCTCCTGCAGCC





ACTCCTGGGCCTGATGGGGACAGGGCCAGCCTGGTGGGTGGTGTCAGAGGTCCTGGCAGAGCAGCGTAGG





CCTGGGATGCGTCTGCAGAATTCTGGCTGAACGAGCGAGGAGCACGGCCAGCTTCGGGGCCGTCGTGACC





ACAGGAGGGCAGAGGGCCAGCCCGTGAGCTCTGACCCCAGCTGGACGTGCTCTTGTTTCCCTTGGGGCTA





AGGAGATTGGAGCCACTGAACTGAATCTCTGGGTTTTGGAGACTTAGAGAATCCATTGGACTCTTCTGCT





GGCGTCTTTCTGAATGCTGATGGGGACTTGGTGACTTCAGCTACGGGACGGACGAGTACGACGGAGAGGG





GAATGAGGAGCAGAAGGGGCCCCCGGAGGGCTCAGAGACCATGCCGTACATCGATGAGTCGCCCACCATG





TCCCCGCAGCTCAGCGCCCGCAGCCAGGGCGGGGGGGATGGCGTCTCCCCGACTCCACCTGAGGGACTGG







CTCCTGGGGTGGAAGCAGGGAAA
GGCCTGGAGATGAGGAAGCTGGTTCTCTCGGGGTTCTTGGCCAGCGA






AGAGATCTACATTAACCAGCTGGAAGCCCTGTTGCTGCCCATGAAACCCCTGAAGGCCACCGCCACCACC





TCCCAGCCCGTGCTCACCATCCAGCAGATCGAGACCATCTTCTACAAGATCCAGGACATCTATGAGATCC





ACAAGGAGTTCTATGACAACCTGTGCCCCAAGGTGCAACAGTGGGACAGCCAGGTCACCATGGGCCACCT





CTTCCAGAAGCTGGCCAGCCAGCTCGGTGTGTACAAAGCGTTTGTCGATAACTATAAAGTCGCTCTGGAG





ACAGCTGAGAAGTGCAGCCAGTCCAACAACCAGTTCCAGAAGATCTCAGAGGAACTCAAAGTGAAAGGTC





CCAAGGACTCCAAGGACAGCCACACGTCTGTCACCATGGAAGCTCTGCTCTACAAGCCCATTGACCGGGT





CACTCGGAGCACCCTAGTCCTACACGACCTGCTGAAGCACACACCTGTGGACCACCCCGACTACCCGCTG





CTGCAGGATGCCCTCCGCATCTCCCAGAACTTCCTGTCCAGCATCAACGAGGACATCGACCCCCGCCGGA





CTGCAGTGACAACGCCCAAGGGGGAGACGCGACAGCTGGTGAAGGACGGCTTCCTGGTGGAAGTGTCAGA





GAGCTCCCGGAAGCTGCGGCACGTCTTCCTCTTTACAGATGTCCTACTGTGTGCCAAGCTGAAGAAGACC





TCTGCAGGGAAGCACCAGCAGTATGACTGTAAGTGGTACATCCCCCTGGCCGACCTGGTGTTTCCATCCC





CCGAGGAGTCTGAGGCCAGCCCCCAGGTGCACCCCTTCCCAGACCATGAGCTGGAGGACATGAAGATGAA





GATCTCTGCCCTCAAGAGTGAAATCCAGAAGGAGAAAGCCAACAAAGGCCAGAGCCGGGCCATCGAGCGC





CTGAAGAAGAAGATGTTTGAGAATGAGTTCCTGCTGCTGCTCAACTCCCCCACAATCCCGTTCAGGATCC





ACAATCGGAATGGAAAGAGTTACCTGTTCCTACTGTCCTCGGACTACGAGAGGTCAGAGTGGAGAGAAGC





AATTCAGAAACTACAGAAGAAGGATCTCCAGGCCTTTGTCCTGAGCTCAGTGGAGCTCCAGGTGCTCACA





GGATCCTGTTTCAAGCTTAGGACTGTACACAACATTCCTGTCACCAGCAATAAAGACGACGATGAGTCTC





CAGGACTCTATGGCTTCCTTCATGTCATCGTCCACTCTGCCAAGGGATTTAAGCAATCAGCCAACCTGTA





CTGTACCCTGGAGGTGGATTCCTTCGGCTATTTTGTCAGCAAAGCCAAAACCAGGGTGTTCCGGGACACA





GCGGAGCCCAAGTGGGATGAGGAGTTTGAGATCGAGCTGGAGGGCTCCCAGTCCCTGAGGATCCTGTGCT





ATGAGAAGTGCTATGACAAGACCAAGGTCAACAAGGACAACAATGAGATCGTGGACAAGATCATGGGCAA





AGGACAGATCCAGCTGGACCCACAAACCGTGGAGACCAAGAACTGGCACACGGACGTGATTGAGATGAAC





GGGATCAAAGTGGAATTTTCCATGAAATTCACCAGCCGAGATATGAGCCTGAAGAGGACCCCGTCCAAAA





AGCAGACCGGCGTCTTCGGTGTGAAGATCAGCGTGGTGACGAAGCGGGAGCGCTCCAAGGTGCCCTACAT





CGTCCGGCAGTGTGTGGAGGAGGTGGAGAAGAGGGGTATCGAGGAGGTTGGCATCTACAGGATATCGGGC





GTGGCCACGGACATCCAGGCGCTCAAGGCCGTCTTCGATGCCAATAACAAGGACATCCTGCTGATGCTGA





GTGACATGGACATCAACGCCATCGCCGGGACGCTCAAGCTGTACTTCCGGGAACTGCCCGAGCCGCTCCT





CACGGACCGACTCTACCCAGCCTTCATGGAGGGCATCGCCCTGTCAGACCCTGCTGCCAAGGAAAACTGC





ATGATGCACCTGCTCCGCTCCCTGCCCGACCCCAACCTCATCACCTTCCTCTTCCTGCTGGAACACTTGA





AAAGGGTTGCCGAGAAGGAGCCCATCAACAAAATGTCACTTCACAACCTGGCTACCGTGTTTGGACCCAC





GTTACTGAGACCCTCAGAAGTGGAGAGCAAAGCACACCTCACCTCGGCTGCGGACATCTGGTCCCATGAC





GTCATGGCGCAGGTCCAGGTCCTCCTCTACTACCTGCAGCACCCCCCCATTTCCTTCGCAGAACTCAAGC





GGAACACACTGTACTTCTCCACCGACGTGTAGCCCGAGGCAGGGTGGCTGCGGGCGGGTGGTGGAACCAG





CCCCTCCAGCCTGGGGTCCAACTCAGACTTGAAAGACTGCAATAGAAAACTCCCAAACCCAGCACTCCAG





ACTCGAGGGAAGCCAGCTTCCAAGAACTGGAATGCGTACGTCTTTTGTGCCACCTTGTACAAAGCCGGCT





GCCCAGCCCCAGCCTCACCACCGCATCCCACCTCCTGCCCTCCATACCTCTAGTTGTGTCTGATGCTCCG





TGCTGTTCGGGAATTGTTTTATGTACACTTGTCAGGCAGAAAAGGTAGTGACCGGCCCGGCGTGGGCACA





CAGACAGCCCGCTTTGTTCTTTCATTTCCTCCAGCACTTTCTTTCCGCCTGAGTCCAGCCCAAGGCCTTT





TATTTTGCGCTGTGTAACTGCTGCCAGCTTCTCTCTTGGCCCTGCTCCCAGATGGCGGTCTCCTGGCAGC





CTCCCCTCAGTCTTCCTCCACCCGCTCTTCCTTCCCAGCCTGCCTGCATGCATGTGCACCCTTGGTCTTC





GCTCCATCGCCTTGAAAGCTCTGAAGAGGCCCTGGGTTGCCGCGGCAGCAGTGGTCTGTTTGATGCTGCC





GTTTGCCGCTGCCGGCCCCTCCTCAGACTCCGCCTTTGGGAGCACACCTGCTTTGCCTTGCTGCCTGTGC





AAATGTTGGACAAGCAGACACACTCACACTCGTCCCCAGCTTAGCACAGAGCTGGAGCGCCCATTTCTGG





AATTTTCCGTTTGGGAATCTCCACTTCTGGGGTTTACCTGTTCGGCCTCCTGTCTATCAGTGAGGCATCT





CTGACTGTTTCTTCTACTGCTTTTCAGTTCCCTTCCCTGCTGTTCTATTTCCTTTGAGTGTAAAGACTCA





CAGGTGACCTGCTATCGAGATAGCCAGAGGGTCAGGAGAGAATGGGGGAGGAGGCGGTCAGGCTGCTGAG





GAAACACCACAGGCTGAACGGGGGAGGAATGCACATGCCACGCTGGGTGTCCCGGGTCGCGGGGAGGCAG





CTCAGCTCTTAGGAGCAAGTTGTGGGGGCTTTTCAAGAGGGGCCAGGCTTCCTGGAGGGTGACTGATGTG





GCCGAAGCAGGTGTCCAGGCAGGTAGGCTGCAGCCAGGAGCTCCCTGGCACCGCAGGACCTCGTGGTACT





CTTGCCTTAGATTTTACACACACTCCACAGCCAAGCACTGCCACGGTCCTCCAGGACCTGGGAAGCAAAG





GCACAGGCCCACGGTGGCCAGCCATTGTGGTGCCGCCCCAGCTTCTGGATACAGCCTTTTGGGTAAACAC





TGGGAACTCCAGAAGTTGTGGGGAGAGTGGGGAATCAGACAGCCGCCTCTAGGGGCTGGGTTCTGCTGGG





GCCTCCTTGTTGGTGCTGTAGGCACCCGCCAGGGAGCAGGGACCCGACTTGCAGACGCATTGCCCGGTAC





TAGGAAGGAGTGAGGTGTGTTCCCACCGTACACTTCCCACACGAGCTGCGGCTGCCAGCCTCGGGCCATC





AGCCTAGGAGAGCAGATGCAGCTCCAGGGGCTCGACTTATAGCCAGTTACAGCTCCCCGGCTCTTCTGTG





TGGCAGAGCGTCGTTTCCGGGCCCTCAGGGCTGGGGAGCTCAGTTCCCATTGCTTGTGCTCAGGGCTGAG





TCTTAAAGAAGGGTTTGCCGGCCCTAACGCTGCAGCGCGTGCGCGGTGAGAGGCCCTTTTTGAGCCTGTT





TACTCCTGTGGCCTTGGGCAGAACAGTAAATACTCTGTGCACGGAGGAAAGACATGCCCAAGAGGAAGGA





AGTACTGACCATCGGCTGCCTGTGAGCAGCTTAGCAAGGAGCCCTTGCTCCCTGGGAAAGGCGGTGAACT





TGAGTCTAAAGATGCAGTGCCTGGCCCTTCCTAAGGTCCCTGCCTGGCATCCGAGTGTCGGTGTGTGGCA





CAGAAGGCTCCTGCTTGCTTCCAAAGTGATGGACAGGAAGGGGCAGAGTGAGTCACGGCCCAGACTGGGC





ACCTTCGCGTCTCAGCCTCAGGGAGCCCCACAGCCCCAAGCTCGCTGAGGCAACGTGAGAACAGGCTATG





GGAAGGCTGCAAAGGCTGAGAAATGCAAAGGCTCATATTTATAAATCCCACCCCCAGAGTGGGGAGGGTC





AGGTGCCAGACCTGGACTAAACTGCACCAAGGAAACACCCAGCAGGGTCTCCTGTGAGCCGGGGACCATG





CAGCCCGAAACCTCCAGTCACTGCGCCCGGCAGGAGTCAGGAGCCAGGGACTGTGCAGCCTGGAACCTCC





AGTCACTGTGCCCAGCAGGGTGGGCTGTGCCCAGCAGGAGTCAGGCTAAGAAACGCCAGGTCTGCCTGTT





CTTGCTGGGCAATGGCTGATGGCTGCCAGTTTCTGCTGATACACAGGTAGGATGGGACCCTTCATGAATA





TCTGACTTTAATAAGTTGGTAAGGATATATTTTTTTGTCTATGTTCTGTTTCAACTTATGTAGATTATTA





TAAATTGATGTAAACCACGTGAGAGGAAAATGTTAATAAAAAATGCAAAGCCCCATCATTTGCACAAAAC





TCA





SEQ ID NO: 2



- Homo sapiens actin, beta (ACTB), mRNA



ACCGCCGAGACCGCGTCCGCCCCGCGAGCACAGAGCCTCGCCTTTGCCGATCCGCCGCCCGTCCACACCC





GCCGCCAGCTCACCATGGATGATGATATCGCCGCGCTCGTCGTCGACAACGGCTCCGGCATGTGCAAGGC





CGGCTTCGCGGGCGACGATGCCCCCCGGGCCGTCTTCCCCTCCATCGTGGGGCGCCCCAGGCACCAGGGC





GTGATGGTGGGCATGGGTCAGAAGGATTCCTATGTGGGCGACGAGGCCCAGAGCAAGAGAGGCATCCTCA





CCCTGAAGTACCCCATCGAGCACGGCATCGTCACCAACTGGGACGACATGGAGAAAATCTGGCACCACAC





CTTCTACAATGAGCTGCGTGTGGCTCCCGAGGAGCACCCCGTGCTGCTGACCGAGGCCCCCCTGAACCCC





AAGGCCAACCGCGAGAAGATGACCCAGATCATGTTTGAGACCTTCAACACCCCAGCCATGTACGTTGCTA





TCCAGGCTGTGCTATCCCTGTACGCCTCTGGCCGTACCACTGGCATCGTGATGGACTCCGGTGACGGGGT





CACCCACACTGTGCCCATCTACGAGGGGTATGCCCTCCCCCATGCCATCCTGCGTCTGGACCTGGCTGGC





CGGGACCTGACTGACTACCTCATGAAGATCCTCACCGAGCGCGGCTACAGCTTCACCACCACGGCCGAGC





GGGAAATCGTGCGTGACATTAAGGAGAAGCTGTGCTACGTCGCCCTGGACTTCGAGCAAGAGATGGCCAC





GGCTGCTTCCAGCTCCTCCCTGGAGAAGAGCTACGAGCTGCCTGACGGCCAGGTCATCACCATTGGCAAT





GAGCGGTTCCGCTGCCCTGAGGCACTCTTCCAGCCTTCCTTCCTGGGCATGGAGTCCTGTGGCATCCACG





AAACTACCTTCAACTCCATCATGAAGTGTGACGTGGACATCCGCAAAGACCTGTACGCCAACACAGTGCT





GTCTGGCGGCACCACCATGTACCCTGGCATTGCCGACAGGATGCAGAAGGAGATCACTGCCCTGGCACCC





AGCACAATGAAGATCAAGATCATTGCTCCTCCTGAGCGCAAGTACTCCGTGTGGATCGGCGGCTCCATCC





TGGCCTCGCTGTCCACCTTCCAGCAGATGTGGATCAGCAAGCAGGAGTATGACGAGTCCGGCCCCTCCAT





CGTCCACCGCAAATGCTTCTAGGCGGACTATGACTTAGTTGCGTTACACCCTTTCTTGACAAAACCTAAC





TTGCGCAGAAAACAAGATGAGATTGGCATGGCTTTATTTGTTTTTTTTGTTTTGTTTTGGTTTTTTTTTT





TTTTTTGGCTTGACTCAGGATTTAAAAACTGGAACGGTGAAGGTGACAGCAGTCGGTTGGAGCGAGCATC





CCCCAAAGTTCACAATGTGGCCGAGGACTTTGATTGCACATTGTTGTTTTTTTAATAGTCATTCCAAATA





TGAGATGCGTTCTTACAGGAAGTCCCTTCCCATCCTAAAAGCCACCCCACTTCTCTCTAAGGAGAATGGC





CCAGTCCTCTCCCAAGTCCACACAGGGGAGGTGATAGCATTGCTTTCGTGTAAATTATGTAATGCAAAAT





TTTTTTAATCTTCGCCTTAATACTTTTTTATTTTGTTTTATTTTGAATGATGAGCCTTCGTGCCCCCCCT





TCCCCCTTTTTTGTCCCCCAACTTGAGATGTATGAAGGCTTTTGGTCTCCCTGGGAGTGGGTGGAGGCAG





CCAGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAAAAGTGCACACCTTAAAAATGAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 3



- Homo sapiens ARP1 actin-related protein 1 homolog A,



centractin alpha (yeast) (ACTR1A), mRNA


GCTCCCTCGCCGCCCTGAACCGGCGGCTAGACTGCGCATGCGTGTCAGTGGCGCTAGCGGCGGACCCGGC





TGGGCAGTTCCTTCCCCAGAAGGAGAGATTCCTCTGCCATGGAGTCCTACGATGTGATCGCCAACCAGCC





TGTCGTGATCGACAACGGATCCGGTGTGATTAAAGCTGGTTTTGCTGGTGATCAGATCCCCAAATACTGC





TTTCCAAACTATGTGGGCCGACCCAAGCACGTTCGTGTCATGGCAGGAGCCCTTGAAGGCGACATCTTCA





TTGGCCCCAAAGCTGAGGAGCACCGAGGGCTGCTTTCAATCCGCTATCCCATGGAGCATGGCATCGTCAA





GGATTGGAACGACATGGAACGCATTTGGCAATATGTCTATTCTAAGGACCAGCTGCAGACTTTCTCAGAG





GAGCATCCTGTGCTCCTGACTGAGGCGCCTTTAAACCCACGAAAAAACCGGGAACGAGCTGCCGAAGTTT





TCTTCGAGACCTTCAATGTGCCCGCTCTTTTCATCTCCATGCAAGCTGTACTCAGCCTTTACGCTACAGG





CAGGACCACAGGGGTGGTGCTGGATTCTGGGGATGGAGTCACCCATGCTGTGCCCATCTATGAGGGCTTT





GCCATGCCCCACTCCATCATGCGCATCGACATCGCGGGCCGGGACGTCTCTCGCTTCCTGCGCCTCTACC





TGCGTAAGGAGGGCTACGACTTCCACTCATCCTCTGAGTTTGAGATTGTCAAGGCCATAAAAGAAAGAGC







CTGTTA
CCTATCCATAAACCCCCAAAAGGATGAGACGCTAGAGACAGAGAAAGCTCAGTACTACCTGCCT






GATGGCAGCACCATTGAGATTGGTCCTTCCCGATTCCGGGCCCCTGAGTTGCTCTTCAGGCCAGATTTGA





TTGGAGAGGAGAGTGAAGGCATCCACGAGGTCCTGGTGTTCGCCATTCAGAAGTCAGACATGGACCTGCG





GCGCACGCTTTTCTCTAACATTGTCCTCTCAGGAGGCTCTACCCTGTTCAAAGGTTTTGGTGACAGGCTC





CTGAGTGAAGTGAAGAAACTAGCTCCAAAAGATGTGAAGATCAGGATATCTGCACCTCAGGAGAGACTGT





ATTCCACGTGGATTGGGGGCTCCATCCTTGCCTCCCTGGACACCTTTAAGAAGATGTGGGTCTCCAAAAA





GGAATATGAGGAAGACGGTGCCCGATCCATCCACAGAAAAACCTTCTAATGTCGGGACATCATCTTCACC





TCTCTCTGAAGTTAACTCCACTTTAAAACTCGCTTTCTTGAGTCGGAGTGTTTGCGAGGAACTGCCTGTG





TGTGAGTGCGTGTGTGGATATGAGTGTGTGTGCACATGCGAGTGCCGTGTGGCCCTGGGACCCTGGGCCC





AGAAAGGACGATGAACTACCTGCAGTGGTGATGGCCTGAGGCCTGGGGTTGACCACTAACTGGCTCCTGA





CAGGGAAGAGCGCTGGCAGAGGCTGTGCTCCCTCCTCAGGTGGCCTCTGGCTGGCTGTGGGGGACTCCGT





TTACTACCACAGGGAGACAGAGGGAGGTAAGCCATCCCCCGGGAGACCTTGCTGCTGACCATCCTAGGCT





GGGCTGGCCCCACCCTCACCCCCACCCCCAGGGTGCCCTGAGGCCCCAGGCAGCTGCTGCCTCCACTATC





GATGCCTCCTGACTGCACACTGAGGACTGGGACTGGGGTTGAGTTCTGTCTGGTTTTGTTGCCATTTTGG





TTTGGGAGGCTGGAAAAGCACCCCAAGAGCTATTACAGAGACTGGAGTCAGGAGAGAGCAGGAGGCCCTC





ATGTTCACCAGGGAACAGGACCACACCGGCCACTGGAGGAGGGCAGGAGCAGTCCTCACTCTGAATGGCT





GCAGAGTTAATGTTCCCAGCCCAGTCCCCTTTCGGGGGCCTTGGGAGAGTTTAAGGCACCTGCTGGTTCC





AGGACCTCGCTTTCCATCTGTTCTTGTTGCAATGCCATCTTCAAACCGTTTTATTTATTGAAGTGTTTGT





TCAGTTAGGGGCTGGAGAGAGGGAGCTTGCTGCCTCCTGCCTTGCTACACTAATGTTTACAGCACCTAAG





CTTAGCCTCCAGGGCCCCACCTCTCCCAGCTGATGGTGAGCTGACAGTGTCCACAGGTTCCAGGACCATT





TGAGATTGGAAGCTACACTCAAAGACACTCCCACCAGGCTCTTTCTCCCTTTTCCTCTTGCTCACTGCCC





TGGAATCAACAGGCTGGTTGCTGGTTAGATTTTCTGAAACAGGAGGTAAAATTTTTCTTTGGCAGAGGCC





CCTAAGCAAGGGAGGGGTGTTGGAGAGCCAGTGCCCTTAAGACTGGAGAAAGCTGCAATTTACCAAGTTG





CCTTTTGCCACTGTAGCTGACCAGGGGACTAGGTTGTAGAGGTGGGAAGGCCCCCTCTGGGCTGATCTTG





TGCCATTCTTGACCTTGGACCTGCTTGGTTAAGGAGGGAGTGGGCCAGACCAGAGTGCCAGGAGCTAATG





GAGCCAGGCCTGACTCCTAGGAGTGGTCCAAAGGCCTTCAGCCTAGATGGTGCAAAGCTGGGGCCAGCCT





GTCTTCACCGGCACCCTCACCTGTGACACCAAGACCCACCCCAATCCCAGACTTCACACAGTATTCTCCC





CCACGCCGTCCTATGACCAAAGGCCCCTGCCAGGTGTGGGCCACAGCAGCAGGTATGTGTGAAAGCAACG





TAGCGCCCCGCGGACTGCAGTGCGCTTAACCAACTCACCTCCCTTCTCTTAGCCCAAGCCTGTCCCTCGC





ACAGCCTCGCACAAACCACATTGCCTGGTGGGGCCCAGTGTACTGAAATAAAGTCGTTCCGATAGACACG





TCAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 4



- Homo sapiens ADAMTS-like 4 (ADAMTSL4), transcript



variant 1, mRNA


CCGCCGCGGAGCGAGGTTGCCTGGAGAGAGCGCCTGGGCGCAGAAGGGTTAACGGGCCACCGGGGGCTCG





CAGAGCAGGAGGGTGCTCTCGGACGGTGTGTCCCCCACTGCACTCCTGAACTTGGAGGACAGGGTCGCCG





CGAGGGACGCAGAGAGCACCCTCCACGCCCAGATGCCTGCGTAGTTTTTGTGACCAGTCCGCTCCTGCCT





CCCCCTGGGGCAGTAGAGGGGGAGCGATGGAGAACTGGACTGGCAGGCCCTGGCTGTATCTGCTGCTGCT





TCTGTCCCTCCCTCAGCTCTGCTTGGATCAGGAGGTGTTGTCCGGACACTCTCTTCAGACACCTACAGAG





GAGGGCCAGGGCCCCGAAGGTGTCTGGGGACCTTGGGTCCAGTGGGCCTCTTGCTCCCAGCCCTGCGGGG





TGGGGGTGCAGCGCAGGAGCCGGACATGTCAGCTCCCTACAGTGCAGCTCCACCCGAGTCTGCCCCTCCC





TCCCCGGCCCCCAAGACATCCAGAAGCCCTCCTCCCCCGGGGCCAGGGTCCCAGACCCCAGACTTCTCCA





GAAACCCTCCCCTTGTACAGGACACAGTCTCGGGGAAGGGGTGGCCCACTTCGAGGTCCCGCTTCCCACC





TAGGGAGAGAGGAGACCCAGGAGATTCGAGCGGCCAGGAGGTCCCGGCTTCGAGACCCCATCAAGCCAGG





AATGTTCGGTTATGGGAGAGTGCCCTTTGCATTGCCACTGCACCGGAACCGCAGGCACCCTCGGAGCCCA





CCCAGATCTGAGCTGTCCCTGATCTCTTCTAGAGGGGAAGAGGCTATTCCGTCCCCTACTCCAAGAGCAG





AGCCATTCTCCGCAAACGGCAGCCCCCAAACTGAGCTCCCTCCCACAGAACTGTCTGTCCACACCCCATC





CCCCCAAGCAGAACCTCTAAGCCCTGAAACTGCTCAGACAGAGGTGGCCCCCAGAACCAGGCCTGCCCCC





CTACGGCATCACCCCAGAGCCCAGGCCTCTGGCACAGAGCCCCCCTCACCCACGCACTCCTTAGGAGAAG





GTGGCTTCTTCCGTGCATCCCCTCAGCCACGAAGGCCAAGTTCCCAGGGTTGGGCCAGTCCCCAGGTAGC





AGGGAGACGCCCTGATCCTTTTCCTTCGGTCCCTCGGGGCCGAGGCCAGCAGGGCCAAGGGCCTTGGGGA





ACGGGGGGGACTCCTCACGGGCCCCGCCTGGAGCCTGACCCTCAGCACCCGGGCGCCTGGCTGCCCCTGC





TGAGCAACGGCCCCCATGCCAGCTCCCTCTGGAGCCTCTTTGCTCCCAGTAGCCCTATTCCAAGATGTTC





TGGGGAGAGTGAACAGCTAAGAGCCTGCAGCCAAGCGCCCTGCCCCCCTGAGCAGCCAGACCCCCGGGCC





CTGCAGTGCGCAGCCTTTAACTCCCAGGAATTCATGGGCCAGCTGTATCAGTGGGAGCCCTTCACTGAAG





TCCAGGGCTCCCAGCGCTGTGAACTGAACTGCCGGCCCCGTGGCTTCCGCTTCTATGTCCGTCACACTGA





AAAGGTCCAGGATGGGACCCTGTGTCAGCCTGGAGCCCCTGACATCTGTGTGGCTGGACGCTGTCTGAGC





CCCGGCTGTGATGGGATCCTTGGCTCTGGCAGGCGTCCTGATGGCTGTGGAGTCTGTGGGGGTGATGATT





CTACCTGTCGCCTTGTTTCGGGGAACCTCACTGACCGAGGGGGCCCCCTGGGCTATCAGAAGATCTTGTG





GATTCCAGCGGGAGCCTTGCGGCTCCAGATTGCCCAGCTCCGGCCTAGCTCCAACTACCTGGCACTTCGT





GGCCCTGGGGGCCGGTCCATCATCAATGGGAACTGGGCTGTGGATCCCCCTGGGTCCTACAGGGCCGGCG





GGACCGTCTTTCGATATAACCGTCCTCCCAGGGAGGAGGGCAAAGGGGAGAGTCTGTCGGCTGAAGGCCC





CACCACCCAGCCTGTGGATGTCTATATGATCTTTCAGGAGGAAAACCCAGGCGTTTTTTATCAGTATGTC





ATCTCTTCACCTCCTCCAATCCTTGAGAACCCCACCCCAGAGCCCCCTGTCCCCCAGCTTCAGCCGGAGA





TTCTGAGGGTGGAGCCCCCACTTGCTCCGGCACCCCGCCCAGCCCGGACCCCAGGCACCCTCCAGCGTCA





GGTGCGGATCCCCCAGATGCCCGCCCCGCCCCATCCCAGGACACCCCTGGGGTCTCCAGCTGCGTACTGG





AAACGAGTGGGACACTCTGCATGCTCAGCGTCCTGCGGGAAAGGTGTCTGGCGCCCCATTTTCCTCTGCA





TCTCCCGTGAGTCGGGAGAGGAACTGGATGAACGCAGCTGTGCCGCGGGTGCCAGGCCCCCAGCCTCCCC





TGAACCCTGCCACGGCACCCCATGCCCCCCATACTGGGAGGCTGGCGAGTGGACATCCTGCAGCCGCTCC





TGTGGCCCCGGCACCCAGCACCGCCAGCTGCAGTGCCGGCAGGAATTTGGGGGGGGTGGCTCCTCGGTGC





CCCCGGAGCGCTGTGGACATCTCCCCCGGCCCAACATCACCCAGTCTTGCCAGCTGCGCCTCTGTGGCCA





TTGGGAAGTTGGCTCTCCTTGGAGCCAGTGCTCCGTGCGGTGCGGCCGGGGCCAGAGAAGCCGGCAGGTT





CGCTGTGTTGGGAACAATGGTGATGAAGTGAGCGAGCAGGAGTGTGCGTCAGGCCCCCCGCAGCCCCCCA





GCAGAGAGGCCTGTGACATGGGGCCCTGTACTACTGCCTGGTTCCACAGCGACTGGAGCTCCAAGTGCTC





AGCCGAGTGTGGGACGGGAATCCAGCGGCGCTCTGTGGTCTGCCTTGGGAGTGGGGCAGCCCTCGGGCCA





GGCCAGGGGGAAGCAGGAGCAGGAACTGGGCAGAGCTGTCCAACAGGAAGCCGGCCCCCTGACATGCGCG





CCTGCAGCCTGGGGCCCTGTGAGAGAACTTGGCGCTGGTACACAGGGCCCTGGGGTGAGTGCTCCTCCGA





ATGTGGCTCTGGCACACAGCGTAGAGACATCATCTGTGTATCCAAACTGGGGACGGAGTTCAACGTGACT





TCTCCGAGCAACTGTTCTCACCTCCCCAGGCCCCCTGCCCTGCAGCCCTGTCAAGGGCAGGCCTGCCAGG





ACCGATGGTTTTCCACGCCCTGGAGCCCATGTTCTCGCTCCTGCCAAGGGGGAACGCAGACACGGGAGGT





CCAGTGCCTGAGCACCAACCAGACCCTCAGCACCCGATGCCCTCCTCAACTGCGGCCCTCCAGGAAGCGC





CCCTGTAACAGCCAACCCTGCAGCCAGCGCCCTGATGATCAATGCAAGGACAGCTCTCCACATTGCCCCC





TGGTGGTACAGGCCCGGCTCTGCGTCTACCCCTACTACACAGCCACCTGTTGCCGCTCTTGCGCACATGT





CCTGGAGCGGTCTCCCCAGGATCCCTCCTGAAAGGGGTCCGGGGCACCTTCACGGTTTTCTGTGCCACCA





TCGGTCACCCATTGATCGGCCCACTCTGAACCCCCTGGCTCTCCAGCCTGTCCCAGTCTCAGCAGGGATG





TCCTCCAGGTGACAGAGGGTGGCAAGGTGACTGACACAAAGTGACTTTCAGGGCTGTGGTCAGGCCCATG





TGGTGGTGTGATGGGTGTGTGCACATATGCCTCAGGTGTGCTTTTGGGACTGCATGGATATGTGTGTGCT





CAAACGTGTATCACTTTTCAAAAAGAGGTTACACAGACTGAGAAGGACAAGACCTGTTTCCTTGAGACTT





TCCTAGGTGGAAAGGAAAGCAAGTCTGCAGTTCCTTGCTAATCTGAGCTACTTAGAGTGTGGTCTCCCCA





CCAACTCCAGTTTTGTGCCCTAAGCCTCATTTCTCATGTTCAGACCTCACATCTTCTAAGCCGCCCTGTG





TCTCTGACCCCTTCTCATTTGCCTAGTATCTCTGCCCCTGCCTCCCTAATTAGCTAGGGCTGGGGTCAGC





CACTGCCAATCCTGCCTTACTCAGGAAGGCAGGAGGAAAGAGACTGCCTCTCCAGAGCAAGGCCCAGCTG





GGCAGAGGGTGAAAAAGAGAAATGTGAGCATCCGCTCCCCCACCACCCCGCCCAGCCCCTAGCCCCACTC





CCTGCCTCCTGAAATGGTTCCCACCCAGAACTAATTTATTTTTTATTAAAGATGGTCATGACAAATGAGA





AAAAAAAAA





SEQ ID NO: 5



- Homo sapiens anaphase promoting complex subunit 1



(ANAPC1), mRNA


CGCGTCCATTTGAACGTCTCGCACGCCTTCCTGCCATTAGCACTCGAGCCCGCTGCTGTTGCCCGTTCTT





CCTCCAGAATAGGGGAGGGAGAGGGAATGAGAAGCTGCTGCGGCCCAAGAGTCACTGTGAAGGACCCCGC





CGCTGCCCTCGGGCCTCCTCGGCCCCTGCGCCTCCGGGGAGCAGCCGGGGCTCGCCGCGCCTGACGCGTC





CCGAGTTATACAGAAATAATGTTGATATTTGGAACCCATGTCGAACTTCTATGAAGAAAGGACAACGATG





ATTGCAGCAAGGGATTTGCAGGAATTTGTTCCTTTTGGTCGAGACCACTGCAAGCACCACCCTAATGCTT





TGAACCTTCAACTTCGCCAGCTGCAGCCAGCTTCTGAATTATGGTCTTCTGATGGTGCTGCTGGCTTGGT





GGGATCCCTTCAGGAGGTTACAATCCACGAGAAACAGAAGGAAAGCTGGCAGTTAAGGAAAGGAGTAAGT





GAAATTGGAGAAGATGTGGACTATGATGAGGAACTCTATGTTGCTGGAAATATGGTGATATGGAGCAAAG





GAAGTAAAAGCCAGGCATTGGCAGTTTATAAAGCATTTACAGTTGACAGTCCTGTTCAGCAGGCATTGTG





GTGTGACTTCATTATATCACAGGATAAGTCTGAAAAGGCCTACAGTAGCAATGAAGTAGAAAAATGCATA





TGTATATTGCAAAGCTCATGTATTAACATGCATAGCATAGAAGGAAAGGATTACATAGCTTCATTACCAT





TTCAGGTTGCAAATGTTTGGCCCACTAAATATGGATTGCTGTTTGAACGAAGCGCTTCTTCACATGAAGT





ACCTCCAGGTTCACCCAGAGAACCTTTACCTACTATGTTCAGCATGCTGCACCCACTAGATGAAATAACT





CCACTTGTTTGTAAATCTGGAAGTCTTTTTGGTTCATCACGGGTGCAATATGTTGTAGATCATGCAATGA





AAATTGTTTTCCTCAATACTGACCCCTCTATTGTAATGACTTATGATGCTGTTCAAAATGTGCATTCTGT





GTGGACTCTCCGGAGAGTCAAATCAGAGGAAGAGAATGTTGTTTTAAAGTTCTCTGAACAGGGGGGAACC





CCACAGAATGTGGCCACTAGCAGCTCCCTCACAGCACATCTCAGAAGCCTCTCCAAAGGAGATTCCCCTG





TGACTTCACCTTTCCAGAATTACTCCTCCATTCACAGCCAGAGTCGCTCAACCTCATCACCCAGTCTACA





TTCTCGCTCACCTTCTATTTCCAACATGGCAGCTCTAAGTCGTGCTCATTCTCCTGCGTTAGGAGTGCAC





TCTTTTTCAGGGGTGCAAAGGTTCAACATTTCAAGCCATAATCAGTCTCCAAAGAGACATAGTATTTCTC





ATTCTCCAAATAGTAATTCTAATGGCTCCTTTCTTGCACCAGAAACGGAGCCAATTGTTCCTGAACTGTG





TATTGACCATTTGTGGACAGAAACGATTACTAATATAAGAGAGAAAAATTCACAAGCCTCAAAAGTGTTT





ATTACATCTGACCTATGTGGGCAAAAGTTCCTGTGCTTTTTAGTAGAGTCCCAGCTCCAGTTACGCTGTG





TAAAGTTTCAAGAGAGTAATGATAAAACCCAGCTCATCTTTGGTTCAGTGACCAACATACCAGCAAAGGA





TGCAGCACCAGTGGAGAAAATAGACACCATGCTGGTCTTGGAAGGCAGTGGAAACCTGGTGCTATACACA





GGAGTGGTTCGGGTGGGAAAGGTTTTTATTCCTGGACTGCCAGCTCCCTCTCTGACGATGTCCAACACAA





TGCCTCGGCCCAGTACTCCACTAGATGGCGTTAGTACTCCAAAGCCTCTTAGTAAACTCCTTGGATCATT





GGACGAGGTTGTTCTGTTGTCCCCAGTTCCAGAACTGAGGGATTCTTCAAAACTTCATGATTCTCTCTAT





AATGAGGATTGTACTTTCCAACAGCTTGGAACTTACATTCATTCTATCAGAGATCCTGTCCATAACAGAG





TCACCCTGGAACTGAGTAATGGCTCCATGGTTAGGATCACTATTCCTGAAATTGCCACCTCTGAGTTAGT





ACAAACGTGTTTGCAAGCAATTAAGTTTATCCTGCCAAAAGAAATAGCAGTTCAGATGCTTGTCAAGTGG





TACAATGTCCACAGTGCTCCAGGAGGACCCAGTTATCACTCAGAGTGGAATTTATTTGTGACTTGTCTCA





TGAACATGATGGGTTATAACACAGACCGCTTAGCATGGACTAGAAATTTTGACTTTGAAGGATCACTTTC





TCCTGTCATTGCGCCCAAAAAAGCAAGGCCTTCCGAGACTGGATCTGATGATGACTGGGAATATTTACTA





AATTCAGACTACCACCAGAATGTTGAGTCTCATCTTTTGAACAGATCTTTATGTCTGAGTCCTTCAGAAG





CTTCACAGATGAAGGATGAGGATTTTTCACAGAATCTCAGTCTGGATTCTTCTACACTTCTCTTTACTCA





CATACCTGCAATTTTTTTCGTTCTTCACCTTGTGTATGAGGAGCTTAAGTTGAATACTCTAATGGGAGAA





GGAATTTGTTCACTTGTTGAACTTCTCGTTCAGTTGGCAAGGGACTTAAAATTGGGGCCTTATGTAGATC





ATTACTATAGAGACTACCCAACGCTTGTCAGAACTACTGGACAAGTGTGCACAATTGATCCAGGTCAAAC





AGGATTTATGCATCATCCATCATTTTTTACGTCTGAGCCACCAAGTATTTATCAGTGGGTGAGTTCTTGT





CTGAAGGGTGAAGGAATGCCACCTTATCCTTACCTCCCTGGAATCTGTGAAAGAAGCAGACTTGTAGTCT





TGAGTATTGCACTGTACATACTTGGTGATGAGAGCTTGGTTTCTGATGAATCCTCACAGTATTTAACCAG





AATAACTATAGCCCCCCAGAAGTTGCAAGTAGAACAAGAGGAAAACAGGTTTAGTTTCAGGCATTCTACA





TCTGTTTCTAGTCTAGCTGAAAGATTGGTTGTCTGGATGACTAATGTAGGATTCACTTTAAGAGATTTGG





AAACTCTTCCCTTTGGAATTGCTCTTCCCATCAGAGATGCAATTTATCACTGTCGTGAGCAGCCTGCCTC





AGACTGGCCAGAAGCTGTCTGTCTCTTGATTGGACGTCAGGATCTTTCCAAGCAGGCCTGCGAAGGAAAC





TTACCCAAAGGGAAGTCTGTGCTCTCATCAGATGTTCCTTCAGGAACAGAAACTGAGGAGGAAGATGACG





GCATGAATGACATGAATCACGAGGTCATGTCATTAATATGGAGTGAAGATTTAAGGGTGCAGGATGTGCG





AAGGCTTCTTCAGAGTGCGCATCCTGTCCGTGTCAACGTAGTGCAGTACCCAGAGCTCAGTGACCACGAG





TTCATCGAGGAAAAGGAAAACAGATTGCTCCAATTGTGTCAGCGAACTATGGCTCTTCCTGTAGGACGAG





GAATGTTTACCTTGTTTTCGTACCATCCTGTTCCAACAGAGCCATTGCCTATTCCTAAATTGAATCTGAC





TGGGCGTGCCCCTCCTCGGAACACAACAGTAGACCTTAATAGTGGAAACATCGATGTGCCTCCCAACATG





ACAAGCTGGGCCAGCTTTCATAATGGTGTGGCTGCTGGCCTGAAGATAGCTCCTGCCTCCCAGATCGACT





CAGCTTGGATTGTTTACAATAAGCCCAAGCATGCTGAGTTGGCCAATGAGTATGCTGGCTTTCTCATGGC





TCTGGGTTTGAATGGGCACCTTACCAAGCTGGCGACTCTCAATATCCATGACTACTTGACCAAGGGCCAT





GAAATGACAAGCATTGGACTGCTACTTGGTGTTTCTGCTGCAAAACTAGGCACCATGGATATGTCTATTA





CTCGGCTTCTTAGCATTCACATTCCTGCTCTCTTACCCCCAACGTCCACAGAGCTGGATGTTCCTCACAA





TGTCCAAGTGGCTGCAGTGGTTGGCATTGGCCTTGTATATCAAGGGACAGCTCACAGACATACTGCAGAA





GTCCTGTTGGCTGAGATAGGACGGCCTCCTGGTCCTGAAATGGAATACTGCACTGACAGAGAGTCATACT





CCTTAGCTGCTGGCTTGGCCCTGGGCATGGTCTGCTTGGGGCATGGCAGCAATTTGATAGGTATGTCTGA





TCTCAATGTGCCTGAGCAGCTCTATCAGTACATGGTTGGAGGACATAGGCGCTTTCAAACAGGAATGCAT





AGGGAGAAACATAAATCACCAAGTTATCAAATCAAAGAAGGAGATACCATAAATGTGGATGTGACTTGTC





CAGGTGCTACTCTAGCTTTGGCTATGATCTACTTAAAAACCAATAACAGATCTATTGCAGATTGGCTCCG





AGCCCCTGACACCATGTATTTGTTGGACTTTGTGAAGCCAGAATTTCTCTTGCTTAGGACACTTGCTCGA





TGCCTGATTTTGTGGGATGATATTTTACCAAATTCCAAGTGGGTTGACAGCAATGTTCCTCAAATTATAA





GAGAAAATAGTATCTCTCTCAGTGAAATCGAATTGCCGTGCTCAGAGGATTTGAATTTGGAAACTTTGTC





CCAAGCACATGTCTACATAATTGCAGGAGCCTGCTTGTCTCTGGGTTTTCGATTTGCTGGCTCAGAAAAC





TTATCAGCATTTAACTGTTTGCATAAATTTGCCAAAGATTTTATGACTTATTTGTCCGCACCTAATGCTT





CTGTTACAGGTCCTCATAACCTAGAAACTTGTCTGAGCGTGGTGCTGCTGTCTCTCGCCATGGTCATGGC





TGGCTCAGGAAACCTAAAGGTTTTGCAGCTTTGTCGCTTCTTACACATGAAAACGGGTGGTGAAATGAAC





TATGGTTTTCACTTAGCCCACCACATGGCCCTTGGACTTCTATTTTTGGGAGGAGGAAGGTACTCTTTGA





GCACATCAAATTCTTCCATTGCCGCTCTTCTCTGTGCCCTTTATCCGCACTTCCCAGCTCACAGCACTGA







CAA
CCGGTATCATCTCCAGGCTCT
CCGGCACCTCTATGTGCTGGCCGCGGAGCCCAGGCTTCTAGTGCCT






GTGGATGTGGACACAAACACGCCCTGCTATGCCCTCTTAGAAGTTACCTACAAGGGCACTCAGTGGTATG





AACAAACCAAAGAAGAATTGATGGCTCCTACCCTTCTTCCAGAACTCCATCTTTTAAAGCAGATTAAAGT





AAAAGGCCCAAGATACTGGGAACTGCTCATAGATTTAAGCAAAGGAACACAACACTTGAAGTCCATCCTT





TCCAAGGATGGGGTTTTATATGTTAAACTCCGGGCGGGTCAGCTCTCCTACAAAGAAGATCCAATGGGAT





GGCAAAGTTTGTTGGCTCAGACTGTTGCTAACAGGAACTCTGAAGCCCGGGCTTTCAAGCCAGAAACAAT





CTCAGCATTCACTTCTGATCCAGCACTTCTGTCATTTGCTGAATATTTCTGCAAGCCAACTGTGAACATG





GGTCAGAAACAGGAAATTCTGGATCTCTTTTCTTCAGTACTCTATGAATGTGTTACCCAGGAGACCCCAG





AGATGTTGCCTGCATACATAGCAATGGATCAGGCTATAAGAAGACTTGGGAGAAGAGAAATGTCTGAGAC





TTCTGAACTTTGGCAGATAAAGTTGGTGTTAGAGTTTTTCAGCTCCCGAAGCCATCAGGAGCGGCTGCAG





AACCACCCTAAGCGGGGGCTCTTTATGAACTCGGAATTCCTCCCTGTTGTGAAGTGCACCATTGATAATA





CCCTGGACCAGTGGCTACAAGTCGGGGGTGATATGTGTGTGCACGCCTACCTCAGCGGGCAGCCCTTGGA





GGAATCACAGCTGAGCATGCTGGCCTGCTTCCTCGTCTACCACTCTGTGCCAGCTCCACAGCACCTGCCA





CCTATAGGACTAGAAGGGAGCACAAGCTTTGCTGAACTGCTCTTCAAATTTAAGCAGCTAAAAATGCCAG





TGCGAGCTTTGCTGAGATTGGCTCCTTTGCTTCTTGGAAATCCACAGCCAATGGTGATGTGACCGTGTCT





GGCGGTGAACCTACCCTGAAACGTGACTTCTGCACAACAAACGTGACCAAACATCAAAGCTAAAGCAATG





TTTATAAAGTTTTATGGTATAACTAGGGGGAAATGAGCTGCACAAACCTCAATGTATTTTAAATCTGTTG





CTGTCATCATTAACGGTATATGACATATAAAAGCAAGTTAAAATTTACTTTTGTAAATAAAGTTTTTGGT





TTGTTTCCAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 6



- Homo sapiens apolipoprotein B mRNA editing enzyme,



catalytic polypeptide-like 3F (APOBEC3F), transcript


variant 1, mRNA


TTCCCTTTGCAATTGCCTTGGGTCCTGCCGCACAGAGCGGCCTGTCTTTATCAGAGGTCCCTCTGCCAGG





GGGAGGGCCCCAGAGAAAACCAGAAAGAGGGTGAGAGACTGAGGAAGATAAAGCGTCCCAGGGCCTCCTA





CACCAGCGCCTGAGCAGGAAGGGGGAGGGGCCATGACTACGAGGCCCTGGGAGGTCACTTTAGGGAGGGC





TGTCCTGAAACCTGGAGCCTGGAGCAGAAAGTGAAACCCTGGTGCTCCAGACAAAGATCTTAGTCGGGAC





TAGCCGGCCAAGGATGAAGCCTCACTTCAGAAACACAGTGGAGCGAATGTATCGAGACACATTCTCCTAC





AACTTTTATAATAGACCCATCCTTTCTCGTCGGAATACCGTCTGGCTGTGCTACGAAGTGAAAACAAAGG





GTCCCTCAAGGCCCCGTTTGGACGCAAAGATCTTTCGAGGCCAGGTGTATTCCCAGCCTGAGCACCACGC





AGAAATGTGCTTCCTCTCTTGGTTCTGTGGCAACCAGCTGCCTGCTTACAAGTGTTTCCAGATCACCTGG





TTTGTATCCTGGACCCCCTGCCCGGACTGTGTGGCGAAGCTGGCCGAATTCCTGGCTGAGCACCCCAATG





TCACCCTGACCATCTCCGCCGCCCGCCTCTACTACTACTGGGAAAGAGATTACCGAAGGGCGCTCTGCAG





GCTGAGTCAGGCAGGGGCCCGCGTGAAGATTATGGACGATGAAGAATTTGCATACTGCTGGGAAAACTTT





GTGTACAGTGAAGGTCAGCCATTCATGCCTTGGTACAAATTCGATGACAATTATGCATTCCTGCACCGCA





CGCTAAAGGAGATTCTCAGAAACCCGATGGAGGCAATGTATCCACACATATTCTACTTCCACTTTAAAAA





CCTACGCAAAGCCTATGGTCGGAACGAAAGCTGGCTGTGCTTCACCATGGAAGTTGTAAAGCACCACTCA





CCTGTCTCCTGGAAGAGGGGCGTCTTCCGAAACCAGGTGGATCCTGAGACCCATTGTCATGCAGAAAGGT





GCTTCCTCTCTTGGTTCTGTGACGACATACTGTCTCCTAACACAAACTACGAGGTCACCTGGTACACATC





TTGGAGCCCTTGCCCAGAGTGTGCAGGGGAGGTGGCCGAGTTCCTGGCCAGGCACAGCAACGTGAATCTC





ACCATCTTCACCGCCCGCCTCTACTACTTCTGGGATACAGATTACCAGGAGGGGCTCCGCAGCCTGAGTC





AGGAAGGGGCCTCCGTGGAGATCATGGGCTACAAAGATTTTAAATATTGTTGGGAAAACTTTGTGTACAA





TGATGATGAGCCATTCAAGCCTTGGAAAGGACTAAAATACAACTTTCTATTCCTGGACAGCAAGCTGCAG





GAGATTCTCGAGTGAGGGGTCTCCCCGGGCCTCATGGTCTGTCTCCTCTAGCCTCCTGCTCATGTTGTGC





AGGCCTCCCCTCCATCCTGGACCAGCTGTGCTTTTGCCTGGTCATCCTGAGCCCCTCCTGGCCTCAGGGC





CATTCCATAGTGCTCCCCTGCCTCACCACCTCCTCTCCGCTCTCCCAGGCTCTTCCTGCAGAGGCCTCTT





TCTGCCTCCATGGCTATCCATCCACCCACCAAGACCCTGTTCCCTGAGCCTGCATGCCCCTAACCTGCCT





TTTCCCATCTCCCCAGCATAACCTAATATTTTTTTTTTTTTTTTGAGACGGAATTTCGCTCTGTCACCCA





GACTGGAGTGCAATGGCTTGATCTTGGCTCACTGCAAACTCTGCCTACCAGGTTCAAGCGATTCTCCTGC





CTCCGCCTCCCGAGTAGCTGGAATTACAGACGCCTGCCACCACGCACAGCTAACTTTTTTTTTTTTTGTA





TTTTTAGTAGTGACTGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCAGGTGATCCGC





CTATCTCAGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGGCCCGGCGGCACAACCAAATCTTA





TTAAACTCACCCTAGGCTGGCCGCGGTGACTCATGCCTATAATCCCCCAGCAATTTGGGAGGCAGAGGTG





AGAGAATCGCTTGAGCCCAGGAATTCGAGACCAGCCTGGGCCACATGACAAAGCCCCATCTCTACAAAAA





AATTACAAAAAAAAAAAAAACAGGTGTGGTGGCATGCACCTGTAGTTGAAGCTACTTGGAAGGATGAAGT





GGGAGGATTGCTTGAGCCGGGGAGGTGGAGGCTGCAGTGAACTGAGATCACGTCACTGAACTCCAGTCTG





AGCAACAGATCGAGACCCTGCCTGAAAATAAATCAATAAATAAACTCAACCGAAATGGGTATGAAAGTTG





AAATGGGTATGTAAGTTGAAAACCAGAAGTTTTGAGAAACATCCTTTGTTAACTTTCATCCTACAAATTG





GGTCATTCATGTCCTACGCAGCTAAAACAGAGCCCAGGAGCCAGGGAGGAAAAGCAGTCAGGCCACACAC





CATTGCTCCCAAAATGGACTTCTCTGCAAGCCTGACTCCTGAAACTGTGCATTGTACCCTGAAACCAGCT





TTATCCATAGCTTCTGCAATAAATGGCTGTAAGTCTTGGACTCCTTGCTATAATCGCAGCTATTCAGCAA





TGGAACCTCCCAGTTCCCAACCCTTCCTAGTGCCCATGGGCTTTCCCATAGGACAAGAGAACATTTCTCC





TTTTCTTTTTTTTTTTCTTTGAAATGGAGTCTCGCCCTGTCACCCAGGCTGGAGTGCAATGGTGCGGTCT





CGGCTCACTGCAACCTCTGCCTCCCTTGTTCAAGTGATTCTCCTGTCTCAGCCTCCCGAGTAGCTGGGAT





TACAGGCGTCCACCACCAAACCAGGCTAATTTTTGTATTTTTCATAAAAACGGGTTTCATCATGTTTCCC





AGGCTGGTCTTATTTTTATTTTATTTTTTGAGATGGAGTCTTGCTCTGTTGCCCAGGCTGGGGTGCAGTG





GTGCAATCTGGGTTCACTGCAGCCTCTGCCGCCTGAGTTCAAGCTATTTTCCTACCTAAGCCTCCCAAGT





AGCTGGGATTACATGCGCGTGCCACCACGCCTAGCTAATTTTTGTGTTTTTAGTAGAGACGGGGTTTCAA





CATCTTGACCAGGCTGGTCTTGAACTCCTGACCTCGTGATCCACCCGTCTCGGCCTCCCAAAGTGCTGGG





ATTACAGGCGTGAGCCACCTGGCCAGGCTTAGGCTGGTCTTAAACTCCTGACCTCAAGTGATCCAACCTC





CTTGGCCTCCCAAATTGCTGGGATTGCTGGTGTGAGCCACAGCGCCTAGCCCATTTCTCCTTTTAATAGG





ACCTGTTGCTGTCTCTGTTCTCCCAACATGGTGAACACCACCCGGACTGCGTGTATGTCCCAAATTACAA





TTCTTTCTTTGCAAATGAAATGTGAAATTTAGAGGCCCTTCTCCACACTTTAAATTTGACTTGACATTTT





CTAGGCAGATATAAGTTATTAGAGAATGAGATTCTCTATAAAAATGATCCCTTCATGCTGTGGCCTCCAC





AGAAGATGCCCTGGGCCAGGTGCCCACATGAATAATGCGGGCCACAGGCAGGCATTTATTTTCTCACAGA





TATGGAGGCTACAAGTCCAAGGTGGAGGGGTCGGCGGGGTTGTTTGCTCTGAGGCCGCTCCTCCTGGATG





GCAGGGATCCCTTCTGGCTGTGTCCTCTGTGGCCTTTCCTCTATGAACCTGTACTGTACCTCTGGGGTCT





CTCTGCTTCCAAATATCTTTTTTTTTTTTTTCAGACAGTTTTGCTCTTGTTTTCTAGGCTGGAGTGCAAT





GGCACAATCTCAGCTCACTGCAACCTCTGCCTTCCGAGTTCAAGCGATTCTCGTGCCTCAGCCTCCTGAG





TAGCTGGGACTACAGGCGTGTGCCACCACGCCTGGCTAATTTTGTAGTTTTAGTAGAGACGGGGTTTCTC





CATGTTGCTCAGGCTGGTCTTGAACTCATGAGCTCAGGCGATCCACTCTCCTCAGCCTCCCAAAGTGCTG





GGATTACAGATATAAGCCACCATACACAACTTTTTTTTTTTTTTGAGATGGAGTTTCACTCTGTTGCCCA





GGCTGGAGTGCTAAATAGCAGAATCACTGCTCACTGCAACCTCTGCCTGCTGGGTTCAAGCAATTCTCCC





ACCTCAGCCTCCTGAGTAGCTGGGATTACAGATGCCCAGAACCAATCTCTGCTAATTTTTCTATTTTTTA





GTAGAGATGGGGTTTCACTGAGGAAGGAGACCACCTCTCTCATTGTCTCCTATTTCAGAAGGAAGCAAAA





AGTTAGAAAGATGCAGAAGTAAGATCAATGGCCAGACTGTTTGGCGCTGCTACCTGGGCCTGGTAGTTAA





AGATCAACTCCTGACCTGACCGCTTGTTTTATCTAAAGATTCCAGACATTGTATGAGGAAGCATTGTGAA





ACTTTCTGGTCTGTTCTGCTAGCCCCCACCACTGATGCATGTAGCCCCCCAGTCACGTAGCCCACGCTTG





CACAATCTATCACGACCCTTTCACGTGGACCCCTTAGAATTGTAAGCCCTTAAAAGGGCCAGGGACTTCT





TCAGGGAGCTCCAATCTTCAGATGCAAGTCTGTCAACGCTCCCAGCTGATTAAAGCCTCTTCCTTCCTAA





AAAAAAAAAAAAAAAA





SEQ ID NO: 7



- Homo sapiens argininosuccinate lyase (ASL),



transcript variant 1, mRNA


CCAGGCGGAGGTGAGTGCGCGGCGGCCGGATGGGCGGGACGGGCGTGGAGGACGCCGAGCACCGTGGCGC





GCGCTCACGTCCGCGTCCCCAAGGGCTGCGCTCCCTCAAGCGCAGTGCCCAGAACTCGGAGCCAGCCCGG





CCCGGGGGACCCTGCTGGCCAAGGAGGTCGTCAGTCCGGTCTTGTCTTCCAGACCCGGAGGACCGAAGCT





TCCGGACGACGAGGAACCGCCCAACATGGCCTCGGAGAGTGGGAAGCTTTGGGGTGGCCGGTTTGTGGGT





GCAGTGGACCCCATCATGGAGAAGTTCAACGCGTCCATTGCCTACGACCGGCACCTTTGGGAGGTGGATG





TTCAAGGCAGCAAAGCCTACAGCAGGGGCCTGGAGAAGGCAGGGCTCCTCACCAAGGCCGAGATGGACCA





GATACTCCATGGCCTAGACAAGGTGGCTGAGGAGTGGGCCCAGGGCACCTTCAAACTGAACTCCAATGAT





GAGGACATCCACACAGCCAATGAGCGCCGCCTGAAGGAGCTCATTGGTGCAACGGCAGGGAAGCTGCACA





CGGGACGGAGCCGGAATGACCAGGTGGTCACAGACCTCAGGCTGTGGATGCGGCAGACCTGCTCCACGCT





CTCGGGCCTCCTCTGGGAGCTCATTAGGACCATGGTGGATCGGGCAGAGGCGGAACGTGATGTTCTCTTC





CCGGGGTACACCCATTTGCAGAGGGCCCAGCCCATCCGCTGGAGCCACTGGATTCTGAGCCACGCCGTGG





CACTGACCCGAGACTCTGAGCGGCTGCTGGAGGTGCGGAAGCGGATCAATGTCCTGCCCCTGGGGAGTGG





GGCCATTGCAGGCAATCCCCTGGGTGTGGACCGAGAGCTGCTCCGAGCAGAACTCAACTTTGGGGCCATC





ACTCTCAACAGCATGGATGCCACTAGTGAGCGGGACTTTGTGGCCGAGTTCCTGTTCTGGGCTTCGCTGT





GCATGACCCATCTCAGCAGGATGGCCGAGGACCTCATCCTCTACTGCACCAAGGAATTCAGCTTCGTGCA





GCTCTCAGATGCCTACAGCACGGGAAGCAGCCTGATGCCCCAGAAGAAAAACCCCGACAGTTTGGAGCTG





ATCCGGAGCAAGGCTGGGCGTGTGTTTGGGCGGTGTGCCGGGCTCCTGATGACCCTCAAGGGACTTCCCA





GCACCTACAACAAAGACTTACAGGAGGACAAGGAAGCTGTGTTTGAAGTGTCAGACACTATGAGTGCCGT





GCTCCAGGTGGCCACTGGCGTCATCTCTACGCTGCAGATTCACCAAGAGAACATGGGACAGGCTCTCAGC





CCCGACATGCTGGCCACTGACCTTGCCTATTACCTGGTCCGCAAAGGGATGCCATTCCGCCAGGCCCACG





AGGCCTCCGGGAAAGCTGTGTTCATGGCCGAGACCAAGGGGGTCGCCCTCAACCAGCTGTCACTGCAGGA





GCTGCAGACCATCAGCCCCCTGTTCTCGGGCGACGTGATCTGCGTGTGGGACTACGGGCACAGTGTGGAG





CAGTATGGTGCCCTGGGCGGCACTGCGCGCTCCAGCGTCGACTGGCAGATCCGCCAGGTGCGGGCGCTAC





TGCAGGCACAGCAGGCCTAGGTCCTCCCACACCTGCCCCCTAATAAAGTGGGCGCGAGAGGAGGCTGCTG





TGTGTTTCCTGCCCCAGCCTGGCTCCCTCGTTGCTGGGCTTTCGGGGCTGGCCAGTGGGGACAGTCAGGG





ACTGGAGAGGCAGGGCAGGGTGGCCTGTAATCCCAGCACTTTGGAAGGGCAAGGTGCGAGGATGCTTGAG





GCCAGGAGTTTGACACAGCCTGGGCAACACAGGGAGACCCCCATCTCTACTCAATAATAAAACAAATAGC





CTGGCGTGGTGGCCCATGCATATAGTCCCAGCTACTTGTAAGGCTGAGGTGAGAGGACACTTGTGCCCAG





GAGTGGAGGCTGCAGTGAGCTATGATCACGCCACTGCATTCCAGCCTGGATAACAGAGTGAGAACCTATC





TCTAAAAATAAATAAATAAACGAAAAATAAA





SEQ ID NO: 8



- Homo sapiens beta-2-microglobulin (B2M), mRNA



AATATAAGTGGAGGCGTCGCGCTGGCGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAGATGTCTCGCT





CCGTGGCCTTAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCAGCGTACTCCAAAGAT





TCAGGTTTACTCACGTCATCCAGCAGAGAATGGAAAGTCAAATTTCCTGAATTGCTATGTGTCTGGGTTT





CATCCATCCGACATTGAAGTTGACTTACTGAAGAATGGAGAGAGAATTGAAAAAGTGGAGCATTCAGACT





TGTCTTTCAGCAAGGACTGGTCTTTCTATCTCTTGTACTACACTGAATTCACCCCCACTGAAAAAGATGA





GTATGCCTGCCGTGTGAACCATGTGACTTTGTCACAGCCCAAGATAGTTAAGTGGGATCGAGACATGTAA







G
CAGCATCATGGAGGTTTGAAGATGCCGCATTTGGATTGGATGAATTCCAAATTCTGCTTGCTTGCTTTT






TAATATTGATATGCTTATACACTTACACTTTATGCACAAAATGTAGGGTTATAATAATGTTAACATGGAC





ATGATCTTCTTTATAATTCTACTTTGAGTGCTGTCTCCATGTTTGATGTATCTGAGCAGGTTGCTCCACA





GGTAGCTCTAGGAGGGCTGGCAACTTAGAGGTGGGGAGCAGAGAATTCTCTTATCCAACATCAACATCTT





GGTCAGATTTGAACTCTTCAATCTCTTGCACTCAAAGCTTGTTAAGATAGTTAAGCGTGCATAAGTTAAC





TTCCAATTTACATACTCTGCTTAGAATTTGGGGGAAAATTTAGAAATATAATTGACAGGATTATTGGAAA





TTTGTTATAATGAATGAAACATTTTGTCATATAAGATTCATATTTACTTCTTATACATTTGATAAAGTAA





GGCATGGTTGTGGTTAATCTGGTTTATTTTTGTTCCACAAGTTAAATAAATCATAAAACTTGATGTGTTA





TCTCTTA





SEQ ID NO: 9



- Homo sapiens breast cancer 1, early onset (BRCA1),



transcript variant 6, non-coding RNA


AGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGGTAGTAGAGTCCCGGGA





AAGGGACAGGGGGCCCAAGTGATGCTCTGGGGTACTGGCGTGGGAGAGTGGATTTCCGAAGCTGACAGAT





GGTTCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATG





CTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGA





CCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACAGTGTCCTTTA





TGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTCA





GCTTGACACAGGTTTGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAACTCTCCTGAACAT





CTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTG





AACCCGAAAATCCTTCCTTGGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCT





GAGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAA





GATACCGTTAATAAGGCAACTTATTGCAGTGTGGGAGATCAAGAATTGTTACAAATCACCCCTCAAGGAA





CCAGGGATGAAATCAGTTTGGATTCTGCAAAAAAGGCTGCTTGTGAATTTTCTGAGACGGATGTAACAAA





TACTGAACATCATCAACCCAGTAATAATGATTTGAACACCACTGAGAAGCGTGCAGCTGAGAGGCATCCA





GAAAAGTATCAGGGTAGTTCTGTTTCAAACTTGCATGTGGAGCCATGTGGCACAAATACTCATGCCAGCT





CATTACAGCATGAGAACAGCAGTTTATTACTCACTAAAGACAGAATGAATGTAGAAAAGGCTGAATTCTG





TAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCCAACATAACAGATGGGCTGGAAGTAAGGAAACATGT





AATGATAGGCGGACTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCCTGTGTGAGAGAAAAG





AATGGAATAAGCAGAAACTGCCATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGATAACACT





AAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTTCCAGAAGTGATGAACTGTTAGGTTCTGATGACTCA





CATGATGGGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACGTTCTAAATGAGGTAGATGAAT





ATTCTGGTTCTTCAGAGAAAATAGACTTACTGGCCAGTGATCCTCATGAGGCTTTAATATGTAAAAGTGA





AAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGACAAAATATTTGGGAAAACCTATCGGAAGAAG





GCAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATCTAATTATAGGAGCATTTGTTACTGAGCCACAGA





TAATACAAGAGCGTCCCCTCACAAATAAATTAAAGCGTAAAAGGAGACCTACATCAGGCCTTCATCCTGA





GGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGAAATGATAAATCAGGGAACTAACCAA





ACGGAGCAGAATGGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGATTCTA





TTCAGAATGAGAAAAATCCTAACCCAATAGAATCACTCGAAAAAGAATCTGCTTTCAAAACGAAAGCTGA





ACCTATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCCACAATTCAAAAGCACCTAAAAAG





AATAGGCTGAGGAGGAAGTCTTCTACCAGGCATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAA





GCCCACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGTGAAGAGATAAAGAAAAAAAAGTA





CAACCAAATGCCAGTCAGGCACAGCAGAAACCTACAACTCATGGAAGGTAAAGAACCTGCAACTGGAGCC





AAGAAGAGTAACAAGCCAAATGAACAGACAAGTAAAAGACATGACAGCGATACTTTCCCAGAGCTGAAGT





TAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAAATACCAGTGAACTTAAAGAATTTGTCAATCCTAG





CCTTCCAAGAGAAGAAAAAGAAGAGAAACTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA





GATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGG





TACCTGGTACTGATTATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGGGAAGGCAAA





AACAGAACCAAATAAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGT





TCCAAAGATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGACATGAAGTTAACCACAGTCGGG





AAACAAGCATAGAAATGGAAGAAAGTGAACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA





GCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCTCTGCCCAC





TCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAA





AGAATGAGTCTAATATCAAGCCTGTACAGACAGTTAATATCACTGCAGGCTTTCCTGTGGTTGGTCAGAA





AGATAAGCCAGTTGATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCTATCATCTCAGTTC





AGAGGCAACGAAACTGGACTCATTACTCCAAATAAACATGGACTTTTACAAAACCCATATCGTATACCAC





CACTTTTTCCCATCAAGTCATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAACTTTGAGGA





ACATTCAATGTCACCTGAAAGAGAAATGGGAAATGAGAACATTCCAAGTACAGTGAGCACAATTAGCCGT





AATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAAGTAGGTTCCAGTACTA





ATGAAGTGGGCTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTAGAAA





CAGAGGGCCAAAATTGAATGCTATGCTTAGATTAGGGGTTTTGCAACCTGAGGTCTATAAACAAAGTCTT





CCTGGAAGTAATTGTAAGCATCCTGAAATAAAAAAGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATA





CAGATTTCTCTCCATATCTGATTTCAGATAACTTAGAACAGCCTATGGGAAGTAGTCATGCATCTCAGGT





TTGTTCTGAGACACCTGATGACCTGTTAGATGATGGTGAAATAAAGGAAGATACTAGTTTTGCTGAAAAT





GACATTAAGGAAAGTTCTGCTGTTTTTAGCAAAAGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCC





CTTTCACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAGAAGAGAA





CTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCCAACACTTGTTATTTGGTAAAGTAAACAATATACCT





TCTCAGTCTACTAGGCATAGCACCGTTGCTACCGAGTGTCTGTCTAAGAACACAGAGGAGAATTTATTAT





CATTGAAGAATAGCTTAAATGACTGCAGTAACCAGGTAATATTGGCAAAGGCATCTCAGGAACATCACCT





TAGTGAGGAAACAAAATGTTCTGCTAGCTTGTTTTCTTCACAGTGCAGTGAATTGGAAGACTTGACTGCA





AATACAAACACCCAGGATCCTTTCTTGATTGGTTCTTCCAAACAAATGAGGCATCAGTCTGAAAGCCAGG





GAGTTGGTCTGAGTGACAAGGAATTGGTTTCAGATGATGAAGAAAGAGGAACGGGCTTGGAAGAAAATAA





TCAAGAAGAGCAAAGCATGGATTCAAACTTAGGTGAAGCAGCATCTGGGTGTGAGAGTGAAACAAGCGTC





TCTGAAGACTGCTCAGGGCTATCCTCTCAGAGTGACATTTTAACCACTCAGCAGAGGGATACCATGCAAC





ATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAAGCTGTGTTAGAACAGCATGGGAGCCAGCC





TTCTAACAGCTACCCTTCCATCATAAGTGACTCTTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGC





ACATCAGAAAAAGCAGTATTAACTTCACAGAAAAGTAGTGAATACCCTATAAGCCAGAATCCAGAAGGCC





TTTCTGCTGACAAGTTTGAGGTGTCTGCAGATAGTTCTACCAGTAAAAATAAAGAACCAGGAGTGGAAAG





GTCATCCCCTTCTAAATGCCCATCATTAGATGATAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAG





AATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTGGAGGAGCAACAGCTGGAAGAGT





CTGGGCCACACGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCTAGAGGGAACCCCTTACCTGGA





ATCTGGAATCAGCCTCTTCTCTGATGACCCTGAATCTGATCCTTCTGAAGACAGAGCCCCAGAGTCAGCT





CGTGTTGGCAACATACCATCTTCAACCTCTGCATTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCC





AGAGTCCAGCTGCTGCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGA





GAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACC







CCA
GAAGAATTTATGCTCGTGT
ACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTG






AAGAGACTACTCATGTTGTTATGAAAACAGATGCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCT





AGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGGGTGACCCAGTCTATTAAAGAAAGAAAAATG





CTGAATGAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCCAAAGCGAG





CAAGAGAATCCCAGGACAGAAAGATCTTCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACCAACAT





GCCCACAGATCAACTGGAATGGATGGTACAGCTGTGTGGTGCTTCTGTGGTGAAGGAGCTTTCATCATTC





ACCCTTGGCACAGGTGTCCACCCAATTGTGGTTGTGCAGCCAGATGCCTGGACAGAGGACAATGGCTTCC





ATGCAATTGGGCAGATGTGTGAGGCACCTGTGGTGACCCGAGAGTGGGTGTTGGACAGTGTAGCACTCTA





CCAGTGCCAGGAGCTGGACACCTACCTGATACCCCAGATCCCCCACAGCCACTACTGACTGCAGCCAGCC





ACAGGTACAGAGCCACAGGACCCCAAGAATGAGCTTACAAAGTGGCCTTTCCAGGCCCTGGGAGCTCCTC





TCACTCTTCAGTCCTTCTACTGTCCTGGCTACTAAATATTTTATGTACATCAGCCTGAAAAGGACTTCTG





GCTATGCAAGGGTCCCTTAAAGATTTTCTGCTTGAAGTCTCCCTTGGAAATCTGCCATGAGCACAAAATT





ATGGTAATTTTTCACCTGAGAAGATTTTAAAACCATTTAAACGCCACCAATTGAGCAAGATGCTGATTCA





TTATTTATCAGCCCTATTCTTTCTATTCAGGCTGTTGTTGGCTTAGGGCTGGAAGCACAGAGTGGCTTGG





CCTCAAGAGAATAGCTGGTTTCCCTAAGTTTACTTCTCTAAAACCCTGTGTTCACAAAGGCAGAGAGTCA





GACCCTTCAATGGAAGGAGAGTGCTTGGGATCGATTATGTGACTTAAAGTCAGAATAGTCCTTGGGCAGT





TCTCAAATGTTGGAGTGGAACATTGGGGAGGAAATTCTGAGGCAGGTATTAGAAATGAAAAGGAAACTTG





AAACCTGGGCATGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGCAGATCACTGGA





GGTCAGGAGTTCGAAACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAAAATACAGAAATTAGC





CGGTCATGGTGGTGGACACCTGTAATCCCAGCTACTCAGGTGGCTAAGGCAGGAGAATCACTTCAGCCCG





GGAGGTGGAGGTTGCAGTGAGCCAAGATCATACCACGGCACTCCAGCCTGGGTGACAGTGAGACTGTGGC





TCAAAAAAAAAAAAAAAAAAAGGAAAATGAAACTAGAAGAGATTTCTAAAAGTCTGAGATATATTTGCTA





GATTTCTAAAGAATGTGTTCTAAAACAGCAGAAGATTTTCAAGAACCGGTTTCCAAAGACAGTCTTCTAA





TTCCTCATTAGTAATAAGTAAAATGTTTATTGTTGTAGCTCTGGTATATAATCCATTCCTCTTAAAATAT





AAGACCTCTGGCATGAATATTTCATATCTATAAAATGACAGATCCCACCAGGAAGGAAGCTGTTGCTTTC





TTTGAGGTGATTTTTTTCCTTTGCTCCCTGTTGCTGAAACCATACAGCTTCATAAATAATTTTGCTTGCT





GAAGGAAGAAAAAGTGTTTTTCATAAACCCATTATCCAGGACTGTTTATAGCTGTTGGAAGGACTAGGTC





TTCCCTAGCCCCCCCAGTGTGCAAGGGCAGTGAAGACTTGATTGTACAAAATACGTTTTGTAAATGTTGT





GCTGTTAACACTGCAAATAAACTTGGTAGCAAACACTTCCAAAAAAAAAAAAAAAAAA





SEQ ID NO: 10 



- Homo sapiens CD55 molecule, decay accelerating factor



for complement (Cromer blood group) (CD55), transcript


variant 1, mRNA


AGCGAGCTCCTCCTCCTTCCCCTCCCCACTCTCCCCGAGTCTAGGGCCCCCGGGGCGTATGACGCCGGAG





CCCTCTGACCGCACCTCTGACCACAACAAACCCCTACTCCACCCGTCTTGTTTGTCCCACCCTTGGTGAC





GCAGAGCCCCAGCCCAGACCCCGCCCAAAGCACTCATTTAACTGGTATTGCGGAGCCACGAGGCTTCTGC





TTACTGCAACTCGCTCCGGCCGCTGGGCGTAGCTGCGACTCGGCGGAGTCCCGGCGGCGCGTCCTTGTTC





TAACCCGGCGCGCCATGACCGTCGCGCGGCCGAGCGTGCCCGCGGCGCTGCCCCTCCTCGGGGAGCTGCC





CCGGCTGCTGCTGCTGGTGCTGTTGTGCCTGCCGGCCGTGTGGGGTGACTGTGGCCTTCCCCCAGATGTA





CCTAATGCCCAGCCAGCTTTGGAAGGCCGTACAAGTTTTCCCGAGGATACTGTAATAACGTACAAATGTG





AAGAAAGCTTTGTGAAAATTCCTGGCGAGAAGGACTCAGTGATCTGCCTTAAGGGCAGTCAATGGTCAGA





TATTGAAGAGTTCTGCAATCGTAGCTGCGAGGTGCCAACAAGGCTAAATTCTGCATCCCTCAAACAGCCT





TATATCACTCAGAATTATTTTCCAGTCGGTACTGTTGTGGAATATGAGTGCCGTCCAGGTTACAGAAGAG





AACCTTCTCTATCACCAAAACTAACTTGCCTTCAGAATTTAAAATGGTCCACAGCAGTCGAATTTTGTAA





AAAGAAATCATGCCCTAATCCGGGAGAAATACGAAATGGTCAGATTGATGTACCAGGTGGCATATTATTT





GGTGCAACCATCTCCTTCTCATGTAACACAGGGTACAAATTATTTGGCTCGACTTCTAGTTTTTGTCTTA





TTTCAGGCAGCTCTGTCCAGTGGAGTGACCCGTTGCCAGAGTGCAGAGAAATTTATTGTCCAGCACCACC





ACAAATTGACAATGGAATAATTCAAGGGGAACGTGACCATTATGGATATAGACAGTCTGTAACGTATGCA





TGTAATAAAGGATTCACCATGATTGGAGAGCACTCTATTTATTGTACTGTGAATAATGATGAAGGAGAGT





GGAGTGGCCCACCACCTGAATGCAGAGGAAAATCTCTAACTTCCAAGGTCCCACCAACAGTTCAGAAACC





TACCACAGTAAATGTTCCAACTACAGAAGTCTCACCAACTTCTCAGAAAACCACCACAAAAACCACCACA





CCAAATGCTCAAGCAACACGGAGTACACCTGTTTCCAGGACAACCAAGCATTTTCATGAAACAACCCCAA





ATAAAGGAAGTGGAACCACTTCAGGTACTACCCGTCTTCTATCTGGGCACACGTGTTTCACGTTGACAGG





TTTGCTTGGGACGCTAGTAACCATGGGCTTGCTGACTTAGCCAAAGAAGAGTTAAGAAGAAAATACACAC





AAGTATACAGACTGTTCCTAGTTTCTTAGACTTATCTGCATATTGGATAAAATAAATGCAATTGTGCTCT





TCATTTAGGATGCTTTCATTGTCTTTAAGATGTGTTAGGAATGTCAACAGAGCAAGGAGAAAAAAGGCAG





TCCTGGAATCACATTCTTAGCACACCTACACCTCTTGAAAATAGAACAACTTGCAGAATTGAGAGTGATT





CCTTTCCTAAAAGTGTAAGAAAGCATAGAGATTTGTTCGTATTTAGAATGGGATCACGAGGAAAAGAGAA





GGAAAGTGATTTTTTTCCACAAGATCTGTAATGTTATTTCCACTTATAAAGGAAATAAAAAATGAAAAAC





ATTATTTGGATATCAAAAGCAAATAAAAACCCAATTCAGTCTCTTCTAAGCAAAATTGCTAAAGAGAGAT





GAACCACATTATAAAGTAATCTTTGGCTGTAAGGCATTTTCATCTTTCCTTCGGGTTGGCAAAATATTTT





AAAGGTAAAACATGCTGGTGAACCAGGGGTGTTGATGGTGATAAGGGAGGAATATAGAATGAAAGACTGA





ATCTTCCTTTGTTGCACAAATAGAGTTTGGAAAAAGCCTGTGAAAGGTGTCTTCTTTGACTTAATGTCTT





TAAAAGTATCCAGAGATACTACAATATTAACATAAGAAAAGATTATATATTATTTCTGAATCGAGATGTC





CATAGTCAAATTTGTAAATCTTATTCTTTTGTAATATTTATTTATATTTATTTATGACAGTGAACATTCT





GATTTTACATGTAAAACAAGAAAAGTTGAAGAAGATATGTGAAGAAAAATGTATTTTTCCTAAATAGAAA





TAAATGATCCCATTTTTTGGTATCATGTAGTATGTGAAATTTATTCTTAAACGTGACTACTTTATTTCTA





AATAAGAAATTCCCTACCTGCTTCCTACAAGCAGTTCAGAATGCCATGCCTTGGTTGTCCTAGTGTGAAT





AATTTTCAGCTACTTTAAAATTATATTGTACTTTCTCAAGCATGTCATATCCTTTCCTATTAGAGTATCT





ATATTACTTGTTACTGATTTACCTGAAGGCAATCTGATTAATTTCTAGGTTTTTACCATATTCTTGTCAT





CTTGCCAATTACATTTTAAGTGTTAGACTAGACTAAGATGTACTAGTTGTATAGAATATAACTAGATTTA





TTATGGCAATGTTTATTTTGTCATTTTGCTTCATCTGTTTTGTTGTTGAAGTACTTTAAATTTCATACGT





TCATGGCATTTCACTGTAAAGACTTTAATGTGTATTTCTTAAAATAAAACTTTTTTTCCTCCTTAAAAAA





AAAAAAAAAAAA





SEQ ID NO: 11



- Homo sapiens cadherin 1, type 1, E-cadherin



(epithelial) (CDH1), mRNA


AGTGGCGTCGGAACTGCAAAGCACCTGTGAGCTTGCGGAAGTCAGTTCAGACTCCAGCCCGCTCCAGCCC





GGCCCGACCCGACCGCACCCGGCGCCTGCCCTCGCTCGGCGTCCCCGGCCAGCCATGGGCCCTTGGAGCC





GCAGCCTCTCGGCGCTGCTGCTGCTGCTGCAGGTCTCCTCTTGGCTCTGCCAGGAGCCGGAGCCCTGCCA





CCCTGGCTTTGACGCCGAGAGCTACACGTTCACGGTGCCCCGGCGCCACCTGGAGAGAGGCCGCGTCCTG





GGCAGAGTGAATTTTGAAGATTGCACCGGTCGACAAAGGACAGCCTATTTTTCCCTCGACACCCGATTCA





AAGTGGGCACAGATGGTGTGATTACAGTCAAAAGGCCTCTACGGTTTCATAACCCACAGATCCATTTCTT





GGTCTACGCCTGGGACTCCACCTACAGAAAGTTTTCCACCAAAGTCACGCTGAATACAGTGGGGCACCAC





CACCGCCCCCCGCCCCATCAGGCCTCCGTTTCTGGAATCCAAGCAGAATTGCTCACATTTCCCAACTCCT





CTCCTGGCCTCAGAAGACAGAAGAGAGACTGGGTTATTCCTCCCATCAGCTGCCCAGAAAATGAAAAAGG





CCCATTTCCTAAAAACCTGGTTCAGATCAAATCCAACAAAGACAAAGAAGGCAAGGTTTTCTACAGCATC





ACTGGCCAAGGAGCTGACACACCCCCTGTTGGTGTCTTTATTATTGAAAGAGAAACAGGATGGCTGAAGG





TGACAGAGCCTCTGGATAGAGAACGCATTGCCACATACACTCTCTTCTCTCACGCTGTGTCATCCAACGG





GAATGCAGTTGAGGATCCAATGGAGATTTTGATCACGGTAACCGATCAGAATGACAACAAGCCCGAATTC





ACCCAGGAGGTCTTTAAGGGGTCTGTCATGGAAGGTGCTCTTCCAGGAACCTCTGTGATGGAGGTCACAG





CCACAGACGCGGACGATGATGTGAACACCTACAATGCCGCCATCGCTTACACCATCCTCAGCCAAGATCC





TGAGCTCCCTGACAAAAATATGTTCACCATTAACAGGAACACAGGAGTCATCAGTGTGGTCACCACTGGG





CTGGACCGAGAGAGTTTCCCTACGTATACCCTGGTGGTTCAAGCTGCTGACCTTCAAGGTGAGGGGTTAA





GCACAACAGCAACAGCTGTGATCACAGTCACTGACACCAACGATAATCCTCCGATCTTCAATCCCACCAC





GTACAAGGGTCAGGTGCCTGAGAACGAGGCTAACGTCGTAATCACCACACTGAAAGTGACTGATGCTGAT





GCCCCCAATACCCCAGCGTGGGAGGCTGTATACACCATATTGAATGATGATGGTGGACAATTTGTCGTCA





CCACAAATCCAGTGAACAACGATGGCATTTTGAAAACAGCAAAGGGCTTGGATTTTGAGGCCAAGCAGCA





GTACATTCTACACGTAGCAGTGACGAATGTGGTACCTTTTGAGGTCTCTCTCACCACCTCCACAGCCACC





GTCACCGTGGATGTGCTGGATGTGAATGAAGCCCCCATCTTTGTGCCTCCTGAAAAGAGAGTGGAAGTGT





CCGAGGACTTTGGCGTGGGCCAGGAAATCACATCCTACACTGCCCAGGAGCCAGACACATTTATGGAACA





GAAAATAACATATCGGATTTGGAGAGACACTGCCAACTGGCTGGAGATTAATCCGGACACTGGTGCCATT





TCCACTCGGGCTGAGCTGGACAGGGAGGATTTTGAGCACGTGAAGAACAGCACGTACACAGCCCTAATCA





TAGCTACAGACAATGGTTCTCCAGTTGCTACTGGAACAGGGACACTTCTGCTGATCCTGTCTGATGTGAA





TGACAACGCCCCCATACCAGAACCTCGAACTATATTCTTCTGTGAGAGGAATCCAAAGCCTCAGGTCATA





AACATCATTGATGCAGACCTTCCTCCCAATACATCTCCCTTCACAGCAGAACTAACACACGGGGCGAGTG





CCAACTGGACCATTCAGTACAACGACCCAACCCAAGAATCTATCATTTTGAAGCCAAAGATGGCCTTAGA





GGTGGGTGACTACAAAATCAATCTCAAGCTCATGGATAACCAGAATAAAGACCAAGTGACCACCTTAGAG





GTCAGCGTGTGTGACTGTGAAGGGGCCGCTGGCGTCTGTAGGAAGGCACAGCCTGTCGAAGCAGGATTGC





AAATTCCTGCCATTCTGGGGATTCTTGGAGGAATTCTTGCTTTGCTAATTCTGATTCTGCTGCTCTTGCT





GTTTCTTCGGAGGAGAGCGGTGGTCAAAGAGCCCTTACTGCCCCCAGAGGATGACACCCGGGACAACGTT





TATTACTATGATGAAGAAGGAGGCGGAGAAGAGGACCAGGACTTTGACTTGAGCCAGCTGCACAGGGGCC





TGGACGCTCGGCCTGAAGTGACTCGTAACGACGTTGCACCAACCCTCATGAGTGTCCCCCGGTATCTTCC





CCGCCCTGCCAATCCCGATGAAATTGGAAATTTTATTGATGAAAATCTGAAAGCGGCTGATACTGACCCC





ACAGCCCCGCCTTATGATTCTCTGCTCGTGTTTGACTATGAAGGAAGCGGTTCCGAAGCTGCTAGTCTGA





GCTCCCTGAACTCCTCAGAGTCAGACAAAGACCAGGACTATGACTACTTGAACGAATGGGGCAATCGCTT





CAAGAAGCTGGCTGACATGTACGGAGGCGGCGAGGACGACTAGGGGACTCGAGAGAGGCGGGCCCCAGAC





CCATGTGCTGGGAAATGCAGAAATCACGTTGCTGGTGGTTTTTCAGCTCCCTTCCCTTGAGATGAGTTTC





TGGGGAAAAAAAAGAGACTGGTTAGTGATGCAGTTAGTATAGCTTTATACTCTCTCCACTTTATAGCTCT





AATAAGTTTGTGTTAGAAAAGTTTCGACTTATTTCTTAAAGCTTTTTTTTTTTTCCCATCACTCTTTACA





TGGTGGTGATGTCCAAAAGATACCCAAATTTTAATATTCCAGAAGAACAACTTTAGCATCAGAAGGTTCA





CCCAGCACCTTGCAGATTTTCTTAAGGAATTTTGTCTCACTTTTAAAAAGAAGGGGAGAAGTCAGCTACT





CTAGTTCTGTTGTTTTGTGTATATAATTTTTTAAAAAAAATTTGTGTGCTTCTGCTCATTACTACACTGG





TGTGTCCCTCTGCCTTTTTTTTTTTTTTAAGACAGGGTCTCATTCTATCGGCCAGGCTGGAGTGCAGTGG





TGCAATCACAGCTCACTGCAGCCTTGTCCTCCCAGGCTCAAGCTATCCTTGCACCTCAGCCTCCCAAGTA





GCTGGGACCACAGGCATGCACCACTACGCATGACTAATTTTTTAAATATTTGAGACGGGGTCTCCCTGTG





TTACCCAGGCTGGTCTCAAACTCCTGGGCTCAAGTGATCCTCCCATCTTGGCCTCCCAGAGTATTGGGAT





TACAGACATGAGCCACTGCACCTGCCCAGCTCCCCAACTCCCTGCCATTTTTTAAGAGACAGTTTCGCTC





CATCGCCCAGGCCTGGGATGCAGTGATGTGATCATAGCTCACTGTAACCTCAAACTCTGGGGCTCAAGCA





GTTCTCCCACCAGCCTCCTTTTTATTTTTTTGTACAGATGGGGTCTTGCTATGTTGCCCAAGCTGGTCTT





AAACTCCTGGCCTCAAGCAATCCTTCTGCCTTGGCCCCCCAAAGTGCTGGGATTGTGGGCATGAGCTGCT





GTGCCCAGCCTCCATGTTTTAATATCAACTCTCACTCCTGAATTCAGTTGCTTTGCCCAAGATAGGAGTT





CTCTGATGCAGAAATTATTGGGCTCTTTTAGGGTAAGAAGTTTGTGTCTTTGTCTGGCCACATCTTGACT





AGGTATTGTCTACTCTGAAGACCTTTAATGGCTTCCCTCTTTCATCTCCTGAGTATGTAACTTGCAATGG





GCAGCTATCCAGTGACTTGTTCTGAGTAAGTGTGTTCATTAATGTTTATTTAGCTCTGAAGCAAGAGTGA





TATACTCCAGGACTTAGAATAGTGCCTAAAGTGCTGCAGCCAAAGACAGAGCGGAACTATGAAAAGTGGG





CTTGGAGATGGCAGGAGAGCTTGTCATTGAGCCTGGCAATTTAGCAAACTGATGCTGAGGATGATTGAGG





TGGGTCTACCTCATCTCTGAAAATTCTGGAAGGAATGGAGGAGTCTCAACATGTGTTTCTGACACAAGAT





CCGTGGTTTGTACTCAAAGCCCAGAATCCCCAAGTGCCTGCTTTTGATGATGTCTACAGAAAATGCTGGC





TGAGCTGAACACATTTGCCCAATTCCAGGTGTGCACAGAAAACCGAGAATATTCAAAATTCCAAATTTTT





TTCTTAGGAGCAAGAAGAAAATGTGGCCCTAAAGGGGGTTAGTTGAGGGGTAGGGGGTAGTGAGGATCTT





GATTTGGATCTCTTTTTATTTAAATGTGAATTTCAACTTTTGACAATCAAAGAAAAGACTTTTGTTGAAA





TAGCTTTACTGTTTCTCAAGTGTTTTGGAGAAAAAAATCAACCCTGCAATCACTTTTTGGAATTGTCTTG





ATTTTTCGGCAGTTCAAGCTATATCGAATATAGTTCTGTGTAGAGAATGTCACTGTAGTTTTGAGTGTAT





ACATGTGTGGGTGCTGATAATTGTGTATTTTCTTTGGGGGTGGAAAAGGAAAACAATTCAAGCTGAGAAA





AGTATTCTCAAAGATGCATTTTTATAAATTTTATTAAACAATTTTGTTAAACCAT





SEQ ID NO: 12



- Homo sapiens cyclin-dependent kinase inhibitor



1B (p27, Kip1) (CDKN1B), mRNA


CTTCTTCGTCAGCCTCCCTTCCACCGCCATATTGGGCCACTAAAAAAAGGGGGCTCGTCTTTTCGGGGTG





TTTTTCTCCCCCTCCCCTGTCCCCGCTTGCTCACGGCTCTGCGACTCCGACGCCGGCAAGGTTTGGAGAG





CGGCTGGGTTCGCGGGACCCGCGGGCTTGCACCCGCCCAGACTCGGACGGGCTTTGCCACCCTCTCCGCT





TGCCTGGTCCCCTCTCCTCTCCGCCCTCCCGCTCGCCAGTCCATTTGATCAGCGGAGACTCGGCGGCCGG





GCCGGGGCTTCCCCGCAGCCCCTGCGCGCTCCTAGAGCTCGGGCCGTGGCTCGTCGGGGTCTGTGTCTTT





TGGCTCCGAGGGCAGTCGCTGGGCTTCCGAGAGGGGTTCGGGCTGCGTAGGGGCGCTTTGTTTTGTTCGG





TTTTGTTTTTTTGAGAGTGCGAGAGAGGCGGTCGTGCAGACCCGGGAGAAAGATGTCAAACGTGCGAGTG





TCTAACGGGAGCCCTAGCCTGGAGCGGATGGACGCCAGGCAGGCGGAGCACCCCAAGCCCTCGGCCTGCA





GGAACCTCTTCGGCCCGGTGGACCACGAAGAGTTAACCCGGGACTTGGAGAAGCACTGCAGAGACATGGA





AGAGGCGAGCCAGCGCAAGTGGAATTTCGATTTTCAGAATCACAAACCCCTAGAGGGCAAGTACGAGTGG





CAAGAGGTGGAGAAGGGCAGCTTGCCCGAGTTCTACTACAGACCCCCGCGGCCCCCCAAAGGTGCCTGCA





AGGTGCCGGCGCAGGAGAGCCAGGATGTCAGCGGGAGCCGCCCGGCGGCGCCTTTAATTGGGGCTCCGGC





TAACTCTGAGGACACGCATTTGGTGGACCCAAAGACTGATCCGTCGGACAGCCAGACGGGGTTAGCGGAG





CAATGCGCAGGAATAAGGAAGCGACCTGCAACCGACGATTCTTCTACTCAAAACAAAAGAGCCAACAGAA





CAGAAGAAAATGTTTCAGACGGTTCCCCAAATGCCGGTTCTGTGGAGCAGACGCCCAAGAAGCCTGGCCT





CAGAAGACGTCAAACGTAAACAGCTCGAATTAAGAATATGTTTCCTTGTTTATCAGATACATCACTGCTT





GATGAAGCAAGGAAGATATACATGAAAATTTTAAAAATACATATCGCTGACTTCATGGAATGGACATCCT





GTATAAGCACTGAAAAACAACAACACAATAACACTAAAATTTTAGGCACTCTTAAATGATCTGCCTCTAA





AAGCGTTGGATGTAGCATTATGCAATTAGGTTTTTCCTTATTTGCTTCATTGTACTACCTGTGTATATAG





TTTTTACCTTTTATGTAGCACATAAACTTTGGGGAAGGGAGGGCAGGGTGGGGCTGAGGAACTGACGTGG





AGCGGGGTATGAAGAGCTTGCTTTGATTTACAGCAAGTAGATAAATATTTGACTTGCATGAAGAGAAGCA





ATTTTGGGGAAGGGTTTGAATTGTTTTCTTTAAAGATGTAATGTCCCTTTCAGAGACAGCTGATACTTCA





TTTAAAAAAATCACAAAAATTTGAACACTGGCTAAAGATAATTGCTATTTATTTTTACAAGAAGTTTATT





CTCATTTGGGAGATCTGGTGATCTCCCAAGCTATCTAAAGTTTGTTAGATAGCTGCATGTGGCTTTTTTA





AAAAAGCAACAGAAACCTATCCTCACTGCCCTCCCCAGTCTCTCTTAAAGTTGGAATTTACCAGTTAATT





ACTCAGCAGAATGGTGATCACTCCAGGTAGTTTGGGGCAAAAATCCGAGGTGCTTGGGAGTTTTGAATGT





TAAGAATTGACCATCTGCTTTTATTAAATTTGTTGACAAAATTTTCTCATTTTCTTTTCACTTCGGGCTG





TGTAAACACAGTCAAAATAATTCTAAATCCCTCGATATTTTTAAAGATCTGTAAGTAACTTCACATTAAA





AAATGAAATATTTTTTAATTTAAAGCTTACTCTGTCCATTTATCCACAGGAAAGTGTTATTTTTCAAGGA





AGGTTCATGTAGAGAAAAGCACACTTGTAGGATAAGTGAAATGGATACTACATCTTTAAACAGTATTTCA





TTGCCTGTGTATGGAAAAACCATTTGAAGTGTACCTGTGTACATAACTCTGTAAAAACACTGAAAAATTA





TACTAACTTATTTATGTTAAAAGATTTTTTTTAATCTAGACAATATACAAGCCAAAGTGGCATGTTTTGT





GCATTTGTAAATGCTGTGTTGGGTAGAATAGGTTTTCCCCTCTTTTGTTAAATAATATGGCTATGCTTAA





AAGGTTGCATACTGAGCCAAGTATAATTTTTTGTAATGTGTGAAAAAGATGCCAATTATTGTTACACATT





AAGTAATCAATAAAGAAAACTTCCATAGCTATT





SEQ ID No: 13



- Homo sapiens checkpoint kinase 2 (CHEK2),



transcript variant 3, mRNA


GCAGGTTTAGCGCCACTCTGCTGGCTGAGGCTGCGGAGAGTGTGCGGCTCCAGGTGGGCTCACGCGGTCG





TGATGTCTCGGGAGTCGGATGTTGAGGCTCAGCAGTCTCATGGCAGCAGTGCCTGTTCACAGCCCCATGG





CAGCGTTACCCAGTCCCAAGGCTCCTCCTCACAGTCCCAGGGCATATCCAGCTCCTCTACCAGCACGATG





CCAAACTCCAGCCAGTCCTCTCACTCCAGCTCTGGGACACTGAGCTCCTTAGAGACAGTGTCCACTCAGG





AACTCTATTCTATTCCTGAGGACCAAGAACCTGAGGACCAAGAACCTGAGGAGCCTACCCCTGCCCCCTG





GGCTCGATTATGGGCCCTTCAGGATGGATTTGCCAATCTTGAGACAGAGTCTGGCCATGTTACCCAATCT





GATCTTGAACTCCTGCTGTCATCTGATCCTCCTGCCTCAGCCTCCCAAAGTGCTGGGATAAGAGGTGTGA





GGCACCATCCCCGGCCAGTTTGCAGTCTAAAATGTGTGAATGACAACTACTGGTTTGGGAGGGACAAAAG





CTGTGAATATTGCTTTGATGAACCACTGCTGAAAAGAACAGATAAATACCGAACATACAGCAAGAAACAC





TTTCGGATTTTCAGGGAAGTGGGTCCTAAAAACTCTTACATTGCATACATAGAAGATCACAGTGGCAATG





GAACCTTTGTAAATACAGAGCTTGTAGGGAAAGGAAAACGCCGTCCTTTGAATAACAATTCTGAAATTGC





ACTGTCACTAAGCAGAAATAAAGTTTTTGTCTTTTTTGATCTGACTGTAGATGATCAGTCAGTTTATCCT





AAGGCATTAAGAGATGAATACATCATGTCAAAAACTCTTGGAAGTGGTGCCTGTGGAGAGGTAAAGCTGG





CTTTCGAGAGGAAAACATGTAAGAAAGTAGCCATAAAGATCATCAGCAAAAGGAAGTTTGCTATTGGTTC





AGCAAGAGAGGCAGACCCAGCTCTCAATGTTGAAACAGAAATAGAAATTTTGAAAAAGCTAAATCATCCT





TGCATCATCAAGATTAAAAACTTTTTTGATGCAGAAGATTATTATATTGTTTTGGAATTGATGGAAGGGG







G
AGAGCTGTTTGACAAAGTGGTGGGGAATAAACGCCTGAAAGAAGCTACCTGCAAGCTCTATTTTTACCA






GATGCTCTTGGCTGTGCAGTACCTTCATGAAAACGGTATTATACACCGTGACTTAAAGCCAGAGAATGTT





TTACTGTCATCTCAAGAAGAGGACTGTCTTATAAAGATTACTGATTTTGGGCACTCCAAGATTTTGGGAG





AGACCTCTCTCATGAGAACCTTATGTGGAACCCCCACCTACTTGGCGCCTGAAGTTCTTGTTTCTGTTGG





GACTGCTGGGTATAACCGTGCTGTGGACTGCTGGAGTTTAGGAGTTATTCTTTTTATCTGCCTTAGTGGG





TATCCACCTTTCTCTGAGCATAGGACTCAAGTGTCACTGAAGGATCAGATCACCAGTGGAAAATACAACT





TCATTCCTGAAGTCTGGGCAGAAGTCTCAGAGAAAGCTCTGGACCTTGTCAAGAAGTTGTTGGTAGTGGA





TCCAAAGGCACGTTTTACGACAGAAGAAGCCTTAAGACACCCGTGGCTTCAGGATGAAGACATGAAGAGA





AAGTTTCAAGATCTTCTGTCTGAGGAAAATGAATCCACAGCTCTACCCCAGGTTCTAGCCCAGCCTTCTA





CTAGTCGAAAGCGGCCCCGTGAAGGGGAAGCCGAGGGTGCCGAGACCACAAAGCGCCCAGCTGTGTGTGC





TGCTGTGTTGTGAACTCCGTGGTTTGAACACGAAAGAAATGTACCTTCTTTCACTCTGTCATCTTTCTTT





TCTTTGAGTCTGTTTTTTTATAGTTTGTATTTTAATTATGGGAATAATTGCTTTTTCACAGTCACTGATG





TACAATTAAAAACCTGATGGAACCTGGAAAA





SEQ ID NO: 14



- Homo sapiens colony stimulating factor 3 receptor



(granulocyte) (CSF3R), transcript variant 3, mRNA


GAGTACTGTGAAGATGTGGTCCCCAAGGCTAGAGCTGAAAAGAGGCTTAGGGCCGGGTGAGCCTTCCAGC





CAGGGCCTGCCTCCAAGTGATGCTCCCCCAGGGCAGGGGGCATAAGGATGGCACCCAGCCAGGTGGGAGC





CTGGGCCCTGCCCAGCCTCAAAGCTTTGAGCTCAGGAAATCCGGAGGCAGGGGAGGGGGACATCGTTGCC





ACATTCCCCAGCCCTTTAAGACCCCCAAGGCAGGAAGGCTGCCCGGGCCTCACCAGCTTCCCTCACAGGC





TCCTTCCTGGGAGGAAGGGGCTGCCTGTGCCCTCGAAGGCGCAAGGGAGGGCAGGAGGGAGGCTCGGAAG





GTGTTGCAATCCCCAGCCCCCGGGCCTGTCAGAGGCTGAGCCATTAACGACAGAGCTCGGGGAGAGAAGC





TGGACTGCAGCTGGTTTCAGGAACTTCTCTTGACGAGAAGAGAGACCAAGGAGGCCAAGCAGGGGCTGGG





CCAGAGGTGCCAACATGGGGAAACTGAGGCTCGGCTCGGAAAGGTGAAGTAACTTGTCCAAGATCACAAA





GCTGGTGAACATCAAGTTGGTGCTATGGCAAGGCTGGGAAACTGCAGCCTGACTTGGGCTGCCCTGATCA





TCCTGCTGCTCCCCGGAAGTCTGGAGGAGTGCGGGCACATCAGTGTCTCAGCCCCCATCGTCCACCTGGG





GGATCCCATCACAGCCTCCTGCATCATCAAGCAGAACTGCAGCCATCTGGACCCGGAGCCACAGATTCTG





TGGAGACTGGGAGCAGAGCTTCAGCCCGGGGGCAGGCAGCAGCGTCTGTCTGATGGGACCCAGGAATCTA





TCATCACCCTGCCCCACCTCAACCACACTCAGGCCTTTCTCTCCTGCTGCCTGAACTGGGGCAACAGCCT





GCAGATCCTGGACCAGGTTGAGCTGCGCGCAGGCTACCCTCCAGCCATACCCCACAACCTCTCCTGCCTC





ATGAACCTCACAACCAGCAGCCTCATCTGCCAGTGGGAGCCAGGACCTGAGACCCACCTACCCACCAGCT





TCACTCTGAAGAGTTTCAAGAGCCGGGGCAACTGTCAGACCCAAGGGGACTCCATCCTGGACTGCGTGCC





CAAGGACGGGCAGAGCCACTGCTGCATCCCACGCAAACACCTGCTGTTGTACCAGAATATGGGCATCTGG





GTGCAGGCAGAGAATGCGCTGGGGACCAGCATGTCCCCACAACTGTGTCTTGATCCCATGGATGTTGTGA





AACTGGAGCCCCCCATGCTGCGGACCATGGACCCCAGCCCTGAAGCGGCCCCTCCCCAGGCAGGCTGCCT





ACAGCTGTGCTGGGAGCCATGGCAGCCAGGCCTGCACATAAATCAGAAGTGTGAGCTGCGCCACAAGCCG





CAGCGTGGAGAAGCCAGCTGGGCACTGGTGGGCCCCCTCCCCTTGGAGGCCCTTCAGTATGAGCTCTGCG





GGCTCCTCCCAGCCACGGCCTACACCCTGCAGATACGCTGCATCCGCTGGCCCCTGCCTGGCCACTGGAG





CGACTGGAGCCCCAGCCTGGAGCTGAGAACTACCGAACGGGCCCCCACTGTCAGACTGGACACATGGTGG





CGGCAGAGGCAGCTGGACCCCAGGACAGTGCAGCTGTTCTGGAAGCCAGTGCCCCTGGAGGAAGACAGCG





GACGGATCCAAGGTTATGTGGTTTCTTGGAGACCCTCAGGCCAGGCTGGGGCCATCCTGCCCCTCTGCAA





CACCACAGAGCTCAGCTGCACCTTCCACCTGCCTTCAGAAGCCCAGGAGGTGGCCCTTGTGGCCTATAAC





TCAGCCGGGACCTCTCGTCCCACTCCGGTGGTCTTCTCAGAAAGCAGAGGCCCAGCTCTGACCAGACTCC





ATGCCATGGCCCGAGACCCTCACAGCCTCTGGGTAGGCTGGGAGCCCCCCAATCCATGGCCTCAGGGCTA





TGTGATTGAGTGGGGCCTGGGCCCCCCCAGCGCGAGCAATAGCAACAAGACCTGGAGGATGGAACAGAAT





GGGAGAGCCACGGGGTTTCTGCTGAAGGAGAACATCAGGCCCTTTCAGCTCTATGAGATCATCGTGACTC





CCTTGTACCAGGACACCATGGGACCCTCCCAGCATGTCTATGCCTACTCTCAAGAAATGGCTCCCTCCCA





TGCCCCAGAGCTGCATCTAAAGCACATTGGCAAGACCTGGGCACAGCTGGAGTGGGTGCCTGAGCCCCCT





GAGCTGGGGAAGAGCCCCCTTACCCACTACACCATCTTCTGGACCAACGCTCAGAACCAGTCCTTCTCCG





CCATCCTGAATGCCTCCTCCCGTGGCTTTGTCCTCCATGGCCTGGAGCCCGCCAGTCTGTATCACATCCA





CCTCATGGCTGCCAGCCAGGCTGGGGCCACCAACAGTACAGTCCTCACCCTGATGACCTTGACCCCAGAG





GGGTCGGAGCTACACATCATCCTGGGCCTGTTCGGCCTCCTGCTGTTGCTCACCTGCCTCTGTGGAACTG





CCTGGCTCTGTTGCAGCCCCAACAGGAAGAATCCCCTCTGGCCAAGTGTCCCAGACCCAGCTCACAGCAG





CCTGGGCTCCTGGGTGCCCACAATCATGGAGGAGCTGCCCGGACCCAGACAGGGACAGTGGCTGGGGCAG





ACATCTGAAATGAGCCGTGCTCTCACCCCACATCCTTGTGTGCAGGATGCCTTCCAGCTGCCCGGCCTTG





GCACGCCACCCATCACCAAGCTCACAGTGCTGGAGGAGGATGAAAAGAAGCCGGTGCCCTGGGAGTCCCA





TAACAGCTCAGAGACCTGTGGCCTCCCCACTCTGGTCCAGACCTATGTGCTCCAGGGGGACCCAAGAGCA





GTTTCCACCCAGCCCCAATCCCAGTCTGGCACCAGCGATCAGGTCCTTTATGGGCAGCTGCTGGGCAGCC





CCACAAGCCCAGGGCCAGGGCACTATCTCCGCTGTGACTCCACTCAGCCCCTCTTGGCGGGCCTCACCCC





CAGCCCCAAGTCCTATGAGAACCTCTGGTTCCAGGCCAGCCCCTTGGGGACCCTGGTAACCCCAGCCCCA





AGCCAGGAGGACGACTGTGTCTTTGGGCCACTGCTCAACTTCCCCCTCCTGCAGGGGATCCGGGTCCATG





GGATGGAGGCGCTGGGGAGCTTCTAGGGCTTCCTGGGGTTCCCTTCTTGGGCCTGCCTCTTAAAGGCCTG





AGCTAGCTGGAGAAGAGGGGAGGGTCCATAAGCCCATGACTAAAAACTACCCCAGCCCAGGCTCTCACCA





TCTCCAGTCACCAGCATCTCCCTCTCCTCCCAATCTCCATAGGCTGGGCCTCCCAGGCGATCTGCATACT





TTAAGGACCAGATCATGCTCCATCCAGCCCCACCCAATGGCCTTTTGTGCTTGTTTCCTATAACTTCAGT





ATTGTAAACTAGTTTTTGGTTTGCAGTTTTTGTTGTTGTTTATAGACACTCTTGGGTGTAAAAAAAAAAA





SEQ ID NO: 15



- CYHomo sapiens cathepsin S (CTSS),



transcript variant 1, mRNA


GACAAGGGCTCTTCTTGATGGCTTACTGTATCCACTTTGTCCCCAAGACCATAGGGAAATGACTAGAGGT





GACTGTACTAGCTAGATTTTAAATGAAACTGAAATGAAAGTTCACTTCCTCATTTTGAGTACCTCATGTG





ACAAGTTCCAATTTCTTTTCAAGTCAATTGAACTGAAATCTCCTTGTTGCTTTGAAATCTTAGAAGAGAG





CCCACTAATTCAAGGACTCTTACTGTGGGAGCAACTGCTGGTTCTATCACAATGAAACGGCTGGTTTGTG





TGCTCTTGGTGTGCTCCTCTGCAGTGGCACAGTTGCATAAAGATCCTACCCTGGATCACCACTGGCATCT





CTGGAAGAAAACCTATGGCAAACAATACAAGGAAAAGAATGAAGAAGCAGTACGACGTCTCATCTGGGAA





AAGAATCTAAAGTTTGTGATGCTTCACAACCTGGAGCATTCAATGGGAATGCACTCATACGATCTGGGCA





TGAACCACCTGGGAGACATGACCAGTGAAGAAGTGATGTCTTTGATGAGTTCCCTGAGAGTTCCCAGCCA





GTGGCAGAGAAATATCACATATAAGTCAAACCCTAATCGGATATTGCCTGATTCTGTGGACTGGAGAGAG





AAAGGGTGTGTTACTGAAGTGAAATATCAAGGTTCTTGTGGTGCTTGCTGGGCTTTCAGTGCTGTGGGGG





CCCTGGAAGCACAGCTGAAGCTGAAAACAGGAAAGCTGGTGTCTCTCAGTGCCCAGAACCTGGTGGATTG





CTCAACTGAAAAATATGGAAACAAAGGCTGCAATGGTGGCTTCATGACAACGGCTTTCCAGTACATCATT





GATAACAAGGGCATCGACTCAGACGCTTCCTATCCCTACAAAGCCATGGATCAGAAATGTCAATATGACT





CAAAATATCGTGCTGCCACATGTTCAAAGTACACTGAACTTCCTTATGGCAGAGAAGATGTCCTGAAAGA





AGCTGTGGCCAATAAAGGCCCAGTGTCTGTTGGTGTAGATGCGCGTCATCCTTCTTTCTTCCTCTACAGA





AGTGGTGTCTACTATGAACCATCCTGTACTCAGAATGTGAATCATGGTGTACTTGTGGTTGGCTATGGTG





ATCTTAATGGGAAAGAATACTGGCTTGTGAAAAACAGCTGGGGCCACAACTTTGGTGAAGAAGGATATAT





TCGGATGGCAAGAAATAAAGGAAATCATTGTGGGATTGCTAGCTTTCCCTCTTACCCAGAAATCTAGAGG





ATCTCTCCTTTTTATAACAAATCAAGAAATATGAAGCACTTTCTCTTAACTTAATTTTTCCTGCTGTATC





CAGAAGAAATAATTGTGTCATGATTAATGTGTATTTACTGTACTAATTAGAAAATATAGTTTGAGGCCGG





GCACGGTGGCTCACGCCTGTAATCCCAGTACTTGGGAGGCCAAGGCAGGCATATCAACTTGAGGCCAGGA





GTTAAAGAGCAGCCTGGCTAACATGGTGAAACCCCATCTCTACTAAAAATACAAAAAATTAGCCGAGCAC





GGTGGTGCATGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCACGAGATTCCTTGAACCCAAGAGGTTG





AGGCTATGTTGAGCTGAGATCACACCACTGTACTCCAGCCTGGATGACAGAGTGGAGACTCTGTTTCAAA





AAAACAGAAAAGAAAATATAGTTTGATTCTTCATTTTTTTAAATTTGCAAATCTCAGGATAAAGTTTGCT





AAGTAAATTAGTAATGTACTATAGATATAACTGTACAAAAATTGTTCAACCTAAAACAATCTGTAATTGC





TTATTGTTTTATTGTATACTCTTTGTCTTTTTAAGACCCCTAATAGCCTTTTGTAACTTGATGGCTTAAA





AATACTTAATAAATCTGCCATTTCAAATTTCTATCATTGCCACATACCATTCTTATTCCTAGGCAACTAT





TAATAATCTATCCTGAGAATATTAATTGTGGTATTCTGGTGATGGGGTTTAGCAACTTTGATGGAAGAAA





ATATTAGGCTATAAATGTCCTAAGGACTCAGATTGTATCTTTGTACAGAAGAGGATTCAAAACGCCACGT





GTAGTGGCTCATGCCTGTAATCCCAACACTTTGGGAGGCTGAAGTAGGAGGATCGTCTTGAGCCCAGGAG





TTCAAGACCAGCCTGGACAACATAGTGAGACCTTGTCTCCACAAAAATAAAAAAGAAACTATCCAGGAGT





GGTGGTGTGTGCCTGTGGTCCCTGCTATGCAGATGTCTAAGACAGGAGGATCACAAGAGCCCAGGAGGTT





GAGAATGCAGTGAGCTTGTAATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCAAGACCCTGTCTTAA





AAAAAGAGGATTCAACACATATTTTTATATTATGTTAAAGTAAAGAAATGCATAAAAGACAAGCACTTTG





GAAGAATTATTTTAATGATCAACAATTTAATGTATTAGTCCAAATTATTTTTACGTAGTCATCAACAATT





TGACCAGGGCCTTTATTTGGCAAATAACTGAGCCAACCAGAATAAAATAACCAATACTCCACTGCTCATA





TTTTTATCTAATTCAGATGGATCTTCCTTACAACTGCTCTAGATTAGTAGATGCATCTAAGCAGGCAGCA





GGAACTTTAAATTTTTTAAGTTCATGTCTATGACATGAACAATGTGTGGGATAATGTCATTAATATATCC





TAAATTAACCTAAACGTATTTCACTAACTCTGGCTCCTTCTCCATAAAGCACATTTTAAGGAACAAGAAT





TGCTAAATATAAAAACATAAATAATACCATAATACATGGCTATCATCAAAAGTGTATAGAATATTATAGT





TTAAAAGTATTTAGTTGATTACTTTTCAGTTTTGTTTTGTTTTTTGAGACGGAGTCTCACTCTGTTGCCC





AGGCTGGAGTGCAGTGGCACCATCTCAGTTCACTGCAACTTCTGCCTCCCGAGTTCAAGCGATTCTCCTG





CCTCAGCCTCCCGAGTAGCTGGAATTATAGGCGTGCACCACCACGCCCAGCTAATTTTTGTATTTTTAGT





AAAGACAGGGTTTTGCCACATTAGCCAGGCTGGTCTCAAACTCCTGACCTCAGGTGATCCACCCACCCCA





GCCTCCCAAAGTGCTAAGATTACAGGCGTGAGCCACTGAGCCCAGCCTACTTTTCAGTTTTTAACATAAT





TTTTGTTTTATCCACAACTTTTCAAGTATTGAAAGTAGAATAAAAACATGGGTTCTTAGTCTTTAGCTAT





CTGTTAAAGCCTATGAATGCCTTCTTAAAATCATGTTTTTAAATGCATAAAATATATAGGATTACAAAGG





AATCTAATTATATCGAAATACAGTTATTAAAATGTTAAAAGATAAGTTTGTTATATATTAATATGCATGC





TTCTTTATAAATGCATTAAATAAGAGTTAATAGCTATCCTAAATTTGAAATAGTGATAAGCATAATGAAA





ATAGATGCAAAAAACTAATGTGATATGAAAATATCTGGGTTTTTCTTTTGATGATGAAGTATTGCTAATA





TTACCGTGGTTTATGAACTATGTTCAGAATTGAAGAAAATCCTAACTTTCAGTTAGAGGTTAGTGACGGG





GTTCAGGACACCCTACACAAAATACAGCACTTTGACATATTGAATATTTTAAGCTGAAGGCATTTGAGGA





AATTGCAGAAGCAGGAAGGTGACTCTGACCTTCTGCCTGCTGTTCTCCCCAGAAGCAGCCATAAAACCTG





GGAAGGATTTTCTGACCTTCCCCTGAAGTAGATCATAAGACTGTCATGTAAGAGGTGCTCTCCTGGCACC





CAGAGAAAAGGAGCATCCTTACCTCCAAAAGCACAGGGACACAAAGAGGAATCTAAACAAACAGGCCTCT





CAGTTTCCCCCAGTTTATTACATTTAGCTTGTTCACACTTTGCCCTATGACATTTCTACATCACTGGCTG





CTCTTCATCAAACCTACTATAAAAAACATTCAAGTTCAACTGTTTCTTTGGGCCTTTATTTCCTTATGGA





GCCCCTCGTGTCGTGTAAAACTTATATTAAATAAATGTGCATGCTTT





SEQ ID NO: 16



- Homo sapiens epoxide hydrolase 2,



cytoplasmic (EPHX2), mRNA


CTGGGCGGGTCATGCGCCCTGGCCTTCGCGCATCTCCCAGGTTAGCTGCGTGTCCGGGTGCTAGGCTGCA





GACCCGCCGCCATGACGCTGCGCGCGGCCGTCTTCGACCTTGACGGGGTGCTGGCGCTGCCAGCGGTGTT





CGGCGTCCTCGGCCGCACGGAGGAGGCCCTGGCGCTGCCCAGAGGACTTCTGAATGATGCTTTCCAGAAA





GGGGGACCAGAGGGTGCCACTACCCGGCTTATGAAAGGAGAGATCACACTTTCCCAGTGGATACCACTCA





TGGAAGAAAACTGCAGGAAGTGCTCCGAGACCGCTAAAGTCTGCCTCCCCAAGAATTTCTCCATAAAAGA





AATCTTTGACAAGGCGATTTCAGCCAGAAAGATCAACCGCCCCATGCTCCAGGCAGCTCTCATGCTCAGG





AAGAAAGGATTCACTACTGCCATCCTCACCAACACCTGGCTGGACGACCGTGCTGAGAGAGATGGCCTGG





CCCAGCTGATGTGTGAGCTGAAGATGCACTTTGACTTCCTGATAGAGTCGTGTCAGGTGGGAATGGTCAA





ACCTGAACCTCAGATCTACAAGTTTCTGCTGGACACCCTGAAGGCCAGCCCCAGTGAGGTCGTTTTTTTG





GATGACATCGGGGCTAATCTGAAGCCAGCCCGTGACTTGGGAATGGTCACCATCCTGGTCCAGGACACTG





ACACGGCCCTGAAAGAACTGGAGAAAGTGACCGGAATCCAGCTTCTCAATACCCCGGCCCCTCTGCCGAC





CTCTTGCAATCCAAGTGACATGAGCCATGGGTACGTGACAGTAAAGCCCAGGGTCCGTCTGCATTTTGTG





GAGCTGGGCTCCGGCCCTGCTGTGTGCCTCTGCCATGGATTTCCCGAGAGTTGGTATTCTTGGAGGTACC





AGATCCCTGCTCTGGCCCAGGCAGGTTACCGGGTCCTAGCTATGGACATGAAAGGCTATGGAGAGTCATC





TGCTCCTCCCGAAATAGAAGAATATTGCATGGAAGTGTTATGTAAGGAGATGGTAACCTTCCTGGATAAA





CTGGGCCTCTCTCAAGCAGTGTTCATTGGCCATGACTGGGGTGGCATGCTGGTGTGGTACATGGCTCTCT





TCTACCCCGAGAGAGTGAGGGCGGTGGCCAGTTTGAATACTCCCTTCATACCAGCAAATCCCAACATGTC





CCCTTTGGAGAGTATCAAAGCCAACCCAGTATTTGATTACCAGCTCTACTTCCAAGAACCAGGAGTGGCT





GAGGCTGAACTGGAACAGAACCTGAGTCGGACTTTCAAAAGCCTCTTCAGAGCAAGCGATGAGAGTGTTT





TATCCATGCATAAAGTCTGTGAAGCGGGAGGACTTTTTGTAAATAGCCCAGAAGAGCCCAGCCTCAGCAG





GATGGTCACTGAGGAGGAAATCCAGTTCTATGTGCAGCAGTTCAAGAAGTCTGGTTTCAGAGGTCCTCTA





AACTGGTACCGAAACATGGAAAGGAACTGGAAGTGGGCTTGCAAAAGCTTGGGACGGAAGATCCTGATTC





CGGCCCTGATGGTCACGGCGGAGAAGGACTTCGTGCTCGTTCCTCAGATGTCCCAGCACATGGAGGACTG





GATTCCCCACCTGAAAAGGGGACACATTGAGGACTGTGGGCACTGGACACAGATGGACAAGCCAACCGAG





GTGAATCAGATCCTCATTAAGTGGCTGGATTCTGATGCCCGGAACCCACCGGTGGTCTCAAAGATGTAGA





ACGCAGCGTGTGCCCACGCTCAGCAGGTGTGCCATCCTTCCACCTGCTGGGGCACCATTCTTAGTATACA





GAGGTGGCCTTACACACATCTTGCATGGATGGCAGCATTGTTCTGAAGGGGTTTGCAGAAAAAAAAGATT





TTCTTTACATAAAGTGAATCAAATTTGACATTATTTTAGATCCCAGAGAAATCAGGTGTGATTAGTTCTC





CAGGCATGAATGCATCGTCCCTTTATCTGTAAGAACCCTTAGTGTCCTGTAGGGGGACAGAATGGGGTGG





CCAGGTGGTGATTTCTCTTTGACCAATGCATAGTTTGGCAGAAAAATCAGCCGTTCATTTAGAAGAATCT





TAGCAGAGATTGGGATGCCTTACTCAATAAAGCTAAGATGACTATGCTGCTGGCTGTCTTTGTTCTTGGA





GAGGTGGAGTGACTGTTCACGGAGAA





SEQ ID NO: 17



- Homo sapiens exostosin 2 (EXT2),



transcript variant 2, mRNA


CTGTCTGAGCATTTCACTGCGGAGCCTGAGCGCGCCTGCCTGGGAAAACACTGCAGCGGTGCTCGGACTC





CTCCTGTCCAGCAGGAGGCGCGGCCCGGCAGCTCCCGCATGCGCAGTGCGCTCGGTGTCAGACGGCCCGG





ATCCCGGTTACCGGCCCCTCGCTCGCTGCTCGCCAGCCCAGACTCGGCCCTGGCAGTGGCGGCTGGCGAT





TCGGACCGATCCGACCTGGGCGGAGGTGGCCCGCGCCCCGCGGCATGAGCCGGTGACCAAGCTCGGGGCC





GAGCGGGAGGCAGCCGTGGCCGAGGAGTGTGAGGAAGAGGCTGTCTGTGTCATTATGTGTGCGTCGGTCA





AGTATAATATCCGGGGTCCTGCCCTCATCCCAAGAATGAAGACCAAGCACCGAATCTACTATATCACCCT





CTTCTCCATTGTCCTCCTGGGCCTCATTGCCACTGGCATGTTTCAGTTTTGGCCCCATTCTATCGAGTCC





TCAAATGACTGGAATGTAGAGAAGCGCAGCATCCGTGATGTGCCGGTTGTTAGGCTGCCAGCCGACAGTC





CCATCCCAGAGCGGGGGGATCTCAGTTGCAGAATGCACACGTGTTTTGATGTCTATCGCTGTGGCTTCAA





CCCAAAGAACAAAATCAAGGTGTATATCTATGCTCTGAAAAAGTACGTGGATGACTTTGGCGTCTCTGTC





AGCAACACCATCTCCCGGGAGTATAATGAACTGCTCATGGCCATCTCAGACAGTGACTACTACACTGATG





ACATCAACCGGGCCTGTCTGTTTGTTCCCTCCATCGATGTGCTTAACCAGAACACACTGCGCATCAAGGA





GACAGCACAAGCGATGGCCCAGCTCTCTAGGTGGGATCGAGGTACGAATCACCTGTTGTTCAACATGTTG





CCTGGAGGTCCCCCAGATTATAACACAGCCCTGGATGTCCCCAGAGACAGGGCCCTGTTGGCTGGTGGCG





GCTTTTCTACGTGGACTTACCGGCAAGGCTACGATGTCAGCATTCCTGTCTATAGTCCACTGTCAGCTGA





GGTGGATCTTCCAGAGAAAGGACCAGGTCCACGGCAATACTTCCTCCTGTCATCTCAGGTGGGTCTCCAT





CCTGAGTACAGAGAGGACCTAGAAGCCCTCCAGGTCAAACATGGAGAGTCAGTGTTAGTACTCGATAAAT





GCACCAACCTCTCAGAGGGTGTCCTTTCTGTCCGTAAGCGCTGCCACAAGCACCAGGTCTTCGATTACCC





ACAGGTGCTACAGGAGGCTACTTTCTGTGTGGTTCTTCGTGGAGCTCGGCTGGGCCAGGCAGTATTGAGC





GATGTGTTACAAGCTGGCTGTGTCCCGGTTGTCATTGCAGACTCCTATATTTTGCCTTTCTCTGAAGTTC





TTGACTGGAAGAGAGCATCTGTGGTTGTACCAGAAGAAAAGATGTCAGATGTGTACAGTATTTTGCAGAG





CATCCCCCAAAGACAGATTGAAGAAATGCAGAGACAGGCCCGCTGGTTCTGGGAAGCGTACTTCCAGTCA





ATTAAAGCCATTGCCCTGGCCACCCTGCAGATTATCAATGACCGGATCTATCCATATGCTGCCATCTCCT





ATGAAGAATGGAATGACCCTCCTGCTGTGAAGTGGGGCAGCGTGAGCAATCCACTCTTCCTCCCGCTGAT





CCCACCACAGTCTCAAGGGTTCACCGCCATAGTCCTCACCTACGACCGAGTAGAGAGCCTCTTCCGGGTC





ATCACTGAAGTCTCCAAGGTGCCCAGTCTATCCAAACTACTTCTCGTCTGGAATAATCAGAATAAAAACC





CTCCAGAAGATTCTCTCTGGCCCAAAATCCGGGTTCCATTAAAAGTTGTGAGGACTGCTGAAAACAAGTT





AAGTAACCGTTTCTTCCCTTATGATGAAATCGAGACAGAAGCTGTTCTGGCCATTGATGATGATATCATT





ATGCTGACCTCTGACGAGCTGCAATTTGGTTATGAGGTCTGGCGGGAATTTCCTGACCGGTTGGTGGGTT





ACCCGGGTCGTCTGCATCTCTGGGACCATGAGATGAATAAGTGGAAGTATGAGTCTGAGTGGACGAATGA





AGTGTCCATGGTGCTCACTGGGGCAGCTTTTTATCACAAGTATTTTAATTACCTGTATACCTACAAAATG





CCTGGGGATATCAAGAACTGGGTAGATGCTCATATGAACTGTGAAGATATTGCCATGAACTTCCTGGTGG





CCAACGTCACGGGAAAAGCAGTTATCAAGGTAACCCCACGAAAGAAATTCAAGTGTCCTGAGTGCACAGC





CATAGATGGGCTTTCACTAGACCAAACACACATGGTGGAGAGGTCAGAGTGCATCAACAAGTTTGCTTCA





GTCTTCGGGACCATGCCTCTCAAGGTGGTGGAACACCGAGCTGACCCTGTCCTGTACAAAGATGACTTTC





CTGAGAAGCTGAAGAGCTTCCCCAACATTGGCAGCTTATGAAACGTGTCATTGGTGGAGGTCTGAATGTG





AGGCTGGGACAGAGGGAGAGAACAAGGCCTCCCAGCACTCTGATGTCAGAGTAGTAGGTTAAGGGTGGAA





GGTTGACCTACTTGGATCTTGGCATGCACCCACCTAACCCACTTTCTCAAGAACAAGAACCTAGAATGAA





TATCCAAGCACCTCGAGCTATGCAACCTCTGTTCTTGTATTTCTTATGATCTCTGATGGGTTCTTCTCGA





AAATGCCAAGTGGAAGACTTTGTGGCATGCTCCAGATTTAAATCCAGCTGAGGCTCCCTTTGTTTTCAGT





TCCATGTAACAATCTGGAAGGAAACTTCACGGACAGGAAGACTGCTGGAGAAGAGAAGCGTGTTAGCCCA





TTTGAGGTCTGGGGAATCATGTAAAGGGTACCCAGACCTCACTTTTAGTTATTTACATCAATGAGTTCTT





TCAGGGAACCAAACCCAGAATTCGGTGCAAAAGCCAAACATCTTGGTGGGATTTGATAAATGCCTTGGGA





CCTGGAGTGCTGGGCTTGTGCACAGGAAGAGCACCAGCCGCTGAGTCAGGATCCTGTCAGTTCCATGAGC





TATTCCTCTTTGGTTTGGCTTTTTGATATGATTAAAATTATTTTTTATTCCTTTTTCTACTGTGTCTTAA





ACACCAATTCCTGATAGTCCAAGGAACCACCTTTCTCCCTTGATATATTTAACTCCGTCTTTGGCCTGAC





AACAGTCTTCTGCCCATGTCTGGGAACACACGCCAGGAGGAATGTCTGATACCCTCTGCATCAAGCGTAA





GAAGGTCCCAAATCATAACCATTTTAAGAACAGATGACTCAGAAACCTCCAGAGGAATCTGTTTGCTTCC





TGATTAGATCCAGTCAATGTTTTAAAGGTATTGTCAGAGAAAAACAGAGGGTCTGTACTAGCCATGCAAG





GAGTCGCTCTAGCTGGTACCCGTAAAAGTTGTGGGAATTGTGACCCCCATCCCAAGGGGATGCCAAAATT





TCTCTCATTCTTTTGGTATAAACTTAACATTAGCCAGGGAGGTTCTGGCTAACGTTAAATGCTGCTATAC





AACTGCTTTGCAACAGTTGCTGGTATATTTAAATCATTAAATTTCAGCATTTACTAATACTGCAAAAAAA





AAAAAAAAAAA


SEQ ID NO: 18



- Homo sapiens FBJ murine osteosarcoma viral



oncogene homolog (FOS), mRNA


ATTCATAAAACGCTTGTTATAAAAGCAGTGGCTGCGGCGCCTCGTACTCCAACCGCATCTGCAGCGAGCA





TCTGAGAAGCCAAGACTGAGCCGGCGGCCGCGGCGCAGCGAACGAGCAGTGACCGTGCTCCTACCCAGCT





CTGCTCCACAGCGCCCACCTGTCTCCGCCCCTCGGCCCCTCGCCCGGCTTTGCCTAACCGCCACGATGAT





GTTCTCGGGCTTCAACGCAGACTACGAGGCGTCATCCTCCCGCTGCAGCAGCGCGTCCCCGGCCGGGGAT





AGCCTCTCTTACTACCACTCACCCGCAGACTCCTTCTCCAGCATGGGCTCGCCTGTCAACGCGCAGGACT







TCT
GCACGGACCTG
GCCGTCTCCAGTGCCAACTTCATTCCCACGGTCACTGCCATCTCGACCAGTCCGGA






CCTGCAGTGGCTGGTGCAGCCCGCCCTCGTCTCCTCCGTGGCCCCATCGCAGACCAGAGCCCCTCACCCT





TTCGGAGTCCCCGCCCCCTCCGCTGGGGCTTACTCCAGGGCTGGCGTTGTGAAGACCATGACAGGAGGCC





GAGCGCAGAGCATTGGCAGGAGGGGCAAGGTGGAACAGTTATCTCCAGAAGAAGAAGAGAAAAGGAGAAT





CCGAAGGGAAAGGAATAAGATGGCTGCAGCCAAATGCCGCAACCGGAGGAGGGAGCTGACTGATACACTC





CAAGCGGAGACAGACCAACTAGAAGATGAGAAGTCTGCTTTGCAGACCGAGATTGCCAACCTGCTGAAGG





AGAAGGAAAAACTAGAGTTCATCCTGGCAGCTCACCGACCTGCCTGCAAGATCCCTGATGACCTGGGCTT





CCCAGAAGAGATGTCTGTGGCTTCCCTTGATCTGACTGGGGGCCTGCCAGAGGTTGCCACCCCGGAGTCT





GAGGAGGCCTTCACCCTGCCTCTCCTCAATGACCCTGAGCCCAAGCCCTCAGTGGAACCTGTCAAGAGCA





TCAGCAGCATGGAGCTGAAGACCGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAGGCCCAGTGG





CTCTGAGACAGCCCGCTCCGTGCCAGACATGGACCTATCTGGGTCCTTCTATGCAGCAGACTGGGAGCCT





CTGCACAGTGGCTCCCTGGGGATGGGGCCCATGGCCACAGAGCTGGAGCCCCTGTGCACTCCGGTGGTCA





CCTGTACTCCCAGCTGCACTGCTTACACGTCTTCCTTCGTCTTCACCTACCCCGAGGCTGACTCCTTCCC





CAGCTGTGCAGCTGCCCACCGCAAGGGCAGCAGCAGCAATGAGCCTTCCTCTGACTCGCTCAGCTCACCC





ACGCTGCTGGCCCTGTGAGGGGGCAGGGAAGGGGAGGCAGCCGGCACCCACAAGTGCCACTGCCCGAGCT





GGTGCATTACAGAGAGGAGAAACACATCTTCCCTAGAGGGTTCCTGTAGACCTAGGGAGGACCTTATCTG





TGCGTGAAACACACCAGGCTGTGGGCCTCAAGGACTTGAAAGCATCCATGTGTGGACTCAAGTCCTTACC





TCTTCCGGAGATGTAGCAAAACGCATGGAGTGTGTATTGTTCCCAGTGACACTTCAGAGAGCTGGTAGTT





AGTAGCATGTTGAGCCAGGCCTGGGTCTGTGTCTCTTTTCTCTTTCTCCTTAGTCTTCTCATAGCATTAA





CTAATCTATTGGGTTCATTATTGGAATTAACCTGGTGCTGGATATTTTCAAATTGTATCTAGTGCAGCTG





ATTTTAACAATAACTACTGTGTTCCTGGCAATAGTGTGTTCTGATTAGAAATGACCAATATTATACTAAG





AAAAGATACGACTTTATTTTCTGGTAGATAGAAATAAATAGCTATATCCATGTACTGTAGTTTTTCTTCA





ACATCAATGTTCATTGTAATGTTACTGATCATGCATTGTTGAGGTGGTCTGAATGTTCTGACATTAACAG





TTTTCCATGAAAACGTTTTATTGTGTTTTTAATTTATTTATTAAGATGGATTCTCAGATATTTATATTTT





TATTTTATTTTTTTCTACCTTGAGGTCTTTTGACATGTGGAAAGTGAATTTGAATGAAAAATTTAAGCAT





TGTTTGCTTATTGTTCCAAGACATTGTCAATAAAAGCATTTAAGTTGAATGCGACCAA





SEQ ID NO: 19



- Homo sapiens FOS-like antigen 1 (FOSL1), mRNA



ACGGGCCAAGGCGGCGCGTCTCGGGGGTGGAGCCTGGAGGTGACCGCGCCGCTGCAACGCCCCCACCCCC





CGCGGTCGCAGTGGTTCAGCCCGAGAACTTTTCATTCATAAAAAGAAAAGACTCCGCACGGCGCGGGTGA





GTCAGAACCCAGCAGCCGTGTACCCCGCAGAGCCGCCAGCCCCGGGCATGTTCCGAGACTTCGGGGAACC





CGGCCCGAGCTCCGGGAACGGCGGCGGGTACGGCGGCCCCGCGCAGCCCCCGGCCGCAGCGCAGGCAGCC





CAGCAGAAGTTCCACCTGGTGCCAAGCATCAACACCATGAGTGGCAGTCAGGAGCTGCAGTGGATGGTAC





AGCCTCATTTCCTGGGGCCCAGCAGTTACCCCAGGCCTCTGACCTACCCTCAGTACAGCCCCCCACAACC





CCGGCCAGGAGTCATCCGGGCCCTGGGGCCGCCTCCAGGGGTACGTCGAAGGCCTTGTGAACAGATCAGC





CCGGAGGAAGAGGAGCGCCGCCGAGTAAGGCGCGAGCGGAACAAGCTGGCTGCGGCCAAGTGCAGGAACC





GGAGGAAGGAACTGACCGACTTCCTGCAGGCGGAGACTGACAAACTGGAAGATGAGAAATCTGGGCTGCA





GCGAGAGATTGAGGAGCTGCAGAAGCAGAAGGAGCGCCTAGAGCTGGTGCTGGAAGCCCACCGACCCATC





TGCAAAATCCCGGAAGGAGCCAAGGAGGGGGACACAGGCAGTACCAGTGGCACCAGCAGCCCACCAGCCC





CCTGCCGCCCTGTACCTTGTATCTCCCTTTCCCCAGGGCCTGTGCTTGAACCTGAGGCACTGCACACCCC





CACACTCATGACCACACCCTCCCTAACTCCTTTCACCCCCAGCCTGGTCTTCACCTACCCCAGCACTCCT





GAGCCTTGTGCCTCAGCTCATCGCAAGAGTAGCAGCAGCAGCGGAGACCCATCCTCTGACCCCCTTGGCT





CTCCAACCCTCCTCGCTTTGTGAGGCGCCTGAGCCCTACTCCCTGCAGATGCCACCCTAGCCAATGTCTC





CTCCCCTTCCCCCACCGGTCCAGCTGGCCTGGACAGTATCCCACATCCAACTCCAGCAACTTCTTCTCCA







T
CCCTCTAATGAGACTGACCATATTGTGCTTCACAGTAGAGCCAGCTTGGGGCCACCAAAGCTGCCCACT






GTTTCTCTTGAGCTGGCCTCTCTAGCACAATTTGCACTAAATCAGAGACAAAATATTTCCCATTTGTGCC





AGAGGAATCCTGGCAGCCCAGAGACTTTGTAGATCCTTAGAGGTCCTCTGGAGCCCTAACCCCTTCCAGA





TCACTGCCACACTCTCCATCACCCTCTTCCTGTGATCCACCCAACCCTATCTCCTGACAGAAGGTGCCAC





TTTACCCACCTAGAACACTAACTCACCAGCCCCACTGCCAGCAGCAGCAGGTGATTGGACCAGGCCATTC





TGCCGCCCCCTCCTGAACCGCACAGCTCAGGAGGCGCCCTTGGCTTCTGTGATGAGCTGATCTGCGGATC





TCAGCTTTGAGAAGCCTTCAGCTCCAGGGAATCCAAGCCTCCACAGCGAGGGCAGCTGCTATTTATTTTC





CTAAAGAGAGTATTTTTATACAAACCTACCAAAATGGAATAAAAGGCTTGAAGCTGTG





SEQ ID NO: 20



- Homo sapiens forkhead box N3 (FOXN3),



transcript variant 1, mRNA


CGCGATCTGCTGCAGCTCGGCCGGGAGACGGCGCGACCCGGCGGCGGGGCCACCCGCGAGTCCAGCGTCG





CCGCAGCCCCCCAATGCGGCCGCGAGAAGCAGCGGGGGGGCAGGCGATCGAAGGAGCCTTCACGTAAATG





GGTCCAGTCATGCCTCCCAGTAAGAAGCCAGAAAGCTCAGGAATTAGTGTCTCCAGTGGACTGAGTCAGT





GTTACGGGGGCAGCGGTTTCTCCAAGGCCCTTCAGGAAGACGATGACCTCGACTTTTCTCTGCCTGACAT





CCGATTAGAAGAGGGGGCCATGGAAGATGAAGAGCTGACCAACCTGAACTGGCTGCACGAGAGCAAGAAC





TTGCTGAAGAGCTTTGGGGAGTCGGTCCTCAGGAGTGTCAGCCCCGTCCAGGACCTGGACGATGACACCC





CCCCATCCCCTGCCCACTCTGACATGCCCTACGATGCCAGGCAGAACCCCAACTGCAAACCCCCCTACTC





CTTCAGCTGCCTCATATTTATGGCCATCGAGGACTCTCCAACCAAGCGCCTGCCAGTGAAGGATATCTAC





AACTGGATCTTGGAACATTTTCCGTATTTTGCAAATGCACCTACTGGGTGGAAAAACTCAGTGAGACACA





ATTTATCATTGAATAAGTGTTTTAAGAAAGTGGACAAAGAGAGGAGTCAGAGTATTGGGAAAGGGTCGTT





GTGGTGCATAGACCCAGAGTATAGACAAAATCTAATTCAGGCTTTGAAAAAGACACCTTATCACCCACAC





CCACACGTGTTCAATACACCTCCCACCTGTCCTCAGGCATATCAAAGCACATCAGGTCCACCCATCTGGC





CGGGCAGTACCTTCTTCAAGAGAAATGGAGCCCTTCTCCAAGATCCTGACATTGATGCTGCCAGTGCCAT





GATGCTTTTGAATACTCCCCCTGAGATACAAGCAGGTTTTCCTCCAGGAGTGATCCAAAATGGAGCGCGG





GTCCTGAGCCGAGGGCTGTTTCCTGGCGTGCGGCCGCTGCCAATCACTCCCATTGGGGTGACAGCGGCCA





TGAGGAATGGCATCACCAGCTGCCGGATGCGGACTGAGAGTGAGCCATCTTGTGGCTCCCCAGTGGTCAG





CGGAGACCCCAAGGAGGATCACAACTACAGCAGTGCCAAGTCCTCCAACGCCCGGAGCACCTCGCCCACC





AGCGACTCCATCTCCTCCTCCTCCTCCTCAGCCGACGACCACTATGAGTTTGCCACCAAGGGGAGCCAGG





AGGGCAGCGAGGGCAGCGAGGGGAGCTTCCGGAGCCACGAGAGCCCCAGCGACACGGAAGAGGACGACAG





GAAGCACAGCCAGAAGGAGCCCAAGGATTCTCTGGGGGACAGCGGGTACGCATCCCAGCACAAGAAGCGC





CAGCACTTCGCCAAGGCCAGGAAGGTCCCCAGCGACACACTGCCCCTCAAAAAGAGACGCACCGAAAAGC





CCCCCGAGAGCGATGATGAGGAGATGAAAGAAGCGGCAGGGTCCCTCCTGCACTTAGCAGGGATCCGGTC





CTGTTTGAATAACATCACCAATCGGACGGCAAAGGGGCAGAAAGAGCAAAAGGAAACCACAAAAAATTAA





AAACAAGTCACTGATTTGTTTTGAACTTACGACCATTTGGTTTCAGCATGTCAGGAGATTTCTAATGATT





TGTGGCAATATCAGCAATTTTTTTTCTTTTTTCTTGTTTTTGGTTTGGTTTTCTTTCTTTTCTTTTCCTT





TTATTTTGTTTTAATTTGCCCCCTCTTCTTTGTTTTGGACCCTTAAGAATTTTATTTTTAAAGGAGATTG





AAGCCATAGAACTCATATTGACACTCAGCTGTTTTACAAAAGCTTTTCATTATCTGAAGACAAAACCGAA





AAAGCCAAAATTACCATTGCTTCCTCCAGCTTGTCAGAAACCTGTGGCTGAATCCGCAGGGATGTCAACG





TCAATATCACAGGAACACACATTCGGCACCTAGAAGGCACGTGGGCAAAGTAATCATCGTTCAGGCCCAA





CCCTTAGGTTTAAAAAGTCAGGTTGTCCATCCCATTGGGTTCACTGAGTGAAGGCACATAAAGCAATTGA





GGAGGAGGAGGAACCCCTCGTCCCCCTAGGAGCAGACCCAAGCTTGTGGCACCAGGCATCTGATGGTGCC





AGGAAAGCCACTGGAATTGTCACACGGCGAGCACAGAGGGCCGGCCACCAGTCCTCGATGCTTCTGAACC





CTGAAGCCCGATGACATCTTACGAGGTGGACGTTGGACTGTTCATGCGCATCGGGTGTCAGTGACTCATG





GAGAAGAAATGGGGTAAATTTTTAGTGATGTTGCTAATCATTGAATTCTGTTCTCTATTAAATTAAGAAA





ATGTTCCAAAAGCCATAAGCCTGAAGATTGGCCCTGTGCACGCACGCACACACACACACACACACACACA





CACACACACACACACACGAAGGAGAGAGAGAGAAAACTGATGGGGAAAACAAGCTGTGTCTTCTTAACTG





CCCAAGTGAAAAGCAACCAAGTCCAGGAAATTACAATAGCTGTTAAGGAAAGGAAATAATGGTACAGATC





TTTTTCTGTCTATCAAAACTATTTGATCCAAGTGAAAAAAAAAAAAAAACTAGAAAGCTACGGAACCTGC





CATTAGTATTGTGGTGTATTTTTAAGATTAAAGGTACACTGATGGACAAAAAAAAAAAGTAAAACATGGC





AAAAAATAAAATAACTCCTATACTGCCCTCAAAATGGAGTTTGCAATTAATATCAGGATTTATCTTTGCA





AAAATCAGTGATTTCCACATTCAGCCAGTATAGCCAGCAGAAATTTCTGATCCACAATGCATGGATTCCT





TTGAAGAAAAAAAAGAAAAAGAGAAAAAAATCACAAAAACAAACTTTTTTTATTCAAAAGTAACAAAGTT





CTTGTAAGGTAAATAATGTATTTAGCATGAAGCATGAATTATTTTCATATAAATATAGAAAATAGAGAAA





AGGCTATGCCTGTAATTTTTAAGCCCTTAGGCTTAGAGTTTCTTTTGGTTTTCTTCTTTTTTCTTTCCTT





TTCTTTGCTTTCTTTTTTTCCTTTTTGTTTTTGTTTTTGTTTTTTGTTTTTGTTTTTTTTTCGGGTTATT





TTGTTTTGGTTTTTTGAAGCAGGTGTTTAAGGTTTAACCTTCTTCAGGGACAAATTCTGACTGTTGGGGA





ACTTACTCTGCAATATAAAAATATCTTCATGCTCTGGTAGGGCTTGGATGGTTGAACTCTGTACTGCCTT





GTGTGCACTTCAGCCCCGACCCCCTCTGATTCTCTGTTGAAAAGTGTGTCCTTTCTCTCTGTCTGTACAT





GTTTAACATGACGCAATAATTTGAGGGCAAACTTAGTAGTGAGTGTGTATGATAGAATCAAGAGAATTAT





GGGACGCTTACTTGAGAAAATCATTACCATGATTTGGTTCTAGGAAAAAGGCAGTGAATAATTATGCAAA





TTAGCCAGAAGAAGGGGAACCGTGCTAATGGGCCTTATTGGGTGAGGGGACGAGATGGGGTTCATGTGAA





GGAGGAAGCGATGCCGAGGTAGGAAAGGCCAGCCCCAGACATCCTATCGCCACAATGCCATGTCGCAATA





GGAAGCAGGGGCCGGCCATCGCTACCTTCAGCACACTGACCAACCTGGAATTAAGACCACCTAGATTGCG





AGAGCTGAATTTAGAAACCAGACAACGTCATGCAGCCCAGAAACTCCTGTTGTTACCTTTGCCTAAGAAA





TTTTCTTTAATGGCGGGGGCGGGGGGCGGGGGTACAAAGAGAAATCTCTAAAAGAATATGATCTTCCATC





CAAGTGGAGGGAAACTTTAAAACAAAAACACCCAGTACTGTGGCTCAGGATATGATGCGTGAGGAGAGGG





AGGGAACAGAGATGACCTTAACTTTTAAAAAAGGGACTGCTGTGGGCCAAAGCCAAGCCCATCTGCCAGG





ACGAGGTAATGTCAGAGCTCCATCAGCCCGGACAGTGGGAACTAACTGGTGCATTCCCCACACTTACCTT





CCGGTGGGTTGCTGATGAGAGAACCTGAAAAAACCTACACCTCTACAGCAGGTCGAATTCATGACCTGAA





GCTGAATACTTCCAGCATATTTATTCAGGGTGTAGGTGGGAATAAAGTATCTTCGCAGTGCTCTGTTCCC





TCCGTCTCCCCAGACATCTGACACCCTAAAAGCCATCCACAGCTATGGAACCTGAGCGACACCTTGATTT





GTGTTGTCACCTGACCAAGCCTAAAGACCTCCAGCTCAGTCCCCCACCTTCATCCCACCCCACAGATGAT





AAAATTCAGACCTCTCTCCTGAAAGGCAGAGGTTCAACATTCAGGACTGTTTCTGGCCGAGGACTTCTTC





CAATTAAAACCCCCACCGTGGGCTGTCTCCCCTCATTTCATTTTTCTAAAGGGGCAGAGGCCTCTTTTAG





AAAATAATAAAATGCAATGTGTGTGATTTACTTTTCTGATCTCTTTGAGAAATAGAGAAATATAAAAGTG





TGTTCTTAACTCCAGAACCACTCTTTTTGCATAAATACCTCATCGGGCAGCTTTCTAAGTGTGATTTTCC





TGAGTCTCCCTTCGTTGGATCTGCCGGAAGACTTGTCGGGGAACCTTTAGTGAGGGTACTTCTTCCTATT





TTTCTTCTGTTTTTGGAGGCATACACATTATGCATAACCAAAACAATGGCTCAATTGTGTTTAACTTTGT





ATTTTGATTGTTGAGAACAAAAACAAAAAGTATCAATGTGTATGTGGCTGTTTGTAGTGAATTTATTGGA





GAATGAGGTTGTCCGTGTCCTTAACAAGCCAAGGGGCAGGAGGCACCCTCTCTTATCCCCTCCTCCAAGA





GCAGTAGAGAATTTAAGCACAAGCCTATTTGTGAAAGAATATTTTGCTTAAGTGTCATTCACTTTAGTCT





TGGAATTCCTTCCCAAACGTCAGGTGTTCTTTTAGCTTCCAAACTAGCATATGTATCCATTAGTCTGACA





GATCGCCTGAACACCATTAAGAGGTGTGGCGTTTTTGCTTTCATTTCTCCTGCTGGGAGAAGTGGCGGTT





CATGTGTCATTCCAGTATCTCACATACTCACACGGGGCAGGGGGGAGGGGGAAACGGGGAACTATAGCAA





TATTTAAAGATGCTTTGGAAACCAACCGTGAACACATCAACACCACGACGTCTACGATTACTTGCTATTG





GCCCTCGGATACATTTAAGAGAAAGAGACAGTCACTCTTTTTTTTCTTAAATGATATACATATAAACAGT





TATTTTTATCCTATTATAATTGTCTTTTGTCTTTATCTAGTACTATGTGGAAAGGGTTTGCATCATAGAT





TTTTCCCAGCCTTATAATATACCATAAGCTCCTACTTCCCTGCCCCTCCCTAATCAGTATTCTTTCAAGA





GTTCTTTGGTGAAGCCATCTATCTGAAACTAAAATGAACCAAACCCATATTTCACTGGTGGTTGGAGAAA





ACCATGGCCAAAACGATTGTGGCAGGTCTCAATCTTGGGAGTTTTTAAGAAGGAATGTGCCAGAGGCCGA





TTCCCAAGAACAGAGTTTTCTTTTGTTTTGCAGAGGCATTCAATGTGTCTAGTGCTTGCTGGCCACAGCA





GTTACTACCACAGAGCCTTCTGGGAGGGGCCGTTGTGTTGAAGGAGGCTCCTGCCTGAGGGACAGCATCA





GGCAGTGGGCTCTGTAGAGTGAGAACCAGGTGGAGGCCTTCTCTGCCCAGCTCAGAGTTCTGCACCACGC





CAGGACTGCCCAGGCCAAGGGCTACTGACGCAAGTTCCACTCATTCCACTCTGTGGGGGGCGCCTTGGGC





CTCTCCTGGAAGGGCTCTTGGAGAAGGAATTGGAGTTACGTACAAGTGACCTAAATGGGAAGCTTTTCTA





GATGAGATTGGATTAAATTCCATGTGATTTCTCTTTCCCTTTAATCCAGGTTGGGACTCGTTTCTTTCTG





GTGGATCACAGCTGCCCAGATGTTGCAATTGATTTTTATGTTTCTGTAGAGAAGTATTTTTCTTTCATCT





TCAGGATTTTTTTTGCCACCAAAAGAAAACATTGGAACTCTGTGTTTCCTCTTGATTGTGACTTCCCAGT





GTTGACAGTTAAGTCCTTAGTGTCGTAGGTCCCAGCCCACCAATACTATATCAAACACTGTTATGCACAT





AATGCAGCACTCTGATCTAATTTAAATAATACTTTTTTATTATTTATACTACTATATATAATATACATCA





ACACTTTTGCTATATAACCTAAGTGATAACCCTCTTTTAGTTACCTGCCAAACTCTGGACTTGGTTTATA





TTGCAGTTAACACAGTTACAAAGCTGTAATGGTGTCTTTTTTTCCTTTGTAACGGAATGTGTAAATCAAA





GTATATACATTGTGTGGTGTTCCTGTTTCTGGAGTTTCATGAGGATTTACACATGGCATTCAGTGTTCTG





TATAGATCTGCCTACCTTTGTGAATTCATCTGTTAACCCCTCTTCCTTTGAGAGAGCACCGGCGATGGTG





GTTAACTCCTTGTGTTTTCTCTCTCTCCTACTGGTTATTCTTGAATTAAGCACAGACTCGTCAGCTCGGT





TGCTTTATCATGAATAATGTGTGTGACCTTGCAGTTCTTCCACAGTTCAGCAAACAAGTGCTAGCTTCAC





TGACCAAAAATTAAGGAAGGAAAACACAGTTTTTAAAACGATCCATCTTTTAACAGCCGAAACCGATGTG





TCTATGGTGCTGCACCTTGCTGTTGTACTTCTGAAATCAGACGTGTGTGAACGATCATTTCTGACTTAAC





CGTGAGATGCTCACGAGTACCCTTCCTGTTGTTTTGTTAGCATTGAAATCGAGACTATTTATTTGGAATA





TATACAACAGTGTTTTTCCACTGTATTTCATTTGCAAAAGTTGAGAACTGCTTTCTCTACCTTTTGCAAA





ATAATTGATATTCCATATTGGATTCTCAAAGACTTCGATATGCTGAACCTATTAAACCTAGAAATTGTAT





TCATCCTTTCATGACTGTGGCCTGAGTTCCCCAGCCCCTCTCCTCCTTTTTTTTAGATGAGATTTAGCAC





ACTCTCAGTTATTTAAACATGCAACATTTCTTGAGTATGTATGTTGAGGCCATCTGAGCTCATAGCTGAT





TCAGTAACCAGTTTCATGCTGTGTCATTCACACTCACTACTTAATACTGCCATGGTGAAAATGTGGAGGA





AAAATGTATCCATGTGTGTCTGGGAAGCATATACACTTGTACATTTTTTAATACTCTGATTCTGTAACAT





TTCTGAGTTTTGTTTTGTTTTACAGAAAAAAAAAAAAAGTGATAAAGCAATCAGAAGACCAAGAGGTTTA





CTATTGATGCTTAGGGTCGTCTGACCTTGGCTGGCCAATAGACCTACACGGCCAAATTAATTTACGAGAG





TAATAATTTTTCAAAAGCCAATTTTTTTTCTGTATTTTCTGTATGAAACTGCCAATATCATGAATAGAAA





GGGAGAACCATAAAGGAGAAAGAACGTGATGTTCTGTTATGTTCATGTAAACCTAAAGAAACAGTGTGGA





GGCAGGCGCGATCAGCCGAACTCTAGGGACTTGGTGTTGCTTGGAAGGCATCCATACCTGCATTTTGCAT





TCTTCGTATGTAATCATATTGCCAAAGACAAACTATTTCATCATTTATTGTAAATAACACTTTTCCCCAG





ACCTACCATAAAGTTTCTGTGATGTATTGTCTTCCAGTTGCAATAAAAATTACTGAGTTGCATCAATTGA





AGAAAAACACCAAAAA





SEQ ID NO: 21



- Homo sapiens glyceraldehyde-3-phosphate



dehydrogenase (GAPDH), mRNA


AAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTG





CGTCGCCAGCCGAGCCACATCGCTCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCG





TATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCC





TTCATTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCG





TCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTC





CAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG





AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCA





TGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCAC





CACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACC





ACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCC





GCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGA





GCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC





TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCC





TCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTC





CACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAAC





GAATTTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGA





CCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCA





GTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA





GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACC





SEQ ID NO: 22



- Homo sapiens glyceraldehyde-3-phosphate



dehydrogenase (GAPDH), mRNA


AAATTGAGCCCGCAGCCTCCCGCTTCGCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTG





CGTCGCCAGCCGAGCCACATCGCTCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCG





TATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCC





TTCATTGACCTCAACTACATGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCG





TCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTC





CAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAG





AAGGCTGGGGCTCATTTGCAGGGGGGAGCCAAAAGGGTCATCATCTCTGCCCCCTCTGCTGATGCCCCCA





TGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAACAGCCTCAAGATCATCAGCAATGCCTCCTGCAC





CACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGGACTCATGACC





ACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGCCCCTCCGGGAAACTGTGGCGTGATGGCC





GCGGGGCTCTCCAGAACATCATCCCTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGA





GCTGAACGGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGTGGACCTGACC





TGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGTGGTGAAGCAGGCGTCGGAGGGCCCCC





TCAAGGGCATCCTGGGCTACACTGAGCACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTC





CACCTTTGACGCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAAC





GAATTTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGGCCTCCAAGGAGTAAGACCCCTGGA





CCACCAGCCCCAGCAAGAGCACAAGAGGAAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCA





GTCCCCCACCACACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGGGGCCTA





GGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAACC





SEQ ID NO: 23



- Homo sapiens GATA binding protein 3 (GATA3),



transcript variant 1, mRNA


GGCGCCGTCTTGATACTTTCAGAAAGAATGCATTCCCTGTAAAAAAAAAAAAAAAATACTGAGAGAGGGA





GAGAGAGAGAGAAGAAGAGAGAGAGACGGAGGGAGAGCGAGACAGAGCGAGCAACGCAATCTGACCGAGC





AGGTCGTACGCCGCCGCCTCCTCCTCCTCTCTGCTCTTCGCTACCCAGGTGACCCGAGGAGGGACTCCGC





CTCCGAGCGGCTGAGGACCCCGGTGCAGAGGAGCCTGGCTCGCAGAATTGCAGAGTCGTCGCCCCTTTTT





ACAACCTGGTCCCGTTTTATTCTGCCGTACCCAGTTTTTGGATTTTTGTCTTCCCCTTCTTCTCTTTGCT





AAACGACCCCTCCAAGATAATTTTTAAAAAACCTTCTCCTTTGCTCACCTTTGCTTCCCAGCCTTCCCAT





CCCCCCACCGAAAGCAAATCATTCAACGACCCCCGACCCTCCGACGGCAGGAGCCCCCCGACCTCCCAGG





CGGACCGCCCTCCCTCCCCGCGCGCGGGTTCCGGGCCCGGCGAGAGGGCGCGAGCACAGCCGAGGCCATG





GAGGTGACGGCGGACCAGCCGCGCTGGGTGAGCCACCACCACCCCGCCGTGCTCAACGGGCAGCACCCGG





ACACGCACCACCCGGGCCTCAGCCACTCCTACATGGACGCGGCGCAGTACCCGCTGCCGGAGGAGGTGGA





TGTGCTTTTTAACATCGACGGTCAAGGCAACCACGTCCCGCCCTACTACGGAAACTCGGTCAGGGCCACG





GTGCAGAGGTACCCTCCGACCCACCACGGGAGCCAGGTGTGCCGCCCGCCTCTGCTTCATGGATCCCTAC





CCTGGCTGGACGGCGGCAAAGCCCTGGGCAGCCACCACACCGCCTCCCCCTGGAATCTCAGCCCCTTCTC





CAAGACGTCCATCCACCACGGCTCCCCGGGGCCCCTCTCCGTCTACCCCCCGGCCTCGTCCTCCTCCTTG





TCGGGGGGCCACGCCAGCCCGCACCTCTTCACCTTCCCGCCCACCCCGCCGAAGGACGTCTCCCCGGACC





CATCGCTGTCCACCCCAGGCTCGGCCGGCTCGGCCCGGCAGGACGAGAAAGAGTGCCTCAAGTACCAGGT





GCCCCTGCCCGACAGCATGAAGCTGGAGTCGTCCCACTCCCGTGGCAGCATGACCGCCCTGGGTGGAGCC





TCCTCGTCGACCCACCACCCCATCACCACCTACCCGCCCTACGTGCCCGAGTACAGCTCCGGACTCTTCC





CCCCCAGCAGCCTGCTGGGCGGCTCCCCCACCGGCTTCGGATGCAAGTCCAGGCCCAAGGCCCGGTCCAG





CACAGAAGGCAGGGAGTGTGTGAACTGTGGGGCAACCTCGACCCCACTGTGGCGGCGAGATGGCACGGGA





CACTACCTGTGCAACGCCTGCGGGCTCTATCACAAAATGAACGGACAGAACCGGCCCCTCATTAAGCCCA





AGCGAAGGCTGTCTGCAGCCAGGAGAGCAGGGACGTCCTGTGCGAACTGTCAGACCACCACAACCACACT





CTGGAGGAGGAATGCCAATGGGGACCCTGTCTGCAATGCCTGTGGGCTCTACTACAAGCTTCACAATATT





AACAGACCCCTGACTATGAAGAAGGAAGGCATCCAGACCAGAAACCGAAAAATGTCTAGCAAATCCAAAA





AGTGCAAAAAAGTGCATGACTCACTGGAGGACTTCCCCAAGAACAGCTCGTTTAACCCGGCCGCCCTCTC





CAGACACATGTCCTCCCTGAGCCACATCTCGCCCTTCAGCCACTCCAGCCACATGCTGACCACGCCCACG





CCGATGCACCCGCCATCCAGCCTGTCCTTTGGACCACACCACCCCTCCAGCATGGTCACCGCCATGGGTT





AGAGCCCTGCTCGATGCTCACAGGGCCCCCAGCGAGAGTCCCTGCAGTCCCTTTCGACTTGCATTTTTGC





AGGAGCAGTATCATGAAGCCTAAACGCGATGGATATATGTTTTTGAAGGCAGAAAGCAAAATTATGTTTG





CCACTTTGCAAAGGAGCTCACTGTGGTGTCTGTGTTCCAACCACTGAATCTGGACCCCATCTGTGAATAA





GCCATTCTGACTCATATCCCCTATTTAACAGGGTCTCTAGTGCTGTGAAAAAAAAAATGCTGAACATTGC





ATATAACTTATATTGTAAGAAATACTGTACAATGACTTTATTGCATCTGGGTAGCTGTAAGGCATGAAGG





ATGCCAAGAAGTTTAAGGAATATGGGAGAAATAGTGTGGAAATTAAGAAGAAACTAGGTCTGATATTCAA





ATGGACAAACTGCCAGTTTTGTTTCCTTTCACTGGCCACAGTTGTTTGATGCATTAAAAGAAAATAAAAA





AAAGAAAAAAGAGAAAAGAAAAAAAAAGAAAAAAGTTGTAGGCGAATCATTTGTTCAAAGCTGTTGGCCT





CTGCAAAGGAAATACCAGTTCTGGGCAATCAGTGTTACCGTTCACCAGTTGCCGTTGAGGGTTTCAGAGA





GCCTTTTTCTAGGCCTACATGCTTTGTGAACAAGTCCCTGTAATTGTTGTTTGTATGTATAATTCAAAGC





ACCAAAATAAGAAAAGATGTAGATTTATTTCATCATATTATACAGACCGAACTGTTGTATAAATTTATTT





ACTGCTAGTCTTAAGAACTGCTTTCTTTCGTTTGTTTGTTTCAATATTTTCCTTCTCTCTCAATTTTTGG





TTGAATAAACTAGATTACATTCAGTTGGCCTAAGGTGGTTGTGCTCGGAGGGTTTCTTGTTTCTTTTCCA





TTTTGTTTTTGGATGATATTTATTAAATAGCTTCTAAGAGTCCGGCGGCATCTGTCTTGTCCCTATTCCT





GCAGCCTGTGCTGAGGGTAGCAGTGTATGAGCTACCAGCGTGCATGTCAGCGACCCTGGCCCGACAGGCC





ACGTCCTGCAATCGGCCCGGCTGCCTCTTCGCCCTGTCGTGTTCTGTGTTAGTGATCACTGCCTTTAATA





CAGTCTGTTGGAATAATATTATAAGCATAATAATAAAGTGAAAATATTTTAAAACTACAA





SEQ ID NO: 24



- Homo sapiens guanine nucleotide binding protein



(G protein), beta 5 (GNB5), transcript variant 1,


mRNA


CCGGGGACGGCTGCTGGAGCGGCGCCCGCCGCGGCTCAGCGCATTCCCGCTCTCCGCTTCCCTCTCCGCT





GCGTCCCCGCGCGAAGATGGCAACCGAGGGGCTGCACGAGAACGAGACGCTGGCGTCGCTGAAGAGCGAG





GCCGAGAGCCTCAAGGGCAAGCTGGAGGAGGAGCGAGCCAAGCTGCACGATGTGGAGCTGCACCAGGTGG





CGGAGCGGGTGGAGGCCCTGGGGCAGTTTGTCATGAAGACCAGAAGGACCCTCAAAGGCCACGGGAACAA





AGTCCTGTGCATGGACTGGTGCAAAGATAAGAGGAGGATCGTGAGCTCGTCACAGGATGGGAAGGTGATC





GTGTGGGATTCCTTCACCACAAACAAGGAGCACGCGGTCACCATGCCCTGCACGTGGGTGATGGCATGTG





CTTATGCCCCATCGGGATGTGCCATTGCTTGTGGTGGTTTGGATAATAAGTGTTCTGTGTACCCCTTGAC





GTTTGACAAAAATGAAAACATGGCTGCCAAAAAGAAGTCTGTTGCTATGCACACCAACTACCTGTCGGCC





TGCAGCTTCACCAACTCTGACATGCAGATCCTGACAGCGAGCGGCGATGGCACATGTGCCCTGTGGGACG





TGGAGAGCGGGCAGCTGCTGCAGAGCTTCCACGGACATGGGGCTGACGTCCTCTGCTTGGACCTGGCCCC





CTCAGAAACTGGAAACACCTTCGTGTCTGGGGGATGTGACAAGAAAGCCATGGTGTGGGACATGCGCTCC





GGCCAGTGCGTGCAGGCCTTTGAAACACATGAATCTGACATCAACAGTGTCCGGTACTACCCCAGTGGAG





ATGCCTTTGCTTCAGGGTCAGATGACGCTACGTGTCGCCTCTATGACCTGCGGGCAGATAGGGAGGTTGC





CATCTATTCCAAAGAAAGCATCATATTTGGAGCATCCAGCGTGGACTTCTCCCTCAGTGGTCGCCTGCTG





TTTGCTGGATACAATGATTACACTATCAACGTCTGGGATGTTCTCAAAGGGTCCCGGGTCTCCATCCTGT





TTGGACATGAAAACCGCGTTAGCACTCTACGAGTTTCCCCCGATGGGACTGCTTTCTGCTCTGGATCATG





GGATCATACCCTCAGAGTCTGGGCCTAATCATCTTCTGACAGTGCACTCATGTATACCTGAGAATTTGAA





ATCTTCACATGTAAATAGATATTACTTCTAGAGGAGCTTAGAGTTTATTGCAGTGTAGCTTAGGGGAGCA





ACCCATGGCTCACAGGTCACTAAGCGTCTCCAATATGACTATTAAAACTGTCACCTCTGGAAATACACTA





GTGTGAGCCTTCAGCACTGCGAGAATACCTTCAAGTACAGTATTTTTCTTTTGGAACACTTTTTAAAATG





TATCTGTTTTTAAGGTTATTCTAAATTATAGTAGCCTCAACTCATTCTGTCACCAGTAGAATTCAGCAGT





TAATATATTCCATATTATTTCTTTGAATCAATTCATTTTCAGAGCACTTTAAAGTCTGATATTTCTCGAT





GTGCACTGTGATGCCTGGAACCTTCCTCTGGAAGTGCTGATTTTATGGACTGAGGACTGGTGACTGGTCT





GTGATAGAAGCAAATTCCAATTCCAAATGTAATTAGACAAAAATCATTTTTTTAGAATGTGTTTTTATTG





TAAAAGTATCTTTTTCAGCTTCCTGTTCTATTGTCTTTTTTCAGATACAACATTTTTGTCTATGGTGAAC





TGCTGTAAATGACGCAGAGAAATGCCTAAAAAGGACAGGTGGTTTGACTCATGGATGATGATGATGTCAC





TGTGCCACTTGGACAGGGCGTTTTCTCTGAATTGAAGGGAAAGCCAATGGTGTTTGTAAACAAATGCTTC





TGAGAGCAAAGAAAAGTCTTCTGTGTGGGAACACAAGATAGTAAACTTATTTAAAAACCTATTAGTAGAA





TTAGTGGAAACACTTAGGTTAAAGTGAATCTTGTCCATATAAATTATATTCATGGCCGGGCGCGGTGGCT





CACGCTTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGTTCGAGACCACG





GTGAAACCCTGTCTCTACTAAAAAATACAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAG





CTACTCGGAGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGTGGAGCTTGCAGTGAGCCGAGGTCG





AGCCACTGCAGCCTGGGTGACAAAGCGAGACTCCGTCTCAAAAAAAAAAAAAAATTATATTCATATGTAT





TGCATTGCAATTATAATTACATATGCAGATTGATTGATAGTCATGAATAATAACGTCTGCTCCTCTTACA





TAGAAAAACGATATTAAAAGAAGATCTTCTCTTTATTTGAGACTCAGAATTCCTTCTAGAAGAAGGAAGT





GCTTTTTGTTATAGGATCCCTTCTTTTCCTTTTTTTGTTTTTTTGTAAGATGTAGATGCTTATTCTTTGC





TTTAGAAAACTTCTCACTTAAAAAGATGGCATGCACCTAGGGGAATAAAAGGTCACCTCAGACACCAGGT





GTCATTCCTGGTGAGGCCTGCCTCGTCGGTGGCCTGGGGTCTGCCGGCAGGTTCTGGCTGCACCTGAAGG





CTGCGTGCACCTTGTCCCCTGGACAGGTCTCCTTTCCTGGCCCTGCTCCAGCCCAGCCCTTCTTCTAGTG





GTAGCTCTGGCTTTGCAGGCCCAGCTCCAGGCCCTGCTCCTCAGAGAGACTCTTCCAGAGCTGGAGCTGG





GCACAGCCATAAGACAGGACTGGACCAGATGCTCCTGTAAACATCCAGGGGTGTGCCAGGCCCACCCTCA





CAACTGCTTGTTCAGGTATCGTGATGGGCCACTCGGTCCAAAATCAGCCAGGCCATCTTTTCCATCATCT





CACTTCAAATAAACATAATAATTATATTTGATCATTTGC





SEQ ID NO: 25



- Homo sapiens glutathione S-transferase mu 4



(GSTM4), transcript variant 2, mRNA


AAGCTGGCGAGGCCGAGCCCCTCCTAGTGCTTCCGGACCTTGCTCCCTGAACACTCGGAGGTGGCGGTGG





ATCTTACTCCTTCCAGCCAGTGAGGATCCAGCAACCTGCTCCGTGCCTCCCGCGCCTGTTGGTTGGAAGT





GACGACCTTGAAGATCGGCCGGTTGGAAGTGACGACCTTGAAGATCGGCGGGCGCAGCGGGGCCGAGGGG





GCGGGTCTGGCGCTAGGTCCAGCCCCTGCGTGCCGGGAACCCCAGAGGAGGTCGCAGTTCAGCCCAGCTG





AGGCCTGTCTGCAGAATCGACACCAACCAGCATCATGTCCATGACACTGGGGTACTGGGACATCCGCGGG





CTGGCCCACGCCATCCGCCTGCTCCTGGAATACACAGACTCAAGCTACGAGGAAAAGAAGTATACGATGG





GGGACGCTCCTGACTATGACAGAAGCCAGTGGCTGAATGAAAAATTCAAGCTGGGCCTGGACTTTCCCAA





TCTGCCCTACTTGATTGATGGGGCTCACAAGATCACCCAGAGCAACGCCATCCTGTGCTACATTGCCCGC





AAGCACAACCTCTGTGGGGAGACAGAAGAGGAGAAGATTCGTCTGGACATTTTGGAGAACCAGGCTATGG





ACGTCTCCAATCAGCTGGCCAGAGTCTGCTACAGCCCTGACTTTGAGAAACTGAAGCCAGAATACTTGGA





GGAACTTCCTACAATGATGCAGCACTTCTCACAGTTCCTGGGGAAGAGGCCATGGTTTGTTGGAGACAAG





ATCACCTTTGTAGATTTCCTCGCCTATGATGTCCTTGACCTCCACCGTATATTTGAGCCCAACTGCTTGG





ACGCCTTTCCAAATCTGAAGGACTTCATCTCCCGCTTTGAGGTTTCCTGTGGCATAATGTGATGGTCAAT





TTTCTGCATCAACTTGACTGGGCTAAGGGATGCTCAGATGGCAGGTAAAATCATTGTGCTTGTGAGGGTG





TTTCCAGAAGAGATTTGCCTTTGAATCAGAAGACAGCAAAGATTTCCTTCAGCAATGAAGGAGGCATCCA





CCAAACTGTCAGGGCCCAGAGAGAAGAAAAAGACAGGAAGGGTGAATTTGACCTCTCTGACTGGGACATC





CATCTCTGCCTATCCTGGGACCTCCACACTCCTGGTTCTCTGGCCTTCAGACTTGATCAGGGACTAACAC





CATCGCCTCCCACCCCCACCTTTGTTCTGAGGCCTTTAGCCTCTGAATGATACCACTGGCTTTCCTGCTT





CTCTATCCTGCAGTCGGCAGATCATGGGACTTCTTCACTCCAAAATTGTGTGAGCCAATTCCCATAACAG





ATAGATAAATTTATAAATAAACACACAAATTTCCTACAGCCT





SEQ ID NO: 26



- Homo sapiens major histocompatibility complex,



class II, DR alpha (HLA-DRA), mRNA


TTTTAATGGTCAGACTCTATTACACCCCACATTCTCTTTTCTTTTATTCTTGTCTGTTCTGCCTCACTCC





CGAGCTCTACTGACTCCCAACAGAGCGCCCAAGAAGAAAATGGCCATAAGTGGAGTCCCTGTGCTAGGAT





TTTTCATCATAGCTGTGCTGATGAGCGCTCAGGAATCATGGGCTATCAAAGAAGAACATGTGATCATCCA





GGCCGAGTTCTATCTGAATCCTGACCAATCAGGCGAGTTTATGTTTGACTTTGATGGTGATGAGATTTTC





CATGTGGATATGGCAAAGAAGGAGACGGTCTGGCGGCTTGAAGAATTTGGACGATTTGCCAGCTTTGAGG





CTCAAGGTGCATTGGCCAACATAGCTGTGGACAAAGCCAACCTGGAAATCATGACAAAGCGCTCCAACTA





TACTCCGATCACCAATGTACCTCCAGAGGTAACTGTGCTCACAAACAGCCCTGTGGAACTGAGAGAGCCC





AACGTCCTCATCTGTTTCATAGACAAGTTCACCCCACCAGTGGTCAATGTCACGTGGCTTCGAAATGGAA





AACCTGTCACCACAGGAGTGTCAGAGACAGTCTTCCTGCCCAGGGAAGACCACCTTTTCCGCAAGTTCCA





CTATCTCCCCTTCCTGCCCTCAACTGAGGACGTTTACGACTGCAGGGTGGAGCACTGGGGCTTGGATGAG





CCTCTTCTCAAGCACTGGGAGTTTGATGCTCCAAGCCCTCTCCCAGAGACTACAGAGAACGTGGTGTGTG





CCCTGGGCCTGACTGTGGGTCTGGTGGGCATCATTATTGGGACCATCTTCATCATCAAGGGATTGCGCAA





AAGCAATGCAGCAGAACGCAGGGGGCCTCTGTAAGGCACATGGAGGTGATGGTGTTTCTTAGAGAGAAGA





TCACTGAAGAAACTTCTGCTTTAATGGCTTTACAAAGCTGGCAATATTACAATCCTTGACCTCAGTGAAA





GCAGTCATCTTCAGCATTTTCCAGCCCTATAGCCACCCCAAGTGTGGATATGCCTCTTCGATTGCTCCGT





ACTCTAACATCTAGCTGGCTTCCCTGTCTATTGCCTTTTCCTGTATCTATTTTCCTCTATTTCCTATCAT





TTTATTATCACCATGCAATGCCTCTGGAATAAAACATACAGGAGTCTGTCTCTGCTATGGAATGCCCCAT





GGGGCATCTCTTGTGTACTTATTGTTTAAGGTTTCCTCAAACTGTGATTTTTCTGAACACAATAAACTAT





TTTGATGATCTTGGGTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 27



- Homo sapiens v-Ha-ras Harvey rat sarcoma viral



oncogene homolog (HRAS), transcript variant 3, mRNA


TGCCCTGCGCCCGCAACCCGAGCCGCACCCGCCGCGGACGGAGCCCATGCGCGGGGCGAACCGCGCGCCC





CCGCCCCCGCCCCGCCCCGGCCTCGGCCCCGGCCCTGGCCCCGGGGGCAGTCGCGCCTGTGAACGGTGGG





GCAGGAGACCCTGTAGGAGGACCCCGGGCCGCAGGCCCCTGAGGAGCGATGACGGAATATAAGCTGGTGG





TGGTGGGCGCCGGCGGTGTGGGCAAGAGTGCGCTGACCATCCAGCTGATCCAGAACCATTTTGTGGACGA





ATACGACCCCACTATAGAGGATTCCTACCGGAAGCAGGTGGTCATTGATGGGGAGACGTGCCTGTTGGAC





ATCCTGGATACCGCCGGCCAGGAGGAGTACAGCGCCATGCGGGACCAGTACATGCGCACCGGGGAGGGCT





TCCTGTGTGTGTTTGCCATCAACAACACCAAGTCTTTTGAGGACATCCACCAGTACAGGGAGCAGATCAA





ACGGGTGAAGGACTCGGATGACGTGCCCATGGTGCTGGTGGGGAACAAGTGTGACCTGGCTGCACGCACT





GTGGAATCTCGGCAGGCTCAGGACCTCGCCCGAAGCTACGGCATCCCCTACATCGAGACCTCGGCCAAGA







CCC
GGCAGGGAGTGGAGGATG
CCTTCTACACGTTGGTGCGTGAGATCCGGCAGCACAAGCTGCGGAAGCT






GAACCCTCCTGATGAGAGTGGCCCCGGCTGCATGAGCTGCAAGTGTGTGCTCTCCTGACGCAGGTGAGGG





GGACTCCCAGGGCGGCCGCCACGCCCACCGGATGACCCCGGCTCCCCGCCCCTGCCGGTCTCCTGGCCTG





CGGTCAGCAGCCTCCCTTGTGCCCCGCCCAGCACAAGCTCAGGACATGGAGGTGCCGGATGCAGGAAGGA





GGTGCAGACGGAAGGAGGAGGAAGGAAGGACGGAAGCAAGGAAGGAAGGAAGGGCTGCTGGAGCCCAGTC





ACCCCGGGACCGTGGGCCGAGGTGACTGCAGACCCTCCCAGGGAGGCTGTGCACAGACTGTCTTGAACAT





CCCAAATGCCACCGGAACCCCAGCCCTTAGCTCCCCTCCCAGGCCTCTGTGGGCCCTTGTCGGGCACAGA





TGGGATCACAGTAAATTATTGGATGGTCTTGAAAAAAAAAAAAAAAAAA





SEQ ID NO: 28



- Homo sapiens interferon, alpha-inducible protein



27 (IFI27), transcript variant 1, mRNA


GGGAACACATCCAAGCTTAAGACGGTGAGGTCAGCTTCACATTCTCAGGAACTCTCCTTCTTTGGGTCTG





GCTGAAGTTGAGGATCTCTTACTCTCTAGGCCACGGAATTAACCCGAGCAGGCATGGAGGCCTCTGCTCT





CACCTCATCAGCAGTGACCAGTGTGGCCAAAGTGGTCAGGGTGGCCTCTGGCTCTGCCGTAGTTTTGCCC







CTG
GCCAGGATTGCTACAGTT
GTGATTGGAGGAGTTGTGGCCATGGCGGCTGTGCCCATGGTGCTCAGTG






CCATGGGCTTCACTGCGGCGGGAATCGCCTCGTCCTCCATAGCAGCCAAGATGATGTCCGCGGCGGCCAT





TGCCAATGGGGGTGGAGTTGCCTCGGGCAGCCTTGTGGCTACTCTGCAGTCACTGGGAGCAACTGGACTC





TCCGGATTGACCAAGTTCATCCTGGGCTCCATTGGGTCTGCCATTGCGGCTGTCATTGCGAGGTTCTACT





AGCTCCCTGCCCCTCGCCCTGCAGAGAAGAGAACCATGCCAGGGGAGAAGGCACCCAGCCATCCTGACCC





AGCGAGGAGCCAACTATCCCAAATATACCTGGGGTGAAATATACCAAATTCTGCATCTCCAGAGGAAAAT





AAGAAATAAAGATGAATTGTTGCAACTCTTCAAAA





SEQ ID NO: 29



- Homo sapiens interleukin 11 receptor, alpha



(IL11RA), transcript variant 3, mRNA


AGAGGGCGAGGGCGAGGGCAGAGGGCGCTGGCGGCAGCGGCCGCGGAAGATGAGCAGCAGCTGCTCAGGG





CTGAGCAGGGTCCTGGTGGCCGTGGCTACAGCCCTGGTGTCTGCCTCCTCCCCCTGCCCCCAGGCCTGGG





GCCCCCCAGGGGTCCAGTATGGGCAGCCAGGCAGGTCCGTGAAGCTGTGTTGTCCTGGAGTGACTGCCGG





GGACCCAGTGTCCTGGTTTCGGGATGGGGAGCCAAAGCTGCTCCAGGGACCTGACTCTGGGCTAGGGCAT





GAACTGGTCCTGGCCCAGGCAGACAGCACTGATGAGGGCACCTACATCTGCCAGACCCTGGATGGTGCAC





TTGGGGGCACAGTGACCCTGCAGCTGGGCTACCCTCCAGCCCGCCCTGTTGTCTCCTGCCAAGCAGCCGA





CTATGAGAACTTCTCTTGCACTTGGAGTCCCAGCCAGATCAGCGGTTTACCCACCCGCTACCTCACCTCC





TACAGGAAGAAGACAGTCCTAGGAGCTGATAGCCAGAGGAGGAGTCCATCCACAGGGCCCTGGCCATGCC





CACAGGATCCCCTAGGGGCTGCCCGCTGTGTTGTCCACGGGGCTGAGTTCTGGAGCCAGTACCGGATTAA





TGTGACTGAGGTGAACCCACTGGGTGCCAGCACACGCCTGCTGGATGTGAGCTTGCAGAGCATCTTGCGC







CCT
GACCC
ACCCCAGGGCCTGCGGGTAGAGTCAGTACCAGGTTACCCCCGACGCCTGCGAGCCAGCTGGA






CATACCCTGCCTCCTGGCCGTGCCAGCCCCACTTCCTGCTCAAGTTCCGTTTGCAGTACCGTCCGGCGCA





GCATCCAGCCTGGTCCACGGTGGAGCCAGCTGGACTGGAGGAGGTGATCACAGATGCTGTGGCTGGGCTG





CCCCATGCTGTACGAGTCAGTGCCCGGGACTTTCTAGATGCTGGCACCTGGAGCACCTGGAGCCCGGAGG





CCTGGGGAACTCCGAGCACTGGGACCATACCAAAGGAGATACCAGCATGGGGCCAGCTACACACGCAGCC





AGAGGTGGAGCCTCAGGTGGACAGCCCTCCTCCTCCAAGGCCCTCCCTCCAACCACACCCTCCCCTACTT





GATCACAGGGACTCTGTGGAGCAGGTAGCTGTGCTGGCGTCTTTGGGAATCCTTTCTTTCCTGGGACTGG





TGGCTGGGGCCCTGGCACTGGGGCTCTGGCTGAGGCTGAGACGGGGTGGGAAGGATGGATCCCCAAAGCC





TGGGTTCTTGGCCTCAGTGATTCCAGTGGACAGGCGTCCAGGAGCTCCAAACCTGTAGAGGACCCAGGAG





GGCTTCGGCAGATTCCACCTATAATTCTGTCTTGCTGGTGTGGATAGAAACCAGGCAGGACAGTAGATCC





CTATGGTTGGATCTCAGCTGGAAGTTCTGTTTGGAGCCCATTTCTGTGAGACCCTGTATTTCAAATTTGC





AGCTGAAAGGTGCTTGTACCTCTGATTTCACCCCAGAGTTGGAGTTCTGCTCAAGGAACGTGTGTAATGT





GTACATCTGTGTCCATGTGTGACCATGTGTCTGTGAGGCAGGGAACATGTATTCTCTGCATGCATGTATG





TAGGTGCCTGGGGAGTGTGTGTGGGTCCTTGGCTCTTGGCCTTTCCCCTTGCAGGGGTTGTGCAGGTGTG





AATAAAGAGAATAAGGAAGTTCTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAA





SEQ ID NO: 30



- Homo sapiens jun proto-oncogene (JUN), mRNA



GACATCATGGGCTATTTTTAGGGGTTGACTGGTAGCAGATAAGTGTTGAGCTCGGGCTGGATAAGGGCTC





AGAGTTGCACTGAGTGTGGCTGAAGCAGCGAGGCGGGAGTGGAGGTGCGCGGAGTCAGGCAGACAGACAG





ACACAGCCAGCCAGCCAGGTCGGCAGTATAGTCCGAACTGCAAATCTTATTTTCTTTTCACCTTCTCTCT





AACTGCCCAGAGCTAGCGCCTGTGGCTCCCGGGCTGGTGTTTCGGGAGTGTCCAGAGAGCCTGGTCTCCA





GCCGCCCCCGGGAGGAGAGCCCTGCTGCCCAGGCGCTGTTGACAGCGGCGGAAAGCAGCGGTACCCACGC





GCCCGCCGGGGGAAGTCGGCGAGCGGCTGCAGCAGCAAAGAACTTTCCCGGCTGGGAGGACCGGAGACAA





GTGGCAGAGTCCCGGAGCGAACTTTTGCAAGCCTTTCCGTCGTCTTAGGCTTCTCCACGGCGGTAAAGAC





CAGAAGGCGGCGGAGAGCCACGCAAGAGAAGAAGGACGTGCGCTCAGCTTCGCTCGCACCGGTTGTTGAA





CTTGGGCGAGCGCGAGCCGCGGCTGCCGGGCGCCCCCTCCCCCTAGCAGCGGAGGAGGGGACAAGTCGTC





GGAGTCCGGGCGGCCAAGACCCGCCGCCGGCCGGCCACTGCAGGGTCCGCACTGATCCGCTCCGCGGGGA





GAGCCGCTGCTCTGGGAAGTGAGTTCGCCTGCGGACTCCGAGGAACCGCTGCGCCCGAAGAGCGCTCAGT





GAGTGACCGCGACTTTTCAAAGCCGGGTAGCGCGCGCGAGTCGACAAGTAAGAGTGCGGGAGGCATCTTA





ATTAACCCTGCGCTCCCTGGAGCGAGCTGGTGAGGAGGGCGCAGCGGGGACGACAGCCAGCGGGTGCGTG





CGCTCTTAGAGAAACTTTCCCTGTCAAAGGCTCCGGGGGGCGCGGGTGTCCCCCGCTTGCCAGAGCCCTG





TTGCGGCCCCGAAACTTGTGCGCGCAGCCCAAACTAACCTCACGTGAAGTGACGGACTGTTCTATGACTG





CAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCTTA





TGGCTACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGGGAGCCTG





AAGCCGCACCTCCGCGCCAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAGCTGGCGT





CGCCCGAGCTGGAGCGCCTGATAATCCAGTCCAGCAACGGGCACATCACCACCACGCCGACCCCCACCCA





GTTCCTGTGCCCCAAGAACGTGACAGATGAGCAGGAGGGCTTCGCCGAGGGCTTCGTGCGCGCCCTGGCC





GAACTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGTCAACGGGGCAGGCATGG





TGGCTCCCGCGGTAGCCTCGGTGGCAGGGGGCAGCGGCAGCGGCGGCTTCAGCGCCAGCCTGCACAGCGA





GCCGCCGGTCTACGCAAACCTCAGCAACTTCAACCCAGGCGCGCTGAGCAGCGGCGGCGGGGCGCCCTCC





TACGGCGCGGCCGGCCTGGCCTTTCCCGCGCAACCCCAGCAGCAGCAGCAGCCGCCGCACCACCTGCCCC





AGCAGATGCCCGTGCAGCACCCGCGGCTGCAGGCCCTGAAGGAGGAGCCTCAGACAGTGCCCGAGATGCC





CGGCGAGACACCGCCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGATCAAGGCGGAGAGGAAGCGC





ATGAGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGCTGGAGAGAATCGCCCGGCTGGAGGAAA





AAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATGCTCAGGGAACAGGTGGC





ACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCAGTTGCAA





ACATTTTGAAGAGAGACCGTCGGGGGCTGAGGGGCAACGAAGAAAAAAAATAACACAGAGAGACAGACTT





GAGAACTTGACAAGTTGCGACGGAGAGAAAAAAGAAGTGTCCGAGAACTAAAGCCAAGGGTATCCAAGTT





GGACTGGGTTGCGTCCTGACGGCGCCCCCAGTGTGCACGAGTGGGAAGGACTTGGCGCGCCCTCCCTTGG





CGTGGAGCCAGGGAGCGGCCGCCTGCGGGCTGCCCCGCTTTGCGGACGGGCTGTCCCCGCGCGAACGGAA





CGTTGGACTTTTCGTTAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTCATTCAGTATTAAAG





GGGGGAGGGGGAGGGGGTTACAAACTGCAATAGAGACTGTAGATTGCTTCTGTAGTACTCCTTAAGAACA





CAAAGCGGGGGGAGGGTTGGGGAGGGGCGGCAGGAGGGAGGTTTGTGAGAGCGAGGCTGAGCCTACAGAT





GAACTCTTTCTGGCCTGCCTTCGTTAACTGTGTATGTACATATATATATTTTTTAATTTGATGAAAGCTG





ATTACTGTCAATAAACAGCTTCATGCCTTTGTAAGTTATTTCTTGTTTGTTTGTTTGGGTATCCTGCCCA





GTGTTGTTTGTAAATAAGAGATTTGGAGCACTCTGAGTTTACCATTTGTAATAAAGTATATAATTTTTTT





ATGTTTTGTTTCTGAAAATTCCAGAAAGGATATTTAAGAAAATACAATAAACTATTGGAAAGTACTCCCC





TAACCTCTTTTCTGCATCATCTGTAGATACTAGCTATCTAGGTGGAGTTGAAAGAGTTAAGAATGTCGAT





TAAAATCACTCTCAGTGCTTCTTACTATTAAGCAGTAAAAACTGTTCTCTATTAGACTTTAGAAATAAAT





GTACCTGATGTACCTGATGCTATGGTCAGGTTATACTCCTCCTCCCCCAGCTATCTATATGGAATTGCTT





ACCAAAGGATAGTGCGATGTTTCAGGAGGCTGGAGGAAGGGGGGTTGCAGTGGAGAGGGACAGCCCACTG





AGAAGTCAAACATTTCAAAGTTTGGATTGTATCAAGTGGCATGTGCTGTGACCATTTATAATGTTAGTAG





AAATTTTACAATAGGTGCTTATTCTCAAAGCAGGAATTGGTGGCAGATTTTACAAAAGATGTATCCTTCC





AATTTGGAATCTTCTCTTTGACAATTCCTAGATAAAAAGATGGCCTTTGCTTATGAATATTTATAACAGC





ATTCTTGTCACAATAAATGTATTCAAATACCAAAAAAAAAAAAAAAAA





SEQ ID NO: 31



- Homo sapiens v-Ki-ras2 Kirsten rat sarcoma viral



oncogene homolog (KRAS), transcript variant b, mRNA


GGCCGCGGCGGCGGAGGCAGCAGCGGCGGCGGCAGTGGCGGCGGCGAAGGTGGCGGCGGCTCGGCCAGTA





CTCCCGGCCCCCGCCATTTCGGACTGGGAGCGAGCGCGGCGCAGGCACTGAAGGCGGCGGCGGGGCCAGA





GGCTCAGCGGCTCCCAGGTGCGGGAGAGAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGG





AGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCAGAATCATTTTGTGGACGAATATGAT





CCAACAATAGAGGATTCCTACAGGAAGCAAGTAGTAATTGATGGAGAAACCTGTCTCTTGGATATTCTCG





ACACAGCAGGTCAAGAGGAGTACAGTGCAATGAGGGACCAGTACATGAGGACTGGGGAGGGCTTTCTTTG





TGTATTTGCCATAAATAATACTAAATCATTTGAAGATATTCACCATTATAGAGAACAAATTAAAAGAGTT





AAGGACTCTGAAGATGTACCTATGGTCCTAGTAGGAAATAAATGTGATTTGCCTTCTAGAACAGTAGACA





CAAAACAGGCTCAGGACTTAGCAAGAAGTTATGGAATTCCTTTTATTGAAACATCAGCAAAGACAAGACA







GGG
TGTTGAT
GATGCCTTCTATACATTAGTTCGAGAAATTCGAAAACATAAAGAAAAGATGAGCAAAGAT






GGTAAAAAGAAGAAAAAGAAGTCAAAGACAAAGTGTGTAATTATGTAAATACAATTTGTACTTTTTTCTT





AAGGCATACTAGTACAAGTGGTAATTTTTGTACATTACACTAAATTATTAGCATTTGTTTTAGCATTACC





TAATTTTTTTCCTGCTCCATGCAGACTGTTAGCTTTTACCTTAAATGCTTATTTTAAAATGACAGTGGAA





GTTTTTTTTTCCTCTAAGTGCCAGTATTCCCAGAGTTTTGGTTTTTGAACTAGCAATGCCTGTGAAAAAG





AAACTGAATACCTAAGATTTCTGTCTTGGGGTTTTTGGTGCATGCAGTTGATTACTTCTTATTTTTCTTA





CCAATTGTGAATGTTGGTGTGAAACAAATTAATGAAGCTTTTGAATCATCCCTATTCTGTGTTTTATCTA





GTCACATAAATGGATTAATTACTAATTTCAGTTGAGACCTTCTAATTGGTTTTTACTGAAACATTGAGGG





AACACAAATTTATGGGCTTCCTGATGATGATTCTTCTAGGCATCATGTCCTATAGTTTGTCATCCCTGAT





GAATGTAAAGTTACACTGTTCACAAAGGTTTTGTCTCCTTTCCACTGCTATTAGTCATGGTCACTCTCCC





CAAAATATTATATTTTTTCTATAAAAAGAAAAAAATGGAAAAAAATTACAAGGCAATGGAAACTATTATA





AGGCCATTTCCTTTTCACATTAGATAAATTACTATAAAGACTCCTAATAGCTTTTCCTGTTAAGGCAGAC





CCAGTATGAAATGGGGATTATTATAGCAACCATTTTGGGGCTATATTTACATGCTACTAAATTTTTATAA





TAATTGAAAAGATTTTAACAAGTATAAAAAATTCTCATAGGAATTAAATGTAGTCTCCCTGTGTCAGACT





GCTCTTTCATAGTATAACTTTAAATCTTTTCTTCAACTTGAGTCTTTGAAGATAGTTTTAATTCTGCTTG





TGACATTAAAAGATTATTTGGGCCAGTTATAGCTTATTAGGTGTTGAAGAGACCAAGGTTGCAAGGCCAG





GCCCTGTGTGAACCTTTGAGCTTTCATAGAGAGTTTCACAGCATGGACTGTGTCCCCACGGTCATCCAGT





GTTGTCATGCATTGGTTAGTCAAAATGGGGAGGGACTAGGGCAGTTTGGATAGCTCAACAAGATACAATC





TCACTCTGTGGTGGTCCTGCTGACAAATCAAGAGCATTGCTTTTGTTTCTTAAGAAAACAAACTCTTTTT





TAAAAATTACTTTTAAATATTAACTCAAAAGTTGAGATTTTGGGGTGGTGGTGTGCCAAGACATTAATTT





TTTTTTTAAACAATGAAGTGAAAAAGTTTTACAATCTCTAGGTTTGGCTAGTTCTCTTAACACTGGTTAA





ATTAACATTGCATAAACACTTTTCAAGTCTGATCCATATTTAATAATGCTTTAAAATAAAAATAAAAACA





ATCCTTTTGATAAATTTAAAATGTTACTTATTTTAAAATAAATGAAGTGAGATGGCATGGTGAGGTGAAA





GTATCACTGGACTAGGAAGAAGGTGACTTAGGTTCTAGATAGGTGTCTTTTAGGACTCTGATTTTGAGGA





CATCACTTACTATCCATTTCTTCATGTTAAAAGAAGTCATCTCAAACTCTTAGTTTTTTTTTTTTACAAC





TATGTAATTTATATTCCATTTACATAAGGATACACTTATTTGTCAAGCTCAGCACAATCTGTAAATTTTT





AACCTATGTTACACCATCTTCAGTGCCAGTCTTGGGCAAAATTGTGCAAGAGGTGAAGTTTATATTTGAA





TATCCATTCTCGTTTTAGGACTCTTCTTCCATATTAGTGTCATCTTGCCTCCCTACCTTCCACATGCCCC





ATGACTTGATGCAGTTTTAATACTTGTAATTCCCCTAACCATAAGATTTACTGCTGCTGTGGATATCTCC





ATGAAGTTTTCCCACTGAGTCACATCAGAAATGCCCTACATCTTATTTCCTCAGGGCTCAAGAGAATCTG





ACAGATACCATAAAGGGATTTGACCTAATCACTAATTTTCAGGTGGTGGCTGATGCTTTGAACATCTCTT





TGCTGCCCAATCCATTAGCGACAGTAGGATTTTTCAAACCTGGTATGAATAGACAGAACCCTATCCAGTG





GAAGGAGAATTTAATAAAGATAGTGCTGAAAGAATTCCTTAGGTAATCTATAACTAGGACTACTCCTGGT





AACAGTAATACATTCCATTGTTTTAGTAACCAGAAATCTTCATGCAATGAAAAATACTTTAATTCATGAA





GCTTACTTTTTTTTTTTGGTGTCAGAGTCTCGCTCTTGTCACCCAGGCTGGAATGCAGTGGCGCCATCTC





AGCTCACTGCAACCTCCATCTCCCAGGTTCAAGCGATTCTCGTGCCTCGGCCTCCTGAGTAGCTGGGATT





ACAGGCGTGTGCCACTACACTCAACTAATTTTTGTATTTTTAGGAGAGACGGGGTTTCACCCTGTTGGCC





AGGCTGGTCTCGAACTCCTGACCTCAAGTGATTCACCCACCTTGGCCTCATAAACCTGTTTTGCAGAACT





CATTTATTCAGCAAATATTTATTGAGTGCCTACCAGATGCCAGTCACCGCACAAGGCACTGGGTATATGG





TATCCCCAAACAAGAGACATAATCCCGGTCCTTAGGTAGTGCTAGTGTGGTCTGTAATATCTTACTAAGG





CCTTTGGTATACGACCCAGAGATAACACGATGCGTATTTTAGTTTTGCAAAGAAGGGGTTTGGTCTCTGT





GCCAGCTCTATAATTGTTTTGCTACGATTCCACTGAAACTCTTCGATCAAGCTACTTTATGTAAATCACT





TCATTGTTTTAAAGGAATAAACTTGATTATATTGTTTTTTTATTTGGCATAACTGTGATTCTTTTAGGAC





AATTACTGTACACATTAAGGTGTATGTCAGATATTCATATTGACCCAAATGTGTAATATTCCAGTTTTCT





CTGCATAAGTAATTAAAATATACTTAAAAATTAATAGTTTTATCTGGGTACAAATAAACAGGTGCCTGAA





CTAGTTCACAGACAAGGAAACTTCTATGTAAAAATCACTATGATTTCTGAATTGCTATGTGAAACTACAG





ATCTTTGGAACACTGTTTAGGTAGGGTGTTAAGACTTACACAGTACCTCGTTTCTACACAGAGAAAGAAA





TGGCCATACTTCAGGAACTGCAGTGCTTATGAGGGGATATTTAGGCCTCTTGAATTTTTGATGTAGATGG





GCATTTTTTTAAGGTAGTGGTTAATTACCTTTATGTGAACTTTGAATGGTTTAACAAAAGATTTGTTTTT





GTAGAGATTTTAAAGGGGGAGAATTCTAGAAATAAATGTTACCTAATTATTACAGCCTTAAAGACAAAAA





TCCTTGTTGAAGTTTTTTTAAAAAAAGCTAAATTACATAGACTTAGGCATTAACATGTTTGTGGAAGAAT





ATAGCAGACGTATATTGTATCATTTGAGTGAATGTTCCCAAGTAGGCATTCTAGGCTCTATTTAACTGAG





TCACACTGCATAGGAATTTAGAACCTAACTTTTATAGGTTATCAAAACTGTTGTCACCATTGCACAATTT





TGTCCTAATATATACATAGAAACTTTGTGGGGCATGTTAAGTTACAGTTTGCACAAGTTCATCTCATTTG





TATTCCATTGATTTTTTTTTTCTTCTAAACATTTTTTCTTCAAACAGTATATAACTTTTTTTAGGGGATT





TTTTTTTAGACAGCAAAAACTATCTGAAGATTTCCATTTGTCAAAAAGTAATGATTTCTTGATAATTGTG





TAGTAATGTTTTTTAGAACCCAGCAGTTACCTTAAAGCTGAATTTATATTTAGTAACTTCTGTGTTAATA





CTGGATAGCATGAATTCTGCATTGAGAAACTGAATAGCTGTCATAAAATGAAACTTTCTTTCTAAAGAAA





GATACTCACATGAGTTCTTGAAGAATAGTCATAACTAGATTAAGATCTGTGTTTTAGTTTAATAGTTTGA





AGTGCCTGTTTGGGATAATGATAGGTAATTTAGATGAATTTAGGGGAAAAAAAAGTTATCTGCAGATATG





TTGAGGGCCCATCTCTCCCCCCACACCCCCACAGAGCTAACTGGGTTACAGTGTTTTATCCGAAAGTTTC





CAATTCCACTGTCTTGTGTTTTCATGTTGAAAATACTTTTGCATTTTTCCTTTGAGTGCCAATTTCTTAC





TAGTACTATTTCTTAATGTAACATGTTTACCTGGAATGTATTTTAACTATTTTTGTATAGTGTAAACTGA





AACATGCACATTTTGTACATTGTGCTTTCTTTTGTGGGACATATGCAGTGTGATCCAGTTGTTTTCCATC





ATTTGGTTGCGCTGACCTAGGAATGTTGGTCATATCAAACATTAAAAATGACCACTCTTTTAATTGAAAT





TAACTTTTAAATGTTTATAGGAGTATGTGCTGTGAAGTGATCTAAAATTTGTAATATTTTTGTCATGAAC





TGTACTACTCCTAATTATTGTAATGTAATAAAAATAGTTACAGTGACAAAAAAAAAAAAAAA





SEQ ID NO: 32



- Homo sapiens leprecan-like 4 (LEPREL4), mRNA



GCTTCCTGGGCTTCCCATCTCTGGCGGGAAGCGCTCCCCGACGCATTCTCTACCTAGGGGACACCCCCAA





GGCAGGAGCCCGGGCCGACGGAGAGGACTTAACGACACTATCGGACCCTCTGGGAAAAGAGGGGAGACGT





CGTGACCCAGGCCCCGCCCCACCTTGCCGCCTCGTGCCCGGCGCTAAGACCCAGCGGGCGCGCCGCCCGC





CCGGGGCCCGGCCCTGTCCCCTTCCGTCCGCGGGGCAGCCAGCTCAGCTCCGGAGAGCCGGCGGCGCGGC





GGGCATGGCTCGGGTGGCGTGGGGGCTGCTGTGGTTGCTGCTGGGCAGCGCCGGGGCGCAGTACGAGAAG





TACAGCTTCCGGGGCTTCCCGCCCGAGGACCTGATGCCGCTGGCCGCGGCGTACGGGCACGCTCTGGAGC





AGTACGAGGGAGAGAGCTGGCGCGAGAGCGCGCGCTACCTGGAGGCGGCGCTGCGGCTGCACCGGCTCCT





GCGCGACAGCGAGGCCTTCTGCCACGCCAACTGCAGCGGCCCCGCGCCCGCGGCCAAGCCCGATCCCGAC





GGCGGCCGCGCAGACGAGTGGGCCTGCGAGCTGCGGCTCTTCGGCCGCGTCCTGGAGCGAGCCGCCTGCC





TGCGGCGCTGCAAGCGGACGCTGCCCGCCTTCCAGGTGCCCTACCCGCCGCGGCAGCTGCTGCGTGACTT





CCAGAGCCGCCTGCCCTACCAGTACCTGCACTACGCGCTGTTCAAGGCTAACCGGCTGGAGAAGGCGGTG





GCGGCGGCCTACACCTTCCTCCAGAGGAACCCGAAGCACGAGCTGACCGCCAAGTATCTCAACTACTATC





AGGGGATGCTGGACGTCGCCGACGAGTCCCTCACGGACCTAGAGGCCCAGCCCTACGAGGCCGTGTTCCT





CCGGGCTGTGAAGCTCTACAACAGCGGGGATTTCCGCAGCAGCACGGAGGACATGGAGCGGGCCTTGTCA





GAGTACCTGGCAGTCTTTGCCCGGTGCCTGGCCGGCTGTGAAGGGGCCCATGAGCAGGTGGACTTCAAGG





ACTTCTACCCGGCCATAGCAGATCTCTTTGCAGAGTCCCTGCAGTGCAAGGTGGACTGTGAGGCCAATTT





GACCCCCAATGTGGGTGGCTACTTCGTGGACAAGTTCGTGGCCACCATGTACCACTACCTGCAGTTTGCC





TACTATAAGTTGAATGATGTGCGCCAGGCTGCCCGCAGCGCCGCCAGCTACATGCTCTTCGACCCCAAGG





ACAGCGTCATGCAGCAGAACCTGGTGTATTACCGGTTCCACCGGGCTCGCTGGGGCCTGGAAGAGGAGGA





CTTCCAGCCCCGGGAGGAGGCCATGCTCTACCACAACCAGACCGCCGAGCTGCGGGAGCTGCTGGAGTTC





ACCCACATGTACCTGCAGTCAGATGATGAGATGGAGCTGGAGGAGACAGAACCGCCCCTGGAGCCTGAGG





ATGCCCTATCTGACGCCGAGTTTGAGGGGGAGGGTGACTACGAGGAGGGCATGTATGCTGACTGGTGGCA





GGAGCCGGATGCCAAGGGTGACGAGGCCGAGGCTGAGCCAGAGCCTGAACTCGCATGAGAAGGGGACACC





CCACACCGCTCAAGCTTGGGAAGCCTGGTGCCGATGGCCCCACCCTCACCAGCCTGGGCAGCAGCAAGAA





CTATTTATTAAAAACTTAAGATGGGCCAGGTGCGGTGGCTCACACCTGTAATCCCAGCATTTTGGGAGGC





CAAGGTGGGTGGATCACTTGAGGCCAGGAGTTCAAGACCAGCCTGGCCAACATGATGAGACCTCCGTCTC





TACTAAAATACATAAATTAGCCGGGTGTGGTGGCAGGCGCCTGAAATCCCAGCTACTCAAGAGGCTGAGG





CAGGAGAATCGCTTGAACCTGGGAGGCAAAGGTTGCAGTGAACTGAGATTGCGCCACCGCACTCCAGCCT





GGGCGACAGAGCGAGACTCCATCTTTAAAAAAAAACAAGACGGGCCGGCACGGTGGCTCACGCCTGTAAT





CCCAGCACTGAGAGGCCGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCC





ATCTCTACTAAAAAATACAAAAATTAGCCAGGCATGGTGGCACACACCTGTAATCGTAGCTGAGGCAGGA





GAATCGCCTGAACCCAGGAGGCGGAGCTTGCAGTGAGCCGAGATCGTGCCACTGCACTCCAGCCTGGGCG





ACAGAGTGAGACTCCATCTCAAAAAAAAAAAAAAAAACTTAAGATGGACACAGCTGACTGGACCCCCATC





CTGCCTCACCCATGGGTGCTGCACCCCAGACCCATCCTGCCACTTCTATGTCTCTGGACCACAGGATGGT





GGTGGCATTGCAGGTTGGCAAGTGGGCTGATGGGGTCCGCCCTCCTCACTGCTGAGCTCCTCACCTGGAC





AGTCTCCTGGACAAGGAGTTTCCAGCTGCTGGCTGGAGTCTCAGGCCAAATTGCAGAGGGTCCTCCAGGG





TCCTGAAGAGCACTGGACTAAGAGTCTAGTGGTTCCAGGGCCCTGACCAGTAGGTGCTCAATAAATGTTT





GTTGTTGAATGAAAAAAAAAAAAAAAAAA





SEQ ID NO: 33



- Homo sapiens lethal giant larvae homolog 2



(Drosophila) (LLGL2), transcript variant 2, mRNA


GGAGGTGAGCAGGAAGGAGACGGCCGCCCAGCAGCCCGTGGGCAGGCGCGGCGGAGCGAGCGGGGCCGGC





GGCGGGCGCCGAGGGACGCCGAGGCCTCGGGCGGGGGCTGGCCCGGGGTTCCAGGTCTCCAGTGGGGGCT





GCAGACTAAGCAAAATGAGGCGGTTCCTGAGGCCAGGGCATGACCCTGTGCGGGAGAGGCTCAAGCGGGA





CCTGTTCCAGTTTAACAAGACGGTGGAGCATGGCTTCCCGCACCAGCCCAGCGCCCTCGGCTACAGCCCG





TCCCTGCGCATCCTGGCCATCGGCACCCGTTCTGGAGCCATCAAGCTCTACGGAGCCCCAGGCGTGGAGT





TCATGGGGCTGCACCAGGAGAACAACGCTGTGACGCAGATCCACCTCCTGCCCGGCCAGTGCCAGCTGGT





CACCCTGCTGGATGACAACAGCCTGCACCTTTGGAGCCTGAAGGTCAAGGGCGGGGCATCGGAGCTGCAG





GAGGATGAGAGCTTCACACTGCGTGGACCCCCAGGGGCTGCCCCCAGTGCCACACAGATCACCGTGGTCC





TGCCACATTCCTCCTGCGAGCTGCTCTACCTGGGCACCGAGAGTGGCAACGTGTTTGTGGTGCAGCTGCC





AGCTTTTCGTGCGCTGGAGGACCGGACCATCAGCTCGGACGCGGTGCTGCAGCGGTTGCCAGAGGAGGCC







CG
CCACCGGCGTGTGTTCGAGATGGTGGAGGCACTGCAGGAGCACCCTCGAGACCCCAACCAGATCCTGA






TCGGCTACAGCCGAGGCCTCGTTGTCATCTGGGACCTACAGGGCAGCCGCGTGCTCTACCACTTCCTCAG





CAGCCAGCAACTGGAGAACATCTGGTGGCAGCGGGACGGCCGCCTGCTCGTCAGCTGTCACTCTGACGGC





AGCTACTGCCAGTGGCCCGTGTCCAGCGAAGCCCAGCAACCAGAGCCCCTCCGCAGCCTCGTGCCTTACG





GTCCCTTTCCTTGCAAAGCGATTACCAGAATCCTCTGGCTGACCACTAGGCAGGGGTTGCCCTTCACCAT





CTTCCAGGGTGGCATGCCACGGGCCAGCTACGGGGACCGCCACTGCATCTCAGTGATCCACGATGGCCAG





CAGACGGCCTTCGACTTCACCTCCCGTGTCATCGGCTTCACTGTCCTCACAGAGGCAGACCCTGCAGCCA





GTAGGAGAGCTTCGGGAGTGGGTGCCCAGGGTTAGGTGTGGGAGGCATGGGGCAGGACCATCAGTAAAGA





CAGGGCCAGGTGCAGTGGCTCCTGCCTGTAACCCCAGTGCTGTGGGAGGCCAAGGTGGTAGGATCGCTTG





AACCCAGGAGTTCAAGTCCAGCCTGGACAACGTAGGGAGACCCTTGTCTCTACAAAAAATAAAAAAATTA





GCCAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 34



- Homo sapiens neuroblastoma RAS viral (v-ras)



oncogene homolog (NRAS), mRNA


GAAACGTCCCGTGTGGGAGGGGCGGGTCTGGGTGCGGCCTGCCGCATGACTCGTGGTTCGGAGGCCCACG





TGGCCGGGGCGGGGACTCAGGCGCCTGGGGCGCCGACTGATTACGTAGCGGGCGGGGCCGGAAGTGCCGC





TCCTTGGTGGGGGCTGTTCATGGCGGTTCCGGGGTCTCCAACATTTTTCCCGGCTGTGGTCCTAAATCTG





TCCAAAGCAGAGGCAGTGGAGCTTGAGGTTCTTGCTGGTGTGAAATGACTGAGTACAAACTGGTGGTGGT





TGGAGCAGGTGGTGTTGGGAAAAGCGCACTGACAATCCAGCTAATCCAGAACCACTTTGTAGATGAATAT





GATCCCACCATAGAGGATTCTTACAGAAAACAAGTGGTTATAGATGGTGAAACCTGTTTGTTGGACATAC





TGGATACAGCTGGACAAGAAGAGTACAGTGCCATGAGAGACCAATACATGAGGACAGGCGAAGGCTTCCT





CTGTGTATTTGCCATCAATAATAGCAAGTCATTTGCGGATATTAACCTCTACAGGGAGCAGATTAAGCGA





GTAAAAGACTCGGATGATGTACCTATGGTGCTAGTGGGAAACAAGTGTGATTTGCCAACAAGGACAGTTG





ATACAAAACAAGCCCACGAACTGGCCAAGAGTTACGGGATTCCATTCATTGAAACCTCAGCCAAGACCAG







ACA
GGGTGTTGA
AGATGCTTTTTACACACTGGTAAGAGAAATACGCCAGTACCGAATGAAAAAACTCAAC






AGCAGTGATGATGGGACTCAGGGTTGTATGGGATTGCCATGTGTGGTGATGTAACAAGATACTTTTAAAG





TTTTGTCAGAAAAGAGCCACTTTCAAGCTGCACTGACACCCTGGTCCTGACTTCCCTGGAGGAGAAGTAT





TCCTGTTGCTGTCTTCAGTCTCACAGAGAAGCTCCTGCTACTTCCCCAGCTCTCAGTAGTTTAGTACAAT





AATCTCTATTTGAGAAGTTCTCAGAATAACTACCTCCTCACTTGGCTGTCTGACCAGAGAATGCACCTCT





TGTTACTCCCTGTTATTTTTCTGCCCTGGGTTCTTCCACAGCACAAACACACCTCTGCCACCCCAGGTTT





TTCATCTGAAAAGCAGTTCATGTCTGAAACAGAGAACCAAACCGCAAACGTGAAATTCTATTGAAAACAG





TGTCTTGAGCTCTAAAGTAGCAACTGCTGGTGATTTTTTTTTTCTTTTTACTGTTGAACTTAGAACTATG





CTAATTTTTGGAGAAATGTCATAAATTACTGTTTTGCCAAGAATATAGTTATTATTGCTGTTTGGTTTGT





TTATAATGTTATCGGCTCTATTCTCTAAACTGGCATCTGCTCTAGATTCATAAATACAAAAATGAATACT





GAATTTTGAGTCTATCCTAGTCTTCACAACTTTGACGTAATTAAATCCAACTTTCACAGTGAAGTGCCTT





TTTCCTAGAAGTGGTTTGTAGACTTCCTTTATAATATTTCAGTGGAATAGATGTCTCAAAAATCCTTATG





CATGAAATGAATGTCTGAGATACGTCTGTGACTTATCTACCATTGAAGGAAAGCTATATCTATTTGAGAG





CAGATGCCATTTTGTACATGTATGAAATTGGTTTTCCAGAGGCCTGTTTTGGGGCTTTCCCAGGAGAAAG





ATGAAACTGAAAGCACATGAATAATTTCACTTAATAATTTTTACCTAATCTCCACTTTTTTCATAGGTTA





CTACCTATACAATGTATGTAATTTGTTTCCCCTAGCTTACTGATAAACCTAATATTCAATGAACTTCCAT





TTGTATTCAAATTTGTGTCATACCAGAAAGCTCTACATTTGCAGATGTTCAAATATTGTAAAACTTTGGT





GCATTGTTATTTAATAGCTGTGATCAGTGATTTTCAAACCTCAAATATAGTATATTAACAAATTACATTT





TCACTGTATATCATGGTATCTTAATGATGTATATAATTGCCTTCAATCCCCTTCTCACCCCACCCTCTAC





AGCTTCCCCCACAGCAATAGGGGCTTGATTATTTCAGTTGAGTAAAGCATGGTGCTAATGGACCAGGGTC





ACAGTTTCAAAACTTGAACAATCCAGTTAGCATCACAGAGAAAGAAATTCTTCTGCATTTGCTCATTGCA





CCAGTAACTCCAGCTAGTAATTTTGCTAGGTAGCTGCAGTTAGCCCTGCAAGGAAAGAAGAGGTCAGTTA





GCACAAACCCTTTACCATGACTGGAAAACTCAGTATCACGTATTTAAACATTTTTTTTTCTTTTAGCCAT





GTAGAAACTCTAAATTAAGCCAATATTCTCATTTGAGAATGAGGATGTCTCAGCTGAGAAACGTTTTAAA





TTCTCTTTATTCATAATGTTCTTTGAAGGGTTTAAAACAAGATGTTGATAAATCTAAGCTGATGAGTTTG





CTCAAAACAGGAAGTTGAAATTGTTGAGACAGGAATGGAAAATATAATTAATTGATACCTATGAGGATTT





GGAGGCTTGGCATTTTAATTTGCAGATAATACCCTGGTAATTCTCATGAAAAATAGACTTGGATAACTTT





TGATAAAAGACTAATTCCAAAATGGCCACTTTGTTCCTGTCTTTAATATCTAAATACTTACTGAGGTCCT





CCATCTTCTATATTATGAATTTTCATTTATTAAGCAAATGTCATATTACCTTGAAATTCAGAAGAGAAGA





AACATATACTGTGTCCAGAGTATAATGAACCTGCAGAGTTGTGCTTCTTACTGCTAATTCTGGGAGCTTT





CACAGTACTGTCATCATTTGTAAATGGAAATTCTGCTTTTCTGTTTCTGCTCCTTCTGGAGCAGTGCTAC





TCTGTAATTTTCCTGAGGCTTATCACCTCAGTCATTTCTTTTTTAAATGTCTGTGACTGGCAGTGATTCT





TTTTCTTAAAAATCTATTAAATTTGATGTCAAATTAGGGAGAAAGATAGTTACTCATCTTGGGCTCTTGT





GCCAATAGCCCTTGTATGTATGTACTTAGAGTTTTCCAAGTATGTTCTAAGCACAGAAGTTTCTAAATGG





GGCCAAAATTCAGACTTGAGTATGTTCTTTGAATACCTTAAGAAGTTACAATTAGCCGGGCATGGTGGCC





CGTGCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGCAGGAGAATCACTTCAACCCAGGAGGTGGAGGTTA





CAGTGAGCAGAGATCGTGCCACTGCACTCCAGCCTGGGTGACAAGAGAGACTTGTCTCCAAAAAAAAAGT





TACACCTAGGTGTGAATTTTGGCACAAAGGAGTGACAAACTTATAGTTAAAAGCTGAATAACTTCAGTGT





GGTATAAAACGTGGTTTTTAGGCTATGTTTGTGATTGCTGAAAAGAATTCTAGTTTACCTCAAAATCCTT





CTCTTTCCCCAAATTAAGTGCCTGGCCAGCTGTCATAAATTACATATTCCTTTTGGTTTTTTTAAAGGTT





ACATGTTCAAGAGTGAAAATAAGATGTTCTGTCTGAAGGCTACCATGCCGGATCTGTAAATGAACCTGTT





AAATGCTGTATTTGCTCCAACGGCTTACTATAGAATGTTACTTAATACAATATCATACTTATTACAATTT





TTACTATAGGAGTGTAATAGGTAAAATTAATCTCTATTTTAGTGGGCCCATGTTTAGTCTTTCACCATCC





TTTAAACTGCTGTGAATTTTTTTGTCATGACTTGAAAGCAAGGATAGAGAAACACTTTAGAGATATGTGG





GGTTTTTTTACCATTCCAGAGCTTGTGAGCATAATCATATTTGCTTTATATTTATAGTCATGAACTCCTA





AGTTGGCAGCTACAACCAAGAACCAAAAAATGGTGCGTTCTGCTTCTTGTAATTCATCTCTGCTAATAAA





TTATAAGAAGCAAGGAAAATTAGGGAAAATATTTTATTTGGATGGTTTCTATAAACAAGGGACTATAATT





CTTGTACATTATTTTTCATCTTTGCTGTTTCTTTGAGCAGTCTAATGTGCCACACAATTATCTAAGGTAT





TTGTTTTCTATAAGAATTGTTTTAAAAGTATTCTTGTTACCAGAGTAGTTGTATTATATTTCAAAACGTA





AGATGATTTTTAAAAGCCTGAGTACTGACCTAAGATGGAATTGTATGAACTCTGCTCTGGAGGGAGGGGA





GGATGTCCGTGGAAGTTGTAAGACTTTTATTTTTTTGTGCCATCAAATATAGGTAAAAATAATTGTGCAA





TTCTGCTGTTTAAACAGGAACTATTGGCCTCCTTGGCCCTAAATGGAAGGGCCGATATTTTAAGTTGATT





ATTTTATTGTAAATTAATCCAACCTAGTTCTTTTTAATTTGGTTGAATGTTTTTTCTTGTTAAATGATGT





TTAAAAAATAAAAACTGGAAGTTCTTGGCTTAGTCATAATTCTT





SEQ ID NO: 35



- Homo sapiens 2′-5′-oligoadenylate synthetase 1,



40/46 kDa (OAS1), transcript variant 3, mRNA


TCCCTTCTGAGGAAACGAAACCAACAGCAGTCCAAGCTCAGTCAGCAGAAGAGATAAAAGCAAACAGGTC





TGGGAGGCAGTTCTGTTGCCACTCTCTCTCCTGTCAATGATGGATCTCAGAAATACCCCAGCCAAATCTC





TGGACAAGTTCATTGAAGACTATCTCTTGCCAGACACGTGTTTCCGCATGCAAATCAACCATGCCATTGA





CATCATCTGTGGGTTCCTGAAGGAAAGGTGCTTCCGAGGTAGCTCCTACCCTGTGTGTGTGTCCAAGGTG





GTAAAGGGTGGCTCCTCAGGCAAGGGCACCACCCTCAGAGGCCGATCTGACGCTGACCTGGTTGTCTTCC





TCAGTCCTCTCACCACTTTTCAGGATCAGTTAAATCGCCGGGGAGAGTTCATCCAGGAAATTAGGAGACA





GCTGGAAGCCTGTCAAAGAGAGAGAGCATTTTCCGTGAAGTTTGAGGTCCAGGCTCCACGCTGGGGCAAC





CCCCGTGCGCTCAGCTTCGTACTGAGTTCGCTCCAGCTCGGGGAGGGGGTGGAGTTCGATGTGCTGCCTG





CCTTTGATGCCCTGGGTCAGTTGACTGGCGGCTATAAACCTAACCCCCAAATCTATGTCAAGCTCATCGA





GGAGTGCACCGACCTGCAGAAAGAGGGCGAGTTCTCCACCTGCTTCACAGAACTACAGAGAGACTTCCTG





AAGCAGCGCCCCACCAAGCTCAAGAGCCTCATCCGCCTAGTCAAGCACTGGTACCAAAATTGTAAGAAGA





AGCTTGGGAAGCTGCCACCTCAGTATGCCCTGGAGCTCCTGACGGTCTATGCTTGGGAGCGAGGGAGCAT





GAAAACACATTTCAACACAGCCCAGGGATTTCGGACGGTCTTGGAATTAGTCATAAACTACCAGCAACTC





TGCATCTACTGGACAAAGTATTATGACTTTAAAAACCCCATTATTGAAAAGTACCTGAGAAGGCAGCTCA





CGAAACCCAGGCCTGTGATCCTGGACCCGGCGGACCCTACAGGAAACTTGGGTGGTGGAGACCCAAAGGG





TTGGAGGCAGCTGGCACAAGAGGCTGAGGCCTGGCTGAATTACCCATGCTTTAAGAATTGGGATGGGTCC





CCAGTGAGCTCCTGGATTCTGCTGACCCAGCACACTCCAGGCAGCATCCACCCCACAGGCAGAAGAGGAC





TGGACCTGCACCATCCTCTGAATGCCAGTGCATCTTGGGGGAAAGGGCTCCAGTGTTATCTGGACCAGTT





CCTTCATTTTCAGGTGGGACTCTTGATCCAGAGAGGACAAAGCTCCTCAGTGAGCTGGTGTATAATCCAG





GACAGAACCCAGGTCTCCTGACTCCTGGCCTTCTATGCCCTCTATCCTATCATAGATAACATTCTCCACA





GCCTCACTTCATTCCACCTATTCTCTGAAAATATTCCCTGAGAGAGAACAGAGAGATTTAGATAAGAGAA





TGAAATTCCAGCCTTGACTTTCTTCTGTGCACCTGATGGGAGGGTAATGTCTAATGTATTATCAATAACA





ATAAAAATAAAGCAAATACCATTTAAAAAAAAAAA





SEQ ID NO: 36



- Homo sapiens origin recognition complex, subunit



1 (ORC1), transcript variant 3, mRNA


ACGGTCTGGGGGCGGGGCCACGCCGATTGGCGCGAAGTTTTCTTTTCTCCTTCCACCTTCTTTTCATTTC





TAGTGAGACACACGCTTTGGTCCTGGCTTTCGGCCCGTAGTTGTAGAAGGAGCCCTGCTGGTGCAGGTTA





GAGGTGCCGCATCCCCCGGAGCTCTCGAAGTGGAGGCGGTAGGAAACGGAGGGCTTGCGGCTAGCCGGAG





GAAGCTTTGGAGCCGGAAGCCATGGCACACTACCCCACAAGGCTGAAGACCAGAAAAACTTATTCATGGG





TTGGCAGGCCCTTGTTGGATCGAAAACTGCACTACCAAACCTATAGAGAAATGTGTGTGAAAACAGAAGG





TTGTTCCACCGAGATTCACATCCAGATTGGACAGTTTGTGTTGATTGAAGGGGATGATGATGAAAACCCG





TATGTTGCTAAATTGCTTGAGTTGTTCGAAGATGACTCTGATCCTCCTCCTAAGAAACGTGCTCGAGTAC





AGTGGTTTGTCCGATTCTGTGAAGTCCCTGCCTGTAAACGGCATTTGTTGGGCCGGAAGCCTGGTGCACA





GGAAATATTCTGGTATGATTACCCGGCCTGTGACAGCAACATTAATGCGGAGACCATCATTGGCCTTGTT





CGGGTGATACCTTTAGCCCCAAAGGATGTGGTACCGACGAATCTGAAAAATGAGAAGACACTCTTTGTGA





AACTATCCTGGAATGAGAAGAAATTCAGGCCACTTTCCTCAGAACTATTTGCGGAGTTGAATAAACCACA





AGAGAGTGCAGCCAAGTGCCAGAAACCCGTGAGAGCCAAGAGTAAGAGTGCAGAGAGCCCTTCTTGGACC





CCAGCAGAACATGTGGCCAAAAGGATTGAATCAAGGCACTCCCCCTCCAAATCTCGCCAAACTCCTACCC





ATCCTCTTACCCCAAGAGCCAGAAAGAGGCTGGAGCTTGGCAACTTAGGTAACCCTCAGATGTCCCAGCA





GACTTCATGTGCCTCCTTGGATTCTCCAGGAAGAATAAAACGGAAAGTGGCCTTCTCGGAGATCACCTCA





CCTTCTAAGAGATCTCAGCCTGATAAACTTCAAACCTTGTCTCCAGCTCTGAAAGCCCCAGAGAAAACCA





GAGAGACTGGACTCTCTTATACTGAGGATGACAAGAAGGCTTCACCTGAACATCGCATAATCCTGAGAAC





CCGAATTGCAGCTTCGAAAACCATAGACATTAGAGAGGAGAGAACACTTACCCCTATCAGTGGGGGACAG





AGATCTTCAGTGGTGCCATCCGTGATTCTGAAACCAGAAAACATCAAAAAGAGGGATGCAAAAGAAGCAA





AAGCCCAGAATGAAGCGACCTCTACTCCCCATCGTATCCGCAGAAAGAGTTCTGTCTTGACTATGAATCG





GATTAGGCAGCAGCTTCGGTTTCTAGGTAATAGTAAAAGTGACCAAGAAGAGAAAGAGATTCTGCCAGCA





GCAGAGATTTCAGACTCTAGCAGTGACGAAGAAGAGGCTTCCACACCGCCCCTTCCAAGGAGAGCACCCA





GAACTGTGTCCAGGAACCTGCGATCTTCCTTGAAGTCATCCTTACATACCCTCACGAAGCTCAAGCCTAG





AACGCCACGTTGTGCCGCTCCTCAGATCCGTAGTCGAAGCCTGGCTGCCCAGGAGCCAGCCAGTGTGCTG





GAGGAAGCCCGACTGAGGCTGCATGTTTCTGCTGTACCTGAGTCTCTTCCCTGTCGGGAACAGGAATTCC





AAGACATCTACAATTTTGTGGAAAGCAAACTCCTTGACCATACCGGAGGGTGCATGTACATCTCCGGTGT





CCCTGGGACAGGGAAGACTGCCACTGTTCATGAAGTGATACGCTGCCTGCAGCAGGCAGCCCAAGCCAAT





GATGTTCCTCCCTTTCAATACATTGAGGTCAATGGCATGAAGCTGACGGAGCCCCACCAAGTCTATGTGC





AAATCTTGCAGAAGCTAACAGGCCAAAAAGCAACAGCCAACCATGCGGCAGAACTGCTGGCAAAGCAATT





CTGCACCCGAGGGTCACCTCAGGAAACCACCGTCCTGCTTGTGGATGAGCTCGACCTTCTGTGGACTCAC





AAACAAGACATAATGTACAATCTCTTTGACTGGCCCACTCATAAGGAGGCCCGGCTTGTGGTCCTGGCAA





TTGCCAACACAATGGACCTGCCAGAGCGAATCATGATGAACCGGGTGTCCAGCCGACTGGGTCTTACCAG





GATGTGCTTCCAGCCCTATACATATAGCCAGCTGCAGCAGATCCTAAGGTCCCGGCTCAAGCATCTAAAG





GCCTTTGAAGATGATGCCATCCAGCTGGTAGCCAGGAAGGTAGCAGCACTGTCTGGAGATGCACGACGGT





GCCTGGACATCTGCAGGCGTGCCACAGAGATCTGTGAGTTCTCCCAGCAGAAGCCTGACTCCCCTGGCCT





GGTCACCATAGCCCACTCAATGGAAGCTGTGGATGAGATGTTTTCATCATCATACATCACGGCCATCAAA





AATTCCTCTGTTCTGGAACAGAGCTTCCTGAGAGCCATCCTCGCAGAGTTCCGTCGATCAGGACTGGAGG





AAGCCACGTTTCAACAGATATATAGTCAACATGTGGCACTGTGCAGAATGGAGGGACTGCCGTACCCCAC





CATGTCAGAGACCATGGCCGTGTGTTCTCACCTGGGCTCCTGTCGCCTCCTGCTTGTGGAGCCCAGCAGG





AACGATCTGCTCCTTCGGGTGCGGCTCAACGTCAGCCAGGATGATGTGCTGTATGCGCTGAAAGACGAGT





AAAGGGGCTTCACAAGTTAAAAGACTGGGGTCTTGCTGGGTTTTGTTTTTTGAGACAGGGTCTTGCTCTG





TCGCCCAGGCTGGAGTGCAGTGGCACGATCATGGCTCACTGCAGCCTTGACTTCTCAGGCTTAGGTGACC





CCCCAACCTCATCCTCCCAGGTGGCTGAAACTACAGGCACATGCCACCATGCCCAGCTGATTTTTTGTAG





AGACAGGGCTTCACCATGTTGCCAAGCTAGTCTACAAAGCATCTGATTTTGGAAGTACATGGAATTGTTG





TAACAAAGTATATTGAATGGAAATGGCTCTCATGTATTTTGGAATTTTCCATTAAATAATTTGCTTTTTC





CTGAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 37



- Homo sapiens phosphoglycerate kinase 1 (PGK1), mRNA



GAGAGCAGCGGCCGGGAAGGGGCGGTGCGGGAGGCGGGGTGTGGGGCGGTAGTGTGGGCCCTGTTCCTGC





CCGCGCGGTGTTCCGCATTCTGCAAGCCTCCGGAGCGCACGTCGGCAGTCGGCTCCCTCGTTGACCGAAT





CACCGACCTCTCTCCCCAGCTGTATTTCCAAAATGTCGCTTTCTAACAAGCTGACGCTGGACAAGCTGGA





CGTTAAAGGGAAGCGGGTCGTTATGAGAGTCGACTTCAATGTTCCTATGAAGAACAACCAGATAACAAAC





AACCAGAGGATTAAGGCTGCTGTCCCAAGCATCAAATTCTGCTTGGACAATGGAGCCAAGTCGGTAGTCC





TTATGAGCCACCTAGGCCGGCCTGATGGTGTGCCCATGCCTGACAAGTACTCCTTAGAGCCAGTTGCTGT





AGAACTCAAATCTCTGCTGGGCAAGGATGTTCTGTTCTTGAAGGACTGTGTAGGCCCAGAAGTGGAGAAA





GCCTGTGCCAACCCAGCTGCTGGGTCTGTCATCCTGCTGGAGAACCTCCGCTTTCATGTGGAGGAAGAAG





GGAAGGGAAAAGATGCTTCTGGGAACAAGGTTAAAGCCGAGCCAGCCAAAATAGAAGCTTTCCGAGCTTC





ACTTTCCAAGCTAGGGGATGTCTATGTCAATGATGCTTTTGGCACTGCTCACAGAGCCCACAGCTCCATG





GTAGGAGTCAATCTGCCACAGAAGGCTGGTGGGTTTTTGATGAAGAAGGAGCTGAACTACTTTGCAAAGG





CCTTGGAGAGCCCAGAGCGACCCTTCCTGGCCATCCTGGGCGGAGCTAAAGTTGCAGACAAGATCCAGCT





CATCAATAATATGCTGGACAAAGTCAATGAGATGATTATTGGTGGTGGAATGGCTTTTACCTTCCTTAAG





GTGCTCAACAACATGGAGATTGGCACTTCTCTGTTTGATGAAGAGGGAGCCAAGATTGTCAAAGACCTAA





TGTCCAAAGCTGAGAAGAATGGTGTGAAGATTACCTTGCCTGTTGACTTTGTCACTGCTGACAAGTTTGA





TGAGAATGCCAAGACTGGCCAAGCCACTGTGGCTTCTGGCATACCTGCTGGCTGGATGGGCTTGGACTGT





GGTCCTGAAAGCAGCAAGAAGTATGCTGAGGCTGTCACTCGGGCTAAGCAGATTGTGTGGAATGGTCCTG





TGGGGGTATTTGAATGGGAAGCTTTTGCCCGGGGAACCAAAGCTCTCATGGATGAGGTGGTGAAAGCCAC





TTCTAGGGGCTGCATCACCATCATAGGTGGTGGAGACACTGCCACTTGCTGTGCCAAATGGAACACGGAG





GATAAAGTCAGCCATGTGAGCACTGGGGGTGGTGCCAGTTTGGAGCTCCTGGAAGGTAAAGTCCTTCCTG





GGGTGGATGCTCTCAGCAATATTTAGTACTTTCCTGCCTTTTAGTTCCTGTGCACAGCCCCTAAGTCAAC





TTAGCATTTTCTGCATCTCCACTTGGCATTAGCTAAAACCTTCCATGTCAAGATTCAGCTAGTGGCCAAG





AGATGCAGTGCCAGGAACCCTTAAACAGTTGCACAGCATCTCAGCTCATCTTCACTGCACCCTGGATTTG





CATACATTCTTCAAGATCCCATTTGAATTTTTTAGTGACTAAACCATTGTGCATTCTAGAGTGCATATAT





TTATATTTTGCCTGTTAAAAAGAAAGTGAGCAGTGTTAGCTTAGTTCTCTTTTGATGTAGGTTATTATGA





TTAGCTTTGTCACTGTTTCACTACTCAGCATGGAAACAAGATGAAATTCCATTTGTAGGTAGTGAGACAA





AATTGATGATCCATTAAGTAAACAATAAAAGTGTCCATTGAAACCGTGATTTTTTTTTTTTTCCTGTCAT





ACTTTGTTAGGAAGGGTGAGAATAGAATCTTGAGGAACGGATCAGATGTCTATATTGCTGAATGCAAGAA





GTGGGGCAGCAGCAGTGGAGAGATGGGACAATTAGATAAATGTCCATTCTTTATCAAGGGCCTACTTTAT





GGCAGACATTGTGCTAGTGCTTTTATTCTAACTTTTATTTTTATCAGTTACACATGATCATAATTTAAAA





AGTCAAGGCTTATAACAAAAAAGCCCCAGCCCATTCCTCCCATTCAAGATTCCCACTCCCCAGAGGTGAC





CACTTTCAACTCTTGAGTTTTTCAGGTATATACCTCCATGTTTCTAAGTAATATGCTTATATTGTTCACT





TCTTTTTTTTTTATTTTTTAAAGAAATCTATTTCATACCATGGAGGAAGGCTCTGTTCCACATATATTTC





CACTTCTTCATTCTCTCGGTATAGTTTTGTCACAATTATAGATTAGATCAAAAGTCTACATAACTAATAC





AGCTGAGCTATGTAGTATGCTATGATTAAATTTACTTATGTAAAAAAAAAAAAAAAAAA





SEQ ID NO: 38



- Homo sapiens phorbol-12-myristate-13-acetate-



induced protein 1 (PMAIP1), mRNA


ACTGGACAAAAGCGTGGTCTCTGGCGCGGGGATCTCAGAGTTTCCCGGGCACTCACCGTGTGTAGTTGGC





ATCTCCGCGCGTCCGGACACCCGATCCCAGCATCCCTGCCTGCAGGACTGTTCGTGTTCAGCTCGCGTCC





TGCAGCTGTCCGAGGTGCTCCAGTTGGAGGCTGAGGTTCCCGGGCTCTGTAGCTGAGTGGGCGGCGGCAC





CGGCGGAGATGCCTGGGAAGAAGGCGCGCAAGAACGCTCAACCGAGCCCCGCGCGGGCTCCAGCAGAGCT







GGA
AGTCGA
GTGTGCTACTCAACTCAGGAGATTTGGAGACAAACTGAACTTCCGGCAGAAACTTCTGAAT






CTGATATCCAAACTCTTCTGCTCAGGAACCTGACTGCATCAAAAACTTGCATGAGGGGACTCCTTCAAAA





GAGTTTTCTCAGGAGGTGCACGTTTCATCAATTTGAAGAAAGACTGCATTGTAATTGAGAGGAATGTGAA





GGTGCATTCATGGGTGCCCTTGGAAACGGAAGATGGAATACATCAAAGTGAATTTCTGTTCAAGTTTTCC





CAGATTATCATTCTTTGGGATGAGAGAACATTATAAAACCACTTTGTTTATTTTAAAGCAAGAATGGAAG





ACCCTTGAAAATAAAGAAGTAATTATTGACACATTTCTTTTTTACTTAGAGAATCGTTCTAGTGTTTTTG





CCGAAGATTACCGCTGGCCTACTGTGAAGGGAGATGACCTGTGATTAGACTGGGCGGCTGGGGAGAAACA





GTTCAGTGCATTGTTGTTGTTGCTGTTTTTGGTGTTTTGCTTTTCAGTGCCAACTCAGCACATTGTATAT





GATTCGGTTTATACATATTACCTTGTTATAATGAAAAAACTCATTCTGAGAACACTGAAATGTTATACTC





AGTGTTGATTTCTTCGGTCACTACACAACGTAAAATCATTTGTTTCTTTTGACTCAAATTGTATTGCTTC





TGTTCAGATGATCTTTCATTCAATGTGTTCCTGTTGGGCGTTACTAGAAACTATGGAAAACTGGAAAATA





ACTTTGAAAAAATTGGATAAAGTATAGGAGGGTTACTTGGGGCCAGTAAATCAGTAGACTGAACATTCAA





TATAATAAAAGAACATGGGGATTTTGTATAACCAGGGATAATAAAAAGAAAAAAGAAGTTAATTTTTAAT





TGATGTTTTTGAAACTTAGTAGAACAAATATTCAGAAGTAACTTGATAAGATATGAATGTTTCTAAAGAA





GTTTCTAAAGGTTCGGAAAATGCTCCTTGTCACATTAGTGTGCATCCTACAAAAAGTGATCTCTTAATGT





AAATTAAGAATATTTTCATAATTGGAATATACTTTTCTTAAAAAAAAGGAACAGTTAGTTCTCATCTAGA





ATGAAAGTTCCATATATGCATTGGTGAATATATATGTATACACATACTTACATACTTATATGGGTATCTG





TATAGATAATTTGTATTAGAGTATTATATAGCTTCTTAGTAGGGTCTCAAGTAAGTTTCATTTTTTTTAT





CTGGGCTATATACAGTCCTCAAATAAATAATGTCTTGATTTTATTTCAGCAGGAATAATTTTATTTATTT





TGCCTATTTATAATTAAAGTATTTTTCTTTAGTTTGAAAATGTGTATTAAAGTTACATTTTTGAGTTACA





AGAGTCTTATAACTACTTGAATTTTTAGTTAAAATGTCTTAATGTAGGTTGTAGTCACTTTAGATGGAAA





ATTACCTCACATCTGTTTTCTTCAGTATTACTTAAGATTGTTTATTTAGTGGTAGAGAGTTTTTTTTTTC





AGCCTAGAGGCAGCTATTTTACCATCTGGTATTTATGGTCTAATTTGTATTTAAACATATGCACACATAT





AAAAGTTGATACTGTGGCAGTAAACTATTAAAAGTTTTCACTGTTCAAAAAAAAAAAAAAAAAA





SEQ ID NO: 39



- Homo sapiens POU class 6 homeobox 1 (POU6F1),



transcript variant 2, non-coding RNA


AATCGGTGGCCGCCAGACACCCGCGGCGAAGGCGGCTCGGGCTCGGGCTCCGGATGTGCTAGGTGTGGGC





CGGCCCCCACCCGACCCTGACAAGTGACCATGGATCCTGGAGCCGGGTCAGAGACATCTCTGACTGTCAA





TGAGCAGGTCATCGTGATGTCAGGTCATGAGACCATCCGAGTGCTGGAAGTCGGAGTGGATGCCCAACTC





CCTGCTGAGGAAGAGAGCAAAGGACTGGAGGGTGTGGCCGCCGAGGGCTCCCAGAGCGGAGACCCTGCTG





AAGCCAGTCAAGCTGCTGGTGAAGCTGGGCCAGACAACCTGGGCTCCTCTGCAGAGGCAACTGTGAAGTC





ACCCCCGGGGATCCCTCCGAGCCCTGCCCCTGCCATTGCCACCTTCAGCCAAGCCCCAAGCCAGCCTCAG





GCATCGCAGACCCTGACGCCACTGGCTGTACAAGCTGCCCCCCAGTATTGCAGGTCAAGTGGCTGGTCAG





CAGGGGCTGGCCGTGTGGACAATTCCTACAGCAACTGTGGCTGCCCTCCCAGGACTGACCGCTGCTTCTC





CTACGGGGGGAGTGTTCAAGCCACCTTTAGCCGGTCTCCAAGCAGCTGCTGTGCTGAACACCGCTCTTCC





GGCACCGGTACAAGCTGCCGCACCAGTACAGGCCTCCTCGACGGCCCAACCCCGGCCACCAGCCCAGCCC





CAGACGCTGTTCCAGACCCAGCCGCTGCTGCAGACCACACCTGCCATCCTCCCGCAGCCCACTGCTGCCA





CCGCTGCTGCCCCTACCCCCAAGCCAGTGGACACCCCCCCACAGATCACCGTCCAGCCTGCAGGCTTCGC





ATTTAGCCCAGGAATCATCAGTGCTGCTTCCCTCGGGGGACAGACCCAGATCCTGGGGTCCCTCACTACA





GCTCCAGTCATTACCAGCGCCATTCCCAGCATGCCAGGGATCAGCAGTCAGATCCTCACCAATGCTCAGG





GACAGGTTATTGGAACCCTTCCATGGGTAGTGAACTCAGCTAGTGTGGCGGCCCCAGCACCAGCCCAAAG





CCTGCAGGTCCAGGCCGTGACCCCCCAGCTGTTGTTGAACGCCCAGGGCCAGGTGATTGCGACCCTGGCT





AGCAGCCCCCTGCCTCCACCTGTGGCTGTCCGGAAGCCAAGCACACCTGAGTCCCCTGCTAAGAGTGAGG







TGC
AGCCCATCCA
GCCCACACCAACCGTGCCCCAGCCTGCTGTGGTCATTGCCAGCCCAGCTCCAGCCGC






CAAGCCATCTGCCTCTGCTCCTATCCCAATTACCTGCTCAGAGACCCCCACCGTCAGCCAGTTGGTGTCC





AAGCCACATACTCCAAGTCTGGATGAGGATGGGATCAACTTAGAAGAGATCCGGGAGTTTGCCAAGAACT





TTAAGATCCGGCGGCTCTCGCTGGGCCTTACACAGACCCAGGTGGGTCAGGCTCTGACTGCAACGGAAGG





TCCAGCCTACAGCCAGTCAGCCATCTGCCGGTTCGAGAAGCTAGACATCACACCCAAGAGTGCCCAGAAG





CTAAAGCCGGTGCTGGAAAAGTGGCTAAACGAAGCTGAACTGCGGAACCAGGAAGGCCAGCAGAACCTGA





TGGAGTTTGTGGGAGGCGAGCCCTCCAAGAAACGCAAACGCCGCACCTCCTTCACCCCCCAGGCCATAGA





GGCTCTCAATGCCTATTTTGAGAAGAACCCACTGCCCACAGGCCAGGAGATCACTGAAATTGCTAAGGAG





CTCAACTACGACCGTGAGGTAGTGCGGGTCTGGTTCTGCAATCGGCGCCAGACGCTCAAGAACACCAGCA





AGCTGAACGTCTTTCAGATCCCTTAGGGCTCAGCCCCTGGCCCTGTGTTCTAGCACTTTGTCCATTTCCC





GTGGCATCCGGCTGCAGCCACTGCCATGACAGCACCTGTCATTTTGCCACGTGCAGCTGTGCTCACCCCA





GGTCATCAGACTCCACCGTGTGCATGTGCATCAATGTCCCTCTTTTCTCCCACACATCTCACATCATGGG





GAGGCCAGAGGGGGCCACACGAGAGCTCCAGGCTCTGGGCTGGTCACTCCGAAGAAGAGGATTTGTGACG





TCACTTAGAGAAGCACCTTGCTAGCATGGTTTCTGAAGGGTGAATTCTGGTGGGGAACCAGAAACTCCCT





GTCTTTGGGGCAGGGCTAAAGCAGCTCCTAAGGACCACTGGCCATTAGCTCTTGCTTTTGATGGCATTCT





CTTTCCACCTTGTCTTCTCCTTTGCTCCTCTGTGTTAGTGTGGCAGGTATGACAACTCATCCAGTGGAAA





CACAGCCTCACACTGCCCTTCCGCCCCCCACACTTTGCCTGCAGGTGCACCGAAAGGACCTGGGAGATAA





AATTCAAAAAAGTGTGATGTGCTGCTCAGAAGGTCAGACTCCATGTCTGCCTTGACCTCAAGGTCAGAAG





GTTCCCAAACCCCTGGGGCTGGAACATGGGATCTCCTCTTCCACCTCTTCCTGGTTCCTTTGCGGGGAAA





ATTGCACTAAAACAGAACCTTTTCTTAATCCATGTTGGAAGGAAGCAACAGTGAACTCTACCTGTTCTGG





AGTTCTCCTGGGTCTGCAGAAGGTTGGGAATTTAGAAAATAAGGCTGTTCTTTCATATTTTAATTTAATC





TCTGTCAATGGCCATCCCTCCCACAAAAAAACGTGGGTTAAGAGAACTTGCAGACTGGATATGCAAGCAA





ACGGGCAACTCTGGAGAAAAATAAGGAAAGGAATGCTGACTTTCTCTTTCTTTCTCTTGTCCCCACACCC





ATTCCCAACCCAATACTGGGGCCTTCTCAAAAGGAGCAAATTAAACAATAAACCAGACAGCAAGGCCCTG





GGGGAAAGGACAACATCCTGAAATAAATGATGGAGCCCAGGAAGGTCTCTTGTGGAAGTTGACTTAACTC





TAATTTTCTTTGTAACTTTAAGCCTTGGATACGGGAGGAGAAATCTCATTTTGTCGAGTCTCAGACCATG





TCTGTGTGTAAGCAATCCCCACAGTCTCCTCTGAGCCAAGGACACCCCCAGATCAGATTGAGTTTTGCTT





CTAGACGGGGTAGCTATGGTACCTTGGGGGTTAGCTCTCATCCAAGCTGTTAAGTGAGTTTCCAGCCTCA





CTGTGGCTGGAAAGCCCCTAAAATTCAGTATGTAACTCCAGGAAGTCAGGAGAGAACTGAGATTTGCCTA





GATGACCACAGGCTTGCGGTGTAGATTATCCCTAAAGGGCCCCAAGTCACGGGGGTCAACCACCCCTGTC





TTCAGTACTCTTATCCTTACAGAGGCTGGTCTCTAACAGCTGCCTCCAGTGGACCTCCCATGATCCACCC





TGAGGGAAGGACCGTCAGCTGGGGACACATCACCACCTCTGTCAGTCACTGGTGCAGAGCCACCTCCTAG





CCTAGCTTCCTCTGGTGTCCTGTTTCCTTTCCCACTTACTGTTGGTGCCTCCCAGGCCCTGCAGTGCCAG





CGTGGCCACCCTCTTGGTAGCCTGGCCAGTAAGAGGAGGACAGTTGTGTGCTGAATTAGCACACGCACGT





GCAGCGCGCACAGACGCGCGCACACACACACACATACACGCTCTGCTGCATTTGGACAAACCATGCCTGC





CAGAGTGTAGCAGAGGTGAGGAAGCAGGTGGGCAGCTTGCCTGACCCAGCTTTTCAGGAGAGCGTGTCTC





CAACAGAGAGTCTCCACACTCTAGTTCAGGGTTATCGACCTGCCTCAATGAGATGACAGACTCATTTGGG





AGGGGTGTTGCAAACAAGTTTTCAGTGAGAATAGTTAAGTTCCAGAGCTTGTAAAGGATTCAGTGACTGA





CACTTCAGTAAATTAGGCCAGGCACATTGGCTTATGCCTGTAATTCCAACACTTTGGAAGGCCGAGGTGG





GCGGATCATTTGAGGTCTGGAGTTCGAGACCAGCCTGACCAACATGGTGAAACCCCGTCTCTACTAAAAA





TACAAAAATTAGCCAGGTGTGGTAGTGCACATCTGTAATCCCAGCTACTTGGGAGGTGGAGGCAGGAGAA





TTGCTTGAACCCTGGAGGTTGCAATGAGCTGAGATCACACTACTTCACTCCAGCCTGGGTGACAGAGCAA





GACTCGGTCTCAAACAAACAAAAACTTATGGCGATGCAGGTTTTCATGCTCAGACGCTTGCATTCAGGTA





TGCTTTCTTTTTTGAGAGAGACAAATGGGTCACAGCTGGCACCCTGGGAATAGCACATAATCCAGGGTGT





GTCTGTGGTGGTGGACGTGCAGGGGAACACCATCTGTCCTGTCTCATGATGGGAAAACAATCATGAACCA





CTGGTCTAAATTAGGCCTGGCCATGCTTTCTCAGCCCCTCCCTCATTTAAATTTGTCTTCCCAAAGCTGA





GCTAAAACTAAACCATTTCTCCTCTGCTGGAATGATGGATTGGTCATTCAGAGGAACAATACCAGGGGTG





GGAGGTTTGCAGGCTGAGTTCCCCAGGCATGGGGGTGCAGGGTGTCCCTGAGGTTTACCCAAAGCACAGC





TCGCTGGCCTGTGACCTCTGCCCTTCCTCCCACAGTGTAAGACCCCCCAGGAAGCAGCTGGGGCCTGAAC





CTCTCACCTAGGAGGTAGGTTTATTTTATTTTTTGTTAGCATCAGGCTCTGAAGGAGTTGGTATACATTT





TGTTTTGAAAACATCTTCTGGACTTACACCAGAGCTTAGTGTCGTCTTTACTATGGAAAGAGAGGAGAAT





GGACAGAAATGGTTTAACTGTGTGGAGTTTTGTTTGTTTTGTTTTAAATGGAAGAAAGACCAAAACTTTC





CTGGTGGATCAGCTAGGGCCTTTGACCCTGCATTACCACGGCATTTTATCCAGGTGAAGTCCAGGGAAAG





AACTCAGCCAAATGGACTAAGGAACACACGAGTTTGGAATGCGAGACTCTGACATTTTTGTGTTCTTGGA





AATCCAATTACCTTCCCATGCCCAGATTTCCTTCCTGCCTCTTGGACCAGGCTCTGGCACTGAGGTTCTC





ACTGTTCCCAACACAGACAAAGCTTCCTGAGGGCTGGAGGGGCAGCAAGGGGAGAGGAGAATGGGGAAGA





AGCGCTTGATGTAGTTGTGTGGAATAAACAGTATTTTTTCTTTTGTAAAAAAAAAAAAAAAAA





SEQ ID NO: 40



- Homo sapiens Ran GTPase activating protein



1 (RANGAP1), mRNA


AAATCCTCCTCCTCCGCCATCATCCGCCGCGGTGCGGAGAGCAGGTGGTGCTGGAAGCGCGTGAGGCCGG





GAGCTCGAGAGAGCTAACAGACTAGCCGGCTGGACATCTGGACCGCTGGATCCGGAGGTGGCGACCCCGG





CCTGACCCGGACCCTAAATCCGTCCCCGCCCCAGAGGGCGGAGGCGCGCGCTCGATTCCCCCCACGCGGC





GGCGCCGCCTGTTTACGTCTGCAGATCTCCAGGGGAGCCCACCAGCCTAGTCAACATGGCCTCGGAAGAC





ATTGCCAAGCTGGCAGAGACACTTGCCAAGACTCAGGTGGCCGGGGGACAGCTGAGTTTCAAAGGCAAGA





GCCTCAAACTCAACACTGCAGAAGATGCTAAAGATGTGATTAAAGAGATTGAAGACTTTGACAGCTTGGA





GGCTCTGCGTCTGGAAGGCAACACAGTGGGCGTGGAAGCAGCCAGGGTCATCGCCAAGGCCTTAGAGAAG





AAGTCGGAGTTGAAGCGCTGCCACTGGAGTGACATGTTCACGGGAAGGCTGCGGACCGAGATCCCACCAG







CCC
TGATCTCACTAG
GGGAAGGACTCATCACAGCTGGGGCTCAGCTGGTGGAGCTGGACTTAAGCGACAA






CGCATTCGGGCCCGACGGTGTGCAAGGCTTCGAGGCCCTGCTCAAGAGCTCAGCCTGCTTCACCCTGCAG





GAACTCAAGCTCAACAACTGTGGCATGGGCATTGGCGGCGGCAAGATCCTGGCTGCAGCTCTGACCGAAT





GTCACCGGAAATCCAGTGCCCAAGGCAAGCCTCTGGCCCTGAAGGTCTTTGTGGCTGGCAGAAACCGTCT





GGAGAATGATGGCGCCACTGCCTTGGCAGAAGCTTTTAGGGTCATCGGGACCCTGGAGGAGGTCCACATG





CCACAGAATGGGATCAACCACCCTGGCATCACTGCCCTGGCCCAGGCTTTCGCTGTCAACCCCCTGCTGC





GGGTCATCAACCTGAATGACAACACCTTCACTGAGAAGGGCGCCGTGGCCATGGCCGAGACCTTGAAGAC





CTTGCGGCAGGTGGAGGTGATTAATTTTGGGGACTGCCTGGTGCGCTCCAAGGGTGCAGTTGCCATTGCA





GATGCCATCCGCGGCGGCCTGCCCAAGCTAAAGGAGCTGAACTTGTCATTCTGTGAAATCAAGAGGGATG





CTGCCCTGGCTGTTGCTGAGGCCATGGCAGACAAAGCTGAGCTGGAGAAGCTGGACCTGAATGGCAACAC





CCTGGGAGAAGAAGGCTGTGAACAGCTTCAGGAGGTGCTGGAGGGCTTCAACATGGCCAAGGTGCTGGCG





TCCCTCAGTGATGACGAGGACGAGGAGGAGGAGGAGGAAGGAGAAGAGGAAGAAGAGGAAGCAGAAGAAG





AGGAGGAGGAAGATGAGGAAGAGGAGGAAGAAGAGGAGGAGGAGGAGGAAGAAGAGCCTCAGCAGCGAGG





GCAGGGAGAGAAGTCAGCCACGCCCTCACGGAAGATTCTGGACCCTAACACTGGGGAGCCAGCTCCCGTG





CTGTCCTCCCCACCTCCTGCAGACGTCTCCACCTTCCTGGCTTTTCCCTCTCCAGAGAAGCTGCTGCGCC





TAGGGCCCAAGAGCTCCGTGCTGATAGCCCAGCAGACTGACACGTCTGACCCCGAGAAGGTGGTCTCTGC





CTTCCTAAAGGTGTCATCTGTGTTCAAGGACGAAGCTACTGTGAGGATGGCAGTGCAGGATGCAGTAGAT





GCCCTGATGCAGAAGGCTTTCAACTCCTCGTCCTTCAACTCCAACACCTTCCTCACCAGGCTGCTCGTGC





ACATGGGTCTGCTCAAGAGTGAAGACAAGGTCAAGGCCATTGCCAACCTGTACGGCCCCCTGATGGCGCT





GAACCACATGGTGCAGCAGGACTATTTCCCCAAGGCCCTTGCACCCCTGCTGCTGGCGTTCGTGACCAAG





CCCAACAGCGCCCTGGAATCCTGCTCCTTCGCCCGCCACAGTCTGCTGCAGACGCTGTACAAGGTCTAGA





CTCAAAGCCTCTCCCATCCCTTGGCCTGGACCAGTGAGCTGGGGAGGGACTCGGATGAACTGAGGCGCAG





CCTACGCCATTGCCTTGGACAGGACTCTGGCCACAGGCAGGGCGGGTCTGTGTCCCATGTGTCCTGTCAG





TCCCCTGAGTATGTGTGTGGGTGTGGCGCATGTGCAGGTCTGTGCCTCCTGTCGGGATTTGGGTTTTAAC





GTCTTCTGCTGGCCCAGCCCTGCTCTGTTGTGGGGAGTTGGCCCCCAGGGGAAAGGGCTGTGAGCTGCTC





CGCCATTAAACTCACCTCCACCTGAGGGCGCTCTGCTGATCTCCGCCTGGGCCCTGATGGCCGTCCCCAC





CCACCTGCCTTCCGGCCCGGCTCCCTGGCGGAGCCAGAACCCAGGGAGTTGCCCGCGTGCTGTCCTTCCC





CTCTGTGTTGTGATTGGGTTGTTTCCTGCCCTGCCTGGGGCTGCTTCTCGTCACCAAGCCCTGGTCCTGC





GGCAGCTGTCACCCCTACCATCCATACCACTGTGCTGACCGCTCAGCCTGAAGAGCAGAGAATGCCATGG





GTGGGACTGTGGGGGTCGGATCGTGGGGTTGTTGGCAGAGGGCAACCCTGGGCCCCACACCGTGTGGACA





GGCAGACACCAGATTGTCCAGGAGCAGGAGCTGCTGGGACTGCGCTGGCCCCGGACCTAGTGGGCCTTCT





CCTGGCTGCTGAGATGTCGTCTGTGACTGGCCTGGCTGGAGGGGGAGTGTTGACAACCCAAAGCTGTTCT





CCAGTCTGGGGAGGGAGAGGCAGGGTCCCCAATGTCCGAGCTGCATCTGGACGCTGCTCTTAAAGGACCT





CCTGGGGCAGGGGAGCGGTAGGGTCTGGACTGGGCAGATGCTGTATGACCTCCCTGAGCACCCGTGACTG





CCCCATGCTTTCCCCTTTGTGCTCTGTGTGTGTCTGGGCTGTGCCCGGGGGCTTCACAAATAAAGTCGTG





TGGCAGCTTCAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 41



- Homo sapiens Spi-B transcription factor



(Spi-1/PU.1 related) (SPIB), mRNA


GGCAAACAGCCCGCCCGGCACCACCATGCTCGCCCTGGAGGCTGCACAGCTCGACGGGCCACACTTCAGC







TGT
CTGTACCCAG
ATGGCGTCTTCTATGACCTGGACAGCTGCAAGCATTCCAGCTACCCTGATTCAGAGG






GGGCTCCTGACTCCCTGTGGGACTGGACTGTGGCCCCACCTGTCCCAGCCACCCCCTATGAAGCCTTCGA





CCCGGCAGCAGCCGCTTTTAGCCACCCCCAGGCTGCCCAGCTCTGCTACGAACCCCCCACCTACAGCCCT





GCAGGGAACCTCGAACTGGCCCCCAGCCTGGAGGCCCCGGGGCCTGGCCTCCCCGCATACCCCACGGAGA





ACTTCGCTAGCCAGACCCTGGTTCCCCCGGCATATGCCCCGTACCCCAGCCCTGTGCTATCAGAGGAGGA





AGACTTACCGTTGGACAGCCCTGCCCTGGAGGTCTCGGACAGCGAGTCGGATGAGGCCCTCGTGGCTGGC





CCCGAGGGGAAGGGATCCGAGGCAGGGACTCGCAAGAAGCTGCGCCTGTACCAGTTCCTGCTGGGGCTAC





TGACGCGCGGGGACATGCGTGAGTGCGTGTGGTGGGTGGAGCCAGGCGCCGGCGTCTTCCAGTTCTCCTC





CAAGCACAAGGAACTCCTGGCGCGCCGCTGGGGCCAGCAGAAGGGGAACCGCAAGCGCATGACCTACCAG





AAGCTGGCGCGCGCCCTCCGAAACTACGCCAAGACCGGCGAGATCCGCAAGGTCAAGCGCAAGCTCACCT





ACCAGTTCGACAGCGCGCTGCTGCCTGCAGTCCGCCGGGCCTGAGCACACCCGAGGCTCCCACCTGCGGA





GCCGCTGGGGGACCTCACGTCCCAGCCAGGATCCCCCTGGAAGAAAAAGGGCGTCCCCACACTCTAGGTG





ATAGGACTTACGCATCCCCACCTTTTGGGGTAAGGGGAGTGCTGCCCTGCCATAATCCCCAAGCCCAGCC





CGGGCCTGTCTGGGATTCCCCACTTGTGCCTGGGGTCCCTCTGGGATTTCTTTGTCATGTACAGACTCCC





TGGGATCCTCATGTTTTGGGTGACAGGACCTATGGACCACTATACTCGGGGAGGCAGGGTAGCAGTTCTT





CCAGAATCCCAAGAGCTTCTCTGGGATTTTCTTGTGATATCTGATTCCCCAGTGAGGCCTGGGACGTTTT





TAAGATCGCTGTGTGTCTGTAAACCCTGAATCTCATCTGGGGTGGGGGCCCTGCTGGCAACCCTGAGCCC





TGTCCAAGGTTCCCTCTTGTCAGATCTGAGATTTCCTAGTTATGTCTGGGGCCCTCTGGGAGCTGTTATC





ATCTCAGATCTCTTCGCCCATCTATGGCTGTGTTGTCACATCTGTCCCCTCATTTTTGAGATCCCCCAAT





TCTCTGGAACTATTCTGCTGCCCCTTTTTATGTGTCTGGAGTTCCCCAATCACATCTAGGGCTCCTCCAA





GAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 42



- Homo sapiens TAF11 RNA polymerase II, TATA box



binding protein (TBP)-associated factor, 28 kDa


(TAF11), mRNA


AAGATCCTGGCCTGTGCAGCTCGGGTTTCCGAGCTTCTGCCTCAGGCATCTCCGCGATCTCCTCTCCCCT





CCAATCCTATCCGTGATGGACGATGCCCACGAGTCGCCCTCCGACAAAGGTGGAGAGACAGGGGAGTCGG





ATGAGACGGCCCCTGTGCCCGGGGACCCGGGGGCTACCGACACCGATGGAATCCCAGAGGAAACTGACGG





AGACGCAGATGTGGACTTGAAAGAAGCTGCAGCGGAGGAAGGCGAGCTCGAGAGTCAGGATGTCTCAGAT





TTAACAACAGTTGAAAGGGAAGACTCATCATTACTTAATCCTGCAGCCAAAAAACTGAAAATAGATACCA





AAGAAAAGAAAGAGAAAAAGCAGAAAGTAGATGAAGATGAGATTCAGAAGATGCAAATCCTGGTTTCTTC





TTTTTCTGAGGAGCAGCTGAACCGTTATGAAATGTATCGCCGCTCAGCTTTCCCTAAGGCAGCCATCAAA





AGGCTGATCCAGTCCATCACTGGCACCTCTGTGTCTCAGAATGTTGTTATTGCTATGTCTGGTATTTCCA





AGGTTTTCGTCGGGGAGGTGGTAGAAGAAGCACTGGATGTGTGTGAGAAGTGGGGAGAAATGCCACCACT





ACAACCCAAACATATGAGGGAAGCCGTTAGAAGGTTAAAGTCAAAAGGACAGATCCCTAACTCGAAGCAC





AAAAAAATCATCTTCTTCTAGACCAAAGTCTAGAAAGGCCTATGTTACTGACGGAAGAAGTATTGGTTCC





AGACTTCCTATAAGACTGTCTGCATTGGTGCTTTAGTATCTCAGGCCTCCAAGGATTCCATGATGATTTT





AATGTCTTTCTCAAAACTCTGATATTTGTCACACCTAGAAAGTATGTAGCCTGATTGATACTTGCCTTGA





CTAAATTTTGGGACCTCTTGGGGCATTTTGAAGTATTTAACTGTCTTGACCAGTTGGAAGAAGATACGTG





GGCCATAAGCATCTTCTGGACAGGGGAACTGCTTTCAGAGAGAAAACCTTTCCAAGAGAGTTTTGTTTTG





TTTTGGTTTCGTTTTGTTTGAGATAGGGTCTTGCTCTATCACCTAGGCTGGAGTGCAGCGGCATGACTGC





AGCCTTGAACTCCTGGGCTTAAGTGACCCTCCCACCTCAGTCTCCTGAGTAGCTAGGACTACAGGCACAC





ACTACTGTGCCCAGCTAACTTATTTTTATTTTTTATGGAGATGGGGTCTTGCTTTGTTGCCCAGGCTGGT





CGTGAACTCCTGGCTTCAAGCAGTCCTCCTGCCTCAGCCTCCTAAAGTGCCGAGGGCTTTAATGGTTTCA





CATTGAAGCCTGAAGTTGCTAAGACTTAGGTTGTTTCTTATATCTGGTTTTAAGTAGATGAAACAACCAG





AAACTTTTACTTGTGATACTCTACCATGAAGGATGCGGTAATGGCAGGAATAGCAGAATAATTGGTGCTT





GTAAACATTTAAGATTCTCCTGTGGATTTTGGTGAGTGATCATTAAACTGTTTTCCAACTTGCAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO: 43



- Homo sapiens TATA box binding protein (TBP),



transcript variant 2, mRNA


GGCGGAAGTGACATTATCAACGCGCGCCAGGGGTTCAGTGAGGTCGGGCAGGTTCGCTGTGGCGGGCGCC





TGGGCCGCCGGCTGTTTAACTTCGCTTCCGCTGGCCCATAGTGATCTTTGCAGTGACCCAGGGTGCCATG





ACTCCCGGAATCCCTATCTTTAGTCCAATGATGCCTTATGGCACTGGACTGACCCCACAGCCTATTCAGA





ACACCAATAGTCTGTCTATTTTGGAAGAGCAACAAAGGCAGCAGCAGCAACAACAACAGCAGCAGCAGCA





GCAGCAGCAGCAACAGCAACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG





CAGCAGCAACAGGCAGTGGCAGCTGCAGCCGTTCAGCAGTCAACGTCCCAGCAGGCAACACAGGGAACCT





CAGGCCAGGCACCACAGCTCTTCCACTCACAGACTCTCACAACTGCACCCTTGCCGGGCACCACTCCACT





GTATCCCTCCCCCATGACTCCCATGACCCCCATCACTCCTGCCACGCCAGCTTCGGAGAGTTCTGGGATT





GTACCGCAGCTGCAAAATATTGTATCCACAGTGAATCTTGGTTGTAAACTTGACCTAAAGACCATTGCAC





TTCGTGCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTAATCATGAGGATAAGAGAGCCACG





AACCACGGCACTGATTTTCAGTTCTGGGAAAATGGTGTGCACAGGAGCCAAGAGTGAAGAACAGTCCAGA





CTGGCAGCAAGAAAATATGCTAGAGTTGTACAGAAGTTGGGTTTTCCAGCTAAGTTCTTGGACTTCAAGA





TTCAGAATATGGTGGGGAGCTGTGATGTGAAGTTTCCTATAAGGTTAGAAGGCCTTGTGCTCACCCACCA





ACAATTTAGTAGTTATGAGCCAGAGTTATTTCCTGGTTTAATCTACAGAATGATCAAACCCAGAATTGTT





CTCCTTATTTTTGTTTCTGGAAAAGTTGTATTAACAGGTGCTAAAGTCAGAGCAGAAATTTATGAAGCAT





TTGAAAACATCTACCCTATTCTAAAGGGATTCAGGAAGACGACGTAATGGCTCTCATGTACCCTTGCCTC





CCCCACCCCCTTCTTTTTTTTTTTTTAAACAAATCAGTTTGTTTTGGTACCTTTAAATGGTGGTGTTGTG





AGAAGATGGATGTTGAGTTGCAGGGTGTGGCACCAGGTGATGCCCTTCTGTAAGTGCCCACCGCGGGATG





CCGGGAAGGGGCATTATTTGTGCACTGAGAACACCGCGCAGCGTGACTGTGAGTTGCTCATACCGTGCTG





CTATCTGGGCAGCGCTGCCCATTTATTTATATGTAGATTTTAAACACTGCTGTTGACAAGTTGGTTTGAG





GGAGAAAACTTTAAGTGTTAAAGCCACCTCTATAATTGATTGGACTTTTTAATTTTAATGTTTTTCCCCA





TGAACCACAGTTTTTATATTTCTACCAGAAAAGTAAAAATCTTTTTTAAAAGTGTTGTTTTTCTAATTTA





TAACTCCTAGGGGTTATTTCTGTGCCAGACACATTCCACCTCTCCAGTATTGCAGGACAGAATATATGTG





TTAATGAAAATGAATGGCTGTACATATTTTTTTCTTTCTTCAGAGTACTCTGTACAATAAATGCAGTTTA





TAAAAGTGTTAGATTGTTGTTAAAAAAAAAAAAAAAAAA





SEQ ID NO: 44



- Homo sapiens transforming growth factor,



beta receptor II (70/80 kDa) (TGFBR2),


transcript variant 1, mRNA


GGAGAGGGAGAAGGCTCTCGGGCGGAGAGAGGTCCTGCCCAGCTGTTGGCGAGGAGTTTCCTGTTTCCCC





CGCAGCGCTGAGTTGAAGTTGAGTGAGTCACTCGCGCGCACGGAGCGACGACACCCCCGCGCGTGCACCC





GCTCGGGACAGGAGCCGGACTCCTGTGCAGCTTCCCTCGGCCGCCGGGGGCCTCCCCGCGCCTCGCCGGC





CTCCAGGCCCCCTCCTGGCTGGCGAGCGGGCGCCACATCTGGCCCGCACATCTGCGCTGCCGGCCCGGCG





CGGGGTCCGGAGAGGGCGCGGCGCGGAGGCGCAGCCAGGGGTCCGGGAAGGCGCCGTCCGCTGCGCTGGG





GGCTCGGTCTATGACGAGCAGCGGGGTCTGCCATGGGTCGGGGGCTGCTCAGGGGCCTGTGGCCGCTGCA





CATCGTCCTGTGGACGCGTATCGCCAGCACGATCCCACCGCACGTTCAGAAGTCGGATGTGGAAATGGAG





GCCCAGAAAGATGAAATCATCTGCCCCAGCTGTAATAGGACTGCCCATCCACTGAGACATATTAATAACG





ACATGATAGTCACTGACAACAACGGTGCAGTCAAGTTTCCACAACTGTGTAAATTTTGTGATGTGAGATT





TTCCACCTGTGACAACCAGAAATCCTGCATGAGCAACTGCAGCATCACCTCCATCTCTGAGAAGCCACAG





GAAGTCTGTGTGGCTGTATGGAGAAAGAATGACGAGAACATAACACTAGAGACAGTTTGCCATGACCCCA





AGCTCCCCTACCATGACTTTATTCTGGAAGATGCTGCTTCTCCAAAGTGCATTATGAAGGAAAAAAAAAA





GCCTGGTGAGACTTTCTTCATGTGTTCCTGTAGCTCTGATGAGTGCAATGACAACATCATCTTCTCAGAA





GAATATAACACCAGCAATCCTGACTTGTTGCTAGTCATATTTCAAGTGACAGGCATCAGCCTCCTGCCAC





CACTGGGAGTTGCCATATCTGTCATCATCATCTTCTACTGCTACCGCGTTAACCGGCAGCAGAAGCTGAG





TTCAACCTGGGAAACCGGCAAGACGCGGAAGCTCATGGAGTTCAGCGAGCACTGTGCCATCATCCTGGAA





GATGACCGCTCTGACATCAGCTCCACGTGTGCCAACAACATCAACCACAACACAGAGCTGCTGCCCATTG





AGCTGGACACCCTGGTGGGGAAAGGTCGCTTTGCTGAGGTCTATAAGGCCAAGCTGAAGCAGAACACTTC





AGAGCAGTTTGAGACAGTGGCAGTCAAGATCTTTCCCTATGAGGAGTATGCCTCTTGGAAGACAGAGAAG





GACATCTTCTCAGACATCAATCTGAAGCATGAGAACATACTCCAGTTCCTGACGGCTGAGGAGCGGAAGA





CGGAGTTGGGGAAACAATACTGGCTGATCACCGCCTTCCACGCCAAGGGCAACCTACAGGAGTACCTGAC





GCGGCATGTCATCAGCTGGGAGGACCTGCGCAAGCTGGGCAGCTCCCTCGCCCGGGGGATTGCTCACCTC





CACAGTGATCACACTCCATGTGGGAGGCCCAAGATGCCCATCGTGCACAGGGACCTCAAGAGCTCCAATA





TCCTCGTGAAGAACGACCTAACCTGCTGCCTGTGTGACTTTGGGCTTTCCCTGCGTCTGGACCCTACTCT





GTCTGTGGATGACCTGGCTAACAGTGGGCAGGTGGGAACTGCAAGATACATGGCTCCAGAAGTCCTAGAA





TCCAGGATGAATTTGGAGAATGTTGAGTCCTTCAAGCAGACCGATGTCTACTCCATGGCTCTGGTGCTCT





GGGAAATGACATCTCGCTGTAATGCAGTGGGAGAAGTAAAAGATTATGAGCCTCCATTTGGTTCCAAGGT





GCGGGAGCACCCCTGTGTCGAAAGCATGAAGGACAACGTGTTGAGAGATCGAGGGCGACCAGAAATTCCC





AGCTTCTGGCTCAACCACCAGGGCATCCAGATGGTGTGTGAGACGTTGACTGAGTGCTGGGACCACGACC





CAGAGGCCCGTCTCACAGCCCAGTGTGTGGCAGAACGCTTCAGTGAGCTGGAGCATCTGGACAGGCTCTC





GGGGAGGAGCTGCTCGGAGGAGAAGATTCCTGAAGACGGCTCCCTAAACACTACCAAATAGCTCTTCTGG





GGCAGGCTGGGCCATGTCCAAAGAGGCTGCCCCTCTCACCAAAGAACAGAGGCAGCAGGAAGCTGCCCCT





GAACTGATGCTTCCTGGAAAACCAAGGGGGTCACTCCCCTCCCTGTAAGCTGTGGGGATAAGCAGAAACA





ACAGCAGCAGGGAGTGGGTGACATAGAGCATTCTATGCCTTTGACATTGTCATAGGATAAGCTGTGTTAG





CACTTCCTCAGGAAATGAGATTGATTTTTACAATAGCCAATAACATTTGCACTTTATTAATGCCTGTATA





TAAATATGAATAGCTATGTTTTATATATATATATATATATCTATATATGTCTATAGCTCTATATATATAG





CCATACCTTGAAAAGAGACAAGGAAAAACATCAAATATTCCCAGGAAATTGGTTTTATTGGAGAACTCCA





GAACCAAGCAGAGAAGGAAGGGACCCATGACAGCATTAGCATTTGACAATCACACATGCAGTGGTTCTCT





GACTGTAAAACAGTGAACTTTGCATGAGGAAAGAGGCTCCATGTCTCACAGCCAGCTATGACCACATTGC





ACTTGCTTTTGCAAAATAATCATTCCCTGCCTAGCACTTCTCTTCTGGCCATGGAACTAAGTACAGTGGC





ACTGTTTGAGGACCAGTGTTCCCGGGGTTCCTGTGTGCCCTTATTTCTCCTGGACTTTTCATTTAAGCTC





CAAGCCCCAAATCTGGGGGGCTAGTTTAGAAACTCTCCCTCAACCTAGTTTAGAAACTCTACCCCATCTT





TAATACCTTGAATGTTTTGAACCCCACTTTTTACCTTCATGGGTTGCAGAAAAATCAGAACAGATGTCCC





CATCCATGCGATTGCCCCACCATCTACTAATGAAAAATTGTTCTTTTTTTCATCTTTCCCCTGCACTTAT





GTTACTATTCTCTGCTCCCAGCCTTCATCCTTTTCTAAAAAGGAGCAAATTCTCACTCTAGGCTTTATCG





TGTTTACTTTTTCATTACACTTGACTTGATTTTCTAGTTTTCTATACAAACACCAATGGGTTCCATCTTT





CTGGGCTCCTGATTGCTCAAGCACAGTTTGGCCTGATGAAGAGGATTTCAACTACACAATACTATCATTG





TCAGGACTATGACCTCAGGCACTCTAAACATATGTTTTGTTTGGTCAGCACAGCGTTTCAAAAAGTGAAG





CCACTTTATAAATATTTGGAGATTTTGCAGGAAAATCTGGATCCCCAGGTAAGGATAGCAGATGGTTTTC





AGTTATCTCCAGTCCACGTTCACAAAATGTGAAGGTGTGGAGACACTTACAAAGCTGCCTCACTTCTCAC





TGTAAACATTAGCTCTTTCCACTGCCTACCTGGACCCCAGTCTAGGAATTAAATCTGCACCTAACCAAGG





TCCCTTGTAAGAAATGTCCATTCAAGCAGTCATTCTCTGGGTATATAATATGATTTTGACTACCTTATCT





GGTGTTAAGATTTGAAGTTGGCCTTTTATTGGACTAAAGGGGAACTCCTTTAAGGGTCTCAGTTAGCCCA





AGTTTCTTTTGCTTATATGTTAATAGTTTTACCCTCTGCATTGGAGAGAGGAGTGCTTTACTCCAAGAAG





CTTTCCTCATGGTTACCGTTCTCTCCATCATGCCAGCCTTCTCAACCTTTGCAGAAATTACTAGAGAGGA





TTTGAATGTGGGACACAAAGGTCCCATTTGCAGTTAGAAAATTTGTGTCCACAAGGACAAGAACAAAGTA





TGAGCTTTAAAACTCCATAGGAAACTTGTTAATCAACAAAGAAGTGTTAATGCTGCAAGTAATCTCTTTT





TTAAAACTTTTTGAAGCTACTTATTTTCAGCCAAATAGGAATATTAGAGAGGGACTGGTAGTGAGAATAT





CAGCTCTGTTTGGATGGTGGAAGGTCTCATTTTATTGAGATTTTTAAGATACATGCAAAGGTTTGGAAAT





AGAACCTCTAGGCACCCTCCTCAGTGTGGGTGGGCTGAGAGTTAAAGACAGTGTGGCTGCAGTAGCATAG





AGGCGCCTAGAAATTCCACTTGCACCGTAGGGCATGCTGATACCATCCCAATAGCTGTTGCCCATTGACC





TCTAGTGGTGAGTTTCTAGAATACTGGTCCATTCATGAGATATTCAAGATTCAAGAGTATTCTCACTTCT





GGGTTATCAGCATAAACTGGAATGTAGTGTCAGAGGATACTGTGGCTTGTTTTGTTTATGTTTTTTTTTC





TTATTCAAGAAAAAAGACCAAGGAATAACATTCTGTAGTTCCTAAAAATACTGACTTTTTTCACTACTAT





ACATAAAGGGAAAGTTTTATTCTTTTATGGAACACTTCAGCTGTACTCATGTATTAAAATAGGAATGTGA





ATGCTATATACTCTTTTTATATCAAAAGTCTCAAGCACTTATTTTTATTCTATGCATTGTTTGTCTTTTA





CATAAATAAAATGTTTATTAGATTGAATAAAGCAAAATACTCAGGTGAGCATCCTGCCTCCTGTTCCCAT





TCCTAGTAGCTAAA





SEQ ID NO: 45



- Homo sapiens tumor protein p53 (TP53),



transcript variant 4, mRNA


GATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAG





CCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTC





CACGACGGTGACACGCTTCCCTGGATTGGCAGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGC





AGTCAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGA





AAACAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAA





CAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCCCGTGGCCC





CTGCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCC





TTCCCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCT





GTGACTTGCACGTACTCCCCTGCCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGC





TGTGGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCA





CATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCT





CAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACATA





GTGTGGTGGTGCCCTATGAGCCGCCTGAGGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTG





TAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACTCCAGT





GGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAG





AGGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGCACT





GCCCAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAG





ATGCTACTTGACTTACGATGGTGTTACTTCCTGATAAACTCGTCGTAAGTTGAAAATATTATCCGTGGGC





GTGAGCGCTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGAAGGA





GCCAGGGGGGAGCAGGGCTCACTCCAGCCACCTGAAGTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAA





AAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACTGACATTCTCCACTTCTTGTTCCCCACTGACAGC





CTCCCACCCCCATCTCTCCCTCCCCTGCCATTTTGGGTTTTGGGTCTTTGAACCCTTGCTTGCAATAGGT





GTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGGCTCCACTGAACAAGTTGGCCTGCACT





GGTGTTTTGTTGTGGGGAGGAGGATGGGGAGTAGGACATACCAGCTTAGATTTTAAGGTTTTTACTGTGA





GGGATGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTACAATCAGCCACATTCTAGGT





AGGGGCCCACTTCACCGTACTAACCAGGGAAGCTGTCCCTCACTGTTGAATTTTCTCTAACTTCAAGGCC





CATATCTGTGAAATGCTGGCATTTGCACCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAATAATGTA





CATCTGGCCTTGAAACCACCTTTTATTACATGGGGTCTAGAACTTGACCCCCTTGAGGGTGCTTGTTCCC





TCTCCCTGTTGGTCGGTGGGTTGGTAGTTTCTACAGTTGGGCAGCTGGTTAGGTAGAGGGAGTTGTCAAG





TCTCTGCTGGCCCAGCCAAACCCTGTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGAAATCTCA





CCCCATCCCACACCCTGGAGGATTTCATCTCTTGTATATGATGATCTGGATCCACCAAGACTTGTTTTAT





GCTCAGGGTCAATTTCTTTTTTCTTTTTTTTTTTTTTTTTTCTTTTTCTTTGAGACTGGGTCTCGCTTTG





TTGCCCAGGCTGGAGTGGAGTGGCGTGATCTTGGCTTACTGCAGCCTTTGCCTCCCCGGCTCGAGCAGTC





CTGCCTCAGCCTCCGGAGTAGCTGGGACCACAGGTTCATGCCACCATGGCCAGCCAACTTTTGCATGTTT





TGTAGAGATGGGGTCTCACAGTGTTGCCCAGGCTGGTCTCAAACTCCTGGGCTCAGGCGATCCACCTGTC





TCAGCCTCCCAGAGTGCTGGGATTACAATTGTGAGCCACCACGTCCAGCTGGAAGGGTCAACATCTTTTA





CATTCTGCAAGCACATCTGCATTTTCACCCCACCCTTCCCCTCCTTCTCCCTTTTTATATCCCATTTTTA





TATCGATCTCTTATTTTACAATAAAACTTTGCTGCCACCTGTGTGTCTGAGGGGTG





SEQ ID NO: 46



- Homo sapiens tumor protein p53 (TP53),



transcript variant 2, mRNA


GATTGGGGTTTTCCCCTCCCATGTGCTCAAGACTGGCGCTAAAAGTTTTGAGCTTCTCAAAAGTCTAGAG





CCACCGTCCAGGGAGCAGGTAGCTGCTGGGCTCCGGGGACACTTTGCGTTCGGGCTGGGAGCGTGCTTTC





CACGACGGTGACACGCTTCCCTGGATTGGCCAGACTGCCTTCCGGGTCACTGCCATGGAGGAGCCGCAGT





CAGATCCTAGCGTCGAGCCCCCTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGAAAA





CAACGTTCTGTCCCCCTTGCCGTCCCAAGCAATGGATGATTTGATGCTGTCCCCGGACGATATTGAACAA





TGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAATGCCAGAGGCTGCTCCCCCCGTGGCCCCTG





CACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCCCTCCTGGCCCCTGTCATCTTCTGTCCCTTC





CCAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGCCAAGTCTGTG







ACT
TGCACGTACTCCCCTG
CCCTCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT






GGGTTGATTCCACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCACAT





GACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTCCTCAG





CATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACATAGTG





TGGTGGTGCCCTATGAGCCGCCTGAGGTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA





CAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACTGGAAGACTCCAGTGGT





AATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGG





AAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGCACTGCC





CAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGATC





CGTGGGCGTGAGCGCTTCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTG





GGAAGGAGCCAGGGGGGAGCAGGGCTCACTCCAGCCACCTGAAGTCCAAAAAGGGTCAGTCTACCTCCCG





CCATAAAAAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACTGACATTCTCCACTTCTTGTTCCCCAC





TGACAGCCTCCCACCCCCATCTCTCCCTCCCCTGCCATTTTGGGTTTTGGGTCTTTGAACCCTTGCTTGC





AATAGGTGTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGGCTCCACTGAACAAGTTGGC





CTGCACTGGTGTTTTGTTGTGGGGAGGAGGATGGGGAGTAGGACATACCAGCTTAGATTTTAAGGTTTTT





ACTGTGAGGGATGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTACAATCAGCCACAT





TCTAGGTAGGGGCCCACTTCACCGTACTAACCAGGGAAGCTGTCCCTCACTGTTGAATTTTCTCTAACTT





CAAGGCCCATATCTGTGAAATGCTGGCATTTGCACCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAA





TAATGTACATCTGGCCTTGAAACCACCTTTTATTACATGGGGTCTAGAACTTGACCCCCTTGAGGGTGCT





TGTTCCCTCTCCCTGTTGGTCGGTGGGTTGGTAGTTTCTACAGTTGGGCAGCTGGTTAGGTAGAGGGAGT





TGTCAAGTCTCTGCTGGCCCAGCCAAACCCTGTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGA





AATCTCACCCCATCCCACACCCTGGAGGATTTCATCTCTTGTATATGATGATCTGGATCCACCAAGACTT





GTTTTATGCTCAGGGTCAATTTCTTTTTTCTTTTTTTTTTTTTTTTTTCTTTTTCTTTGAGACTGGGTCT





CGCTTTGTTGCCCAGGCTGGAGTGGAGTGGCGTGATCTTGGCTTACTGCAGCCTTTGCCTCCCCGGCTCG





AGCAGTCCTGCCTCAGCCTCCGGAGTAGCTGGGACCACAGGTTCATGCCACCATGGCCAGCCAACTTTTG





CATGTTTTGTAGAGATGGGGTCTCACAGTGTTGCCCAGGCTGGTCTCAAACTCCTGGGCTCAGGCGATCC





ACCTGTCTCAGCCTCCCAGAGTGCTGGGATTACAATTGTGAGCCACCACGTCCAGCTGGAAGGGTCAACA





TCTTTTACATTCTGCAAGCACATCTGCATTTTCACCCCACCCTTCCCCTCCTTCTCCCTTTTTATATCCC





ATTTTTATATCGATCTCTTATTTTACAATAAAACTTTGCTGCCACCTGTGTGTCTGAGGGGTG





SEQ ID NO: 47



- Homo sapiens TXK tyrosine kinase (TXK), mRNA



GATTTCAGTTGAAAGATGTGTTTTTGTGAGTAGAGCACCGCAGAAGAACTGAAGACTGTTGTGTGCTCCC





CGCAGAAGGGGCTACCATGATCCTTTCCTCCTATAACACCATCCAGTCGGTTTTCTGTTGCTGCTGTTGC





TGTTCAGTGCAGAAGCGACAAATGAGAACACAGATAAGCCTGAGCACAGATGAAGAGCTTCCAGAAAAAT





ACACCCAGCGTCGCAGGCCGTGGCTCAGCCAATTGTCAAATAAGAAGCAATCCAACACGGGCCGTGTGCA





GCCGTCAAAACGAAAGCCACTGCCTCCCCTCCCACCCTCTGAGGTTGCTGAAGAGAAGATCCAAGTCAAG





GCACTTTATGATTTTCTGCCCAGAGAACCCTGTAATTTAGCCTTAAGGAGAGCAGAAGAATACCTGATAC





TGGAGAAATACAATCCTCACTGGTGGAAGGCAAGAGACCGTTTGGGGAATGAAGGCTTAATCCCAAGCAA





CTATGTGACTGAAAACAAAATAACTAATTTAGAAATATATGAGTGGTACCATAGAAACATTACCAGAAAT





CAGGCAGAACATCTATTGAGACAAGAGTCTAAAGAAGGTGCATTTATTGTCAGAGATTCAAGACATTTAG





GATCCTACACAATTTCCGTATTTATGGGAGCTAGAAGAAGTACGGAGGCTGCCATAAAACATTATCAGAT





AAAAAAGAATGACTCAGGACAGTGGTATGTGGCTGAAAGACACGCCTTTCAATCAATCCCTGAGTTAATC





TGGTATCACCAGCACAATGCAGCCGGTCTCATGACTCGTCTCCGATATCCAGTTGGGCTGATGGGCAGTT





GTTTACCAGCCACAGCTGGGTTTAGCTACGAAAAGTGGGAGATAGATCCATCTGAGTTGGCTTTTATAAA





GGAGATTGGAAGCGGTCAGTTTGGAGTGGTCCATTTAGGTGAATGGCGGTCACATATCCAGGTAGCTATC





AAGGCCATCAATGAAGGCTCCATGTCTGAAGAGGATTTCATTGAAGAGGCCAAAGTGATGATGAAATTAT





CTCATTCAAAGCTAGTGCAACTTTATGGAGTCTGTATACAGCGGAAGCCCCTTTACATTGTGACAGAGTT





CATGGAAAATGGCTGCCTGCTTAACTATCTCAGGGAGAATAAAGGAAAGCTTAGGAAGGAAATGCTACTG






AGTGTATGCCAGGATATATGTGAAGGAATGGAATATCTGGAGAGGAATGGCTATATTCATAG
GGATTTGG








CGG
CAAGGAATTGTTTG
GTCAGTTCAACATGCATAGTAAAAATTTCAGACTTTGGAATGACAAGGTACGT






TTTGGATGATGAGTATGTCAGTTCTTTTGGAGCCAAGTTCCCAATCAAGTGGTCCCCTCCTGAAGTTTTT





CTTTTCAATAAGTACAGCAGTAAATCTGATGTCTGGTCATTTGGAGTTTTAATGTGGGAAGTTTTTACAG





AAGGAAAAATGCCTTTTGAAAATAAGTCAAATTTGCAAGTCGTGGAAGCTATTTCTGAAGGCTTCAGGCT





ATATCGCCCTCACCTGGCACCAATGTCCATATATGAAGTCATGTACAGCTGCTGGCATGAGAAACCTGAA





GGCCGCCCTACATTTGCCGAGCTGCTGCGGGCTGTCACAGAGATTGCGGAAACCTGGTGACCGGAAACAG





AATGCCAACCCAAAGAGTCATCTTGCAAAACTGTCATTTATTGTGAATATCTTCACCATATGGGGTCACT





TATGGTGAATATCTTTCTTCAGAGTTGCTGACTCTTGAAAACAGTGCAAAGATCACAGTTTTTAAAAGTT





TTAAAAATTTAAGAATATTCACACAATCGTTTTTCTATGTGTGAGAGGGATTTGCACACTCTTATTTTTC





TGTAAAATATTTCACATCCCAAATGTGAAGAAGTGAAAAAGACTTCGCAGCAGTCTTCATTGTGGTGCTC





TTCATGATCATAGCCCCAGGAACCCTTGAGGTTCTTCTTCACAAGGCTGAGAGTGCTTCCTTCTTGAAGA





CGAGTGACATTCATCACTTCAGTGATCCATGCATAGAATATGAAAATAAATTCTTCCAACTCATGGGATA





AAGGGGACTCCCTTGAAGAATTTCATGTTTTTGGGCTGTATAGCTCTTTACAGAAAATGCACCTTTATAA





ATCACATGAATGTTAGTATTCTGGAAATGTCTTTTGTTAATATAATCTTCCCATGTTATTTAACAAATTG





TTTTTGCACATATCTGATTATATTGAAAGCAGTTTTTTGCATTCGAGTTTTAAACACTGTTATAAAATGT





AGCCAAAGCTCACCTTTGAACAGATCCCGGTGACATTCTATTTCCAGGAAAATCCGGAACCTGATTTTAG





TTCTGTGATTTTACACTTTTTACATGTGAGATTGGACAGTTTCAGAGGCCTTATTTTGTCATACTAAGTG





TCTCCTGTAATTTTCAGGAAGATGATTTGTTCTTTCCAGAAGAGGAGACAAAAGCAAGATAGCCAAATGT





GACATCAAGCTCCATTGTTTCGGAAATCCAGGATTTTGAATTCGAGATGAAACAACCAGCAATCACAGTT





AAATCTTAACTTTGCCTGCACTCTTTGTAGGAATGATCAGAAATTTATCTTTATCATTCTGAGTGCTTCA





GGAGTACAATAGGAAGAAAGATACTGGAGAAAGCACTAATGTAATCACCATGAAGTCTGACAACAGGAGC





CCATTATTTGCGTACTGTCCCACCCTGTATCATGGTTCTCTGGGAACAAGCTTTATGATTCTCATTAGAG





TTTATTTGTTGATTGTCAGTAGTTGCGACTTTTAAATTATATTTCCCCCACTCAAAGAATGGTATCTTTA





TATATCAATGACATTCAATAAATGTGTATTATTTCTAATGAGAA






Throughout this document, various references are mentioned. All such references are incorporated herein by reference, including the references set forth in the following list:


REFERENCES



  • 1. Swanton J K, Rovira A, Tintore M, Altmann D R, Barkhof F, Filippi M et al. MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol 2007; 6(8): 664-665.

  • 2. Polman C H, Reingold S C, Edan G, Filippi M, Hartung H P, Kappos L et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005; 58(6): 840-846.

  • 3. McDonald W I, Compston A, Edan G, Goodkin D, Hartung H P, Lublin F D et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001; 50(1): 121-127.

  • 4. Awad A, Hemmer B, Hartung H P, Kieseier B, Bennett J L, Stuve O. Analyses of cerebrospinal fluid in the diagnosis and monitoring of multiple sclerosis. J Neuroimmunol. 2009; 219(1-2): 1-7.

  • 5. LInk H, Huang Y-M. Oligoclonal bands in multile sclerosis cerebrospinal fluid: An update on methodology and clinical usefulness. Journal of Neuroimmunology 2006; 180(1-2): 17-28.

  • 6. Consortium TWTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447(7145): 661-78.

  • 7. Axtell R C, de Jong B A, Boniface K, van der Voort L F, Bhat R, De Sarno P et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010; 16(4): 406-412.

  • 8. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One. 2009; 13(10): e7440.

  • 9. Harris V K, Sadiq S A. Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol. Diagn. Ther. 2009; 13(4): 225-244.

  • 10. Quintana F J, Farez M F, Viglietta V, Iglesias A H, Merbl Y, Izquierdo G et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci USA. 2008; 105(48): 18889-18894.

  • 11. Kostka D, Spang R. Microarray Based Diagnosis Profits from Better Documentation of Gene Expression Signatures. PLoS Comput Biol 2008; 4(2): e22.

  • 12. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med. 2007; 13(11): 1359-1362.

  • 13. Quackenbush J. Microarray Analysis and Tumor Classification. N. Engl. J. Med. 2006; 354(23): 2463-2472.

  • 14. Hofman P. DNA Microarrays. Nephron Physiol 2005; 99(3): 85-89.

  • 15. Gregersen P K, Brehrens T W. Fine mapping the phenotype in autoimmune disease: the promise and pitfalls of DNA microarray technologies. Genes and Immunity 2003; 4(3): 175-176.

  • 16. Bomprezzi R, Ringnér M, Kim S, Bittner M L, Khan J, Chen Y et al. Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Genet. 2003; 12(17): 2191-2199.

  • 17. Brynedal B, Khademi M, Wallstrom E, Hillert J, Olsson T, Duvefelt K. Gene expression profiling in multiple sclerosis: A disease of the central nervous system, but with relapses triggered in the periphery?. Neurobiology of Disease 2010 37(3): 613-621

  • 18. Harris V K, Sadiq S A. Disease biomarkers: Potential for use in therapeutic decision making. Mol. Diagn. Ther. 2009; 13(4): 225-244.

  • 19. Maas K, Chan S, Parker J, Slater A, Moore J, Olsen N et al. Cutting edge: molecular portrait of human autoimmune disease. J Immunol. 2002; 169(1): 5-9.

  • 20. Liu Z, Maas K, Aune T M. Identification of gene expression signatures in autoimmune disease without the influence of familial resemblance. Hum Mol Genet. 2006; 15(3): 501-509.

  • 21. Maas K, Chen H, Shyr Y, Olsen N J, Aune T. Shared gene expression profiles in individuals with autoimmune disease and unaffected first-degree relatives of individuals with autoimmune disease. Hum Mol Genet. 2005; 14(10): 1305-1314.

  • 22. Fossey S C, Vnencak-Jones C L, Olsen N J, Sriram S, Garrison G, Deng X et al. Identification of molecular biomarkers for multiple sclerosis. J Mol Diagn. 2007; 9(2): 197-204.

  • 23. Weyand C M, Fujii H, Shao L, J. G J. Rejuvenating the immune system in rheumatoid arthritis. Nat Rev Rheumatol. 2009; 5(10): 583-588.

  • 24. Shao L, Fujii H, Colmegna I, Oishi H, Goronzy J J, Weyand C M. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. J Exp Med. 2009; 206(6): 1435-1449.

  • 25. Deng X, Ljunggren-Rose A, Maas K, Sriram S. Defective ATM-p53-mediated apoptotic pathway in multiple sclerosis. Ann Neurol. 2005; 58(4): 577-584.

  • 26. Maas K, Westfall M, Pietenpol J, Olsen N J, Aune T. Reduced p53 in peripheral blood mononuclear cells from patients with rheumatoid arthritis is associated with loss of radiation-induced apoptosis. Arthritis Rheum. 2005; 52(4): 1047-1057.

  • 27. Butowski N. Immunostimulants for malignant gliomas. Neurosurg Clin N Am. 2010; 21(1): 53-65.

  • 28. Readinger J A, Mueller K L, Venegas A M, Horai R, Schwartzberg P L. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev. 2009; 228(1): 93-114.

  • 29. Buchner D A, Meisler M H. TSRC1, a widely expressed gene containing seven thrombospondin type I repeats. Gene 2003; 307: 23-30.

  • 30. Abdi H. The Bonferonni and Sidak corrections for multiple comparisons, Sage: Thousand Oaks, Calif., 2007.

  • 31. Chiappa K H, Ropper A H. Evoked potentials in clinical medicine (second of two parts). N Engl J Med 1982; 306(20): 1205-11.

  • 32. Chiappa K H, Ropper A H. Evoked potentials in clinical medicine (first of two parts). N Engl J Med 1982; 306(19): 1140-50.

  • 33. O'Riordan J I, Thompson A J, Kingsley D P, MacManus D G, Kendall B E, Rudge P et al. The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain 1998; 121 (Pt 3): 495-503.

  • 34. Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 2009; 374(9700): 1503-11.

  • 35. Jacobson D L, Gange S J, Rose N R, Graham N M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997; 84(3): 223-43.

  • 36. Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernandez O et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 2001; 357(9268): 1576-82.

  • 37. Koch M W, Mostert J P, de Vries J J, De Keyser J. Treatment with interferon beta-lb delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 2007; 68(14): 1163; author reply 1163-4.

  • 38. Kappos L, Polman C H, Freedman M S, Edan G, Hartung H P, Miller D H et al. Treatment with interferon beta-lb delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 2006; 67(7): 1242-9.

  • 39. Dalton C M, Brex P A, Miszkiel K A, Hickman S J, MacManus D G, Plant G T et al. Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis. Ann Neurol 2002; 52(1): 47-53.

  • 40. Tossberg J T, Crooke P S, Henderson M A, Sriram S, Mrelashvili D, Chitnis S et al. Gene-expression signatures: biomarkers toward diagnosing multiple sclerosis. Genes and Immunity 2012; 13(2): 146-54.

  • 41. Tijssen P (1993) Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes. Elsevier, N.Y.


Claims
  • 1. A method for characterizing multiple sclerosis in a subject, comprising: (a) providing a biological sample from the subject;(b) determining expression levels of at least two genes in the biological sample;(c) calculating one or more ratios of the expression levels of the at least two genes; and(d) comparing each ratios to a reference, wherein the multiple sclerosis is characterized based on a difference in the ratios of the expression values of the at least two genes in the biological sample from the subject as compared to the references.
  • 2. The method of claim 1, wherein the determining is of the expression levels of at least two genes represented by SEQ ID NOs: 1-47.
  • 3. (canceled)
  • 4. The method of claim 1, wherein the determining is of the expression levels of at least two genes corresponding to those set forth in Table A.
  • 5. (canceled)
  • 6. The method of claim 1, wherein the determining is of the expression levels of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP.
  • 7. The method of claim 1, wherein the determining is of the expression levels of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP.
  • 8. The method of claim 1, wherein the determining is of the expression levels of at least 2 genes corresponding to those set forth in Table B.
  • 9. The method claim 1, wherein the one or more ratios are ratios of expression levels of genes corresponding to those set forth in Table A, wherein each ratio is calculated by dividing the expression level of a first gene in Table A by the expression level of a second gene in Table A.
  • 10. The method of claim 1, wherein the one or more ratios are ratios are selected from those set forth in Table B.
  • 11-15. (canceled)
  • 16. The method of claim 1, wherein the reference is a reference ratio of a comparator group, a standard reference ratio, or a healthy control.
  • 17. (canceled)
  • 18. The method of claim 1, and further comprising comparing each ratio to a second reference.
  • 19. (canceled)
  • 20. The method of claim 18, wherein the second reference is not a healthy control or wherein the second reference comprises other neurologic disorders (OND).
  • 21-22. (canceled)
  • 23. The method of claim 1, wherein the characterization comprises diagnosing or prognosticating MS.
  • 24. The method of claim 1, wherein MS is predicted.
  • 25. (canceled)
  • 26. The method of claim 1, wherein the characterization comprises an exclusion of a diagnosis of MS.
  • 27. The method of claim 1, and further comprising providing a series of biological sample obtained from the subject; and determining a presence of any change in the ratios in each of the biological samples from the series.
  • 28-32. (canceled)
  • 33. The method of claim 1, wherein the determining comprises a technique selected from the group consisting of a reverse transcription-polymerase chain reaction (RT-PCR), hybridization to nucleotide probes, and a Northern blot.
  • 34-39. (canceled)
  • 40. A kit, comprising primer pairs for determining expression levels of at least two genes in a biological sample, wherein the at least two genes are represented by SEQ ID NOs: 1-47 or are set forth in Table A.
  • 41-44. (canceled)
  • 45. The kit of claim 40, comprising primer pairs for determining expression levels of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP; or comprising primer pairs for determining expression levels of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP.
  • 46-47. (canceled)
  • 48. A device, comprising probes for detecting at least two genes in a biological sample, wherein the at least two genes are represented by SEQ ID NOs: 1-47 or are set forth in Table A.
  • 49-52. (canceled)
  • 53. The device of claim 48, comprising probes for detecting each of the genes corresponding to CD55, FOS, JUN, PMAIP1, SPIB, TAF11, and TBP; or comprising probes for detecting each of the genes corresponding to ACTB, CDKN1B, CTSS, GAPDH-1, KRAS, PGK1, and TBP.
  • 54-55. (canceled)
RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application Ser. No. 61/533,599 filed Sep. 12, 2011, the entire disclosure of which is incorporated herein by this reference.

GOVERNMENT INTEREST

This invention was made with U.S. government support under contract numbers AI53984 and AI044924 awarded by the National Institutes of Health. The U.S. government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US12/54903 9/12/2012 WO 00 7/7/2014
Provisional Applications (1)
Number Date Country
61533599 Sep 2011 US