This invention pertains generally to the field of charge pumps and more particularly to improve the efficiency of various charge pump designs by altering the timings for the charging of the capacitances.
Charge pumps use a switching process to provide a DC output voltage larger or lower than its DC input voltage. In general, a charge pump will have a capacitor coupled to switches between an input and an output. During one clock half cycle, the charging half cycle, the capacitor couples in parallel to the input so as to charge up to the input voltage. During a second clock cycle, the transfer half cycle, the charged capacitor couples in series with the input voltage so as to provide an output voltage twice the level of the input voltage. This process is illustrated in
Charge pumps are used in many contexts. For example, they are used as peripheral circuits on flash and other non-volatile memories to generate many of the needed operating voltages, such as programming or erase voltages, from a lower power supply voltage. A number of charge pump designs, such as conventional Dickson-type pumps, are know in the art. But given the common reliance upon charge pumps, there is an on going need for improvements in pump design, particularly with respect to trying to reduce the amount of layout area and the efficiency of pumps.
According to a first set of aspects, a charge pump system includes a charge pump and clock generating circuitry. The charge pump includes a first stage having first and second legs. The first leg has: a first capacitor connected between a first internal node and a first clock signal; a first transistor connected between the first internal node and the first stage's input voltage; and a first switch, whereby a first output node is connected to ground when a third clock signal is asserted and the connected to the first internal node when the third clock signal is de-asserted. The second leg has: a second capacitor connected between a second internal node and a second clock signal; a second transistor connected between the second internal node and the first stage's input voltage; and a second switch, whereby a second output node is connected to ground when a fourth clock signal is asserted and connected to the second internal node when the fourth clock signal is de-asserted. The gate of the first transistor is connected to the second internal node and the gate of the second transistor is connected to the first internal node. The charge pump also has a first load capacitance connected between the first output node and ground and a second load capacitance connected between the second output node and ground. The clock generating circuitry provides the first, second, third and fourth clock signal. The first and second clock signal are non-overlapping such that when the first clock signal is high the second clock signal is low, and when the second clock signal is high the first clock signal is low, the third clock signal is de-asserted while the second clock signal is high and reasserted before the second clock signal goes high, and the fourth clock signal is de-asserted while the first clock signal is high and reasserted before the first clock signal goes high.
In other aspects, a method of operating a charge pump is presented. The charge pump includes a first stage comprising: a first leg having a first capacitor with a first plate connected to a first internal node, a first transistor connected between the first internal node and the first stage's input voltage, and a first output node; a second leg having a second capacitor with a second plate connected to a second internal node, a second transistor connected between the second internal node, and the second stage's input voltage, and a second output node, wherein the gate of the first transistor is connected to the second internal node and the gate of the second transistor is connected to the first internal node; a first load capacitance connected between the first output node and ground; and a second load capacitance connected between the second output node and ground. The method comprises: generating and supplying a first clock signal at a second plate of the first capacitor; generating and supplying a second clock signal at a second plate of the second capacitor, wherein the first and second clock signal are non-overlapping such that when the first clock signal is high the second clock signal is low, and when the second clock signal is high the first clock signal is low; generating a third clock, wherein the third clock signal is de-asserted while the second clock signal is high and reasserted before the second clock signal goes high; connecting the first output node to ground when the third clock signal is asserted and to the first internal node when the third clock signal is de-asserted; generating a fourth clock signal, wherein the fourth clock signal is de-asserted while the first clock signal is high and reasserted before the first clock signal goes high; and connecting the second output node to ground when the fourth clock signal is asserted and to the second internal node when the fourth clock signal is de-asserted.
Further aspects include a method of operating a charge pump including a plurality of capacitors, each having a first plate and a second plate. The method includes alternatingly operating the charge pump in a reset phase and a charging phase. The reset phase includes connecting the first plate of each of the capacitors to a low voltage value and connecting the second plate of each of the capacitors to a high voltage value. The charging phase includes connecting the capacitors in series, where the first plate of each capacitor except the first in the series is connected to the second plate of the preceding capacitor in the series, the first plated of the first capacitor in the series is connected to the high voltage value, and the second of the last plate in the series is connected to an output node of the charge pump. The method further includes a pre-charge phase after each reset phase and before the subsequent charging phase, where the pre-charge phase comprises connecting the second plate of one of the capacitors other than the last in the series to the first plate of next capacitor in the series and connecting first plate of said one of the capacitors to the high voltage value.
According to another set of aspects, a charge pump system includes a plurality of capacitors, each having a first plate and a second plate, switching circuitry, and control circuitry. By use of the switching circuitry, the first plate of each of the capacitors can be connected to a low voltage value and the second plate of each of the capacitors can be connected to a high voltage value, and the capacitors can be connected in series, with the first plate of each capacitor except the first in the series is connected to the second plate of the preceding capacitor in the series, the first plate of the first capacitor in the series is connected to the high voltage value, and the second of the last plate in the series is connected to an output node of the charge pump. The control circuitry is connected to the switching circuitry to alternatingly operate the charge pump in a reset phase and a charging phase, where the reset phase includes connecting the first plate of each of the capacitors to a low voltage value and connecting the second plate of each of the capacitors to a high voltage value, and the charging phase includes connecting the capacitors in series, and wherein the control circuitry further connects the switching circuitry in a pre-charge phase after each reset phase and before the subsequent charging phase, where the pre-charge phase comprises connecting the second plate of one of the capacitors other than the last in the series to the first plate of next capacitor in the series and connecting first plate of said one of the capacitors to the high voltage value.
Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.
The various aspects and features of the present invention may be better understood by examining the following figures, in which:
Charge pumps find many applications in integrated circuit contexts where the system needs, in at least some phases of its operations, voltage values that extend beyond those available from the power supply. In particular, non-volatile memory devices often operate on fairly low supply voltage values, but require higher voltage levels for the writing and erasing of data. The techniques presented here can be advantageously used is such non-volatile memory devices, including the EEPROM based flash memory such as those described in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935 or the sort of “3D” structure presented in U.S. Pat. No. 7,696,812 and references found therein. Whatever their application, as charge pump are typically peripheral elements on a the circuit, there is a desire to make then as efficient, both in terms of power and area, as is practical. A number of different charge pump designs are known, having various relative advantages depending on how their application, but all of these can benefit from improved efficiency. Two specific designs are shown in
The above discussion of
For the charge pump stage described in the Background with respect to
The example
Similarly, the voltage doubler design of
To address this problem and improve pump efficiencies, the following sections consider the use of pre-charging and alterations to the clock signals, first for a pump having the arrangement shown in
Pre-Charging for Stacked Capacitances
For low power supply operation, the stacking of capacitors in the sort of arrangement discussed above with respect to
For the charging phase, the switch 307 is closed and the situation is similar to in
After the reset phase in
Four Phase Clock Scheme for Clock Voltage Doubler
The clock voltage doubler type of pump, such as that shown in
The exemplary clock voltage doubler of
As shown in the top two rows of
Power consumption can also reduced by changing the timing for when CLKIB and CLK2B are reasserted. If CLK1 has its falling edge earlier than the rising edge of CLK1B, as shown in the interval T2 of
The result of the pre-charging can be seen in the bottom two lines of
To give some exemplary values, taking the pump capacitors 205, 207 at 5 pF, the load capacitances 231, 233 at 1 pF and Vdd at 2.5V, under the arrangement of
Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Consequently, various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as encompassed by the following claims.
This application is a divisional of U.S. patent application Ser. No. 12/973,641 filed Dec. 20, 2010, which is herein incorporated in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3697860 | Baker | Oct 1972 | A |
4511811 | Gupta | Apr 1985 | A |
4583157 | Kirsch et al. | Apr 1986 | A |
4636748 | Latham | Jan 1987 | A |
4736121 | Cini et al. | Apr 1988 | A |
4888738 | Wong et al. | Dec 1989 | A |
5140182 | Ichimura | Aug 1992 | A |
5168174 | Naso et al. | Dec 1992 | A |
5175706 | Edme | Dec 1992 | A |
5263000 | Van Buskirk et al. | Nov 1993 | A |
5392205 | Zavaleta | Feb 1995 | A |
5436587 | Cernea | Jul 1995 | A |
5483434 | Seesink | Jan 1996 | A |
5508971 | Cernea et al. | Apr 1996 | A |
5521547 | Tsukada | May 1996 | A |
5563779 | Cave et al. | Oct 1996 | A |
5563825 | Cernea et al. | Oct 1996 | A |
5568424 | Cernea et al. | Oct 1996 | A |
5570315 | Tanaka et al. | Oct 1996 | A |
5592420 | Cernea et al. | Jan 1997 | A |
5596532 | Cernea et al. | Jan 1997 | A |
5602794 | Javanifard et al. | Feb 1997 | A |
5621685 | Cernea et al. | Apr 1997 | A |
5625544 | Kowshik et al. | Apr 1997 | A |
5693570 | Cernea et al. | Dec 1997 | A |
5732039 | Javanifard et al. | Mar 1998 | A |
5734286 | Takeyama et al. | Mar 1998 | A |
5767735 | Javanifard et al. | Jun 1998 | A |
5781473 | Javanifard et al. | Jul 1998 | A |
5801987 | Dinh | Sep 1998 | A |
5818766 | Song | Oct 1998 | A |
5828596 | Takata et al. | Oct 1998 | A |
5903495 | Takeuchi et al. | May 1999 | A |
5943226 | Kim | Aug 1999 | A |
5945870 | Chu et al. | Aug 1999 | A |
5969565 | Naganawa | Oct 1999 | A |
5973546 | Le et al. | Oct 1999 | A |
5982222 | Kyung | Nov 1999 | A |
6008690 | Takeshima et al. | Dec 1999 | A |
6018264 | Jin | Jan 2000 | A |
6023187 | Camacho et al. | Feb 2000 | A |
6026002 | Viehmann | Feb 2000 | A |
6046935 | Takeuchi et al. | Apr 2000 | A |
6104225 | Taguchi et al. | Aug 2000 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6134145 | Wong | Oct 2000 | A |
6151229 | Taub et al. | Nov 2000 | A |
6154088 | Chevallier et al. | Nov 2000 | A |
6188590 | Chang et al. | Feb 2001 | B1 |
6198645 | Kotowski et al. | Mar 2001 | B1 |
6208198 | Lee | Mar 2001 | B1 |
6249445 | Sugasawa | Jun 2001 | B1 |
6249898 | Koh et al. | Jun 2001 | B1 |
6285622 | Haraguchi et al. | Sep 2001 | B1 |
6297687 | Sugimura | Oct 2001 | B1 |
6307425 | Chevallier et al. | Oct 2001 | B1 |
6314025 | Wong | Nov 2001 | B1 |
6320428 | Atsumi et al. | Nov 2001 | B1 |
6320796 | Voo et al. | Nov 2001 | B1 |
6329869 | Matano | Dec 2001 | B1 |
6344959 | Milazzo | Feb 2002 | B1 |
6344984 | Miyazaki | Feb 2002 | B1 |
6359798 | Han et al. | Mar 2002 | B1 |
6369642 | Zeng et al. | Apr 2002 | B1 |
6370075 | Haeberli et al. | Apr 2002 | B1 |
6400202 | Fifield et al. | Jun 2002 | B1 |
6404274 | Hosono et al. | Jun 2002 | B1 |
6424570 | Le et al. | Jul 2002 | B1 |
6445243 | Myono | Sep 2002 | B2 |
6456170 | Segawa et al. | Sep 2002 | B1 |
6476666 | Palusa et al. | Nov 2002 | B1 |
6486728 | Kleveland | Nov 2002 | B2 |
6518830 | Gariboldi et al. | Feb 2003 | B2 |
6525614 | Tanimoto | Feb 2003 | B2 |
6525949 | Johnson et al. | Feb 2003 | B1 |
6531792 | Oshio | Mar 2003 | B2 |
6538930 | Ishii et al. | Mar 2003 | B2 |
6545529 | Kim | Apr 2003 | B2 |
6556465 | Wong et al. | Apr 2003 | B2 |
6577535 | Pasternak | Jun 2003 | B2 |
6606267 | Wong | Aug 2003 | B2 |
6724241 | Bedarida et al. | Apr 2004 | B1 |
6734718 | Pan | May 2004 | B1 |
6760262 | Haeberli et al. | Jul 2004 | B2 |
6781440 | Huang | Aug 2004 | B2 |
6798274 | Tanimoto | Sep 2004 | B2 |
6819162 | Pelliconi | Nov 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6859091 | Nicholson et al. | Feb 2005 | B1 |
6878981 | Eshel | Apr 2005 | B2 |
6891764 | Li | May 2005 | B2 |
6894554 | Ito | May 2005 | B2 |
6922096 | Cernea | Jul 2005 | B2 |
6927441 | Pappalardo et al. | Aug 2005 | B2 |
6933768 | Hausmann | Aug 2005 | B2 |
6944058 | Wong | Sep 2005 | B2 |
6975135 | Bui | Dec 2005 | B1 |
6990031 | Hashimoto et al. | Jan 2006 | B2 |
6995603 | Chen et al. | Feb 2006 | B2 |
7002381 | Chung | Feb 2006 | B1 |
7023260 | Thorp et al. | Apr 2006 | B2 |
7030683 | Pan et al. | Apr 2006 | B2 |
7113023 | Cernea | Sep 2006 | B2 |
7116154 | Guo | Oct 2006 | B2 |
7116155 | Pan | Oct 2006 | B2 |
7120051 | Gorobets et al. | Oct 2006 | B2 |
7129759 | Fukami | Oct 2006 | B2 |
7135910 | Cernea | Nov 2006 | B2 |
7135911 | Imamiya | Nov 2006 | B2 |
7208996 | Suzuki et al. | Apr 2007 | B2 |
7224591 | Kaishita et al. | May 2007 | B2 |
7227780 | Komori et al. | Jun 2007 | B2 |
7239192 | Tailliet | Jul 2007 | B2 |
7253676 | Fukuda et al. | Aug 2007 | B2 |
7259612 | Saether | Aug 2007 | B2 |
7276960 | Peschke | Oct 2007 | B2 |
7279957 | Yen | Oct 2007 | B2 |
7345928 | Li | Mar 2008 | B2 |
7368979 | Govindu et al. | May 2008 | B2 |
7397677 | Collins et al. | Jul 2008 | B1 |
7468628 | Im et al. | Dec 2008 | B2 |
7495500 | Al-Shamma et al. | Feb 2009 | B2 |
7521978 | Kim et al. | Apr 2009 | B2 |
7554311 | Pan | Jun 2009 | B2 |
7579903 | Oku | Aug 2009 | B2 |
7671572 | Chung | Mar 2010 | B2 |
7696812 | Al-Shamma et al. | Apr 2010 | B2 |
7772914 | Jung | Aug 2010 | B2 |
7795952 | Lui et al. | Sep 2010 | B2 |
8093953 | Pierdomenico et al. | Jan 2012 | B2 |
8193853 | Hsieh et al. | Jun 2012 | B2 |
20020008566 | Taito et al. | Jan 2002 | A1 |
20020014908 | Lauterbach | Feb 2002 | A1 |
20020075706 | Foss et al. | Jun 2002 | A1 |
20020130701 | Kleveland | Sep 2002 | A1 |
20020140463 | Cheung | Oct 2002 | A1 |
20030128560 | Saiki et al. | Jul 2003 | A1 |
20030214346 | Pelliconi | Nov 2003 | A1 |
20040046603 | Bedarida et al. | Mar 2004 | A1 |
20050093614 | Lee | May 2005 | A1 |
20050195017 | Chen et al. | Sep 2005 | A1 |
20050237103 | Cernea | Oct 2005 | A1 |
20050248386 | Pan et al. | Nov 2005 | A1 |
20060114053 | Sohara et al. | Jun 2006 | A1 |
20060244518 | Byeon et al. | Nov 2006 | A1 |
20060250177 | Thorp et al. | Nov 2006 | A1 |
20070001745 | Yen | Jan 2007 | A1 |
20070053216 | Alenin | Mar 2007 | A1 |
20070069805 | Choi et al. | Mar 2007 | A1 |
20070126494 | Pan | Jun 2007 | A1 |
20070139099 | Pan | Jun 2007 | A1 |
20070139100 | Pan | Jun 2007 | A1 |
20070211502 | Komiya | Sep 2007 | A1 |
20070222498 | Choy et al. | Sep 2007 | A1 |
20070229149 | Pan et al. | Oct 2007 | A1 |
20080024096 | Pan | Jan 2008 | A1 |
20080042731 | Daga et al. | Feb 2008 | A1 |
20080111604 | Boerstler et al. | May 2008 | A1 |
20080116963 | Jung | May 2008 | A1 |
20080136500 | Frulio et al. | Jun 2008 | A1 |
20080157852 | Pan | Jul 2008 | A1 |
20080157859 | Pan | Jul 2008 | A1 |
20080218134 | Kawakami | Sep 2008 | A1 |
20080239802 | Thorp | Oct 2008 | A1 |
20080239856 | Thorp | Oct 2008 | A1 |
20080278222 | Conti et al. | Nov 2008 | A1 |
20080307342 | Furches et al. | Dec 2008 | A1 |
20090033306 | Tanzawa | Feb 2009 | A1 |
20090051413 | Chu et al. | Feb 2009 | A1 |
20090058506 | Nandi et al. | Mar 2009 | A1 |
20090058507 | Nandi et al. | Mar 2009 | A1 |
20090091366 | Baek et al. | Apr 2009 | A1 |
20090121780 | Chen et al. | May 2009 | A1 |
20090153230 | Pan et al. | Jun 2009 | A1 |
20090153231 | Pan et al. | Jun 2009 | A1 |
20090153232 | Fort et al. | Jun 2009 | A1 |
20090167418 | Raghavan | Jul 2009 | A1 |
20090174441 | Gebara et al. | Jul 2009 | A1 |
20090219077 | Pietri et al. | Sep 2009 | A1 |
20090315616 | Nguyen et al. | Dec 2009 | A1 |
20090322413 | Huynh et al. | Dec 2009 | A1 |
20100019832 | Pan | Jan 2010 | A1 |
20100074034 | Cazzaniga | Mar 2010 | A1 |
20100085794 | Chen et al. | Apr 2010 | A1 |
20100244935 | Kim et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
10 2007 026290 | Jul 2008 | DE |
0 382 929 | Aug 1990 | EP |
0 780 515 | Jun 1997 | EP |
0106336 | Jan 2001 | WO |
WO 2006132757 | Dec 2006 | WO |
Entry |
---|
Feng Pan et al., “Charge Pump Circuit Design”, McGraw-Hill, 2006, 26 pages. |
Louie Pylarinos et al., “Charge Pumps: An Overview”, Department of Electrical and Computer Engineering University of Toronto, 7 pages, May 2003. |
Ang et al., “An On-Chip Voltage Regulator Using Switched Decoupling Capacitors,” 2000 IEEE International Solid-State Circuits Conference, 2 pages. |
U.S. Appl. No. 12/506,998 entitled “Charge Pump with Current Based Regulation” filed Jul. 21, 2009, 21 pages. |
U.S. Appl. No. 12/634,385 entitled “Multi-Stage Charge Pump with Variable Number of Boosting Stages” filed Dec. 9, 2009, 33 pages. |
Notification of Transmittal of the Int'l Searching Search Report and The Written Opinion of the International Searching Authority, or the Declaration for Int'l Appl. No. PCT/US2011/062890 dated Apr. 10, 2012. |
Notice of Allowance and Fees Due for U.S. Appl. No. 12/973,641 mailed Aug. 16, 2012. |
Number | Date | Country | |
---|---|---|---|
20130038381 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12973641 | Dec 2010 | US |
Child | 13625128 | US |