The present invention relates to generating electrical energy for the electric airplane or drone using the wasted kinetic energy from the propellers by capturing the exhausted kinetic energy air from the main propeller that is rotating the propeller blades and shaft, a secondary propeller blade that's connected to an alternator shaft (the two shafts are not connected), A propeller produces thrust through a momentum transfer from the propeller to the air by the rotation of the propeller blades. Momentum is the product of mass and velocity, and you can think of the torque generated as the reaction to the acceleration of a column of air with a diameter equal to that of the propeller.
The present disclosure generally relates to providing energy for an aircraft such as a drone or electric airplane to help power the craft, at least in part, by electricity storing the electricity in a batteries bank for consumption by motors to drive or power the vehicle or a portion thereof while the vehicle is in flight; today's drones an aircraft that are trying to be invented has such a short mileage range because the batteries do not allow them to travel any length of distance by solving this problem by using the wasted energy from the main electric motor propellers can help extend the charging ability and range of any drone, electric vehicle or electric aircraft, the captured energy is from the propeller, a byproduct of the main electrical motor, this auxiliary propeller that's connected to the alternator? capture the wasted kinetic energy air that's flows from the engine leading propellers that are propelling the aircraft, the kinetic energy air which is a byproduct of the leading electrical motor propellers or propellers.
This is a more desirable way and green way to have an alternative energy source that less expensive than adding more heavy batteries to achieve a longer flight time, also earning a more efficient cleaner output by obtaining power from wasted kinetic energy from an airflow, electric vehicles and aircraft vehicles derive locomotion power from electricity often received from an energy storage device within the vehicle. The energy storage device could be a battery, a batteries array, or energy storage and containment device. Hybrid electric vehicles include regenerative charging that is capturing energy from vehicle braking and traditional motor to charge the energy storage device and provide electricity to the vehicle.
Various embodiments of the systems, methods, and devices within the scope of this appended claims each have several aspects. Without limiting the scope of the appended claims, the description below describes some prominent features.
According to one aspect of the present invention there is provided a constant speed of the propeller for feeding air powering to the alternator at a continuous output comprising: the motor propeller creating an airflow that's moving the air to a second propeller to rotate the alternator unit shaft and produce a voltage that is regulator by a controller that control the output voltage; and at least one or more propellers units that are in line with each other in two different locations.
According to another aspect of the present invention there is provided a fixed pitch propeller for generating power for aircraft such as drones or drone light aircraft comprising: at least a fixed-pitch propeller that is mounted behind each motor-powered propeller; this is a non-connected units, one being power and the other being connected to a propeller that is connected to a standalone alternator unit.
According to one aspect of the present invention there is provided a method of extracting power from the spinning motor driving propeller sets up a pressure that is lower than the air stream in front of the propeller and the higher airstream behind the propeller, causing the second propeller downstream to turn, the pressure eventually returns to free stream conditions with the force that is applied to the propeller alternator downstream, causing the propeller to turn and
start generating power, the exiting air causing a more incredible velocity than the free stream of air, which causes the propeller to turn the alternator; this working airflow creates electricity.
Embodiments of the invention provide significant advantages in helping with the energy problems of today. Drones and electric vehicles have some of the same disadvantage batteries life, decreasing flight time and travel time for drones, aircraft, and electric vehicles. The unit will generate electrical power in the air or on the ground; the charging unit may be large or small and portable. The power alternator is particularly useful in many different applications.
The air charging alternator unit takes wasted air energy. It converts into electrical energy for use, the aerodynamic force from the rotor blades, which work like an airplane wing or helicopter rotor blade. When air flows across the blade, the air pressure on one side of the blade decreases. The difference in air pressure across the two sides of the blade creates both lift and drag.
For a better understanding of the present invention and to understand how the same may be brought into effect, and reference will now be made by way of example only to the following drawings in which:
The air charging alternators unit works on a simple principle: The wasted exhaust air from the motor propeller exhausted air or the movement of the aircraft moving in the air, this air the air that the plane is moving aside. The aircraft 77 in
The kinetic energy describes the process by which the kinetic energy is to generate mechanical power to create electricity. This mechanical power to recharge batteries 45 of drone air crafts, or for specific tasks such as electric, boat, drones, electric airplanes 77 or electric vehicles of all models can use this process to convert kinetic energy into electricity for recharging batteries.
Using the aerodynamic force from the rotor blades works the same as an airplane wing or a helicopter rotor blade. When air flows across the blade, the air pressure on one side of the blade Decreases the difference in air pressure across the two sides of the blade, creating both lift and drag. The force of the lift is stronger than the drag, and this causes the shaft to spin. The shaft is connected to the alternator 20, either directly (if it's a direct drive propeller on the alternator 20) or through a rod and a series of gears (such as gearbox 33) that speed up the rotation and allow for a physically smaller alternator 20. This translation of aerodynamic force to rotation of alternator 20 creates electricity.
The alternator 20 unit has a fixed pitch propeller 40 and the electric motor 10 and propeller 50 is not directly connected; if the voltage demand increase from the electric motor 10, the rpm will increase, and if the voltage demand decreases, then the rpm decreases and vice-versa. It is not necessary to monitor the rpm on the alternator 20-unit shaft because the two-propeller units are not connected; therefore, no Overspeed; the propeller shaft has a regenerative drive braking unit to reduce the speed, if necessary, a constant speed propeller unit has a governor that controls the braking unit on the driveshaft and automatically coarsens the propeller pitch to maintain the same rpm and prevent the alternator 20 over the output of the voltage during charging. A variable pitch propeller is one where the output voltage is a controlled to a set the point, and the controls of the blade angle automatically adjust during flight. This adjustment allows for an extensive range of power settings and propeller speeds, meaning that the most efficient operating setpoint is on the desired airspeed.
The variable pitch propellers can either be manually adjusted or mechanically governed to maintain a constant speed irrespective of the flight air condition. Since the propeller 50 on the electric motor 10 is directly connected, the rotation speed of the propeller 50 is a direct function of the electric motor 10 speeds. For this reason, the propeller 40 speed on the alternator 20 will vary with airspeed, altitude, aircraft 77 attitude, and motorized throttle setting. The angle that the blade makes with the relative wind will determine how much lift and drag (thrust and torque) is produced on the alternator 20 propellers. The resultant angle of attack is a function of both the rotational velocity of the blade as well as the forward airspeed of the electric motor 10 propeller 50.
The alternator 20 electrical energy harnesses from the air 12 is a clean, accessible, and widely available renewable energy sourceāto generate electric power for recharging batteries 45 while using the batteries 45 to operate other components in the aircraft 77 such as the light control system . . . , Output voltage 220 V, frequency 50/60 Hz, the shaft speed at 3600 rpm at speed are 60 miles an hour for the voltage of 220v AC (or a lower rpm speed using a PTO), the alternator 20 charges an electric vehicle battery at 11.5 kW an hour, meaning a 60-kWh battery needed about 6 hours to charge the battery fully. The charger voltage regulator regulars the voltage in the inverter127 also can be used to convert AC to three-phase current or DC on a twin the system with a dual AC unit with a connecting port 277 AC output.
The alternator 20 chargers 35 unit turns air energy into electricity using the aerodynamic force from the rotor blades; when air flows across the blade, the air pressure on one side of the blade decreases. The difference in air pressure across the two sides of the blade creates both lift and drag. The force of the lift is stronger than the drag, and this causes the rotor to spin. The rotor connects to the alternator 20, either directly (if it's a direct drive alternator 20) or through a shaft and a series of gears 33 (or transmission) that speed up or slow down the rotation and allow for a physically smaller alternator 20. This translation of aerodynamic force to the rotation of an alternator 20 creates electricity.
The alternator 20 in
As stated before, the force of the air is the energy that is needed to make the alternator rotate. Rotation can come from two different sources and power from another propeller or fan blade. Each separate force will eventually create a rotating force on the propeller 40 alternator 20.
In
As an aircraft 77 moves in the air from its electric motor10, rotating the propeller 50 and pulls in air 12 to creating thrust, as the propeller turns creating thrust the air 12 is moving at a faster pace applying pressure on propeller 40, causing the air 14 to have a higher air pressure and more rapid movement to be applied to alternator 20 shaft 16, causing the shaft to rotate faster, the rotation of the shaft 16 causes the inner workings of the alternator 20 to spin faster and start producing electricity. The propeller 40 on the alternator 20 rotates at a lesser speed than the propeller 50 on the electric motor 10 unit.
The current law of electromagnetism as the alternator 20 and shaft 16 starts turning to start the induction process in the wire winding inside the alternator housing; once the conductor starts creating movement through a magnetic field creates an electric current and the current strength is equal to the rate of change through the magnetic field. So, the faster the copper coil rotates, the more electricity.
The electricity that produced is being extracted from the alternator 20 and sent to the power inverter 25. The method of retrieving the electrical energy, once the alternator 20 is rotating and creating electrical power created by the movement of the propeller 40, and sent to the power inverter 25 once the inverter 25 is supplying power to the battery's charger unit, charging the batteries 45 also provides electrical power to the electric motor controller 65.
Note: in this particular case, we get electric energy produced clockwise or counterclockwise direction (the movement of air from a propeller or air from just the wind they both will be causing the shaft to spin), (In
The operation of the airpower alternator can be understood by referring to
Running at its maximum displacement away from the propeller 40 and is tilted at an intermediate, the driveshaft 16, as shown in
In other embodiments, the propeller blade angling controls the system for slowing down the speed of the propeller's 40 blades and driveshaft 16 to accommodate changes in airspeed. Also, a gearbox 33, as shown in
In other embodiments, the propeller can provide adaptation to different weather conditions (with appropriate blade angle control unit) to give transformation to different air conditions.
In other embodiments, the constraining link may be extendible. In
In one application of embodiments of the invention, the braking 30 unit is for stopping or locking the alternator propeller and keeping the air from moving them in a park position when A charging system is not needed.
In another application of embodiments of the invention, the alternator unit can recharge batteries 45; even if the vehicle is not moving, the wind will apply force against the propellers of the aircraft, 77 is sitting on the ground in the direction of the wind, the Propeller blades will start rotating and start charging the aircraft batteries.
In another application of embodiments of the invention, all gasoline or diesel automobiles, trucks, boats, and airplanes required an alternator for charging batteries 45, which is connected to the engine to create the electrical energy for recharging the batteries 45 and maintaining the power within the vehicle as the engine runs; the process requires a connection to the batteries 45.
Now how the same process relates to a drone? On the basic drone, there are 4 high-speed motors driving propellers (not shown) at tens of thousands of revolutions per minute (RPM). The power systems on these drones operate at voltages ranging from 4.2 volts (v) for the micro drones, to 25 v for the high-powered mini quads, the generator or alternator charging the system connected in parallel, series, or series-parallel circuits for voltage output; for an For example, two 12 volts generators in a series can produce 24 volts, and 3 generators in a Series 36 volts and four at 48 volts plus the amps double up when it's connected in series, the a process capable of charging multiple types of batteries in addition to the LiPo, the charging unit is also capable of charging lead-acid batteries like what is in your car or NiCad batteries for other uses. The control circuitry can adjust the voltage and charge rate, along with the total charge applied to a battery.
In the illustration (
The battery charging system can often utilize many sources of output power, levels of direct current (DC) provided by the generator unit; furthermore, the generator charging unit with the ability to utilize DC output which also has multiple levels of outcomes that allows charging and flying voltage ranging from low 3.7 or higher.
The invention herein involved, the intended that all of the subject matter of the above a description that is shown with the accompanying drawings shall be interpreted merely as a demonstration of the illustrating of the inventive concept herein and shall not be construed as limiting the nature of the invention.