1. Field
The present embodiments relate to systems for charging a battery in a portable electronic device. More specifically, the present embodiments relate to a system that charges a battery in a portable electronic device using a constant-current, constant-voltage charging process.
2. Related Art
A rechargeable battery in a portable electronic device is often charged using a two-phase process in which the battery is first charged at a constant current and then at a constant voltage. During the constant-current charging phase, the charger may output a charging current to the battery at, for example, a 1 C-rate, where the C-rate is the capacity of the battery divided by one hour. When the output voltage of the charger reaches the maximum charging voltage for the battery, the charger then switches to the constant-voltage charging phase. The charger then charges the battery at the maximum charging voltage until the charging current falls to 10% of the 1 C-rate for the battery, at which point the charging process ends. Theoretically, it will take an hour to finish charging a completely discharged battery at 1 C-rate charging. However, the actual charging process may take from 10% to 30% longer than an hour, with the last few percent of battery capacity during the constant-voltage phase taking disproportionately longer than the same increase in battery capacity during the beginning of the constant-current charging phase. Hence, it is desirable to somehow reduce the time required to charge the last few percent of the battery capacity.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
The methods and processes described herein can be included in hardware modules or apparatus, including a charger, a system management controller (SMC) and/or a battery management unit (BMU). These modules or apparatus may include, but are not limited to a combination of one or more analog circuits, digital circuits (including integrated circuits which may be or include application-specific integrated circuit (ASIC) chips), field-programmable gate arrays (FPGAs), dedicated or shared processors that execute particular software modules or pieces of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them. In some embodiments, the hardware modules include one or more general-purpose circuits that are configured by executing instructions (program code, firmware, etc.) to perform the methods and processes.
In the following description, we refer to “some embodiments” and “other embodiments.” Note that “some embodiments” and “other embodiments” each describe a subset of all of the possible embodiments, but do not always specify the same subset of embodiments.
Portable electronic device 100 may be or include, but is not limited to, a smartphone, a tablet computer, a laptop computer, a netbook, or any other portable computing system that includes a charger and a rechargeable battery in accordance with an embodiment.
Adapter 102 may be any device that outputs a voltage for use in a charger, and may include, but is not limited to, a wall plug adapter that can be plugged into an AC voltage outlet and outputs a DC voltage (e.g., 5 volts). Charger 104 will be discussed in more detail below with respect to
System 106 represents all of the other subsystems that may be present in portable electronic device 100 that are not depicted and may include, but is not limited to, one or more processing subsystems (e.g., CPUs), memory subsystems (e.g., volatile and non-volatile), communications subsystems, display subsystems, data collection subsystems, networking subsystems, audio and/or video subsystems, alarm subsystems, media processing subsystems, and/or input/output (I/O) subsystems. Note that one or more of the subsystems in system 106 may be powered by charger 104 and/or battery 108.
Battery 108 may be any rechargeable battery or rechargeable battery system including one or more rechargeable batteries and/or rechargeable battery cells coupled together in any parallel or series configuration to output any desired voltage and/or current. Battery 108 may be implemented in any rechargeable battery chemistry including, but not limited to, nickel metal hydride (NiMH), lithium polymer, and lithium ion battery chemistries.
BMU 112 may be any battery management unit implemented in any technology and may include any combination of hardware and software, and digital and analog circuitry. BMU 112 may include one or more microcontrollers and/or other hardware modules, and may be implemented on one or more integrated circuits. BMU 112 may control current flowing to and from battery 108 using protection FETs 124 and sense current using BMU sense resistor 126. BMU may also determine the state of charge and internal resistance of battery 108. BMU 112 is also coupled to SMC 110 and may communicate information to SMC 110 including the internal resistance of battery 108.
SMC 110 may be any system management controller implemented in any technology and may include any combination of hardware and software, and digital and analog circuitry. SMC 110 may include one or more microcontrollers and/or other hardware modules, and may be implemented on one or more integrated circuits. SMC 110 is coupled to and can communicate with both charger 104 and BMU 112. For example, SMC 110 may be able to receive an internal resistance of battery 108 from BMU 112 and communicate the internal resistance to charger 104, including using the communicated resistance to control a programmable resistor in charger 104 as described below. In some embodiments, SMC 110 may also be coupled to and communicate with system 106.
Current sense resistor 114, battery FET 116, board resistance 118, connector resistance 120, fuse resistance 122, protection FETs 124 and BMU sense resistor 126 represent exemplary resistances and power devices that may be present in portable electronic device 100 in a current loop on which current may flow from charger 104 through battery 108 to ground and back to charger 104. The resistances and power devices represented are meant to be exemplary and in some embodiments there may be different resistances and devices, or more or fewer resistances and devices or components other than those depicted in
Current monitor 204 represents an idealized current monitor (e.g., no resistance) that is used by charger 104 to monitor the charging current flowing to battery 108. Current monitor 210 also represents an idealized current monitor (e.g., no resistance) that is used by BMU 112 to monitor current flowing to and from battery 108.
Battery 108 is depicted including idealized battery 206 which includes no internal resistance in series with internal resistance 208 which represents the internal resistance of battery 108. BMU 112 may monitor battery 108 to determine internal resistance 208. Note that the total resistance in the current loop that includes charger 104 and battery 108 is then the sum of effective resistance 202 and internal resistance 208.
Voltage regulator 302 may be any differential amplifier that can output a voltage loop error 332 set by the difference between the voltage loop reference 326 and voltage loop feedback 328. Voltage regulator 302 may be implemented in any technology and may be a combination of analog and digital circuits and/or elements implemented using any combination of discrete and integrated circuits and components. In some embodiments, voltage regulator 302 may receive input (e.g., from current monitor 204) through charge current monitor input 312 and may be configured to stop outputting current when the charging current input on charge current monitor input 312 reaches a predetermined value (e.g., 10% of the 1 C-rate for the battery being charged). Note that the predetermined value may be set using any desired method including, but not limited to, a value based on information communicated from battery 108 through BMU 112 to SMC 110 to charger 104 and then to voltage regulator 302.
Current regulator 304 may be any current regulator that can output a current loop error 330 set by the difference between the current loop reference 322 and current loop feedback 324. Current regulator 304 may be implemented in any technology and may be a combination of analog and digital circuits and/or elements implemented using any combination of discrete and integrated circuits and components. In some embodiments, current regulator 304 may include a current source (not shown) used to determine the current set-point for the output of current regulator 304. Current regulator 304 may also use feedback from a current monitor (e.g., current monitor 204) through charge current monitor input 312 to control its output current.
PWM modulator 306 may employ any type of PWM scheme that can output a duty cycle 334 to a switch mode charger 308 in any technology. The duty cycle may be controlled in a closed-loop manner depending which loop error signal is smaller (e.g., PWM modulator may determine the duty cycle based on current loop error signal 330 if current loop error signal 330 is smaller than voltage loop error 332). During a constant-current charging phase, current loop reference 322 is very close to current feedback 324 and thus the current loop error signal 330 is smaller compared to voltage loop error 332. PWM modulator may select current loop error signal 330 to determine the duty cycle 334. As the battery voltage goes up during charging, voltage loop feedback 328 may go up to be close to voltage loop reference 326. When this happens, the voltage loop error signal 332 from voltage regulator 302 may drop below current loop error signal 330. PWM modulator 306 may select voltage loop error 332. This is the transition from the constant-current charging phase to the constant-voltage charging phase. PWM modulator 306 may be implemented in any technology and may be a combination of analog and digital circuits and/or elements implemented using any combination of discrete and integrated circuits and components.
Switch mode charger 308 may employ any type of switch mode converter (e.g., buck, boost, buck-boost, SEPIC, Cuk, etc.) that can convert power from adapter 102 output to charger output 128 efficiently in a switching manner.
Programmable constant-current reference 316 may be any type of current reference implemented in any technology. In some embodiments, the current through programmable constant-current reference 316 is set equal to the maximum allowable charging current (e.g., 1 C-rate for certain lithium ion rechargeable batteries). In some embodiments, the current through programmable constant-current reference 316 may be determined when charger 104 is manufactured, while in other embodiments, the current through programmable constant-current reference 316 may be set or programmed using SMC 110 through the connection to SMC input 314.
Programmable constant-voltage reference 318 may be any type of voltage reference implemented in any technology. In some embodiments, the voltage across programmable constant-voltage reference 318 is set equal to the maximum allowable charging voltage (e.g., 4.2 V per cell for certain lithium ion rechargeable batteries). In some embodiments, the voltage across programmable constant-voltage reference 318 may be determined when charger 104 is manufactured, while in other embodiments, the voltage across programmable constant-voltage reference 318 may be set or programmed using SMC 110 through the connection to SMC input 314.
Programmable resistor 320 may be any type of programmable resistor implemented in any technology. Programmable resistor 320 receives input from SMC 110 through SMC input 314 to set the resistance of programmable resistor 320. Although programmable resistor 320 is depicted as being an internal subsystem of charger 104, in some embodiments programmable resistor 320 may be external to charger 104. Additionally, in some embodiments, programmable resistor 320 may include fixed resistance portions (e.g., representing effective resistance 202) or may be comprised of two or more programmable resistors, each separately programmable through SMC input 314. During operation of charger 104, a signal representing the charge current enters charger 104 through charge current monitor input 312 and flows through programmable resistor 320 to ground. The voltage across programmable resistor 320 is then added to the voltage across voltage reference 318 and used as voltage loop reference input 326 to voltage regulator 302 as described above. Note that, in some embodiments, the resistance of programmable resistor 320 and the current input through charge current monitor input 312 may be scaled in opposite directions by a convenient factor as long as their product (i.e., the voltage across programmable resistor 320) is unchanged (e.g., represents the voltage drop of the charging current into battery 206 across the resistance for the current loop which is comprised of effective resistance 202 and internal resistance 208).
The process of
Then, at step 404, charger 104 begins the constant-current charging phase and outputs, for example, a 1 C-rate charging current to battery 108. Note that charger 104 may monitor the charging current flowing to battery 108 using current monitor 204 which inputs the current reading through charge current monitor input 312 to current regulator 304. In some embodiments, a charging current rate other than a 1 C-rate may be used.
At step 406, the target voltage is determined.
At step 506, charger 104 then determines the compensation voltage based on programmable resistor 320 and the current monitored using current monitor 204 and input into adapter 104 through charge current monitor input 312. Then, at step 508, charger 104 determines the target voltage based on the voltage across voltage reference 318 and the compensation voltage (e.g., the voltage generated by the monitored current input into charge current monitor input 312 across programmable resistor 320 to ground). The target voltage is output from voltage reference 318 to voltage regulator 302.
Returning to
At step 410, the constant-current charging phase ends and current regulator 304 stops outputting charging current. Then, the constant-voltage charging phase begins with voltage regulator 302 outputting a constant voltage charging current through charger output 306 to battery 108. At step 412, the target voltage is determined as described above with reference to
Note that, in some embodiments, step 402 and the constant-current charging phase described above with reference to
The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application No. 61/773,971, entitled “Charging a Battery in a Portable Electronic Device,” by Yongxuan Hu, Mao Ye and Shimon Elkayam, filed 7 Mar. 2013 (Atty. Docket No.: APL-P17432USP1), the contents of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61773971 | Mar 2013 | US |