Characterizing the function and regulation of a conserved virulence-associated genetic pathway of pathogenic Alphaproteobacteria

Information

  • Research Project
  • 9881000
  • ApplicationId
    9881000
  • Core Project Number
    R15GM135933
  • Full Project Number
    1R15GM135933-01
  • Serial Number
    135933
  • FOA Number
    PAR-18-714
  • Sub Project Id
  • Project Start Date
    9/13/2019 - 4 years ago
  • Project End Date
    8/31/2022 - a year ago
  • Program Officer Name
    SLEDJESKI, DARREN D
  • Budget Start Date
    9/13/2019 - 4 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2019
  • Support Year
    01
  • Suffix
  • Award Notice Date
    9/11/2019 - 4 years ago

Characterizing the function and regulation of a conserved virulence-associated genetic pathway of pathogenic Alphaproteobacteria

PROJECT SUMMARY Pathogenic bacteria employ myriad processes to cause human disease, and these processes include biofilm formation, chemotaxis and motility, and the implementation of secretion systems, all of which ultimately aid in establishing intimate associations between the bacterium and the host. Several medically important bacteria, including some human pathogenic Alphaproteobateria, are extremely difficult to grow, handle, and/or manipulate, and thus, many of the basic virulence mechanisms related to the processes mentioned above are poorly defined in these organisms. Therefore, there are many benefits, including novel therapeutic and vaccine development that may be gleaned from defining broadly conserved bacterial virulence mechanisms. Considering members of the Alphaproteobacteria, the plant pathogen Agrobacterium tumefaciens serves as an exemplary model for studying basic virulence mechanisms that are highly conserved among the Alphaproteobacteria, including those causing human disease. A. tumefaciens is a free-living soil bacterium that senses and responds to signals released from wounded plants, resulting in bacterial chemotaxis toward the wounded plant. A. tumefaciens subsequently employs a type IV secretion system to transfer a T- DNA complex into the cells of the plant. This conjugation event leads to the formation of crown gall tumors, which are severely detrimental to the plant. Preliminary results indicate a LysR-type transcriptional regulator, VtlR (for virulence-associated transcriptional LysR-family regulator) is required for efficient A. tumefaciens-mediated tumor formation. Preliminary data demonstrate that an A. tumefaciens vtlR deletion strain produces fewer and less robust tumors in potatoes compared to the parental strain, and moreover, the vtlR deletion strain exhibits significant defects in biofilm formation. Transcriptomic analyses revealed that VtlR controls the expression of a small regulatory RNA (sRNA) called AbcR1, as well as a multitude of other genes related to conjugation systems, nutrient uptake, and virulence. The VtlR orthologue in the closely related alphaproteobacterium Brucella abortus is required for virulence in an animal model of infection, and thus, VtlR-family regulators are highly conserved and appear to be required for host-bacteria interactions in the Alphaproteobacteria. Therefore, the systematic characterization of VtlR in A. tumefaciens will significantly illuminate the mechanism by which this transcriptional regulator is linked to virulence in Alphaproteobacteria.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R15
  • Administering IC
    GM
  • Application Type
    1
  • Direct Cost Amount
    310938
  • Indirect Cost Amount
    130061
  • Total Cost
    440999
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:440999\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    UNIVERSITY OF THE SCIENCES PHILADELPHIA
  • Organization Department
    BIOLOGY
  • Organization DUNS
    079497681
  • Organization City
    PHILADELPHIA
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    191044495
  • Organization District
    UNITED STATES