Claims
- 1. A charge/discharge protection circuit for a rechargeable battery, secured by a fuse, comprising a control circuit, which opens or closes a load switch, dependent on the magnitude of the voltage on the battery terminals, the voltage on the charge/discharge terminals of said protection circuit and on the magnitude of the charge/discharge current, thus characterized that a number of partial switches is located parallel to the load switch, that an overvoltage detector closes, in case of an overvoltage on charge/discharge terminals, all partial switches via a control logic, which afterwards cyclically progressing opens one partial switch after the other, that a voltage detector, monitoring the remaining voltage over the partial switches inhibits the opening of at that time next partial switch if the remaining voltage over the still closed partial switches is higher than a predefined limit of said remaining voltage, and that the control logic activates a permanent disconnection of the battery from the charge/discharge terminals if the cycle is not completed within a predefined time Interval, that means, if at least the last partial switch is still closed.
- 2. The circuit according to claim 1, wherein the exit said overvoltage detector is connected to the first entry of a AND-element, whose second entry is connected to the exit of a resettable memory circuit whose entry is also connected to the exit of overvoltage detector and said memory circuit sets, after the first occurrence of an overvoltage, said second entry of AND-element on “1” during predefined time interval which is longer than said cycle-time, therewith a next occurrence of overvoltage, happening during said predefined time interval, generates a “1” on the exit of AND-element and thereby activates a permanent disconnection of battery.
- 3. The circuit according to claim 1, wherein a control logic to disconnect permanently the battery comprises a controlled switch connected to one of the terminals of said battery via a fuse wherein said switch is being closed by said control logic if, within a defined time interval, at least the last partial switch is still closed.
- 4. The circuit according to claims 3, wherein said control logic comprises a timing circuit whose delay time is longer than the predefined time interval for the cyclical opening of all partial switches and which delivers a signal after said delay time, activating a permanent disconnection of the battery.
- 5. The circuit according to claim 4, wherein said control logic comprises a R/S flipflop to store the occurrence of a detected overvoltage, and that the exit of said R/S flipflop is connected to the release entries of timing circuit and of switching logic, receiving a clock signal and cyclically progressing delivers the control signals to open a partial switch one after the other, as long as on its other entry the exit signal of voltage detector is activated, which corresponds to a remaining voltage over the still closed partial switches being higher than the predefined limit of said remaining voltage.
- 6. The circuit according to claim 5, wherein said R/S flipflop receives on its reset entry point a reset signal which is derived from a signal controlling the last partial switch.
- 7. A charge/discharge protection circuit for a rechargeable battery, secured by a fuse, comprising a control circuit, which opens or closes a load switch, dependent on the magnitude of the voltage on the battery terminals, the voltage on the charge/discharge terminals of said protection circuit and on the magnitude of the charge/discharge current, thus characterized that an arrangement of short-circuit switches comprising parallel arranged partial switches is located parallel to the charge/discharge terminals, that an overvoltage detector closes, in case of an overvoltage on charge/discharge terminals, all partial switches via a control logic, which afterwards cyclically progressing opens one partial switch after the other, that a voltage detector, monitoring the remaining voltage over the partial switches inhibits the opening of at that time next partial switch if the remaining voltage over the still closed partial switches is higher than a predefined limit of said remaining voltage, and that the control logic activates a permanent disconnection of the battery from the charge/discharge terminals if the cycle is not completed within a predefined time interval, that means if at least the last partial switch is still closed.
- 8. The circuit according to claim 7, wherein the exit said overvoltage detector is connected to the first entry of a AND-element, whose second entry is connected to the exit of a resettable memory circuit whose entry is also connected to the exit of overvoltage detector and said memory circuit sets, after the first occurrence of an overvoltage, said second entry of AND-element on “1” during a predefined time interval which is longer than said cycle-time, therewith a next occurrence of overvoltage, happening during said predefined time interval, generates a “1” on the exit of AND-element and thereby activates a permanent disconnection of battery.
- 9. The circuit according to claim 7, wherein a control logic to disconnect permanently the battery comprises a controlled switch connected to one of the terminals of said battery via a fuse wherein said switch is being closed by said control logic if, within a defined time interval, at least the last partial switch is still closed.
- 10. The circuit according to claims 9, wherein said control logic comprises a timing circuit whose delay time is longer than the predefined time interval for the cyclical opening of all partial switches and which delivers a signal after said delay time, activating a permanent disconnection of the battery.
- 11. The circuit according to claim 10, wherein said control logic comprises a R/S flipflop to store the occurrence of a detected overvoltage, and that the exit of said R/S flipflop is connected to the release entries of timing circuit and of switching logic, receiving a clock signal and cyclically progressing delivers the control signals to open a partial switch one after the other, as long as on its other entry the exit signal of voltage detector is activated, which corresponds to a remaining voltage over the still closed partial switches being higher than the predefined limit of said remaining voltage.
- 12. The circuit according to claim 11, wherein said R/S flipflop receives on its reset entry point a reset signal which is derived from a signal controlling the last partial switch.
Priority Claims (1)
Number |
Date |
Country |
Kind |
102 03 909.7 -34 |
Jul 2002 |
DE |
|
RELATED PATENT APPLICATION
[0001] This application is related to U.S. patent application Ser. No. 10/057.490 filed on Jan. 24, 2002.