Charge-coupled device having multiple readout paths for multiple outputs

Information

  • Patent Grant
  • 7414655
  • Patent Number
    7,414,655
  • Date Filed
    Monday, January 31, 2005
    19 years ago
  • Date Issued
    Tuesday, August 19, 2008
    16 years ago
Abstract
An image sensor comprising a plurality of pixels arranged in at least two sub-arrays; first and second delay areas respectively connected to each sub-array for respectively receiving charge from the sub-array; wherein a pitch of the first delay area is different from the second delay area and at least two readout mechanisms for respectively receiving the charge from the delay areas, wherein a same line from the first and second sub-arrays is received by each delay area at substantially the same time.
Description
FIELD OF THE INVENTION

The invention relates generally to the field of charge-coupled devices and, more particularly, to such charge-coupled devices having four readout devices for permitting efficient readout of the image signal.


BACKGROUND OF THE INVENTION

Typically, prior art charge coupled devices, such as that disclosed in EPO Patent EP0866502, discloses a sub-array of pixels respectively coupled to 4 intermediate registers. The four intermediate registers are respectively coupled to four horizontal register segments each of which is coupled to an output node structure.


Although the presently known charge-coupled devices are satisfactory, improvements are always desirable. A variety of multiple output designs permit design choices during manufacturing which is always desirable due to flexibility in layout, cost efficiencies and spatial considerations.


Consequently, a need exists for an image sensor with four readouts that permits alternative design choices.


SUMMARY OF THE INVENTION

The present invention is directed to overcoming one or more of the problems set forth above. Briefly summarized, according to one aspect of the present invention, the invention resides in an image sensor comprising a plurality of pixels arranged in at least two sub-arrays; first and second delay areas respectively connected to each sub-array for respectively receiving charge from the sub-array; wherein a pitch of the first delay area is different from the second delay area; and at least two readout mechanisms for respectively receiving the charge from the delay areas, wherein a same line from the first and second sub-arrays is received by each delay area at substantially the same time.


These and other aspects, objects, features and advantages of the present invention will be more clearly understood and appreciated from a review of the following detailed description of the preferred embodiments and appended claims, and by reference to the accompanying drawings.


ADVANTAGEOUS EFFECT OF THE INVENTION

The present invention has the following advantage of an image sensor with four readout devices that consumes less surface area than the prior art and consequently has lower associated costs.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top view of the image senor of the present invention;



FIG. 2 is an exploded view of a portion of FIG. 1;



FIG. 3 is an alternate embodiment of the present invention; and



FIG. 4 is a simplified diagram of a digital camera that can use the image sensor of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, there is shown a top view of the image sensor 10 of the present invention, preferably a charge-coupled device. The image sensor 10 includes a plurality of pixels 20 arranged in a plurality of rows and columns which, in turn, is arranged into a plurality of sub-arrays 30a, 30b, 30c and 30d, four sub-arrays in the preferred embodiment. A delay area 40a, 40b, 40c and 40d is respectively connected to each sub-array 30a, 30b, 30c and 30d for receiving charge from the sub-arrays. A horizontal readout 50 is respectively connected to each delay area 40a, 40b, 40c and 40d for receiving the charge from the delay areas 40a, 40b, 40c and 40d for further processing.


Referring to FIGS. 1 and 2, the outer delay areas 40a and 40d preferably include the same pitch as the sub-array 30a and 30d to which it is respectively connected. The inner delay areas 40b and 40c preferably include a pitch, which is a multiple of two longer than the outer delay area 40a and 40d. In essence, the pitch of the outer delay areas 40a and 40d should be different from the inner delay areas 40b and 40c. It is noted that the outer and inner delay areas 40a, 40b, 40c and 40d preferably include the same number of delay elements 60. This enables the same line from the outer and inner delay areas to be received by each horizontal readout 50 at substantially the same time. It is also instructive to note that the outer and inner delay areas 40a, 40b, 40c and 40d are operated at the same clock cycle in this embodiment. The clock cycles could be different if the number of delay areas is correspondingly altered. A light shield 70 spans and covers the delay areas 4a-d for prohibiting light from being disposed on the delay areas 40a, 40b, 40c and 40d. (FIG. 1 discloses only the light shield 70 covering the delay areas 40c and 40d for clarity of illustrating the light shield.)


Referring to FIG. 3, there is shown an alternative embodiment of the present invention. In this embodiment, the number of delay elements 60 in the outer 40a and inner delay 40b areas are different, for example by a factor of 2. (Delay area 40b includes twice as many delay elements as delay area 40a) The clock cycles would be corresponding different so that the same line from the sub-arrays is received by the horizontal readout at substantially the same time. For example, the clock cycle of the delay area with the greater number of delay elements would be operated at twice as fast as the delay area with the lesser number of delay elements.


Referring to FIG. 4, there is shown a digital camera 80 for illustrating a typical commercial embodiment for the image sensor 10 of the present invention. As is well known in the art, the image sensor 10 is disposed in the camera 80 for capturing incident light that is converted into electrons for forming an electronic representation of an image.


The invention has been described with reference to a preferred embodiment. However, it will be appreciated that variations and modifications can be effected by a person of ordinary skill in the art without departing from the scope of the invention.


PARTS LIST




  • 10 image sensor


  • 20 pixels


  • 30
    a sub-array of pixels


  • 30
    b sub-array of pixels


  • 30
    c sub-array of pixels


  • 30
    d sub-array of pixels


  • 40
    a delay areas


  • 40
    b delay areas


  • 40
    c delay areas


  • 40
    d delay areas


  • 50 horizontal readout outputs


  • 60 delay elements


  • 70 light shield


  • 80 digital camera


Claims
  • 1. An image sensor comprising: (a) a plurality of pixels arranged in at least two sub-arrays;(b) at least two delay areas each connected to a respective sub-array for receiving charge from the sub-array; wherein a pitch of a first plurality of delay elements within at least one of the delay areas is different from a pitch of a second plurality of delay elements within the other delay areas; and(c) at least two readout mechanisms for receiving the charge from respective delay areas, wherein the at least two delay areas receive a same line from their respective sub-arrays at substantially the same time.
  • 2. The image sensor as in claim 1, wherein the increment of the pitch of the first plurality of delay elements is substantially two.
  • 3. The image sensor as in claim 1, wherein the at least two delay areas have an equal number of delay elements to enable the charge to be transferred to respective readout mechanisms at substantially the same time.
  • 4. The image sensor as in claim 1, wherein the image sensor is a charge-coupled device type.
  • 5. The image sensor as in claim 4, wherein the first and second plurality of delay elements are extensions of the sub-arrays.
  • 6. The image sensor as in claim 5 further comprising a light shield spanning the first and second plurality of delay elements so that the delay elements are not photosensitive.
  • 7. A digital camera comprising: an image sensor comprising: (a) a plurality of pixels arranged in at least two sub-arrays;(b) at least two delay areas each connected to a respective sub-array for receiving charge from the sub-array; wherein a pitch of a first plurality of delay elements within at least one of the delay areas is different from a pitch of a second plurality of delay elements within the other delay areas; and(c) at least two readout mechanisms for receiving the charge from respective delay areas, wherein the at least two delay areas receive a same line from their respective sub-arrays at substantially the same time.
  • 8. The camera as in claim 7, wherein the increment of the pitch of the first plurality of delay elements is substantially two.
  • 9. The camera as in claim 7, wherein the at least two delay areas have an equal number of delay elements to enable the charge to be transferred to respective readout mechanisms at substantially the same time.
  • 10. The camera as in claim 7, wherein the image sensor is a charge-coupled device type.
  • 11. The camera as in claim 10, wherein the first and second plurality of delay elements are extensions of the sub-arrays.
  • 12. The camera as in claim 11 further comprising a light shield spanning the first and second plurality of delay elements so that the delay elements are not photosensitive.
US Referenced Citations (10)
Number Name Date Kind
4330796 Anagnostopoulos et al. May 1982 A
4607287 Endo et al. Aug 1986 A
4647977 Tower Mar 1987 A
5049998 Lee Sep 1991 A
5650352 Kamasz et al. Jul 1997 A
5715002 Cortiula Feb 1998 A
6686962 Miyahara Feb 2004 B1
6819351 O'Hara et al. Nov 2004 B2
7027093 Miyahara Apr 2006 B2
20040012684 Tinnerino Jan 2004 A1
Foreign Referenced Citations (2)
Number Date Country
0 866 502 Sep 1998 EP
866502 Sep 1998 EP
Related Publications (1)
Number Date Country
20060170799 A1 Aug 2006 US