This application relates to the field of battery technologies, and in particular, to a charging method, an electronic apparatus, and a storage medium.
In existing charging methods for battery, when a charge cut-off current is relatively large, it is likely that a battery cannot be charged to a full charge state. The full charge state means that the battery is charged to a battery level of 100%. With the cycling of a battery, impedance of the battery increases constantly, and the battery will inevitably become unable to be fully charged, in contrast with a fresh state of the battery or a conventional constant-voltage charging method under a limited charge voltage (cut-off current is relatively small in the case of constant-voltage charging under a limited voltage), which means that charge cut-off state of charge (SOC) of the battery gradually decreases. Currently, there is no feasible solution to fully charge a battery in use without greatly prolonging the time required for charging the battery to the full charge state.
In view of this, it is necessary to provide a charging method, an electronic apparatus, and a storage, so that a requirement for fully charging a battery can be met.
An embodiment of this application provides a charging method for battery. The method includes: in an n-th charging process, charging a first battery to a charge cut-off voltage Un and a charge cut-off current In in a first charging manner, where n is a positive integer greater than 0; after the n-th charging process is completed, leaving the first battery standing, and obtaining an open-circuit voltage OCVn of the first battery at a standing time of ti; in an m-th charging process and subsequent charging processes, charging the first battery to the charge cut-off voltage Un and the charge cut-off current In in the first charging manner, where m is a positive integer, and m>n; after the m-th charging process is completed, leaving the first battery standing, and obtaining an open-circuit voltage OCVm of the first battery at the standing time of ti, and under the condition of OCVn>OCVm, continuing to charge the first battery that has been standing in a second charging manner until the charge cut-off current of the first battery is a first current Im, where Im=(Un−k×OCVn−(1−k)×OCVm)/(Un−OCVm)×In, and 0<k≤1.
According to some embodiments of this application, the voltage OCVn includes a pre-stored open-circuit voltage, where the open-circuit voltage is an open-circuit voltage of a second battery collected at the standing time of ti in the standing process that follows completion of the n-th charging process, where the first battery and the second battery are different batteries in a same battery system.
According to some embodiments of this application, the method further includes: under the condition of OCVn≤OCVm, in the m-th charging process and the subsequent charging processes, charging the first battery to the charge cut-off voltage Un and the charge cut-off current In in the first charging manner.
According to some embodiments of this application, the method further includes: in an (m+b)-th charging process, charging the first battery to a first voltage Un in the first charging manner, where the first current Im serves as the charge cut-off current; after the (m+b)-th charging process and subsequent charging processes are completed, leaving the first battery standing, and obtaining a voltage OCVm+b of the first battery at the standing time of ti; and under the condition of OCVn>OCVm+b, continuing to charge the first battery that has been standing in the second charging manner until the charge cut-off current of the first battery is a second current Im+b where Im+b=(Un−k×OCVn−(1−k)×OCVm+b)/(Un−OCVm+b)×In, and 0<k≤1.
According to some embodiments of this application, the method further includes: under the condition of OCVn≤OCVm+b, in the (m+b)-th charging process and the subsequent charging processes, charging the first battery to the charge cut-off voltage Un and the charge cut-off current In in the first charging manner.
According to some embodiments of this application, the first charging manner includes N1 charging stages in sequence, where N1 is a positive integer greater than or equal to 1, and in the N1-th charging stage, the first battery is charged to the charge cut-off current In constantly with the charge cut-off voltage Un.
According to some embodiments of this application, the second charging manner includes N2 charging stages in sequence, where N2 is a positive integer greater than or equal to 1, and in the N2-th charging stage, the first battery is charged to the first current Im constantly with the charge cut-off voltage Un.
According to some embodiments of this application, the first charging manner includes M1 constant-current charging stages in sequence, where M1 is a positive integer greater than or equal to 1, the M1 constant-current charging stages are each defined as an i-th charging stage, with i=1, 2, . . . , M1, where after the first battery is charged to the charge cut-off voltage Un with a constant current, each of the constant-current charging stages is cut off by using the charge cut-off voltage Un.
According to some embodiments of this application, the charge current of the (i+1)-th charging stage is less than the charge current of the i-th charging stage.
According to some embodiments of this application, the second charging manner includes M2 constant-current charging stages in sequence, where M2 is a positive integer greater than or equal to 1, the M2 constant-current charging stages are each defined as a j-th charging stage, with j=1, 2, . . . , M2, where each of the constant-current charging stages is cut off by using the charge cut-off voltage Un, and in the M2-th charging stage, the first current Im is a minimum charge current of the first battery.
An embodiment of this application provides an electronic apparatus. The electronic apparatus includes a battery and a processor, where the processor is configured to execute the foregoing charging method to charge the battery.
An embodiment of this application provides a storage medium, storing at least one computer instruction, where the instruction is loaded by a processor to execute the foregoing charging method.
According to the embodiments of this application, based on an actual aging state of the battery, the charge cut-off current of the battery in the charging process is lowered, so as to resolve the problem that with the cycling of a battery, impedance of the battery increases, and the battery cannot be fully charged by using a charging method with a relatively large charge cut-off current. The charging method provided by the embodiments of this application can not only meet a requirement for fully charging a battery, but also shorten the time required for charging the battery to a full charge state, so as to improve user experience.
The following clearly and completely describes the technical solutions in the embodiments of this application with reference to the accompanying drawings in the embodiments of this application. Apparently, the described embodiments are only some rather than all of the embodiments of this application.
Referring to
In an embodiment, the battery 13 is a rechargeable battery, and is configured to supply power to the electronic apparatus 1. For example, the battery 13 may be a lithium-ion battery, a lithium polymer battery, a lithium iron phosphate battery, or the like. The battery 13 includes at least one battery cell (battery cell), and is appropriate to use a recyclable recharging manner. The battery 13 is logically connected to the processor 12 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
It should be noted that,
Although not shown, the electronic apparatus 1 may further include a wireless fidelity (Wireless Fidelity, Wi-Fi) unit, a Bluetooth unit, a loudspeaker, and other components. Details are not described herein again.
Referring to
Specifically, the charging method for battery may include the following steps.
Step S1: In an n-th charging process, charge a first battery to a charge cut-off voltage Un and a charge cut-off current In in a first charging manner, where n is a positive integer greater than 0;
In an embodiment, the first charging manner includes N1 charging stages in sequence, where N1 is a positive integer greater than or equal to 1, and in the N1-th charging stage, the first battery is charged to the charge cut-off current In constantly with the charge cut-off voltage Un.
For example, when N1 is equal to 3, the first charging manner includes a first charging stage, a second charging stage and a third charging stage. In the first charging stage and the second charging stage, the first battery may be charged in some existing charging manners (for example, a constant-current charging manner, a constant-voltage charging manner, or a constant-current and constant-voltage combined charging manner), and this application is not limited thereto. In the third charging stage, the first battery is charged to the charge cut-off current In constantly with the charge cut-off voltage Un.
In another embodiment, the first charging manner includes M1 constant-current charging stages in sequence, where M1 is a positive integer greater than or equal to 1, the M1 constant-current charging stages are each defined as an i-th charging stage, with i=1, 2, . . . , M1, where each of the constant-current charging stages is cut off by using the charge cut-off voltage. That is, after the first battery is charged to the charge cut-off voltage Un with a constant current, each of the subsequent constant-current charging stages is cut off by using the charge cut-off voltage Un. Before the first battery is charged to the charge cut-off voltage Un with a constant current, a voltage of the first battery is not limited.
In some embodiments, in the i-th charging stage, the first battery is charged to the charge cut-off voltage Un constantly with an i-th current; and in the (i+1)-th charging stage, the first battery is charged to the charge cut-off voltage Un constantly with an (i+1)-th current. It should be noted that, in charging stages before the i-th charging stage, voltage of the first battery in a constant-current charging process is not limited; and in all charging stages after the (i+1)-th charging stage, the first battery is charged to the charge cut-off voltage Un with a constant current.
For example, when M1 is equal to 5, the first charging manner includes a first constant-current charging stage, a second constant-current charging stage, a third constant-current charging stage, a fourth constant-current charging stage, and a fifth constant-current charging stage. Specifically, in the first constant-current charging stage, the first battery is charged to 4.25 V with a constant current of 3C (a first current); in the second constant-current charging stage, the first battery is charged to 4.45 V (that is, the charge cut-off voltage Un) with a constant current of 2C (a second current); in the third constant-current charging stage, the first battery is charged to 4.45 V (that is, the charge cut-off voltage Un) with a constant current of 1C (a third current); in the fourth constant-current charging stage, the first battery is charged to 4.45 V (that is, the charge cut-off voltage Un) with a constant current of 0.5C (a fourth current); and in the fifth constant-current charging stage, the first battery is charged to 4.45 V (that is, the charge cut-off voltage Un) with a constant current of 0.2C (a fifth current).
It should be noted that, in this embodiment, the charge current of the (i+1)-th charging stage is less than the charge current of the i-th charging stage. That is, as i increases, the charge current of the corresponding charging stage gradually decreases.
Step S2: After the n-th charging process is completed, leave the first battery standing, and obtain an open-circuit voltage OCVn of the first battery at a standing time of ti.
An actual aging state of the battery in a use process needs to be determined, and then by how much the charge cut-off current is to be reduced is determined based on the actual aging state. As such, it is necessary to leave the first battery standing after the n-th charging process is completed, and to obtain an open-circuit voltage of the first battery during or after the standing process, and by how much the charge cut-off current is to be reduced is determined based on the open-circuit voltage. In this application, the open-circuit voltage OCVn of the first battery at the standing time of ti is obtained.
It should be noted that, the open-circuit voltage OCVn includes an open-circuit voltage of the first battery collected at the standing time of ti in the standing process that follows completion of the n-th charging process; and the open-circuit voltage OCVn further includes a pre-stored open-circuit voltage of a second battery collected at the standing time of ti in the standing process that follows completion of the n-th charging process, where the first battery and the second battery are different batteries in a same battery system.
Step S3: In an m-th charging process and subsequent charging processes, charge the first battery to the charge cut-off voltage Un and the charge cut-off current In in the first charging manner, where m is a positive integer, and m>n.
In this embodiment, in charging processes following the n-th charging process (for example, the m-th charging process), the first battery is charged to the charge cut-off voltage Un in the same first charging manner as in the n-th charging process. Then, the first battery is left standing, and an open-circuit voltage OCVm of the first battery at the same standing time of ti is obtained. Therefore, whether the charge cut-off current of the first battery needs to be reduced based on the charge cut-off voltage may be determined based on a change of the open-circuit voltage of the first battery in the charging process.
Step S4: After the m-th charging process is completed (that is, after the first battery is charged to the charge cut-off voltage Un in the first charging manner in step S3), leave the first battery standing, and obtain an open-circuit voltage OCVm of the first battery at the standing time of ti.
In this embodiment, the open-circuit voltage OCVm includes an open-circuit voltage of the first battery collected at the standing time of ti in the standing process that follows completion of the m-th charging process; and the open-circuit voltage OCVm further includes a pre-stored open-circuit voltage of the second battery collected at the standing time of ti in the standing process that follows completion of the m-th charging process.
Step S5: Compare the open-circuit voltage OCVn with the open-circuit voltage OCVm by magnitude. Under the condition of OCVn>OCVm, it is determined that the charge cut-off current of the first battery needs to be reduced in the m-th charging process and the subsequent charging processes, and step S6 is performed, and under the condition of OCVn≤OCVm, it is determined that the charge cut-off current of the first battery does not need to be reduced in the m-th charging process or subsequent charging processes, and step S7 is performed.
Step S6: Under the condition of OCVn>OCVm, continue to charge the first battery that has been standing in the second charging manner until the charge cut-off current of the first battery is a first current Im, wherein Im=(Un−k×OCVn−(1−k)×OCVm)/(Un−OCVm)×In, 0<k≤1, and In is the charge cut-off current of the first battery in the n-th charging process.
In this embodiment, under the condition of OCVn>OCVm, the charge cut-off current of the first battery needs to be reduced. After the reduction, specific magnitude of the charge cut-off current of the first battery is determined by an actual state of the first battery. That is, in the charging process, open-circuit voltages of the first battery at the same standing time in standing processes following completion of all charging processes are collected. Based on a difference of an open-circuit voltage collected in a subsequent cyclic charging process (for example, the m-th charging process) and an open-circuit voltage collected in a previous cyclic charging process (for example, the n-th charging process), it is determined that the current (for example, m-th) charging process and the next (for example, (m+1)-th) charging process are to be adjusted (the first battery is charged until the charge cut-off current of the first battery is the first current Im), so as to fully charge the first battery in the cyclic charging processes without greatly prolonging the time required for fully charging the first battery. Specifically. Im=(Un−k×OCVn−(1−k)×OCVm)/(Un−OCVm)×In, 0<k≤1, and In is the charge cut-off current of the first battery in the n-th charging process.
In an embodiment, the second charging manner includes N2 charging stages in sequence, where N2 is a positive integer greater than or equal to 1, and in the N2-th charging stage, the first battery is charged constantly with the charge cut-off voltage Un until the charge cut-off current of the first battery is the first current Im. In this case, in the m-th charging process and the subsequent charging processes, the charge cut-off current is the first current Im.
For example, in the (m+1)-th charging process, when N2 is equal to 3, the second charging manner includes a first charging stage, a second charging stage and a third charging stage. In the first charging stage and the second charging stage, the first battery may be charged in some existing charging manners (for example, a constant-current charging manner, a constant-voltage charging manner, or a constant-current and constant-voltage combined charging manner), and this application is not limited thereto. In the third charging stage, the first battery is charged constantly with the charge cut-off voltage Un until the charge cut-off current of the first battery is the first current Im.
It should be noted that, the N1 charging stages in the first charging manner may be equal to the N2 charging stages in the second charging manner (that is, N1 is equal to N2), or the N1 charging stages in the first charging manner may not be equal to the N2 charging stages in the second charging manner (that is, N1 is not equal to N2). For example, the second charging manner may only include a first charging stage and a second charging stage.
In another embodiment, the second charging manner includes M2 constant-current charging stages in sequence, where M2 is a positive integer greater than or equal to 1, the M2constant-current charging stages are each defined as a j-th charging stage, with j=1, 2, . . . , M2, where each of the constant-current charging stages is cut off by using the charge cut-off voltage Un, and in the M2-th charging stage, the first battery is charged constantly with the first current Im, where the first current Im is a minimum charge current of the first battery. In this case, in the m-th charging process and the subsequent charging processes, the charge cut-off voltage is Un.
Specifically, in the first charging stage, the first battery is charged to the charge cut-off voltage U1 constantly with the first current I1; in the (j+1)-th charging stage, the first battery is charged to the charge cut-off voltage Un constantly with a (j+1)-th current Ij+1; and in the M2-th charging stage, the first battery is charged to the charge cut-off voltage Un constantly with the first current Im. The first current I1 is less than a minimum charge current in the first charging manner, and I1>Ij+1>Im.
It should be noted that, the M1 constant-current charging stages in the first charging manner may be equal to the M2 constant-current charging stages in the second charging manner (that is, M1 is equal to M2), or the M1 constant-current charging stages in the first charging manner may not be equal to the N2 charging stages in the second charging manner (that is. M1 is not equal to M2).
It should be noted that, in this embodiment, the charge current of the (j+1)-th charging stage is less than the charge current of the j-th charging stage.
Step S7: Under the condition of OCVn≤OCVm, in the m-th charging process and the subsequent charging processes, charge the first battery to the charge cut-off voltage Un and the charge cut-off current In in the first charging manner.
In this embodiment, under the condition of OCVn≤OCVm, the charge cut-off current of the first battery in the charging process does not need to be reduced, that is, the first battery continues to be charged to the charge cut-off voltage Un in the first charging manner.
It should be noted that, in cyclic charging processes following the m-th charging process, judgment on the open-circuit voltage of the first battery also needs to be performed, so as to determine whether the charge cut-off current of the first battery needs to be reduced again. Specifically, the charging method further includes: in an (m+b)-th charging process and subsequent charging processes, charging the first battery to a first voltage Un in the first charging manner, where the first current Im serves as the charge cut-off current; after the (m+b)-th charging process and the subsequent charging processes are completed, leaving the first battery standing, and obtaining a voltage OCVm+b of the first battery at the standing time of ti; and under the condition of OCVn>OCVm+b, continuing to charge the first battery that has been standing in the second charging manner until the charge cut-off current of the first battery is a second current Im+b, where
I
m+b=(Un−k×OCVn−(1−k)×OCVm+b)/(Un−OCVm+b)×In,
and 0<k≤1. In this case, under the condition of OCVn>OCVm+b, in the (m+b)-th charging process and the subsequent charging processes, the charge cut-off current in the two second charging manners is the second current Im+b. Under the condition of OCVn≤OCVm+b, in the (m+b)-th charging process and the subsequent charging processes, the first battery is charged to the charge cut-off voltage Un in the first charging manner, where the first current Im serves as the charge cut-off current.
In conclusion, in this application, the charge cut-off current of the battery in the charging process is reduced based on the actual aging state of the battery, so as to resolve the problem that with the cycling of a battery, impedance of the battery increases, and the battery cannot be fully charged by using a charging method with a relatively large charge cut-off current. For example, the charging method provided by the embodiments of this application can resolve a problem, with some existing fast charging methods, that with the cycling of a battery, the battery is gradually unable to be fully charged. In some fast charging methods, the charge cut-off voltage and the cut-off current of the battery are increased in the charging process. The charging method provided by the embodiments of this application can not only meet a requirement for fully charging a battery, but also shorten the time required for charging the battery to a full charge state, so as to improve user experience.
To make the objectives, technical solutions, and technical effects of this application clearer, the following further describes this application in detail with reference to the accompanying drawings and examples. It should be understood that the examples provided in this specification are merely intended to interpret this application, but not intended to limit this application. This application is not limited to the examples provided in this specification.
As described below, in Comparative Example 1, a charging method for increasing a voltage and a charge cut-off current of a constant-voltage charging process on the basis of a charging method (constant-current and constant-voltage charging) in the prior art is used to charge the battery (the first battery or the second battery described above). In Comparative Example 2, a charging method is used for resolving a problem, with the charging method in Comparative Example 1 that charge cut-off state of charge (SOC) gradually decreases in cyclic charging processes. In Examples 1 to 3, the charging method described in this application is used, and values of k in Examples 1 to 3 are respectively 0.5, 0.8, and 1.
Ambient temperature: 25° C.:
Charging and Discharging Process:
Step 1: Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25 V:
Step 2: Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45 V:
Step 3: Charge the battery with a constant current of 1.4C until the voltage of the battery reaches 4.5V;
Step 4: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches a cut-off current of 0.25C:
Step 5: Leave the battery standing for 1 minute;
Step 6: Then discharge the battery with a constant current of 1.0C until the voltage of the battery reaches 3.0 V;
Step 7: Then leave the battery standing for 1 minute again; and
Step 8: Repeat Step 1 to Step 7 until 500 cycles.
Ambient temperature: 25° C.;
Charging and Discharging Process:
Step 1: Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25 V;
Step 2: Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45 V;
Step 3: Charge the battery with a constant current of 1.4C until the voltage of the battery reaches 4.5 V;
Step 4: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches a cut-off current of 0.25C:
Step 5: Leave the battery standing for 5 minutes;
Step 6: Charge the battery with a constant voltage of 4.45 V until the current of the battery reaches a cut-off current of 0.05C;
Step 7: Leave the battery standing for 1 minute;
Step 8: Then discharge the battery with a constant current of 1.0C until the voltage of the battery reaches 3.0 V;
Step 9: Then leave the battery standing for 1 minute again: and
Step 10: Repeat Step 1 to Step 9 until 500 cycles.
Ambient temperature: 25° C.
It should be noted that, Examples 1 to 3 each include a process of obtaining the open-circuit voltage OCVn and a charging and discharging process. Here, a method for obtaining the open-circuit voltage OCVn is described first. In this embodiment, a fresh battery is selected for obtaining the parameter OCVn, and specifically, the process of obtaining the open-circuit voltage OCVn is as follows:
Step 1: Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25 V;
Step 2: Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45 V;
Step 3: Charge the battery with a constant current of 1.4C until the voltage of the battery reaches 4.5 V;
Step 4: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches a cut-off current of 0.25C; and
Step 5: Leave the battery standing for 1 minute, and collect the open-circuit voltage OCVn of the battery that has been standing for 1 minute, where a value of the open-circuit voltage is OCVn=4.47V.
The charging and discharging process is as follows:
Ambient temperature: 25° C.:
Step 1: Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25 V;
Step 2: Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45 V;
Step 3: Charge the battery with a constant current of 1.4C until the voltage of the battery reaches 4.5 V:
Step 4: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches a cut-off current of 0.25C;
Step 5: Leave the battery standing for 1 minute, and collect the open-circuit voltage OCVm of the battery that has been standing for 1 minute;
Step 6: Calculate a value of the first current Im in the constant-voltage charging process in step 4, where Im=(4.5−k×4.47−(1−k)×OCVm)/(4.5−OCVm)×0.25, where k=0.5;
Step 7: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches the first current Im:
Step 8: Leave the battery standing for 1 minute;
Step 9: Then discharge the battery with a constant current of 1.0C until the voltage of the battery reaches 3.0 V;
Step 10: Then leave the battery standing for 1 minute again: and
Step 11: Repeat step 1 to step 14 until 500 cycles, with 1 added to m automatically after each cycle.
It should be noted that, in Example 2, a fresh battery is selected for obtaining the parameter, open-circuit voltage OCVn by using the same method as in Example 1, where OCVn=4.47V. For a specific obtaining process, refer to Example 1. Details are not described herein again.
The charging and discharging process is as follows:
Ambient temperature: 25° C.:
Step 1: Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25 V;
Step 2: Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45 V;
Step 3: Charge the battery with a constant current of 1.4C until the voltage of the battery reaches 4.5 V:
Step 4: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches a cut-off current of 0.25C;
Step 5: Leave the battery standing for 1 minute, and collect the open-circuit voltage OCVm of the battery that has been standing for 1 minute;
Step 6: Calculate a current value of the first current Im in the constant-voltage charging process in step 4, where Im=(4.5−k×4.47−(1−k)×OCVm)/(4.5−OCVm)×0.25, where k=0.8;
Step 7: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches the first current Im:
Step 8: Leave the battery standing for 1 minute;
Step 9: Then discharge the battery with a constant current of 1.0C until the voltage of the battery reaches 3.0 V;
Step 10: Then leave the battery standing for 1 minute again; and
Step 11: Repeat step 1 to step 14 until 500 cycles, with 1 added to m automatically after each cycle.
It should be noted that, in Example 2, a fresh battery is selected for obtaining the parameter, open-circuit voltage OCVn, by using the same method as in Example 1, where OCVn=4.47V. For a specific obtaining process, refer to Example 1. Details are not described herein again.
The charging and discharging process is as follows:
Step 1: Charge the battery with a constant current of 3C until the voltage of the battery reaches 4.25 V:
Step 2: Charge the battery with a constant current of 2C until the voltage of the battery reaches 4.45 V:
Step 3: Charge the battery with a constant current of 1.4C until the voltage of the battery reaches 4.5 V;
Step 4: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches a cut-off current of 0.25C:
Step 5: Leave the battery standing for 1 minute, and collect the open-circuit voltage OCVm of the battery that has been standing for 1 minute;
Step 6: Calculate a current value of the first current Im in the constant-voltage charging process in step 4, where Im=(4.5−k×4.47−(1−k)×OCVm)/(4.5−OCVm)×0.25, where k=1:
Step 7: Continue to charge the battery with a constant voltage of 4.5 V until the current of the battery reaches the first current Im;
Step 8: Leave the battery standing for 1 minute;
Step 9: Then discharge the battery with a constant current of 1.0C until the voltage of the battery reaches 3.0 V:
Step 10: Then leave the battery standing for 1 minute again; and
Step 11: Repeat step 1 to step 14 until 500 cycles, with 1 added to m automatically after each cycle.
Constant voltages (CVs), charge cut-off SOCs and charge times of the battery during cycling in Comparative Examples 1 and 2 and Examples 1 to 3 are recorded in Table 1. It should be noted that, C is a charge/discharge rate, the charge/discharge rate refers to a current required for charging to a rated capacity or discharging the rated capacity within a specified time, and it is numerically equal to charge/discharge current/rated capacity of battery. For example, when the rated capacity is 10 Ah and the battery discharges at 2 A, a discharge rate of the battery is 0.2C; and when the battery discharges at 20 A, the discharge rate of the battery is 2C.
It can be learned from Table 1 that, in the charging method in Comparative Example 1, with the cycling of the battery, impedance of the battery gradually increases, and the charge cut-off SOC gradually decreases. Comparative Example 2 aims to resolve the problem with Comparative Example 1 that with the cycling of the battery, the charge cut-off SOC of the battery gradually decreases. It can be learned from the results in Table 1 that, the charge cut-off SOC in Comparative Example 2 is obviously increased compared with Comparative Example 1, and the charge time is, however, greatly prolonged compared with Comparative Example 1.
Examples 1 to 3 can substantially resolve the problem with Comparative Example 1 that with the cycling of the battery, the charge cut-off SOC decreases. Here, values of k in Examples 1 to 3 are respectively 0.5, 0.8, and 1. It can be learned from the results in Table 1 that, as the value of k increases, the charge cut-off SOC gradually increases during the cycling. When k is equal to 0.8, using the charging method provided by this application can achieve the same charge cut-off SOC as in Comparative Example 2. When k is equal to 1, using the charging method provided by this application allows the charge cut-off SOC to be always the same as that of the fresh battery (fresh battery), meaning that the battery can be fully charged. Although the corresponding charge time is slightly prolonged compared with Comparative Example 1, additional time is approximately 5 minutes at most and is obviously shorter than that in Comparative Example 2.
Therefore, in the embodiments of this application, the charge cut-off current of the battery in the charging process is reduced based on the actual aging state of the battery, so as to resolve the problem that with the cycling of a battery, impedance of the battery increases, and the battery cannot be fully charged by using a charging method with a relatively large charge cut-off current. The charging method provided by the embodiments of this application can not only meet a requirement for fully charging a battery, but also shorten the time required for charging the battery to a full charge state, so as to improve user experience.
Referring to
The charging module 101 is configured to: in an n-th charging process, charge a first battery to a charge cut-off voltage Un and a charge cut-off current In in a first charging manner, where n is a positive integer greater than 0; the obtaining module 102 is configured to: after the n-th charging process is completed, leave the first battery standing, and obtain an open-circuit voltage OCVn of the first battery at a standing time of ti; the charging module 101 is further configured to: in an m-th charging process and subsequent charging processes, charge the fast battery to the charge cut-off voltage Un and the charge cut-off current In in the first charging manner, where m is a positive integer, and m>n; the obtaining module 102 is further configured to: after the m-th charging process is completed, leave the first battery standing, and obtain an open-circuit voltage OCVm of the first battery at the standing time of ti; and the charging module 101 is further configured to: under the condition of OCVR>OCVm, continue to charge the first battery that has been standing in a second charging manner until the charge cut-off current of the first battery is a first current Im, where (Un−k×OCVn−(1−k)×OCVm)/(Un−OCVm)×In, 0<k≤1, and In is the charge cut-off current of the first battery in the n-th charging process.
With the charging system 10, the charge cut-off current of the battery in the charging process can be reduced, so as to resolve the problem that with the cycling of a battery, impedance of the battery increases, and the battery cannot be fully charged by using a charging method with a relatively large charge cut-off current. For specific content, reference may be made to the foregoing embodiments of the charging method for battery. Details are not described herein again.
In an embodiment, the processor 12 may be a central processing unit (Central Processing Unit, CPU), or may be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), field programmable gate arrays (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or the like. The general-purpose processor may be a microprocessor, or the processor 12 may be any other conventional processors or the like.
If implemented in a form of software functional units and sold or used as separate products, the modules in the charging system 10 may be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes of the method in the embodiments of this application may be implemented by a computer program instructing related hardware. The computer program may be stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments may be implemented. The computer program includes computer program code, where the computer program code may be source code, object code, an executable file, some intermediate forms, or the like. The computer-readable medium may include: any entity or apparatus capable of carrying the computer program code, a recording medium, a USB flash disk, a mobile hard disk a diskette, a compact disc, a computer memory, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), or the like.
It can be understood that the unit division described above is based on logical functions, and division in other manners may be used during actual implementation. In addition, in the embodiments of this application, all the functional modules may be integrated into a same processing unit, or each module may exist alone physically, or two or more modules may be integrated into a same unit. The integrated module may be implemented in a form of hardware, or may be implemented in a form of hardware and software functional modules.
The one or more modules may alternatively be stored in the memory and executed by the processor 12. The memory 11 may be an internal storage device of the electronic apparatus 1, that is, a storage device built in the electronic apparatus 1. In other embodiments, the memory 11 may alternatively be an external storage device of the electronic apparatus 1, that is, a storage device externally connected to the electronic apparatus 1.
In some embodiments, the memory 11 is configured to: store program code and various data, for example, program code of the charging system 10 installed on the electronic apparatus 1; and implement high-speed automatic access to programs or data during running of the electronic apparatus 1.
The memory 11 may include a random access memory, and may also include a non-volatile memory, for example, a hard disk, an internal memory, a plug-in hard disk, a smart media card (Smart Media Card. SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), or at least one disk storage device, flash memory, or other volatile solid-state storage device.
It is apparent for persons skilled in the art that this application is not limited to the details of the foregoing illustrative embodiments, and can be implemented in other specific forms without departing from the spirit or basic features of this application. Therefore, the foregoing embodiments of this application shall, in whatever aspect, be considered as being illustrative rather than limitative. The scope of this application is defined by the appended claims rather than the above description, and therefore all variations falling within the meaning and scope of the claims and their equivalents are intended to be encompassed in this application.
The present application is a continuation application of PCT application PCT/CN2020/139218, filed on Dec. 25, 2020, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2020/139218 | Dec 2020 | US |
Child | 18128411 | US |