This U.S. non-provisional patent application claims the benefit of Korean Patent Application 10-2009-0001129, filed on Jan. 7, 2009, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
The present invention relates to charging circuits, and in particular, to charging circuits that are suitable for charging a battery in a constant current charging mode or a constant voltage charging mode.
When a battery is charged by a charger, the battery may be charged rapidly with a large current using a constant current charge mode. In this case, however, the battery (especially, a lithium-ion battery) may be overcharged, so that the lifespan of the battery may be shortened and in a worst case scenario, the battery may catch fire.
Accordingly, in order to protect the battery, if the voltage increases close to the full charge state, the battery is charged with a prescribed constant voltage such that the charge current is naturally reduced. This charge mode is called a constant voltage charge mode.
In the case of a lithium-ion battery, if the battery voltage reaches, for example, 4.2 V, the charge mode is switched from the constant current charge mode (CCCM) to the constant voltage charge mode (CVCM). However, a rapid and/or large change in the charge current may adversely affect the battery, so it is desirable that the battery voltage be regulated naturally to 4.2 V while the charge current is kept constant.
Conventionally, a programmable resistor or switch is used to switch the charge mode from constant current charge mode to constant voltage charge mode.
However, the rapid transition of the charge mode using a programmable resistor or switch may lead to a rapid change in the charge current, which may shorten the lifespan of the battery.
Accordingly, a technique is known which uses a diode as a charge mode transition element in order to suppress the rapid transition of the charge mode. In this case, however, the use of the diode may increase the occupying area of the charging circuit as well as the manufacturing cost thereof, and a bias current may be needed.
A charging circuit according to some embodiments includes a current mirror block that charges a load in response to a control voltage applied thereto and a charge controller that generates the control voltage in response to comparison result values obtained by comparing a current sensing value and a voltage sensing value of the current mirror block with respective reference values. The comparison result values are applied to the gates of MOS transistors connected in series. The charge controller can switch a charge mode from a constant current charge mode to a constant voltage charge mode when the charge state of the load reaches a set state.
The MOS transistors may include first, second, and third P-channel MOS transistors whose source-drain channels are connected in series between a power supply voltage and the ground. A bias voltage may be connected to the gate of the first P-channel MOS transistor, and each of the comparison result values may be applied to the gate of a corresponding one of the second and third P-channel MOS transistors. The control voltage may be obtained from the drain of the first P-channel MOS transistor.
The MOS transistors may include first, second, and third N-channel MOS transistors whose drain-source channels are connected in series between a power supply voltage and the ground. Each of the comparison result values may be applied to the gate of a corresponding one of the first and second N-channel MOS transistors. A bias voltage may be applied to the gate of the third N-channel MOS transistor, and the control voltage may be obtained from the drain of the second N-channel MOS transistor.
The current mirror block may include current mirror-type first and second P-channel MOS transistors whose sources are connected commonly to the power supply voltage and whose gates are connected commonly to the control voltage. The charging circuit may further include a fourth P-channel MOS transistor that receives a temperature sensing result signal through the gate thereof. The source-drain channel of the fourth P-channel MOS transistor may be connected between the third P-channel MOS transistor and the ground.
A charging circuit according to further embodiments includes a current mirror block that supplies a current to a load in response to a control voltage, thereby charging the load connected to an output node. A current regulation block compares a voltage on a sensing node of the current mirror block with a prescribed reference voltage corresponding to a reference current, and outputs a first comparison result value. A voltage regulation block compares an output voltage on an output node of the current mirror block with a prescribed reference voltage, and outputs a second comparison result value. A charge mode transition block generates the control voltage for regulating the current mirror block in a single feedback loop in response to the first comparison result value and the second comparison result value, which are input to the gates of MOS transistors whose channels are connected in series, such that transition of a charge mode with respect to the load is performed smoothly.
The MOS transistors may include first, second, and third P-channel MOS transistors whose source-drain channels are connected in series between a power supply voltage and the ground. A bias voltage may be applied to the gate of the first P-channel MOS transistor, and the first and second comparison result values may be respectively applied to the gates of the third and second P-channel MOS transistors. The control voltage may be obtained from the drain of the first P-channel MOS transistor.
The MOS transistors may include first, second, and third N-channel MOS transistors whose drain-source channels are connected in series between a power supply voltage and the ground, and the first and second comparison result values may be respectively applied to the gates of the first and second N-channel MOS transistors. A bias voltage may be applied to the gate of the third N-channel MOS transistor. The control voltage may be obtained from the drain of the second N-channel MOS transistor.
The MOS transistors may include first, second, and third P-channel MOS transistors whose source-drain channels are connected in series between a power supply voltage and a ground, and for use in a low drop-out regulator. A bias voltage may be applied to the gate of the first P-channel MOS transistor, and the first and second comparison result values may be respectively applied to the gates of the second and third P-channel MOS transistors. The control voltage may be obtained from the drain of the first P-channel MOS transistor.
The charging circuit may further include a temperature regulation block that senses an increase in the temperature of the circuit above a predetermined temperature and that disables the charge mode transition block so as to cut off the charging operation of the current mirror block.
The above and other features and advantages will become more apparent by describing in detail example embodiments thereof with reference to the attached drawings in which:
Exemplary embodiments of a charging circuit having a smooth charging transition mode will now be described with reference to the accompanying drawings.
Specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. Example embodiments may, however, may be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth herein.
Accordingly, while example embodiments are capable of various modifications and alternative forms, embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but on the contrary, example embodiments are to cover all modifications, equivalents, and alternatives falling within the scope of example embodiments. Like numbers refer to like elements throughout the description of the figures.
It will be understood that, although the terms first, second and third may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between”, “adjacent” versus “directly adjacent”, etc.).
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” and the like may be used herein for ease of description to describe the relationship of one component and/or feature to another component and/or feature, or other component(s) and/or feature(s), as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
First, in order to clearly explain the differences from the embodiments of the invention, the related art will be described briefly with reference to
Brief description will be provided for the operation principle of the circuit shown in
In the CVCM, the voltage V1 becomes larger than the voltage V2, so the feedback loop having the MOS transistor MP2 and the operational amplifier OP2 naturally stops operation, and the feedback loop having the MOS transistor MP1 and the operational amplifier OP1 is operated. When this happens, the voltage VBAT is regulated to a predefined voltage (((R1+R2)*Vref)/R2).
However, the circuit shown in
As described above, in the case of the circuit shown in
Accordingly, an embodiment of the invention provides a circuit shown in
The circuit shown in
Referring to
When the charge state of the load 10 reaches a set state, in order to switch the charge mode from the constant current charge mode to the constant voltage charge mode, a charge controller generates, as the control voltage, a result voltage which is obtained when comparison result values obtained by comparing a current sensing value and a voltage sensing value of the current mirror block with respective reference values are applied to the gates of the MOS transistors which are connected in series. The charge controller includes circuit blocks 201, 202, and 203 shown in
As shown in
The voltage regulation block 202 includes resistors R1 and R2, and an operational amplifier OP1. The voltage regulation block 202 compares the output voltage on the output node ND1 of the current mirror block with a prescribed reference voltage Vref, and outputs a second comparison result value V1.
In order to ensure the smooth transition of the charge mode with respect to the load, the charge mode transition block 203 generates the control voltage Vctrl for regulating the current mirror block in a single feedback loop which is variably determined on the basis of the first comparison result value V2 and the second comparison result value V1, which are input to the gates of MOS transistors (for example, MOS transistors MP4 and MP5 in a charge mode transition block 203 of
As shown in
In particular, referring to the charging circuit 203 illustrated in
Referring to the charging circuit 203a illustrated in
By using a charge mode transition circuit as described above to generate the control voltage Vctrl, smooth transition from a current regulation mode of operation to a voltage regulation mode operation may be implemented, and rapid transition of the charge mode may be reduced or avoided. The detailed operation will be described below.
Referring to
Hereinafter, the operation principle where the smooth transition from the current regulation operation to the voltage regulation operation is realized while the rapid transition of the charge mode is suppressed will be described in detail.
Returning to
The current regulation block 201 compares the voltage sensed on the sensing node ND2 by the resistor Rref with a prescribed reference voltage, and outputs the first comparison result value (V2 in
The voltage regulation block 202 compares a voltage, which is in proportion to the output voltage on the output node ND1, with a prescribed reference voltage, and outputs the second comparison result value (V1 in
The charge mode transition block 203 receives the first and second comparison result values from the current regulation block 201 and the voltage regulation block 202, and generates the control voltage for regulating the first and second P-channel MOS transistors MP1 and MP2 of the current mirror block. The generated control voltage is applied to the gates of the first and second MOS transistors MP1 and MP2 of the current mirror block.
According to the embodiment of the invention, the specific circuits that can be implemented in the battery charger are shown in
Prior to describing the operation principle in
Referring to
Prior to describing the transition process of the charge mode from the CCCM to the CVCM, the battery voltage Vreg that is regulated in the CVCM may be defined as follows.
In the CCCM, if the voltage on the node VBAT gradually increases and approximates the voltage Vreg, the voltages Vref and V3 which are input to the operational amplifier OP1 substantially become identical, and the output voltage V1 of the operational amplifier OP1 gradually increases from zero. The increase in the voltage V1 causes an increase in the voltage V5 in the charge mode transition block 203 and substantially becomes identical to the control voltage Vctrl, and the MOS transistor MP4 of the charge mode transition block 203 passes through the linear region and is turned off. Therefore, the control voltage Vctrl increases along with the voltage V5, and the feedback loop for current regulation stops operation. As a result, a current IP2 flowing in the MOS transistor MP2 decreases, and the voltage V4 also decreases. Subsequently, the output voltage V2 of the operational amplifier OP2 reaches zero, and the MOS transistor MP4 of the charge mode transition block 203 is turned on as a switch.
As described above, the feedback loop which is formed by the operational amplifier OP1 of the voltage regulation block 202, the MOS transistor MP5 of the charge mode transition block 203, and the MOS transistor MP1 shown in
Brief description will be made for the operation principle of the charging circuit in
First, a circuit for sensing an increase in the temperature, that is, a temperature sensing block 505, needs to be provided. A general bandgap reference circuit is used to generate a PTAT (Proportional To Absolute Temperature) current and to cause the generated current to flow in a resistor, thereby generating a voltage. This will be easily implemented by a general method, and thus the detailed description thereof will be omitted.
In order to match a voltage at a required temperature with a reference voltage Vtemp which is defined by the bandgap reference circuit, the slope of the PTAT current and the resistor used are adjusted.
Similarly to the operation of the current regulation block 201 or the voltage regulation block 202 in
The circuit shown in
Similarly, if the voltages V1 and V2 both become zero, the voltage regulation block 202 is first operated to regulate the voltage on the node VBAT to the predefined voltage Vreg. If the load current increases and becomes larger than the predefined current Ichg, the MOS transistor MP4 is turned on, and the feedback loop which is formed by the MOS transistors MP5 and MP2 and the current regulation block 201 is operated. Thus, the control voltage Vctrl is adjusted such that the load current is regulated to the current Ichg.
Although in the embodiments of the invention, the charge controller is implemented by MOS transistors connected in series, it should be understood that in some cases, other circuit elements may be used.
As described above, a charging circuit according to some embodiments can reduce rapid changes in a charge current at the time of a charge mode transition. Furthermore, a charging circuit according to some embodiments may have a smooth charging transition mode without using a diode, and/or can reduce the occupying area of circuit elements and manufacturing costs when a current mirror block having MOS transistors is provided in the charging circuit.
According to some embodiments, a charging circuit is provided in which a circuit element for charge mode transition is implemented using the same type of MOS transistors as the MOS in a current mirror circuit of the charging circuit.
Still further embodiments provide charging circuits which can detect overheating of the charging circuit and disable charging in response to detected heating to ensure the stable operation of the charger. Further embodiments provide charging circuits which can be used as a low drop-out regulator.
Although the embodiments of the invention have been described with reference to the drawings, it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the technical spirit and scope of the invention. For example, in some cases, the internal circuit configuration or the element connection may be modified without departing from the technical spirit and scope of the invention.
Although the invention is disclosed in the context of a battery charger, the invention may be applied to other current limiting circuits.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0001129 | Jan 2009 | KR | national |