CHARGING CABLE AND CHARGING STATION FOR ELECTRIC CARS

Information

  • Patent Application
  • 20190217731
  • Publication Number
    20190217731
  • Date Filed
    January 11, 2019
    5 years ago
  • Date Published
    July 18, 2019
    4 years ago
Abstract
A charging cable for an electric car includes an insulating body, a connecting line, and a plug-type connector with contact pins and contact openings. The plug-type connector detachably connects the insulating body to the connecting line via the contact pins and contact openings. Also described is a corresponding charging station.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to German Patent Application No. DE 10 2018 100 827.9, filed Jan. 16, 2018, which is incorporated by reference herein in its entirety.


FIELD OF THE INVENTION

The present invention relates to a charging cable for electric cars. In addition, the present invention relates to a corresponding charging station.


BACKGROUND OF THE INVENTION

The term charging station is used in electrical engineering to refer to any fixed device or electrical installation which serves to feed energy to mobile battery-operated devices, machines or motor vehicles by means of simple setting or plugging in without having to remove the energy storage element, for example the traction battery of an electric car. Charging stations for electric cars are occasionally also referred to as “electric filling stations” and can comprise a plurality of charging points.


In particular DC fast charging systems (high performance charging, HPC) such as the so-called combined charging system (CCS) which is widespread in Europe are known in this context. In the case of DC charging of the generic type, DC current is fed from the charging pillar directly into the vehicle and for this purpose is made available from the power grid by means of a high-power rectifier or by means of large buffering accumulators at solar charging stations. In the vehicle there is a battery management system which communicates with the charging pillar in order to adapt the strength of the current or to end the process when a capacity limit is reached.


The power electronics are usually located in the charging pillar here. Since the DC connections of the charging pillar are connected directly to corresponding connections of the traction battery, high charging currents can be transmitted with low loss, which permits short charging times, but also generates a considerable amount of waste heat.


For this purpose, a wide variety of charging cables and charging couplings and charging plugs, which are typically subjected to a high degree of wear, are known. In particular, the contact pins (“pins”) are subjected to a high amount of abrasion as a result of the high number of plugging cycles during daily use. However, the wearing of the pins puts the reliable contact at risk, in particular during the conduction of signals which are transmitted with low voltage. The plastic shell and the pin mount are subjected not only to mechanical wear as a result of the frequent plugging cycles and the forces acting on the pin fixtures but also to degradation by weathering effects, light, oxygen and other oxidizing agents. It is to be borne in mind here that these components perform an insulating function which is critical for safety. In this context, they are occasionally subjected to considerable mechanical loading, in particular as a result of the plug being dropped on the ground. The cable as a relatively flexible element copes significantly better with this than the plug.


Complete replacement of the plug in regular cycles is therefore customary in the industry, but very costly and time consuming. If the plug is replaced with the cable, the charging pillars have to generally be opened in order to newly connect all the signal conductors and power conductors and to newly configure the cable routing, possible strain relief means or suspension means. If, on the other hand, only the plug and the worn pins are replaced, generally the line ends have to be shortened and the new pins soldered or crimped. In situ, these methods prove laborious and susceptible to quality problems. In addition, whenever pins are replaced, the cable lengths are undesirably reduced. After the selective replacement of individual pins, the lines additionally have different line lengths.


Owing to the high level of expenditure when replacing charging cables in the field, to a certain extent cost-intensive resistant materials, for example gold-nickel pins and degradation-resistant plastics are therefore used for the plug housings, which, however, can only delay the replacement but not prevent it.


CN105896212, DE102011106335, DE102013007330, EP255534081 and US2015035483, all of which are incorporated by reference herein, disclose electric vehicle charging plugs with replaceable sections.


SUMMARY OF THE INVENTION

Described herein is a charging cable for electric cars and a corresponding charging station.


The charging plug is divided into at least one part with a high level of wear and/or high safety function or high safety significance and at least one part with a relatively low wear and/or a relatively low safety function or low safety significance. The part of the charging plug with a high level of wear and/or high safety function or high safety significance is correspondingly configured in a replaceable fashion.


For example, according to aspects of the invention the main part of the plug which is introduced into the mechanical receptacle in the vehicle and is therefore subjected to mechanical abrasion and loading is replaceable. It is advantageous here that as far as possible all the sensitive parts (if appropriate also easily fracturing parts of the housing) are part of the replaceable part, but on the other hand are replaced as little as possible, in order to limit the costs of the part. The plug body or insulating body can contain, in particular, pins which are also replaced with the insulating body. If the insulating body is fitted on over the plug like a mask, pins, which are particularly susceptible to wear owing to the frequent plug-in processes with changing vehicles, can be connected to the plug by means of high-quality contact pins with only a few plugging cycles. These additional pins require only a very small number of plugging cycles here, since they are plugged only when the insulating body is changed.


Therefore, the insulating body and at least one pin can be configured in such a way that they can be plugged onto the plug body. In this case, the insulating body should preferably be secured to the plug, for example by means of screws, clamping springs or rivets. The secured connection can preferably not be detached by third parties, for example by using unusual screw heads, rivets, chemically detachable bonding of the screws or a lock.





BRIEF DESCRIPTION OF THE DRAWING

Exemplary embodiments of the invention are illustrated in the drawings and will be described in more detail below.



FIG. 1 shows the example of an inventive CCS charging cable according to EN 62196 type 2 (“IEC type 2”) with a detached plug-type connector.



FIG. 2 shows the coupling of the plug-type connector in its details according to a first embodiment of the invention.



FIG. 3 shows the coupling of the plug-type connector in its details according to a second embodiment of the invention.



FIG. 4 shows a first embodiment variant of the CCS charging cable.



FIG. 5 shows a second embodiment variant of the CCS charging cable.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates the inventive addition of a charging cable (10) by an additional plug-type connector (12) by means of which the contact pins which are subjected to high level abrasion and the shell can equally be embodied as a replaceable wear part. The contact pins or contact openings (13) of the proposed plug-type connector (12) can in this context be configured for very few plugging cycles. The actual charging plug which is plugged on as an insulating body (11) can, in contrast, be fabricated with respect to its expected wear using more favorable pins and a more favorable plastic.


In order to prevent disconnection of the plug-type connector (12) by unauthorized persons, for example safety screws which cannot be released with a standard tool or a lock are provided. In order to detect unplugging and aborting of the charging process as a result of the voltage being switched off, the charging cable (10) additionally has either a separate interlock loop, for example in the form of a short-circuiting link, or is pulled through by the interlock loop of a superordinate charging system. The external region of the coupling preferably dips into the insulating body (11) at least over a certain distance which depends on the tracking resistance of the insulating material which is used.



FIGS. 2 and 3 illustrate in detail the collar (14) which is countersunk for this purpose and which at the same time prevents a situation in which, when the plug-type connector (12) is slightly opened the pins can be touched before the flow of current through the interlock loop is safely interrupted. In this illustration it is also possible to see the optional locking means (15), which are provided here by the bolt of a lock.



FIGS. 4 and 5 show two optional embodiment variants of a possible cable cooling system for the connecting line (19FIG. 3). The latter preferably ends, as illustrated in FIG. 4, in the plug-type connector (12) which for this purpose merely forms a connection (16) of the inflow and outflow (17). The inflow and outflow may be provided in the form of one or more conduits for transporting fluid. Therefore, the costs of fluid couplings are saved if no transfer of the cooling medium to the vehicle is provided. The cooling of the connecting line (19) permits its cable weight to be reduced by decreasing a cross section here, while the cables in the insulating body (11) should have a significantly larger conductor cross section which ideally corresponds to the standard values for the case of pure air convection.


If the cooling medium is nevertheless to be transported into the insulating body (11), the solution according to FIG. 5 provides the advantage that fluid couplings (18) can be used as which are cost effective, non-leakage-free or even non-locking. Possible air pockets can be reliably eliminated by the service technician, for example by venting the cooling system.

Claims
  • 1. A charging cable for an electric car, the charging cable comprising: an insulating body,a connecting line, anda plug-type connector with contact pins and contact openings, wherein the plug-type connector detachably connects the insulating body to the connecting line via the contact pins and contact openings.
  • 2. The charging cable as claimed in claim 1, wherein the contact pins are permanently connected to the insulating body, or the contact pins are permanently connected to the connecting line.
  • 3. The charging cable as claimed in claim 1, wherein the plug-type connector has a collar, and the plug-type connector is shaped such that the collar extends into the plug-type connector when the insulating body is connected to the connecting line.
  • 4. The charging cable as claimed in claim 3, wherein the collar has a mechanical locking means.
  • 5. The charging cable as claimed in claim 4, wherein the mechanical locking means is a lock.
  • 6. The charging cable as claimed in claim 1, wherein the charging cable has an interlock loop.
  • 7. The charging cable as claimed in claim 1, wherein the charging cable has a short-circuiting link.
  • 8. The charging cable as claimed in claim 1, wherein the plug-type connector has screws, clamping springs, or rivets.
  • 9. The charging cable as claimed in claim 1, wherein the connecting line has an inflow and outflow for cooling fluid.
  • 10. The charging cable as claimed in claim 9, wherein the plug-type connector comprises a fluidic connection of the inflow and outflow.
  • 11. The charging cable as claimed in claim 9, wherein the plug-type connector has fluid couplings of the inflow and outflow to the insulating body, and the insulating body is configured to be cooled by the cooling fluid.
  • 12. The charging cable as claimed in claim 1, wherein the insulating body comprises at least one contact pin or at least one contact opening with a number of specified maximum plugging cycles over a service life which number is higher by at least 30% than at least one of the contact pins or one of the contact openings in the plug-type connector.
  • 13. The charging cable as claimed in claim 12, wherein the at least one contact pin or the at least one contact opening of the insulating body has a nickel-gold surface.
  • 14. A charging station comprising the charging cable as claimed in claim 1.
Priority Claims (1)
Number Date Country Kind
102018100827.9 Jan 2018 DE national