The present disclosure relates generally to charge forming devices, such as carburetors, that participate in providing a fuel and air mixture to an engine.
A carburetor is used to provide a combustible charge or mixture of fuel and air to an internal combustion engine. The carburetor meters liquid fuel for mixing with air to adjust a fuel-to-air ratio, according to varying engine requirements during engine startup, idle, steady-state operation, and changes in load and altitude.
A diaphragm-type carburetor is typically used with small two-stroke internal combustion engines commonly used in hand-held power tools such as chain saws, weed trimmers, leaf blowers, and the like. In the diaphragm carburetor, a body defines a mixing passage with an air inlet and a downstream fuel-and-air mixture outlet. A throttle valve is disposed in the fuel-and-air mixing passage downstream of the air inlet for controlling delivery of a primary fuel-and-air mixture to the engine.
In at least some implementations, a charge forming device includes a body defining at least part of a first passage through which fuel or air or both flows for delivery to an engine, a throttle valve movable relative to the first passage between an idle position and a wide open position, an air bleed passage communicated with the first passage to provide a supply of air to the first passage, and a control valve. The control valve may be arranged in the air bleed passage to selectively inhibit or prevent air flow to the first passage from the air bleed passage. And the control valve is moveable between a first position and a second position in response to movement of the throttle valve wherein greater air flow is permitted from the air bleed passage to the first passage in the body when the control valve is in the second position than when the control valve is in the first position.
In at least some implementations, one or more of the following features are provided individually or in any combination. The control valve may be driven by the throttle valve between its first and second positions. The control valve may be in the first position when the throttle valve is in the idle position and until the throttle valve is moved a threshold amount toward the wide open position, and the threshold amount may be between 30% and 90%. A valve seat against which the control valve is engaged in the first position may be provided, and the throttle valve may include a cam portion that has a distance from the valve seat that varies as the throttle valve is moved between the idle position and wide open position. The throttle valve may be rotatable about an axis between the idle position and wide open position, and the throttle valve may include a drive surface that is not circular relative to the axis and the drive surface causes movement of the control valve between the first and second positions as the throttle valve is rotated. A lost motion coupling may be provided between the throttle valve and the control valve so that some rotation of the throttle valve occurs without a corresponding movement of the control valve.
In at least some implementations, the first passage is a fuel and air mixing passage through which a fuel and air mixture is discharged for delivery to an engine, the body includes a valve shaft bore that intersects the fuel and air mixing passage and the throttle valve includes a throttle valve shaft received for rotation about the axis within the valve shaft bore and a throttle valve head carried by the throttle valve shaft and the drive surface is carried by or formed on the throttle valve shaft. Part of the air bleed passage may intersect the valve shaft bore and the control valve may be received within said part of the air bleed passage. The control valve may include a follower and a valve body that are received in said part of the air bleed passage that intersects the valve shaft bore, the follower being engaged by and moved within the air bleed passage by the drive surface during a portion of the rotation of the throttle valve shaft and the follower engaging the valve body during at least a portion of the movement of the follower to move the valve body between open and closed positions.
In at least some implementations, the first passage is a fuel and air mixing passage through which a fuel and air mixture is discharged for delivery to an engine, the body defines at least part of a fuel circuit through which fuel is delivered to the first passage and the air bleed passage communicates with the fuel circuit upstream of the first passage to provide air from the air bleed passage into the fuel circuit at least when the control valve is in the second position. The body may define a throttle valve bore, the throttle valve may be generally cylindrical and received within the throttle valve bore for rotation relative to the body about an axis and the first passage may intersect the throttle valve bore, and the throttle valve includes a drive surface at least portions of which are arranged at a varying distance from the axis and the drive surface engages and displaces the control valve during at least a portion of the rotation of the throttle valve. A valve seat may be provided that is engaged by the control valve when the control valve is in the first position, and the control valve may include a projection that extends through the valve seat and is engaged by the drive surface during at least a portion of the rotation of the throttle valve. The valve seat may define an opening and the control valve may engage the valve seat when the control valve is in the first position, and the control valve may include a portion that extends through the opening and said portion of the control valve that extends through the opening is engaged by the drive surface during at least a portion of the rotation of the throttle valve.
The following detailed description of certain embodiments and best mode will be set forth with reference to the accompanying drawings, in which:
Referring in more detail to the drawings,
To control fluid flow through the mixing passage 16, the carburetor 10 may include a choke valve 28 and a throttle valve 30. The choke valve 28 may be located near the inlet end 20 to control air flow into the mixing passage 16 and may include a valve shaft 32 and a valve head 34 (shown as a thin plate, often called a butterfly type valve) carried by the valve shaft. The valve shaft 32 may be rotatably carried by the carburetor body 18, such as in a bore 36 that extends through the mixing passage 16. The valve head 34 is positioned in or near the mixing passage 16 so that rotation of the valve shaft 32 causes rotation of the valve head 34 between an open position permitting a substantially unrestricted air flow into the mixing passage 16 and a closed position substantially restricting the flow of air into the mixing passage. In this implementation, the choke valve head 34 is a generally flat disc shaped for rotation at least partially within and relative to the mixing passage 16. As is known in the art, a lever (not shown) may be attached to the choke valve shaft 32 to facilitate rotation of the choke valve 28.
The throttle valve 30 may be constructed and arranged like the choke valve 28 with a throttle valve shaft 38 and a valve head 40 (also shown as a thin plate), with the throttle valve shaft 38 rotatably carried by the carburetor body 18, such as in a bore 42 that extends through the mixing passage 16 and which may be parallel to the choke valve shaft bore 36. The throttle valve head 40 may be disposed in the mixing passage 16 and rotatable between an idle position substantially restricting fluid (air and fuel) flow out of the mixing passage outlet end 22 and a wide open position permitting a substantially unrestricted flow out of the outlet end 22. As is known in the art, a lever (not shown) may be attached to the throttle valve shaft 38 to facilitate rotation of the throttle valve 30, such as with a bowden cable and a remotely actuated throttle trigger or other mechanism.
During warm or cold idling conditions of the engine, the throttle valve 30 is in its idle position which is substantially closed, as shown in
As the throttle valve 30 opens (i.e. rotates away from its idle position), the throttle valve head 40 sweeps past the ports 26, one by one, reducing the air pressure differential or vacuum downstream of the throttle valve 30. This reduces air flow and mixing within the emulsifying chamber 44, and the overall fuel contribution therefrom. At throttle valve positions sufficiently off idle, the primary fuel flow into the fuel and air mixing passage 16 occurs through the high speed fuel circuit that includes the main nozzle 24 which communicates with the fuel supply (e.g. fuel metering chamber) through a check valve 50, fuel passages and an adjustable high speed fuel metering needle valve 52 (
To provide supplemental air into the mixing passage 16 during at least certain operating conditions of the carburetor 10, the air bleed passage 12 may extend between and communicate a supply of air with the mixing passage 16. In at least some implementations, the supply of air may be air flowing through an air filter upstream of the carburetor 10. The air bleed passage 12 may have an inlet end 54 spaced from the mixing passage 16 (if desired) and located adjacent to the inlet end 20 of the mixing passage (e.g. open to the same side of the carburetor body 18) and may intersect the choke valve shaft bore 36 so that air flow through the air bleed passage 12 flows around the choke valve shaft 32. The air bleed passage 12 may include or be defined in part by a bore 56 extending between and intersecting the choke valve shaft bore 36 and the throttle valve shaft bore 42. A valve seat 58 may be provided between the inlet end 54 and an outlet end 60 of the air bleed passage 12 which is open to or leads to the mixing passage 16. The valve seat 58 may also be located in the bore 56 between the choke valve shaft bore 36 and the throttle valve shaft bore 42. In the implementation shown, the air bleed passage 12 includes a branch passage 62 leading from a first portion including part of the bore 56 and a second portion that includes the outlet end 60 of the air bleed passage 12. The outlet end 60 of the air bleed passage 12 is open to or leads to and is communicated with the mixing passage 16 so that air flowing through the outlet end flows into the mixing passage as will be described in more detail later. The arrangement of the air bleed passage 12 shown and described is merely one example and other arrangements may be used.
To control air flow in the air bleed passage 12, the air bleed control valve 14 may be provided within the air bleed passage 12 or otherwise operably associated with the passage. In at least some implementations, the air bleed control valve 14 includes a valve body 64 that is driven by the throttle valve 30 so that the control valve 14 is opened (e.g. not engaged with the valve seat) and closed (engaged with the valve seat) as a function of the throttle valve position. To improve sealing on the valve seat 58, a seal 65 may be provided between the seat and valve body 64 (shown as an o-ring carried by the valve body 64). In the implementation shown in
In the implementation shown, the control valve 14 includes a follower 72 between the throttle valve shaft 38 and the valve body 64 and engaged with the throttle valve shaft. The follower 72 may include a seal 74 to prevent air leaking into or out of the air bleed passage 12 past the follower. The follower 72 may be engaged with the valve body 64 so that movement of the follower is transmitted to the valve body to move the valve body relative to the valve seat 58. A biasing member 76 may act on the control valve body 64 to yieldably bias the control valve 14 toward the valve seat 58 so that the control valve 64 is closed unless displaced off the seat 58. In the example shown, the biasing member is a spring 76 located between the choke valve shaft 32 and the valve body 64, although other arrangements may be used. The spring 76 also biases the valve body 64 against the follower 72 in at least certain positions of the follower 72.
In at least some implementations, the driving surface 70 is not circular with respect to an axis 78 of rotation of the throttle valve 30 so that the distance of the driving surface 70 from the valve seat 58 changes during at least part of the rotation of the throttle valve 30 between its closed and wide open positions. In the example shown, the driving surface 70 is defined by part an outer surface of the throttle valve shaft 38 which is generally D-shaped with a flat portion 80 and a partially circular portion 82. As shown in
In at least some implementations, the valve seat defines an opening and the control valve includes a portion that extends through the opening. The portion of the control valve that extends through the opening is engaged by the drive surface 70 during at least a portion of the rotation of the throttle valve. In other words, the control valve engages the valve seat in a first direction and the drive surface 70 moves the control valve in a second direction that is opposite to the first direction. The engagement between the drive surface and control valve is on an opposite side of the valve seat as the engagement between the control valve and the valve seat.
In the implementation shown, the air bleed passage outlet end 60 is communicated with low and high speed needle valves 46, 52 of the carburetor via passages 86, 88 in which the needle valves 46, 52 are received. The needle valves 46, 52 may control fuel flow from a fuel metering assembly and to ports or nozzles in the mixing passage. As shown, the air bleed passage outlet end 60 opens into a pocket 90 into which fuel flows when the check valve 50 at an inlet of the pocket 90 is open. The air from the air bleed passage 12 (when the control valve 14 is open) is mixed with fuel in the pocket 90 and the fuel and air mixture then flows through one or both of the low speed portion of the fuel circuit and the high speed portion of the fuel circuit to be mixed with air flowing through the mixing passage 16 and then delivered from the carburetor 10. The air bleed passage 12 outlet could also flow into the mixing passage 16 directly, or to one or both of the low speed and high speed fuel circuits separately.
In at least some implementations, the control valve 14 is arranged to be closed when the throttle valve 30 is in the idle position and for a desired amount of rotation of the throttle valve off idle, in other words, for a desired amount of opening of the throttle valve 30 off idle and toward the wide open position. In the implementation shown, this is accomplished by providing a lost motion coupling between the follower 72 and the valve body 64. As shown in
In at least some implementations, the control valve 14 is closed until the throttle valve 30 is opened between 30% and 90% of the movement between idle and wide open positions. As stated herein, a control valve 14 that is open only at 90% or more of throttle valve movement off idle represents a situation where the valve 14 is opened only when the throttle valve 30 is nearly in the wide open position and up to and including the wide open position (so the final 10% of throttle valve movement to wide open). And a control valve 14 that is opened at 30% of throttle valve movement off idle is opened when the throttle valve 30 has rotated less than ⅓ of the way toward the wide open position. Hence, air from the air bleed is not supplied to the fuel and air mixture when the throttle valve 30 is at idle and, in at least some implementations, until the throttle valve 30 is opened sufficiently off idle. This permits a relatively richer fuel and air mixture to be delivered to the engine to facilitate starting and warming up of the engine, can improve idle engine operation, and can support engine acceleration off idle. The supply of air from the air bleed passage 12 when the control valve 14 is opened provides a leaner fuel and air mixture to the engine (than if the valve was closed) at higher engine speeds or when the engine is under higher loads (e.g. when the throttle valve is sufficiently off idle) which may better support such engine operation (e.g. increased engine power) and may provide better comedown engine operation from wide open throttle back to or toward idle (deceleration). The noted lost motion coupling is just one example, other couplings can be needed. Further, the follower 72 is not needed and the throttle valve 30 could directly drive the valve body 64 if desired. Any lost motion coupling desired in such an arrangement would occur between the throttle valve 30 and the valve body 64.
The metering by the needle valve in passage 108 of the supplemental air supplied from the air bleed passage 102 permits greater control of the flow rate of air provided for more reliable and consistent control of the fuel and air mixture provided from the carburetor 100. Of course, a different valve could meter the air flow if desired, and the high speed needle valve could be used to meter fuel as it normally would, if desired. Hence, the air bleed in this implementation includes a first valve (e.g. control valve 14) that selectively prevents air flow therethrough and a second valve (e.g. needle valve 108) that is always open and meters air flow therethrough. In the implementation shown, the second valve is downstream of the first valve, although that is not necessary.
In the implementation shown, an air bleed passage inlet 142 is open to the inlet side 144 of the carburetor body 132 and receives air from an air filter that is adjacent to the carburetor 120. An outlet 146 of the air bleed passage 122 is open to or communicated with the mixing passage 134. In the implementation shown, the air bleed passage 122 extends through a cavity 148 in which the control valve 124 is received, and is open to the throttle valve bore 130 where air provided into the throttle valve bore 130 may flow into the mixing passage 134, such as with fuel flowing through the fuel nozzle 140 or downstream of the fuel nozzle, as desired. The air bleed passage 122 may take any desired route between the inlet 142 and outlet 146, including passages formed within the carburetor body or tubing routed externally of the carburetor body or a combination of the two, as desired. Air flows from the inlet 142 to the outlet 146 and is selectively provided to the fuel and air mixing passage 134 (or some other portion of the fuel or air flow in the carburetor) when the control valve 124 is open.
The control valve 124 includes a body 150 that is received within the cavity 148 for reciprocation between a first or open position (
As in the previous embodiments, the valve body 150 and throttle valve cam portion 156 may be arranged to open the control valve 124 at between 30% to 90% of the throttle valve rotation off idle and toward wide open. Hence, the control valve 124 may be closed when the throttle valve 126 is at idle (as shown in
While the forms of the invention herein disclosed constitute presently preferred embodiments, many others are possible. It is not intended herein to mention all the possible equivalent forms or ramifications of the invention. It is understood that the terms used herein are merely descriptive, rather than limiting, and that various changes may be made without departing from the spirit or scope of the invention.
This patent application claims the benefit of the earlier filed U.S. provisional patent application, Ser. No. 62/239,486, filed on Oct. 9, 2015, which is incorporated herein in its entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/055955 | 10/7/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/062746 | 4/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1672923 | Zarracina | Jun 1928 | A |
1944309 | Vogel | Jan 1934 | A |
2208317 | Beck | Jul 1940 | A |
4208361 | Ushijima | Jun 1980 | A |
4377539 | Irish | Mar 1983 | A |
4838229 | Uranishi | Jun 1989 | A |
4841940 | Uranishi | Jun 1989 | A |
5377650 | Warner | Jan 1995 | A |
6349925 | Tobinai et al. | Feb 2002 | B1 |
7287743 | Gliniecki | Oct 2007 | B1 |
20030015808 | Burns | Jan 2003 | A1 |
20040017014 | Tobinai | Jan 2004 | A1 |
20040232569 | Nonaka | Nov 2004 | A1 |
20160090942 | Kaneda | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
293935 | Jul 1928 | GB |
1477421 | Jun 1977 | GB |
S56159543 | Dec 1981 | JP |
S60195365 | Oct 1985 | JP |
H1182174 | Mar 1999 | JP |
2007177758 | Jul 2007 | JP |
1020070020776 | Feb 2007 | KR |
Entry |
---|
Written Opinion & International Search Report for PCT/US2016/055955 dated Dec. 14, 2016, 14 pages. |
SE Office Action for SE Application No. 1850384-7 dated Apr. 29, 2019 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20180291842 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62239486 | Oct 2015 | US |