Charging control circuit, charging device, charging system and charging control method

Information

  • Patent Grant
  • 10587128
  • Patent Number
    10,587,128
  • Date Filed
    Friday, December 29, 2017
    7 years ago
  • Date Issued
    Tuesday, March 10, 2020
    4 years ago
Abstract
A charging control circuit includes a charging unit, a plurality of power output terminals configured to connect with a plurality of rechargeable batteries, respectively, a plurality of switch units each connected between the charging unit and one of the plurality of power output terminals, and a control unit electrically connected with the switch units. The control unit is configured to switch to a first charging mode or a second charging mode, and output, to the switch units, a switch signal corresponding to the first charging mode or the second charging mode. The switch signal causes the switch units to switch on or off electrical connections between the charging unit and the plurality of power output terminals.
Description
TECHNICAL FIELD

The present disclosure generally relates to the field of battery charging technologies, and in particular, to charging control circuits, charging devices, charging systems and charging control methods.


BACKGROUND

At present, portable mobile terminals, cameras, photographic apparatuses and other electronic devices are generally equipped with a plurality of rechargeable batteries. When battery power is used up, the plurality of batteries need to be charged using a charger.


A common charging manner on the market at present is connecting a plurality of rechargeable batteries in parallel, to uniformly charge a rechargeable battery pack in parallel connection. However, the manner has lots of shortcomings. For example, after the rechargeable batteries having different voltage values are connected in parallel, it may result in high voltage batteries discharging to low voltage batteries. Generally the discharge current may be large, and hence is dangerous. In addition, after the plurality of rechargeable batteries are connected in parallel, in the process of charging, it is likely that a charger first charges the low voltage batteries, because the batteries will be fully charged together at the same time. Thus, if a user wants to use a battery fully charged in the process of charging, the user has to wait for a longer time, which is not convenient for use.


SUMMARY

In accordance with the disclosure, there is provided a charging control circuit including a charging unit, a plurality of power output terminals configured to connect with a plurality of rechargeable batteries, respectively, a plurality of switch units each connected between the charging unit and one of the plurality of power output terminals, and a control unit electrically connected with the switch units. The control unit is configured to switch to a first charging mode or a second charging mode, and output, to the switch units, a switch signal corresponding to the first charging mode or the second charging mode. The switch signal causes the switch units to switch on or off electrical connections between the charging unit and the plurality of power output terminals.


Also in accordance with the disclosure, there is provided a charging system including a plurality of rechargeable batteries and a charging control circuit configured to charge the plurality of rechargeable batteries. The charging control circuit includes a charging unit, a plurality of power output terminals configured to connect with a plurality of rechargeable batteries, respectively, a plurality of switch units each connected between the charging unit and one of the plurality of power output terminals, and a control unit electrically connected with the switch units. The control unit is configured to switch to a first charging mode or a second charging mode, and output, to the switch units, a switch signal corresponding to the first charging mode or the second charging mode. The switch signal causes the switch units to switch on or off electrical connections between the charging unit and the plurality of power output terminals.


Also in accordance with the disclosure, there is provided a charging control method including switching to a first charging mode or a second charging mode, outputting a switch signal corresponding to the first charging mode or the second charging mode, and switching on or off electrical connections between a charging unit and a plurality of power output terminals in accordance with the switch signal. The plurality of power output terminals are configured to connect with a plurality of rechargeable batteries, respectively. The charging unit is configured to charge the plurality of rechargeable batteries through the plurality of power output terminals.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is block diagram of a charging control circuit according to an embodiment of the present disclosure.



FIG. 2 is a schematic flow chart of a charging control method according to an embodiment of the present disclosure.



FIG. 3 is a schematic flow chart of a charging process in a first charging mode.



FIG. 4 is a schematic flow chart of a charging process in a second charging mode.



FIG. 5 is block diagram of a charging control circuit according to another embodiment of the present disclosure.



FIG. 6 is block diagram of a movable device according to an embodiment of the present disclosure.



FIG. 7 is block diagram of a movable device according to another embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The embodiments of the present disclosure will be described below with reference to the accompanying drawings. Apparently, the described embodiments are merely some of the embodiments of the present disclosure rather than all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present disclosure without creative efforts shall fall within the scope of the present disclosure.


It should be noted that when one element is referred to as “electrically connecting” another element, it may be directly connected to the other assembly or it is also possible that there is an element between them. Further, when one element is considered to “electrically connect” another element, it may be a contact connection, for example, a wire connection, or it may be a non-contact connection, for example, a non-contact coupling.


Unless otherwise defined, all the technical and scientific terms used herein are the same as the meanings generally understood by persons skilled in the technical field of the present disclosure. Herein, the terms used in the specification of the present disclosure are intended to describe specific embodiments, instead of limiting the present disclosure. The term “and/or” used herein includes any combination and all combinations of one or more related items listed.


Some implementation manners of the present disclosure are described below in detail with reference to the accompanying drawings. In the event of no conflict, embodiments described below and features in the embodiments can be combined with each other.



FIG. 1 shows a block diagram of an example charging control circuit 100 consistent with embodiments of the disclosure. The charging control circuit 100 can be used to charge a plurality of rechargeable batteries 200. The charging control circuit 100 includes a plurality of power output terminals 10, a charging unit 20, a control unit 30, a plurality of switch units 40 corresponding to the power output terminals 10 in a one to one manner, and a voltage collection unit 50.


The plurality of power output terminals 10 are connected in parallel with each other and each power output terminal 10 is electrically connected with the charging unit 20 through one of the switch units 40.


The charging unit 20 may include a power input terminal, an AC/DC conversion circuit, and/or a DC conversion circuit, and/or other circuit modules, and is configured to be electrically connected to an external power supply, process the external power supply to generate a corresponding charging voltage, and then output the charging voltage to the power output terminals 10.


The control unit 30 may include a Field-Programmable Gate Array (FPGA), a Micro-Controller Unit (MCU) with a control program embedded therein, a single chip computer, or the like. The control unit 30 may be electrically connected with the plurality of switch units 40 through a control bus, and is configured to output corresponding switch signals to the switch units 40. The switch units 40 receive the switch signals sent by the control unit 30, and switch on or off electrical connections between the charging unit 20 and the corresponding power output terminals 10 in accordance with the switch signals. The charging unit 20 can then charge the rechargeable batteries 200 electrically connected to the power output terminals 10 through the switch units 40 that are switched on and the corresponding power output terminals 10.


The switch units 40 may include Metal Oxide Semiconductor Field Effect Transistors (MOS transistors), relays, or other electronic switches. In this disclosure, embodiments are described with the switch units 40 including MOS transistors as an example. For a switch unit 40, a source of the MOS transistor can be connected with the charging unit 20, a drain of the MOS transistor can be connected with the corresponding power output terminal 10, and a gate of the MOS transistor can be connected with the control unit 30 through the control bus. The control unit 30 can send a corresponding switch signal to the gate of the MOS transistor, for example, a high level signal or a low level signal, so as to control the MOS transistor to switch on or off. When a MOS transistor is switched on, the charging unit 20 may charge a rechargeable battery 200 through the MOS transistor that is switched on and the corresponding power output terminal 10.


In some other embodiments, the switch unit 40 may include an NPN type bipolar junction transistor (BJT) or another electronic switch. For example, when the switch unit 40 includes an NPN type BJT, a base of the NPN type BJT can be connected with the charging unit 30 through the control bus, a collector of the NPN type BJT can be electrically connected with the charging unit 20, and an emitter of the NPN type BJT can be electrically connected with the corresponding power output terminal 10.


The voltage collection unit 50 is electrically connected between the charging unit 20 and the switch units 40 and electrically connected to the control unit 30. The voltage collection unit 50 is configured to collect a voltage of each rechargeable battery 200, and transmit the collected voltage of each rechargeable battery 200 to the control unit 30.


Further, when the plurality of switch units 40 are all switched off to switch off electrical connections between the charging unit 20 and the plurality of power output terminals 10, the voltage collected by the voltage collection unit 50 is an output voltage of the charging unit 20. When one switch unit 40 of the plurality of switch units 40 is switched on, i.e., is in an on state, while the other switch units 40 are all switched off, i.e., are in an off state, the voltage collected by the voltage collection unit 50 is a battery voltage of the rechargeable battery 200 connected to the power output terminal 10 corresponding to the switch unit 40 in the on state. Thus, the control unit 30 can control the switch units 40 to switch on one by one, to control the voltage collection unit 50 to detect battery voltages of the rechargeable batteries 200 connected to the plurality of power output terminals 10 one by one. The control unit 30 can further control the switch units 40 to switch on or off in accordance with the voltages collected by the voltage collection unit 50, so as to switch on or switch off the electrical connections between the charging unit 20 and the corresponding power output terminals 10.


In some embodiments, as shown in FIG. 1, the charging control circuit 100 further includes a mode switching unit 70. The mode switching unit 70 is electrically connected with the control unit 30. The mode switching unit 70 is configured to output a switching signal, for example, a high level signal or a low level signal, to control the charging control circuit 100 to switch between a first charging mode and a second charging mode, e.g., to control the control unit 30 to switch between the first charging mode and the second charging mode. For example, when the control unit 30 receives the high level signal sent by the mode switching unit 70, the control unit 30 can operate in the first charging mode. When the control unit 30 receives the low level signal sent by the mode switching unit 70, the control unit 30 switches to the second charging mode. The switching signal is also referred to as a “mode switching signal.”


Output of the switching signal by the mode switching unit 70 may be implemented by means of hardware or software. For example, the mode switching unit 70 includes a button. When the button is pressed down, the mode switching unit 70 outputs a high level signal to the control unit 30, to control the control unit 30 to switch to the first charging mode. When the button is not pressed down, the mode switching unit 70 outputs a low level signal, to control the control unit 30 to switch to the second charging mode. In some other embodiments, the mode switching unit 70 may also include an automatic switching circuit configured to automatically output a corresponding high level signal or a low level signal after detecting a preset trigger condition, to switch an operation mode of the charging control circuit 100.


Relationships between the high and low level signals output by the mode switching unit 70 and the corresponding charging modes may be adjusted in accordance with needs. For example, in some other embodiments, when the mode switching unit 70 outputs a high level signal, the control unit 30 switches to the second charging mode, and when the mode switching unit 70 outputs a low level signal, the control unit 30 switches to the first charging mode. In some other embodiments, when the mode switching unit 70 does not output any switching signal to the control unit 30, the charging control circuit 100 maintains the existing charging mode, for example, the first charging mode or the second charging mode. Once the control unit 30 receives a switching signal output by the mode switching unit 70, switching between charging modes is performed, for example, switching from the first charging mode to the second charging mode or switching from the second charging mode to the first charging mode.


Further, when the charging control circuit 100 operates in the first charging mode, the control unit 30 can control the switch units 40 to switch on one by one, i.e., controls the plurality of power output terminals 10 connect with the charging unit 20 one by one, so that the voltage collection unit 50 can detect battery voltages of the rechargeable batteries 200 connected to the plurality of power output terminals 10 one by one, and hence can detect a rechargeable battery 200 having a highest voltage among the plurality of rechargeable batteries 200. The control unit 30 can then control the switch unit 40 that corresponds to the rechargeable battery 200 with the highest voltage to switch on and control the other switch units 40 to switch off, to control the power output terminal 10 that corresponds to the rechargeable battery 200 with the highest voltage to be connected to the charging unit 20 and the other power output terminals 10 to be disconnected from the charging unit 20, so as to allow the charging unit 20 to first charge the rechargeable battery 200 with the highest battery voltage. When the rechargeable battery 200 with the highest voltage value is charged to a first preset voltage, the voltage collection unit 50 can detect the battery voltages of the remaining rechargeable batteries 200 one by one. The control unit 30 can then control the switch unit 40 that corresponds to the rechargeable battery 200 with the highest voltage value among the remaining rechargeable batteries 200 to switch on and the other switch units 40 to switch off, so as to allow the charging unit 20 to charge the rechargeable battery 200 with the highest voltage value among the remaining rechargeable batteries 200 and charge that rechargeable battery 200 to the first preset voltage. The other rechargeable batteries 200 may be charged one by one in a similar manner. That is, the control unit 30 can control the charging unit 20 to, in accordance with an order of the battery voltages of the rechargeable batteries 200 from high to low, sequentially charge the plurality of rechargeable batteries 200 all to the first preset voltage. Then, the control unit 30 can control all of the plurality of switch units 40 to switch on, to allow the charging unit 20 to charge all of the rechargeable batteries 200 to a second preset voltage.


In the aforementioned first charging mode, the charging control circuit 100 can first charge all of the rechargeable batteries 200 to the first preset voltage one by one in accordance with an order of the battery voltages from high to low, and then charge all the rechargeable batteries 200 simultaneously, i.e., to perform parallel charging. When the plurality of rechargeable batteries 200 start to be charged simultaneously, the battery voltages of the rechargeable batteries 200 are the same, e.g., all equal to the first preset voltage. Therefore, high current discharge from a high voltage battery to a low voltage battery can be avoided. As a result, the rechargeable batteries 200 can be effectively protected, and a charging time of the whole system can be shortened. In some embodiments, in the first charging mode, the charging unit 20 can sequentially charge the plurality of rechargeable batteries 200 to the first preset voltage by means of constant current charging, and then charge the plurality of rechargeable batteries 200 from the first preset voltage to the second preset voltage by means of constant voltage charging.


When the charging control circuit 100 operates in the second charging mode, the control unit 30 can control the switch units 40 to switch on one by one, i.e., controls the plurality of power output terminals 10 connect with the charging unit 20 one by one, so that the voltage collection unit 50 can detect battery voltages of the rechargeable batteries 200 connected to the plurality of power output terminals 10 one by one, and hence can detect a rechargeable battery 200 having a highest voltage among the plurality of rechargeable batteries 200. The control unit 30 can then control the switch unit 40 that corresponds to the rechargeable battery 200 with the highest voltage to switch on and control the other switch units 40 to switch off, to control the power output terminal 10 that corresponds to the rechargeable battery 200 with the highest voltage to be connected to the charging unit 20 and the other power output terminals 10 to be disconnected from the charging unit 20, so as to allow the charging unit 20 to first charge the rechargeable battery 200 with the highest voltage directly to the second preset voltage. After the rechargeable battery 200 with the highest battery voltage is fully charged, the voltage collection unit 50 can detect battery voltages of the remaining rechargeable batteries 200 one by one. The control unit 30 can then control the switch unit 40 that corresponds to the rechargeable battery 200 with the highest voltage among the remaining rechargeable batteries 200 to switch on and the other switch units 40 to switch off, so as to allow the charging unit 20 to charge the rechargeable battery 200 with the highest battery voltage among the remaining rechargeable batteries 200 directly to the second preset voltage. The other rechargeable batteries 200 may be charged one by one in a similar manner. That is, the control unit 30 can detect the battery voltages of the plurality of rechargeable batteries 200 and control the plurality of rechargeable batteries 200 to be charged sequentially in accordance with an order of the battery voltages from high to low.


In the aforementioned second charging mode, the charging control circuit 100 can first charge the rechargeable battery 200 with the highest voltage value, and thus can fully charge one rechargeable battery 200 within a shortest time, which can then be used by a user.


In some embodiments, the first preset voltage is lower than the second preset voltage, and the second preset voltage may be a rated output voltage of the rechargeable battery 200 or a voltage slightly higher than the rated output voltage of the rechargeable battery 200, such as 1.2 times of the rated output voltage of the rechargeable battery 200.



FIG. 2 shows a flow chart of a charging control method of the charging control circuit 100 consistent with the present disclosure. As shown in FIG. 2, at S101, a switching signal is acquired. At S102, the charging control circuit is switched to a first charging mode or a second charging mode in accordance with the switching signal, and a corresponding switch signal is output.


For example, in the embodiments described above, the control unit 30 of the charging control circuit 100 is electrically connected to the mode switching unit 70. The mode switching unit 70 is configured to output the switching signal, for example, a high level signal or a low level signal, to control the charging control circuit 100 to switch between the first charging mode and the second charging mode. For example, when the control unit 30 receives the high level signal sent by the mode switching unit 70, the control unit 30 can operate in the first charging mode. When the control unit 30 receives the low level signal sent by the mode switching unit 70, the control unit 30 can switch to the second charging mode.


Output of the switching signal by the mode switching unit 70 may be implemented by means of hardware or software. For example, the mode switching unit 70 includes a button. When the button is pressed down, the control unit 30 may receive a high level signal sent by the mode switching unit 70, and the control unit 30 can switch to the first charging mode. When the button is not pressed down, the control unit 30 may receive a low level signal sent by the mode switching unit 70, and the control unit 30 can switch to the second charging mode. In some other embodiments, the mode switching unit 70 may also include an automatic switching circuit configured to automatically output a corresponding high level signal or a low level signal after detecting a preset trigger condition, to switch an operation mode of the charging control circuit 100.


At S103, electrical connections between the charging unit 20 and the power output terminals 10 are switched on or off in accordance with the switch signal.


For example, in the embodiments described above, the charging control circuit 100 further includes the switch units 40 electrically connected between the charging unit 20 and the corresponding power output terminals 10. By switching on or switching off the switch units 40, the electrical connections between the charging unit 20 and the power output terminals 10 can be switched on or switched off.


In some embodiments, as described above, the charging control circuit 100 further includes a voltage collection unit 50. The control unit 30 can control the switch units 40 to switch on one by one, i.e., control the plurality of power output terminals 10 to connect with the charging unit 20 one by one, to control the voltage collection unit 50 to acquire a battery voltage of each rechargeable battery 200 and control the on or off of the switch units 40 in accordance with the collected voltages.



FIG. 3 shows an example charging process in the first charging mode in process S102. As shown in FIG. 3, at S104, the rechargeable batteries 200 are sequentially charged to a first preset voltage in accordance with an order of battery voltages of the rechargeable batteries 200 from high to low.


In some embodiments, as shown in FIG. 3, process S104 include the processes S1041-S1044 described below.


At S1041, the switch units 40 are controlled to switch on one by one, to switch on the electrical connections between the charging unit 20 and the plurality of power output terminals 10 one by one.


At S1042, battery voltages of the plurality of rechargeable batteries 200 are detected one by one.


At S1043, the charging unit 20 is controlled to charge the rechargeable battery with the highest battery voltage to the first preset voltage.


At S1044, processes S1041-S1043 are repeated, to sequentially charge the remaining rechargeable batteries 200 to the first preset voltage in accordance with the order of the battery voltages from high to low.


At S105, the charging unit 20 is controlled to charge all of the rechargeable batteries 200 again to a second preset voltage.


In some embodiments, in the first charging mode, the charging unit 20 may sequentially charge the plurality of rechargeable batteries 200 to the first preset voltage by means of constant current charging, and then charge the plurality of rechargeable batteries 200 from the first preset voltage to the second preset voltage by means of constant voltage charging.



FIG. 4 shows an example charging process when the control unit 30 switches to the second charging mode in accordance with the switching signal. As shown in FIG. 4, at S106, the switch units 40 are controlled to switch on one by one, to switch on electrical connections between the charging unit 20 and the plurality of power output terminals 10 one by one.


At S107, battery voltages of the plurality of rechargeable batteries 200 are detected one by one.


At S108, the charging unit 20 is controlled to first charge the rechargeable battery 200 with the highest voltage value among the battery detected voltages directly to the second preset voltage.


At S109, S106-S108 are repeated to sequentially charge the remaining rechargeable batteries 200 to the second preset voltage in accordance with an order of the battery voltages from high to low.


In some embodiments, the first preset voltage is lower than the second preset voltage, and the second preset voltage may be a rated output voltage of the rechargeable battery 200 or a voltage slightly higher than the rated output voltage of the rechargeable battery 200, such as 1.2 times of the rated output voltage of the rechargeable battery 200.



FIG. 5 shows a block diagram of another example of the charging control circuit consistent with the disclosure. In the example shown in FIG. 5, the switch unit 40 may include a switch chip integrated with multiple switches, and the power output terminal 10 may include a parallel port. Therefore, the number of the switch units 40 and the number of the power output terminals 10 both can be reduced to one. In this embodiment, respective ports of the power output terminal 10 can be connected to respective switches of the switch unit 40.


In some embodiments, the charging control circuit 100 may be mounted in a housing (not shown), and form a charging device together with the housing. In some embodiments, the charging device may form a charging system together with the plurality of rechargeable batteries 200.



FIG. 6 shows a block diagram of an example of a movable device 300 including the charging system consistent with the disclosure. The movable device 300 may be a vehicle, a ship, or the like. As shown in FIG. 6, the movable device 300 further includes a power device 301. The charging system may be electrically connected with the power device 301, and configured to provide electric energy to the power device 301.



FIG. 7 shows a block diagram of another example of the movable device 300. In the example shown in FIG. 7, the movable device 300 is an unmanned aerial vehicle. The power device 301 includes an Electronic Speed Control (ESC) 303, a motor 305, and a propeller 307. The ESC 303 is electrically connected to the motor 305, and configured to control a rotational speed of the motor 305. The propeller 307 is mounted on the motor 305, and configured to, under the driving of the motor 305, drive the unmanned aerial vehicle 300 to fly. The charging system is electrically connected to the ESC 303, and configured to provide electric energy to the power device 301.


According to the present disclosure, a plurality of rechargeable batteries can be charged by using two charging modes, and the two charging modes can be switched in accordance with user demands. That is, when there is a need to prevent high voltage batteries from discharging current to low voltage batteries during charging so as to effectively protect the rechargeable batteries, the charging control circuit can switch to the first charging mode. On the other hand, when there is a need to fully charge one rechargeable battery within the shortest time so as to meet user's need, the charging control circuit can switch to the second charging mode. As such, the charging control circuit is more practical.


The above descriptions are merely of some embodiments of the present disclosure, and are not intended to limit the scope of the present disclosure. Any equivalent structure or equivalent process flow modification made by using contents of the specification and the drawings of the present disclosure, or directly or indirectly applied to other related technical fields, should be likewise included in the scope of the present disclosure.

Claims
  • 1. A charging control circuit comprising: a charging unit;a plurality of power output terminals configured to connect with a plurality of rechargeable batteries, respectively;a plurality of switch units each connected between the charging unit and one of the plurality of power output terminals; anda control unit electrically connected with the switch units and configured to: switch to a first charging mode or a second charging mode, andoutput, to the switch units, a switch signal corresponding to the first charging mode or the second charging mode, to cause the switch units to switch on or off electrical connections between the charging unit and the plurality of power output terminals,wherein the control unit is further configured to, when in the first charging mode: control the switch units to sequentially connect the plurality of power output terminals to the charging unit in accordance with battery voltages of the rechargeable batteries from high to low, to sequentially charge the plurality of rechargeable batteries to a first preset voltage, andcontrol the switch units to connect all of the plurality of power output terminals to the charging unit, to charge all of the rechargeable batteries simultaneously from the first preset voltage to a second preset voltage.
  • 2. The charging control circuit of claim 1, wherein the switch unit includes at least one of: a relay switch,a metal-oxide-semiconductor (MOS) transistor, a source of the MOS transistor being electrically connected with the charging unit, a drain of the MOS transistor being electrically connected with a corresponding one of the power output terminals, and a gate of the MOS transistor being electrically connected with the control unit, ora bipolar junction transistor (BJT), a collector of the BJT being electrically connected with the charging unit, an emitter of the BJT being electrically connected with a corresponding one of the power output terminals, and a base of the BJT being electrically connected with the control unit.
  • 3. The charging control circuit of claim 1, wherein the control unit includes at least one of a Field-Programmable Gate Array (FPGA), a Micro-Controller Unit (MCU) with an embedded control program embedded, or a single chip computer.
  • 4. The charging control circuit of claim 1, wherein the second preset voltage equals a rated output voltage of one of the rechargeable batteries or is slightly higher than the rated output voltage.
  • 5. The charging control circuit of claim 1, wherein the control unit is further configured to: control the plurality of power output terminals to be connected with a voltage collection unit one by one through the switch units, to allow the voltage collection unit to detect the battery voltages of the plurality of rechargeable batteries one by one, andcontrol one of the power output terminals that corresponds to the rechargeable battery with a highest battery voltage among the battery voltages that are detected to connect to the charging unit and other ones of the power output terminals to disconnect from the charging unit, to allow the charging unit to charge the rechargeable battery with the highest battery voltage to the first preset voltage.
  • 6. The charging control circuit of claim 1, wherein the control unit is further configured to, when in the second charging mode, control the switch units to sequentially connect the power output terminals to the charging unit in accordance with an order of battery voltages of the rechargeable batteries from high to low, to sequentially charge the rechargeable batteries to a preset voltage, the preset voltage equaling a rated output voltage of one of the rechargeable batteries or being slightly higher than the rated output voltage.
  • 7. The charging control circuit of claim 1, further comprising: a voltage collection unit connected between the charging unit and the switch units and connected to the control unit, the voltage collection unit being configured to collect battery voltages of the rechargeable batteries,wherein the control unit is further configured to, in accordance with the battery voltages collected by the voltage collection unit, control on or off of the electrical connections between the plurality of power output terminals and the charging unit through the switch units.
  • 8. The charging control circuit of claim 7, wherein the control unit is further configured to control the plurality of power output terminals to be connected with the charging unit one by one through the switch units, to control the voltage collection unit to collect the battery voltages of the rechargeable batteries one by one.
  • 9. The charging control circuit of claim 1, further comprising: a mode switching unit electrically connected with the control unit and configured to send a mode switching signal to the control unit to cause the control unit to switch to the first charging mode or the second charging mode.
  • 10. The charging control circuit of claim 9, wherein output of the mode switching signal by the mode switching unit is implemented by means of hardware or software.
  • 11. The charging control circuit of claim 9, wherein the mode switching unit comprises at least one of: a button configured to be operated to trigger output of the mode switching signal, oran automatic switching circuit configured to automatically output the mode switching signal when detecting a preset trigger condition.
  • 12. A charging system comprising: a plurality of rechargeable batteries; anda charging control circuit configured to charge the plurality of rechargeable batteries, the charging control circuit comprising: a charging unit;a plurality of power output terminals connected with the plurality of rechargeable batteries, respectively;a plurality of switch units each connected between the charging unit and one of the plurality of power output terminals; anda control unit electrically connected with the switch units and configured to: switch to a first charging mode or a second charging mode, andoutput, to the switch units, a switch signal corresponding to the first charging mode or the second charging mode, to cause the switch units to switch on or off electrical connections between the charging unit and the plurality of power output terminals,wherein the control unit is further configured to, when in the first charging mode: control the switch units to sequentially connect the plurality of power output terminals to the charging unit in accordance with battery voltages of the rechargeable batteries from high to low, to sequentially charge the plurality of rechargeable batteries to a first preset voltage, andcontrol the switch units to connect all of the plurality of power output terminals to the charging unit, to charge all of the rechargeable batteries simultaneously from the first preset voltage to a second preset voltage.
  • 13. The charging system of claim 12, wherein the charging control circuit further comprises: a mode switching unit electrically connected with the control unit and configured to send a mode switching signal to the control unit to cause the control unit to switch to the first charging mode or the second charging mode.
  • 14. A charging control method comprising: switching to a first charging mode or a second charging mode;outputting a switch signal corresponding to the first charging mode or the second charging mode; andswitching on or off electrical connections between a charging unit and a plurality of power output terminals in accordance with the switch signal,wherein: the plurality of power output terminals are configured to connect with a plurality of rechargeable batteries, respectively,the charging unit is configured to charge the plurality of rechargeable batteries through the plurality of power output terminals, andthe first charging mode comprises: sequentially charging the plurality of rechargeable batteries to a first preset voltage in accordance with an order of battery voltages of the rechargeable batteries from high to low; andcontrolling the charging unit to charge all of the rechargeable batteries simultaneously from the first preset voltage to a second preset voltage.
  • 15. The charging control method of claim 14, further comprising: acquiring a mode switching signal,wherein switching to the first charging mode or the second charging mode includes switching to the first charging mode or the second charging mode in accordance with the mode switching signal.
  • 16. The charging control method of claim 14, wherein sequentially charging the plurality of rechargeable batteries to the first preset voltage comprises: (a) switching on the electrical connections between the charging unit and the plurality of power out ends one by one;(b) detecting the battery voltages of the plurality of rechargeable batteries one by one;(c) controlling the charging unit to charge one of the rechargeable batteries with a highest battery voltage to the first preset voltage; andrepeating (a)-(c) to sequentially charge remaining ones of the rechargeable batteries to the first preset voltage in accordance with the order of battery voltages from high to low.
  • 17. The charging control circuit of claim 14, wherein the second preset voltage equals a rated output voltage of one of the rechargeable batteries or is slightly higher than the rated output voltage.
  • 18. The charging control method of claim 14, wherein the second charging mode comprises: (d) switching on the electrical connections between the charging unit and the plurality of power out ends one by one;(e) detecting the battery voltages of the plurality of rechargeable batteries one by one;(f) controlling the charging unit to charge one of the rechargeable batteries with a highest battery voltage to a preset voltage, the preset voltage equaling a rated output voltage of one of the rechargeable batteries or being slightly higher than the rated output voltage; andrepeating (d)-(f) to sequentially charge remaining ones of the rechargeable batteries to the preset voltage in accordance with an order of the battery voltages from high to low.
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation application of International Application No. PCT/CN2015/082827, filed on Jun. 30, 2015, the entire contents of which are incorporated herein by reference.

US Referenced Citations (202)
Number Name Date Kind
4849682 Bauer Jul 1989 A
5057762 Goedken Oct 1991 A
5218286 VanDunk Jun 1993 A
5780991 Brake Jul 1998 A
5808442 Kaite Sep 1998 A
5914606 Becker-Irvin Jun 1999 A
6137261 Kurle Oct 2000 A
6777913 You Aug 2004 B2
6781348 Yokohama Aug 2004 B2
6803745 Nishida Oct 2004 B2
7456611 Mullett Nov 2008 B2
7612997 Diebel Nov 2009 B1
7679335 Collins Mar 2010 B1
7782011 Nishida Aug 2010 B2
7782607 Harbin Aug 2010 B2
7800255 Coonan Sep 2010 B2
7839121 Kim Nov 2010 B2
7855530 Coonan Dec 2010 B2
7859224 Baer Dec 2010 B2
8004246 Liu Aug 2011 B2
8062782 Wang Nov 2011 B2
8089249 Zhang Jan 2012 B2
8160727 Coonan Apr 2012 B2
8169191 Werthman May 2012 B2
8227943 Harbin Jul 2012 B2
8237411 Liu Aug 2012 B2
8415923 Forsythe Apr 2013 B2
8497662 Aradachi Jul 2013 B2
8519671 Bao Aug 2013 B2
8573994 Kiko Nov 2013 B2
8659182 Ichikawa Feb 2014 B2
8769326 Liu Jul 2014 B2
8773068 Nysen Jul 2014 B2
8775828 Coonan Jul 2014 B2
8836290 Liu Sep 2014 B2
8859124 Tanno Oct 2014 B2
8963496 Yang Feb 2015 B2
9035496 Kang May 2015 B2
9142999 Von Novak Sep 2015 B2
9184615 Kim Nov 2015 B2
9197081 Finberg Nov 2015 B2
9213066 Wade Dec 2015 B2
9242571 Fukui Jan 2016 B2
9252463 Yang Feb 2016 B2
9337683 Phillips May 2016 B2
9425641 Kominami Aug 2016 B2
9564763 Finberg Feb 2017 B2
9592744 Zhao Mar 2017 B2
9601938 Huang Mar 2017 B2
9634517 Davis Apr 2017 B2
9690349 Muccini Jun 2017 B2
9726731 Yang Aug 2017 B2
9728989 Kim Aug 2017 B2
9728991 Jagenstedt Aug 2017 B2
9735590 Wang Aug 2017 B2
9762069 Bourilkov Sep 2017 B2
9912178 Nysen Mar 2018 B2
9923392 Weinstein Mar 2018 B2
9981568 Minamiura May 2018 B2
10074998 Mo Sep 2018 B2
10090700 Zhang Oct 2018 B2
10122187 Hwang Nov 2018 B2
10122201 Zhang Nov 2018 B2
10141766 Zhang Nov 2018 B2
10181745 Zhang Jan 2019 B2
10224737 Zhang Mar 2019 B2
10266133 Tang Apr 2019 B2
10277053 Zhang Apr 2019 B2
10283976 Luo May 2019 B2
10291043 Zhang May 2019 B2
10291060 Tian May 2019 B2
10312712 Zhang Jun 2019 B2
10320217 Zhang Jun 2019 B2
10320225 Tian Jun 2019 B2
10326294 Wang Jun 2019 B2
10326297 Zhang Jun 2019 B2
20030006734 You Jan 2003 A1
20030184261 Yokoyama Oct 2003 A1
20030184263 Nishida Oct 2003 A1
20040113586 Chen Jun 2004 A1
20050001593 Kawasumi Jan 2005 A1
20050046386 Nishida Mar 2005 A1
20060267552 Baer Nov 2006 A1
20070035278 Mullett Feb 2007 A1
20080218124 Yang Sep 2008 A1
20090108804 Aradachi Apr 2009 A1
20090212738 Coonan Aug 2009 A1
20090212744 Werthman Aug 2009 A1
20090212848 Coonan Aug 2009 A1
20090261656 Coonan Oct 2009 A1
20090276637 Coonan Nov 2009 A1
20100066311 Bao Mar 2010 A1
20100181829 Ichikawa Jul 2010 A1
20100295503 Bourilkov Nov 2010 A1
20110109166 Oga May 2011 A1
20110115298 Oga May 2011 A1
20110121645 Zhang May 2011 A1
20110193518 Wright Aug 2011 A1
20110260685 Forsythe Oct 2011 A1
20110266993 Vaish Nov 2011 A1
20120098495 Yang Apr 2012 A1
20120126747 Kiko May 2012 A1
20120169270 Cho Jul 2012 A1
20120261997 Kang Oct 2012 A1
20130002203 Kuraishi Jan 2013 A1
20130134933 Drew May 2013 A1
20130162222 Ke Jun 2013 A1
20130241484 Kiko Sep 2013 A1
20130300426 Butzmann Nov 2013 A1
20140009092 Ma Jan 2014 A1
20140009120 Kim Jan 2014 A1
20140015478 Von Novak Jan 2014 A1
20140062387 Kim Mar 2014 A1
20140132225 Jagenstedt May 2014 A1
20140132226 Sakamoto May 2014 A1
20140253017 Kominami Sep 2014 A1
20140265945 Deboy Sep 2014 A1
20140266069 Deboy Sep 2014 A1
20150123615 Yang May 2015 A1
20150158392 Zhao Jun 2015 A1
20150162781 Fratti Jun 2015 A1
20150185289 Yang Jul 2015 A1
20150207343 Zhai Jul 2015 A1
20150236547 Davis Aug 2015 A1
20150258910 Fukui Sep 2015 A1
20150288205 Weinstein Oct 2015 A1
20150333553 Huang Nov 2015 A1
20160126761 Sanford May 2016 A1
20160336781 Hwang Nov 2016 A1
20170018941 Wang Jan 2017 A1
20170031410 Muccini Feb 2017 A1
20170063108 Wang Mar 2017 A1
20170104353 Zhao Apr 2017 A1
20170126031 Mo May 2017 A1
20170136901 Zhao May 2017 A1
20170155174 Wang Jun 2017 A1
20170163060 Zheng Jun 2017 A1
20170187082 Zhao Jun 2017 A1
20170207640 Wang Jul 2017 A1
20170229877 Zhang Aug 2017 A1
20170264112 Tandai Sep 2017 A1
20170301966 Wang Oct 2017 A1
20170305292 Minamiura Oct 2017 A1
20170338670 Zhang Nov 2017 A1
20180019611 Zhang Jan 2018 A1
20180026472 Zhang Jan 2018 A1
20180034293 Zhang Feb 2018 A1
20180034301 Zhang Feb 2018 A1
20180034309 Zhang Feb 2018 A1
20180034310 Zhang Feb 2018 A1
20180034311 Zhang Feb 2018 A1
20180034379 Zhang Feb 2018 A1
20180048164 Zhang Feb 2018 A1
20180048172 Zhang Feb 2018 A1
20180048175 Zhang Feb 2018 A1
20180048179 Zhang Feb 2018 A1
20180062413 Zhang Mar 2018 A1
20180062423 Zhang Mar 2018 A1
20180065493 Liu Mar 2018 A1
20180069409 Tian Mar 2018 A1
20180069414 Zhang Mar 2018 A1
20180069418 Tian Mar 2018 A1
20180076636 Zhang Mar 2018 A1
20180083477 Tian Mar 2018 A1
20180090977 Zhang Mar 2018 A1
20180123183 Zheng May 2018 A1
20180123376 Zhang May 2018 A1
20180123383 Tian May 2018 A1
20180145377 Zheng May 2018 A1
20180145533 Tian May 2018 A1
20180183260 Tian Jun 2018 A1
20180183262 Tian Jun 2018 A1
20180233939 Zhang Aug 2018 A1
20180241231 Zhang Aug 2018 A1
20180254711 Zhang Sep 2018 A1
20180262042 Tian Sep 2018 A1
20180269700 Tian Sep 2018 A1
20180275202 Zhan Sep 2018 A1
20180287326 Tang Oct 2018 A1
20180294666 Tian Oct 2018 A1
20180331559 Tian Nov 2018 A1
20180331560 Tian Nov 2018 A1
20180331561 Zhang Nov 2018 A1
20180331562 Zhang Nov 2018 A1
20180331563 Tian Nov 2018 A1
20180331612 Zhang Nov 2018 A1
20180342890 Tian Nov 2018 A1
20180351396 Chen Dec 2018 A1
20180354633 Wang Dec 2018 A1
20180358835 Tian Dec 2018 A1
20180358836 Tian Dec 2018 A1
20180367047 Zhang Dec 2018 A1
20180375352 Zheng Dec 2018 A1
20190051950 Zheng Feb 2019 A1
20190058333 Wang Feb 2019 A1
20190058347 Zhang Feb 2019 A1
20190061540 Zhao Feb 2019 A1
20190092181 Zhao Mar 2019 A1
20190140325 Wang May 2019 A1
20190148951 Wang May 2019 A1
20190157895 Zhang May 2019 A1
20190185169 Xu Jun 2019 A1
Foreign Referenced Citations (14)
Number Date Country
1437295 Aug 2003 CN
1574447 Feb 2005 CN
102480142 May 2012 CN
102623768 Aug 2012 CN
103280854 Sep 2013 CN
104247198 Dec 2014 CN
104521096 Apr 2015 CN
204361767 May 2015 CN
H0287937 Mar 1990 JP
H06303729 Oct 1994 JP
H09215217 Aug 1997 JP
10066269 Mar 1998 JP
H11191933 Jul 1999 JP
2013073173 May 2013 WO
Non-Patent Literature Citations (2)
Entry
“Electromagnetic Relays Advantages Disadvantages Applications,” Dharma Teja, Electrical Questions Guide, Published Online Nov. 2, 2012, Accessed Online Jul. 4, 2019, http://electricalquestionsguide.blogspot.com/2012/11/electromagnetic-relays-advantages.html.
The World Intellectual Property Organization (WIPO) International Search Report for PCT/CN2015/082827 dated Oct. 10, 2015 6 Pages (incuding translation).
Related Publications (1)
Number Date Country
20180123362 A1 May 2018 US
Continuations (1)
Number Date Country
Parent PCT/CN2015/082827 Jun 2015 US
Child 15858951 US