The present invention relates to a charging device, more preferably for a motor vehicle, with a variable turbine geometry clamped by a spring.
On a charging device with a variable turbine geometry a guide blade carrier of the variable turbine geometry, in which a plurality of guide blades are rotatably mounted with their blade bearing pins, can be clamped through a disc spring against components surrounding the guide blade carrier in the charging device. Here it is possible that the disc spring acts on an inner ring-shaped region of the guide blade carrier orientated towards a through-opening of the guide blade carrier. In this case a force flow generated through the disc spring is passed on via spacer elements or webs in an outer region orientated towards the outer marginal region of the guide blade carrier. Since the force of the disc spring acts radially unsymmetrically orientated towards an inner marginal region of the guide blade carrier the guide blade carrier is deformed through the action of the disc spring.
Disadvantageous in this design is that because of the deformation of the guide blade carrier the guide blades have to be arranged with enlarged play. Because of the enlargement of the play of the guide blades the performance and the efficiency of the variable turbine geometry is reduced, otherwise a failure risk is increased.
The present invention now deals with the problem of stating an improved or at least another embodiment for a charging device with a variable turbine geometry clamped through a spring which is characterized by greater performance, higher efficiency and reduced failure risk.
According to the invention, this object is solved through the subject of the independent claim 1. Advantageous embodiments are the subject of the dependent claims.
The invention is based on the general idea of using a cantilever spring with at least two bending legs instead of a disc spring for clamping the guide blade carrier against at least one component of the charging device surrounding the guide blade carrier. Through the plurality of bending legs this cantilever spring acts like a beam spring. The use of such a cantilever spring makes possible that the force of the cantilever spring, via its bending legs, can act in an outer region orientated towards the outer marginal region of the guide blade carrier. Because of this, a design with high flexibility can be achieved wherein the pitch circle diameter of the contact points of the cantilever spring is greater or smaller than the pitch circle diameter of the bearing points for the guide blades or corresponds to the latter. Thus the deformation and the induced stress of the guide blade carrier are lower with identical spring force and consequently the axial play of the guide blades mounted in the guide blade carrier via the guide blade pins can be reduced. Because of this, in turn, the performance and the efficiency of the variable turbine geometry are increased. A further advantage in the use of the cantilever spring lies in the enlargement of the distance between a support region of the spring on the guide blade carrier and the support region for example on a bearing housing. On the bearing housing a thermal load is less than on the guide blade carrier. Thus, the further apart the two support regions of the cantilever spring are located, the further can the region of high thermal load and high mechanical load in the spring be separated from each other. This also results in a longer life expectation and a reduced failure risk.
A cantilever spring with a plurality of bending legs is to have a curvature in a first direction with at least two of the bending legs. In addition it is possible that at least two further such bending legs form a curvature in an opposite direction. Through such a cantilever spring it is possible to shift the differently orientated support regions of the cantilever spring towards the free ends of the bending legs. This has the advantage that the support regions of the bending legs, which curve away from the guide blade carrier, are shifted towards an even cooler region. This in turn increases the lifespan of the cantilever spring.
In addition it is possible to arrange a plurality of cantilever springs, whose bending legs form a curvature in only one direction, stacked on top of one another. Here, the bending legs of the cantilever spring can be arranged covered and/or partially overlapping and/or offset. Through such an arrangement stacked on top of one another a wide range of characteristic curves and characteristics of an entire spring arrangement can be realised depending on requirement and application. Because of this, a multitude of spring arrangements can be flexibly realised with few basic embodiments of the cantilever spring.
For stiffening, such cantilever springs can be provided with at least one stiffening such as for example a curvature, a rib, an up-fold, a profiling, a flange edge or the like through offsetting, folding, bending, flanging, metal working, deep drawing, ribbing, welding or the like. Through such stiffenings it is possible to produce bending springs of a same material but with different flexural strengths.
Further important features and advantages of the invention are obtained from the subclaims, from the drawings and from the corresponding figure description by means of the drawings.
It is to be understood that the features mentioned above and still to be explained in the following cannot only be used in the respective combination stated but also in other combinations or by themselves, without leaving the scope of the present invention.
Preferred exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the following description, wherein same reference characters relate to same or similar or functionally same components.
It shows, in each case schematically:
In a preferred embodiment the cantilever spring 3 is provided with support surfaces 15 orientated towards the guide blade carrier 9 and with a support surface 16 of a body 17 of the cantilever spring 3 orientated towards the bearing housing section 4. Through clamping the cantilever spring 3 in installation position, the clamping force of the cantilever spring 3 acts on the guide blade carrier 9 on the support surfaces 15. The further the support surfaces 15 are shifted away from the guide blade bearing pins 7 towards the turbine 14, the more is the guide blade carrier 9 deformed through the clamping forces of the cantilever spring 3. The greater the deformation of the guide blade carrier 9, the greater the play of the guide blades has to be created. A substantial advantage of the cantilever spring 3 is that in contrast with a disc spring the support surfaces 15 can be more easily shifted in the direction of the spacer elements 12 through suitable shaping of the cantilever spring 3. Thus, by using a cantilever spring 3 the clamping force acting on the guide plate carrier 9 can be better distributed and the lesser occurring deformations allow a reduced configuration of the play of the guide blades. As a consequence, a variable turbine geometry 2 equipped with such a cantilever spring 3 has a substantially longer lifespan, a greater thermodynamic efficiency and better adaptability of the characteristic curve of the variable turbine geometry to a respective requirement. In contrast with the disc spring, which has high stresses both on the support surface orientated toward the bearing housing section 4 as well as on the support surface orientated towards the guide blade carrier 9, wherein the support surface orientated towards the bearing housing compared with the support surface orientated towards the guide blade carrier 9 is subjected to comparatively little thermal load, the mechanical loads with the cantilever spring 3 can be shifted in the direction of the support surface 16, as a result of which with the cantilever spring 3 the regions of high mechanical and high thermal load can be separated from each other. Through this separation of the different load regions the cantilever spring 3 compared with a disc spring has a greater life expectation and the cantilever spring 3 can additionally be subjected to greater clamping force.
In a further embodiment it is conceivable that instead of between the guide blade carrier 9 and the bearing housing section 4 the cantilever spring 3 is arranged between the turbine housing section 5 and the cover disc 10. Analogous arrangements in the case of a variable turbine geometry on a compressor side are likewise possible. It is likewise conceivable that the support surfaces 15 are orientated towards the bearing housing section 4 and, for example with a corresponding reduction of the through-opening of the guide blade carrier 9, the support surface 16 towards the guide blade carrier 9.
In a further embodiment a plurality of bending legs 18 of the cantilever spring 3 can be orientated towards the guide blade carrier 9, while a plurality of additional bending legs 18 is orientated towards the bearing housing section 4. In this case the support surfaces 15 abut both the guide blade carrier 9 as well as the bearing housing section 4 while the support surface 16 in this case is no longer necessary. This embodiment of a cantilever spring can be realised through a single cantilever spring or through cantilever springs placed on top of one another which with respect to the curvature of the respective cantilever spring 3 are orientated in an opposite manner so that the support surfaces 16 of the cantilever springs 3 lie on top of one another.
In a possible embodiment as shown in
As shown in
A further preferred embodiment of a cantilever spring 3, according to
A detail of the top view of an outer side 24 of the curvature 19 shown in
A further preferred embodiment according to
Another possibility of a stiffening through up-folds is shown in
The embodiment of a cantilever spring 3 shown in
A further embodiment shown in
It is to be understood that another embodiment of such a cantilever spring 3 can be equipped with curvatures, ribs, up-folds, profilings, flange rims or the like formed through offsetting, folding, bending, flanging, metal working, deep drawing, ribbing, welding or the like so that through such stiffening the cantilever spring 3 is equipped with a greater flexural strength.
Number | Date | Country | Kind |
---|---|---|---|
DE102009012 065.3 | Mar 2009 | DE | national |