None.
None.
1. Field of the Disclosure
The present disclosure generally relates to a media processing device, and more specifically, to a cleaning member employed in a media processing device.
2. Description of the Related Art
A media processing device, such as an electrophotographic image forming device, is typically employed to generate a printed image on a media sheet. Suitable examples of the electrophotographic image forming device include laser printer, copying machine, multifunctional peripheral and the like. Suitable examples of the media sheet include, but are not limited to, paper, transparencies, textiles substrates, non-woven substrates, canvas substrates, and cellulose substrates.
The electrophotographic image forming device includes a photoconductor drum (hereinafter referred to as a “PC drum”) composed of photoconductive materials. The PC drum is capable of photo-generating a charge on a surface thereof when contacted with a stream of photons. Further, the electrophotographic image forming device includes a charge roller composed of conductive materials for charging the PC drum to a predetermined voltage. Usually, such a predetermined voltage is required for the photo-generation of the charge on the surface of the PC drum when the PC drum is contacted with the stream of photons. Furthermore, the electrophotographic image forming device includes a developer roller for transferring a toner medium including toner particles onto the PC drum.
Usually, the stream of photons is provided by an optical assembly operatively coupled to the PC drum. The optical assembly includes a laser unit, and a plurality of mirrors and a plurality of lenses. The laser unit generates a modulated stream of photons, and subsequently, the one or more mirrors and one or more lenses are used to move the photons across the surface of the PC drum to create a temporary image to be printed (hereinafter referred as an “electrostatic latent image”).
After the generation of the electrostatic latent image, the developer roller provides the toner medium to the PC drum. The toner particles of the toner medium affix to the electrostatic latent image (due to electrostatic interactions) thereby generating a toned electrostatic latent image. The toned electrostatic latent image is then transferred and fixed onto a media sheet to generate an image on the media sheet.
During the image forming process, a particulate build-up may occur on the PC drum, and more specifically, over a peripheral surface of the PC drum. Usually, such particulate include non-transferred toner particles, paper dust, and toner additives. Further, the particulate build-up may gradually increase over a period of time resulting in deterioration of quality of the image formed by the PC drum.
In order to circumvent the aforementioned drawback, a cleaning blade may be configured to contact the PC drum for cleaning the PC drum. Usually, the cleaning blade employs mechanical means to remove the particulate from the peripheral surface of the PC drum. However, some cleaning blades may employ electrostatic means to remove the particulate from the peripheral surface of the PC drum.
Despite the use of the cleaning blade, some of the particulate may get carried away and go onto the charge roller. Consequently, such particulate may adhere to the charge roller thereby coating a peripheral surface of the charge roller. Such a coating of the peripheral surface of the charge roller may reduce roughness and electrical resistivity of the peripheral surface of the charge roller leading to a reduction in charging ability of the charge roller. The reduction in the charging ability of the charge roller causes defects in the image developed by the electrophotographic image forming device. Examples of such defects may include, but are not limited to, background fouling, darkness density unevenness, light or dark vertical streaks, and blurred print. As a result, the overall quality of the image developed by the electrophotographic image forming device degrades.
Accordingly, a cleaning member is usually configured to contact the peripheral surface of the charge roller for removing the particulate from the charge roller. The cleaning member may be in form of a roller or a pad. Suitable examples of the cleaning member in the form of the roller may include, but are not limited to, a rubber foam type roller, and a fiber brush type roller. Similarly, suitable examples of the cleaning member in the form of the pad, may include, but are not limited to, a rubber foam type pad, and a fiber brush type pad.
An example of a conventional cleaning member employed for removing particulate from the charge roller of an electrophotographic image forming device includes a flexible and an elongated substrate having a pad composed of open-cell foam. The open-cell foam has a flat surface that engages with the charge roller for removing the particulate therefrom. In addition, the conventional cleaning member is positioned between the charge roller and a surface of the electrophotographic image forming device, at a particular angle, to apply a specific cleaning pressure onto the charge roller.
However, the conventional cleaning member provides an insufficient cleaning pressure onto the charge roller. Further, it has been observed that the application of the specific cleaning pressure results in either a permanent or a semi-permanent compression of the open-cell foam of the conventional cleaning member. Such a permanent or semi-permanent compression of the open-cell foam may affect cleaning ability of the conventional cleaning member. Furthermore, the conventional cleaning member provides a large magnitude of frictional drag during cleaning the charge roller, thereby leading to frequent stalling of the charge roller.
In addition, the conventional cleaning member does not provide a wide tolerance for thickness of the open-cell foam of the cleaning member due to the inability to precisely cut the open-cell foam. Moreover, the open-cell foam of the conventional cleaning member provides insufficient volume for retaining the particulate removed from the peripheral surface of the charge roller.
Accordingly, there is a need to develop a cleaning member for use in an electrophotographic image forming device that is capable of providing sufficient cleaning pressure for effectively cleaning a charge roller of the electrophotographic image forming device without causing any frequent stalling of the charge roller. Further, the cleaning member should be designed in a specific manner in order to prevent any likelihood of physical damage thereof during a cleaning operation. Furthermore, the cleaning member should efficaciously retaining particulate removed from the charge roller for proper cleaning thereof and thus help increase the effective lifetime of the electrophotographic image forming device.
In view of the foregoing disadvantages inherent in the prior art, the general purpose of the present disclosure is to provide a cleaning member for removing particulate from a charge roller of a media processing device, to include all the advantages of the prior art, and to overcome the drawbacks inherent therein.
In one aspect, the present disclosure provides a cleaning member for removing particulate from a charge roller of a media processing device. The cleaning member includes a substrate with a cleaning pad disposed onto the substrate. The cleaning pad is segmented into a plurality of sections capable of contacting the charge roller for removing the particulate from the charge roller.
In another aspect, the present disclosure provides media processing device or a removable cartridge for media processing device that includes a photoconductor drum capable of forming electrostatic latent images thereon. Further, the cartridge includes a charge roller removably coupled to the photoconductor drum. The charge roller charges the photoconductor drum. Furthermore, the cartridge includes a cleaning member configured adjacent to the charge roller for removing particulate from the charge roller. The cleaning member includes a substrate, and a cleaning pad disposed onto the substrate. The cleaning pad is segmented into a plurality of sections capable of contacting the charge roller for removing the particulate from the charge roller.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the disclosure will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
It is to be understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present disclosure. It is to be understood that the present disclosure is not limited in its application to the details of connections set forth in the following description. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. Unless limited otherwise, the terms “attached” and “coupled” and variations thereof herein are used broadly and encompass direct and indirect attachments and couplings of two components. In addition, the terms “attached” and “coupled” and variations thereof are not restricted to physical or mechanical attachments and couplings of the two components.
As used herein, the term “abuttingly coupled” refers to a coupling between two components placed adjacent to each other such that each component is capable of transmitting its motion to the other component.
In one aspect, the present disclosure provides a media processing device or a cartridge for such device that employs a cleaning member for cleaning a charge roller of the media processing device. The media processing device of the present disclosure is an electrophotographic image forming device. Suitable examples of the electrophotographic image forming device may include, a laser printer, a copying machine, a multifunctional peripheral and the like.
The electrophotographic image forming device or cartridge therefor of the present disclosure includes a photoconductor drum for forming electrostatic latent images thereon. Further, the electrophotographic image forming device includes a charge roller removably coupled to the photoconductor drum. The charge roller charges the photoconductor drum. Furthermore, the electrophotographic image forming device or cartridge therefor includes a cleaning member configured adjacent to the charge roller for cleaning the charge roller. The electrophotographic image forming device employing the cleaning member is explained in detail in conjunction with
PC drum 102 includes a drum substrate (not shown). Further, PC drum 102 includes a coating (not shown) disposed onto the drum substrate. The coating includes a charge generation layer composed of materials capable of photo-generating a charge onto PC drum 102 when contacted by a stream of photons, a charge transport layer composed of materials capable of transporting the generated charge, and optionally, a wear resistance layer capable of providing insulation to the charge generation layer and the charge transport layer.
Further, electrophotographic image forming device 100 includes a charge roller 104 removably coupled to PC drum 102. Charge roller 104 is charges PC drum 102 to a predetermined voltage. More specifically, the predetermined voltage is charges surface 102a of PC drum 102. It should be understood that in a working position (as shown in
In addition to PC drum 102 and charge roller 104, electrophotographic image forming device 100 includes a developer unit 106. Developer unit 106 includes a developer roller 108 abuttingly coupled to PC drum 102. Further, developer unit 106 includes a toner medium (not shown) including toner particles, a metering device such as a doctor blade, a toner adder roller for supplying toner medium to the developer roller 108 and agitators (all not shown). The toner medium is stored in a sump provided in developer unit 106. Developer roller 108 of developer unit 106 is electrically charged and electrostatically attracts the toner particles of the toner medium which are then formed into an even layer on the surface of the developer roller 108 by the metering device. The toner particles of the toner medium are electrostatically attracted onto surface 102a of PC drum 102. Further, developer roller 108 is capable of undergoing an angular rotation in a direction opposite to a direction of the angular rotation of PC drum 102 for transferring the toner particles onto surface 102a of PC drum 102.
PC drum 102, charge roller 104, cleaning member 116, support bracket 118 may be contained within a cartridge (indicated by the dashed box 101) that is removably inserted into electrophotographic image forming device 100. Developer unit 106 may also be included in the cartridge 101 in alternate embodiments.
During a typical image forming process and as mentioned above, charge roller 104 charges PC drum 102 to the predetermined voltage. Thereafter, a stream of photons contacts PC drum 102 to photo-generate a discharged area on surface 102a of PC drum 102. The stream of photons may be provided by an optical assembly, such as an optical assembly 110 that is operatively coupled to PC drum 102, as shown in
Optical assembly 110 includes a laser unit 112, one or more mirrors 114a, and a one or more lenses 114b. However, for the purpose of this description, only one mirror 114a is depicted in
The photo-generation of the discharged area on surface 102a of PC drum 102 generates an electrostatic latent image. After the generation of the electrostatic latent image, developer unit 106 provides the toner medium to surface 102a of PC drum 102. Subsequently, the toner particles of the toner medium affix to the electrostatic latent image (due to electrostatic interactions) thereby generating a toned electrostatic latent image. The toned electrostatic latent image is then transferred and fixed onto the media sheet to generate a printed image thereon.
Electrophotographic image forming device 100 or cartridge 101 further includes a cleaning member 116 configured adjacent to charge roller 104. Further, as shown in
For the purpose of this description, support bracket 118 is shown to be L-shaped, as shown in
Cleaning member 116 is capable of removing particulate from charge roller 104. The term “particulate,” as used herein, refers to unwanted debris including toner particles, paper dust, and other similar matter that adheres to and deposits over a peripheral surface 104a of charge roller 104 after one or more image forming processes. For removing such particulate, cleaning member 116 applies a cleaning pressure P (as shown in
Substrate 202 includes a material selected from the group consisting of a polymeric material, a metallic material, a composite material, a ceramic material, or a combination thereof. However, for the purpose of this description, substrate 202 includes a polymeric material. Such a polymeric material may be either a thermoplastic polymeric material, a thermo-set polymeric material, or an elastomer polymeric material. Accordingly, suitable examples of the polymeric material may include, but are not limited to, polyester such as polyethylene terephthalate (PET), polycarbonate, polyetherimide, polyurethane, natural rubber, synthetic rubber, styrene-butadiene copolymer, and combinations thereof. However, it should be clearly understood that the above-stated examples of the polymeric material are only for exemplary purposes and should not be construed as a limitation to the present disclosure. Further, it should be understood that the polymeric material may be used in form of a film (extruded or cast) or in a molded form. Furthermore, substrate 202 may be used in form of a polymeric strip. For the purpose of this description, the polymeric material is a material that is commercially available under the trade name Mylar® available from Dupont Teijin Films.
Cleaning member 116 includes a cleaning pad 204 disposed onto substrate 202. More specifically, cleaning pad 204 is disposed onto a first surface (not shown) of substrate 202 that faces peripheral surface 104a of charge roller 104, as shown in
Cleaning pad 204 is affixed onto the first surface of substrate 202, which faces peripheral surface 104a of charge roller 104, using at least one of an adhesive or a primer. The adhesive may be a hot melt adhesive or a pressure sensitive adhesive. Moreover, the adhesive either may be an acrylic copolymer, an epoxy polymer, or a rubber-based polymer such as a styrene block copolymer. Suitable examples of the adhesive include, but are not limited to, 9500 double coated acrylic tape product, EAD 461 double coated acrylic tape product, and EAD 438 double coated acrylic tape product (available from 3M Corporation, St. Paul. Minn.). In an embodiment of the present disclosure, the adhesive is EAD 461 double coated acrylic tape product. Moreover, a suitable example of the primer employed in the present disclosure includes Chemlok 250 (available from The Lord Corporation).
The adhesive may be applied as an adhesive layer, such as an adhesive layer 206, as shown in
The adhesive may be also be used for attaching cleaning member 116 to support 118. More specifically, the adhesive may be applied (in form of a layer, such as adhesive layer 206) onto a second surface of substrate 202, which may then be affixed to support bracket 118. The second surface of substrate 202 is different from the first surface, which faces peripheral surface 104a of charge roller 104.
Cleaning pad 204 of cleaning member 116 may be designed with various cross-sectional shapes such as a trapezoidal shape, a rectangular shape and a concave shape, a convex shape, or combinations of these. However, for the purpose of this description, cleaning pad 204 is a rectangular in cross-section. Further, cleaning pad 204 is designed to have a size sufficient enough to maximize cleaning efficiency of cleaning member 116 without increasing frictional drag thereof. The term “frictional drag” refers to a force resisting relative motion of cleaning member 116 and charge roller 104 when being in contact with each other. Further, cleaning pad 204 has a dimension in accordance with the circumference and length of charge roller 104. Accordingly, cleaning pad 204 of the present disclosure may have an overall height H1 ranging from about 4.0 to about 8.0 millimeters (more specifically, equal to about 7.5 millimeters), an overall thickness T ranging from about 0.1 to about 8.0 millimeters (more specifically, equal to about 5.0 to 5.5 mm), and a length ranging from about 200 to about 500 millimeters.
Cleaning pad 204 of cleaning member 116 when the charge roller is in its storage position contacts peripheral surface 104a of charge roller 104 for absorbing and retaining the particulate therefrom. The direction of rotation of charge roller 104 during a cleaning cycle can vary, one time it is clockwise the next counter clockwise. Other cleaning sequences can also be used. Cleaning pad 204 retains the particulate for long durations of time to prevent the particulate from reattaching to charge roller 104. Further, cleaning pad 204 should be flexible. More specifically, cleaning pad 204 may be capable of providing an elastic response when cleaning member 116 applies cleaning pressure P on peripheral surface 104a of charge roller 104.
Moreover, cleaning pad 204 should have a sufficient wear resistance in order to withstand amount of usage of electrophotographic image forming device 100, which typically may be about 20,000 printed media sheets. Also, cleaning pad 204 should have a sufficient thermal and moisture resistance in order to withstand temperatures associated with operation of electrophotographic image forming device 100, and the temperatures and humidity ranges associated with warehouses and ocean shipping containers where electrophotographic image forming device 100 or cartridge 101 may be stored. More specifically, cleaning pad 204 should have a sufficient thermal resistance in order to withstand temperatures (ranging from about 40 degrees Celsius to about 70 degrees Celsius) that are generated near charge roller 104 during operation and the temperatures (ranging from about 20 degrees Celsius to about 50 degrees Celsius) and humidity (ranging from about 5 percent to about 95 percent relative humidity) present within a shipping container during ocean transit and a warehouse during seasonal highs and lows. Based on the foregoing, cleaning pad 204 should have a porous structure, a large resistance to wear and tear, high flexibility, and a high thermal and moisture resistance.
Accordingly, cleaning pad 204 includes a material such as foam, and more specifically, open-celled foam. Usually, open-celled foam includes a plurality of open cells (hereinafter referred to as “open cells” ) that may permit passage of air therethrough. Further, such open cells are capable of absorbing particulate, such as the particulate deposited on peripheral surface 104a of charge roller 104. Furthermore, open cells are capable of effectively retaining the particulate there within to prevent the particulate from reattaching to charge roller 104. Moreover, the open-celled foam has a sufficient wear resistance in order to withstand the amount of usage of electrophotographic image forming device 100 or cartridge 101. In addition, the open-celled foam has a sufficient thermal resistance in order to withstand the temperatures that are generated near charge roller 104 of electrophotographic image forming device 100.
The open-celled foam as used in cleaning pad 204 may include a polymeric material such as polyurethane, polyolefin, silicone, and combinations thereof. More specifically, the open-celled foam as used herein may be polyether-urethane foam available from Foamex International Inc., of Linwood, Pa., U.S.A. It should be understood that the aforementioned examples of the polymeric material of the open-celled foam in cleaning pad 204 is only for exemplary purposes and should not be construed as a limitation to the present disclosure.
Additionally, the open-celled foam as used in cleaning pad 204 may have a pore size ranging from about 50 to about 150 pores per linear inch, and a density ranging from about 0.5 to about 14 pounds per cubic foot. Moreover, the open-celled foam may have a tensile strength ranging from about 15 to about 40 pounds per square foot.
As depicted in
Further, as it is evident from
As depicted in
The contact between cleaning pad 204 and charge roller 104 may result in generation of a pressure gradient therebetween due to the shape of cleaning pad 204. However, the effective involvement of each of sections 208, including central section 208a and distal sections 208b, in the cleaning process helps reduce the pressure gradient generated between cleaning pad 204 and charge roller 104, and more specifically, from central section 208a to distal sections 208b.
Further, it should be understood that compression set defects in the open-celled foam employed in cleaning pad 204 may occur if cleaning pressure between cleaning pad 204 and charge roller 104 is of a high magnitude. However, sections 208 are capable of generating pressures of low magnitude due to their independent movement in order to reduce any likelihood of compression set defects in the open-celled foam.
In addition to the above, it should also be understood that the generation of pressures of low magnitude between cleaning pad 204 and charge roller 104, due to the segmentation of cleaning pad 204, allows for employing thicker cleaning pad 204 in cleaning member 116 without causing any stalling of charge roller 104. Typical cleaning pad thickness are about 4 mm±0.3 mm whereas with one preferred embodiment, the cleaning pad 204 has a thickness of about 5.0-5.5 mm±0.3 mm or about 25% to about 37.5% thicker. Use of thicker cleaning pad 204 increases the ease of manufacturability of cleaning pad 204 because the tolerance range for the thicker pad represents a smaller percentage of the thickness dimension (5.4 to 6% versus 7.5% for the thinner pad). Moreover, it should be understood that effective lifetime of cleaning pad 204 is dependent on available volume of the open-celled foam for trapping and retaining the particulate within. Accordingly, the segmentation of cleaning pad 204, and more specifically, the open-celled foam, provides a large capacity for retaining the particulate within and helps in increasing usable/functional lifetime of cleaning pad 204. This helps in keeping charge roller 104 free of the particulate, and further reduces any likelihood of deterioration of charging ability of charge roller 104. Accordingly, use of cleaning member 116 helps in increasing effective lifetime of electrophotographic image forming device 100.
Now referring to
In another aspect, the present disclosure provides a cleaning member, such as cleaning member 116 as described above, for removing particulate from a charge roller, such as charge roller 104, of a media processing device, such as electrophotographic image forming device 100. The cleaning member includes a substrate, such as substrate 202. The substrate includes a material selected from the group consisting of a polymeric material, a metallic material, a composite material, and a ceramic material. The polymeric material, as used in the substrate, may be selected from the group consisting of polyester, polycarbonate, polyetherimide, polyurethane, natural rubber, synthetic rubber, styrene-butadiene copolymer, and combinations thereof.
Further, the cleaning member includes a cleaning pad, such as cleaning pad 204, disposed onto the substrate. The cleaning pad is segmented into a plurality of sections, such as sections 208, capable of contacting the charge roller for removing the particulate from the charge roller. Further, the cleaning pad may include open-celled foam that includes a polymeric material. The polymeric material, as used for the open-celled foam, may be selected from the group consisting of polyurethane, polyolefin, silicone, and combinations thereof. Further, the open-celled foam may have a density ranging from about 0.5 to about 14 pounds per cubic foot.
The cleaning member further may comprise at least one of an adhesive and a primer applied between the substrate and the cleaning pad. The at least one of the adhesive and the primer affixes the cleaning pad onto the substrate for disposing the cleaning pad onto the substrate. It should be apparent that the adhesive may be applied in form of an adhesive layer, such as adhesive layer 206.
Based on the foregoing, the present disclosure provides a media processing device, a cartridge and a cleaning member capable of removing particulate from a charge roller of the media processing device. The cleaning member includes a substrate and a cleaning pad disposed onto the substrate. Alternatively, the cleaning comprises a cleaning pad having an adhesive layer allowing the cleaning pad to be attached directly to a support surface or support bracket in a media processing device or a cartridge therefor. The cleaning member provides a large capacity to trap the particulate deposited over the charge roller. Accordingly, the cleaning member allows for keeping the charge roller clean, thereby allowing the charge roller to retain good charging capabilities. This helps in increasing effective lifetime of the media processing device or cartridge. Further, the cleaning member is capable of applying sufficient pressure for effectively cleaning the charge roller without increasing frictional drag in between the cleaning member and the charge roller. The same prevents frequent stalling of the charge roller. Furthermore, the cleaning member has reduced risk of undergoing physical defects, and more specifically, compression set defects, of the cleaning pad. Moreover, the cleaning member is easy to manufacture and configure in the media processing device or cartridge.
The foregoing description of several embodiments and methods of the present disclosure have been presented for purposes of illustration. It is not intended to be exhaustive or to limit the present disclosure to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the present disclosure be defined by the claims appended hereto.