1. Field of the Invention
The present invention is related to chart display devices, and more particularly to a chart display device for displaying a photograph for land and marine use.
2. Description of the Related Art
When an aerial photograph is overlaid on a chart using typical/conventional methods to obtain an image for use in survey applications, for example, the aerial photograph, the chart, a travel route to a destination and other navigational information on the chart may be displayed in the image. When the travel route on the chart is displayed on the photograph, it may stand out from the aerial photograph depending on how it is displayed. In such a case, information items displayed on the chart, other than the travel route, are difficult to recognize, due to an overload of displayed information.
Disclosed embodiments of this application address these and other issues by displaying an image formed from multiple layers, such as aerial or satellite photograph layers and chart layers associated with land and sea areas, by blending the aerial photographs and the chart with variable transparency values. The transparency values may be obtained based on pixel data associated with one or more layers. Alpha blending technology may be used to obtain transparency values pixels using a depth or altitude database for pixels' depths or altitudes. When a first layer is an aerial or satellite photo and a second layer is a chart, a portion of the photo is provided over a land area, a portion of the chart is provided over a deep sea area, and a blended portion obtained from the photo and the chart is provided in a shallow sea area.
The present invention is directed to methods and apparatuses for processing images for blending image and/or data layers. According to a first aspect of the present invention, an image processing method comprises: accessing data representing a first layer and data representing a second layer; and generating a blended layer by adjusting a transparency of the first layer relatively to the second layer based on data associated with the first or second layer.
According to a second aspect of the present invention, an image processing apparatus comprises: an image data input unit for accessing data representing a first layer and data representing a second layer; and a blending unit for generating a blended layer by adjusting a transparency of the first layer relatively to the second layer based on data associated with the first or second layer.
According to a third aspect of the present invention, a chart display method comprises: accessing data representing a photo and data representing a chart; generating a blended data by adjusting a transparency depending on a depth value associated with every pixel in the photo or chart; and displaying the blended data.
According to a fourth aspect of the present invention, a chart display apparatus comprises: an image data accessing unit for accessing data representing a photo and data representing a chart; a blending unit for generating a blended data by adjusting a transparency depending on a depth value associated with every pixel in the photo or chart; and a displaying unit for displaying the blended data.
Further aspects and advantages of the present invention will become apparent upon reading the following detailed description in conjunction with the accompanying drawings, in which:
Aspects of the invention are more specifically set forth in the accompanying description with reference to the appended figures.
In one aspect, the present invention relates to methods and apparatuses that display an image that includes multiple layers, such as aerial or satellite photograph layers and chart layers associated with land and sea areas. Methods and apparatuses of the present invention display aerial photographs in the land area, a travel route to a destination, and a chart in a sea area. The aerial photographs and the chart are blended with variable transparency values, so that information items displayed on the aerial photographs and on the chart are clear and recognizable without difficulty.
To address these and other problems, the present invention implements methods and apparatuses that display an image that includes multiple layers, such as aerial or satellite photograph layers and chart layers associated with land and sea areas, where the aerial photographs and the chart are blended with variable transparency values, so that information items displayed on the aerial photographs and on the chart are recognizable without difficulty.
Processor 1 receives chart and photo data from the chart and photo data unit 2. Controller 4 controls how the received chart data and photo data are displayed. Based on controller commands, processor 1 displays a blended image using chart and photo data, on display 3. Chart and photo data unit 2 may be one or more of any number of devices providing chart and photo data. Such an input device may be, for example, a scanner for scanning images; a digital camera; a recording medium such as a CD-R, a floppy disk, a USB drive, etc.; a database system which stores images, photographs or charts; a network connection; an image processing system that outputs digital data, such as a computer application that processes chart and/or photo data; etc.
A user, e.g., a navigation specialist, may view the output of processor 1 or controller 4 via display 3 and may input commands to the processor 1 or controller 4 via a user input unit (not shown). A user input unit may include a keyboard and a mouse, but other conventional input devices could also be used.
According to the embodiment illustrated in
In a preferred embodiment, deeper sea regions may be set to be regions deeper than approximately 10 m.
With a display method and apparatus according to an exemplary embodiment of the present invention, information items displayed on the chart and which are different from a travel route are recognizable without difficulty. In addition, channels (which are areas of relatively deep water) located along seacoasts (which usually are regions of globally shallow water) are clearly identified.
In addition to performing blending of aerial photographs and charts in accordance with embodiments of the present invention, the processor 1 and controller 4 may perform additional image processing functions in accordance with commands received from a user input unit.
A printing unit 6 may receive the output of the processor 1 and may generate a hard copy of the processed photo and chart data. In addition or as an alternative to generating a hard copy of the output of the processor 1, the processed image data may be returned as an image file, e.g., via a portable recording medium or via a network (not shown). The output of processor 1 may also be sent to output unit 7 that performs further operations on the photo and chart data for various purposes. The output unit 7 may be a module that performs further processing of the image data, a database that collects and compares blended photo and chart data, etc.
Although the various components of
Chart and photo data unit 2, processor 1 and controller 4 may be software systems/applications, hardware, purpose built hardware such as FPGA, ASIC, etc.
In typical/conventional methods, transparency is setup automatically or by a user setup, so that transparency is applied consistently where two layers overlap. In other words, the transparency of an overlapped area of two layers has a fixed value, or a value that can be changed by a user menu.
Embodiments of the present invention automatically adjust transparency depending on another data layer, such as a data layer comprising values for depth.
To implement the blending method of the present invention, a transparency controller is implemented. In an exemplary embodiment, the transparency controller may set a transparency value at every pixel on the screen (S112). Furthermore, a pixel-based depth database is used (S108). A transparency controller and a pixel-based depth database did not exist in typical/conventional methods.
In an embodiment of the present invention, a pixel-based depth database is generated from existing data associated with a chart. In a preferred embodiment, a pixel-based depth database is generated by calculating interpolation values between known points. As seen in
To blend two or more layers, alpha blending technology is used in the present invention in an exemplary embodiment (S113). An alpha value is calculated at each pixel. The alpha value depends on relevant data at each pixel location. For example, the alpha value depends on the depth value (or any other relevant data) at each pixel location. Various algorithms may be used to derive an alpha value from a depth value, Depth values may be derived from a depth database.
In addition, an entire area of an image may be divided in several areas (S103). As many areas as needed may be obtained. Each area may be specified by an associated range of depth or altitude between a limit value A and a limit value B. In an exemplary embodiment, the limit A of a first area could be infinite altitude, and the limit B of the last area could be infinite depth. Furthermore, the transparency calculation algorithm used for one area may be different from the transparency calculation algorithm used for another area. Hence, a different transparency algorithm may be associated with each area (S104).
In
If the depth is positive (the Yes branch at step S11), then the area is either a flat area (zero depth), a shallow water region, or a deep water region. In an exemplary embodiment, deep sea regions may be set to be regions deeper than approximately 10 m, but other values may also be used instead of 10 m.
For the exemplary value of 10 m, a test is performed to determine of the depth of the tested region is less than 10 m (S12). If the depth is larger than 10 m (the No branch at step S12), then the tested region is a deep sea region, and no aerial photograph is displayed there. Only the chart is displayed in a deep sea region. In other words, the parameter α is set to zero (S15), and the displayed image Dis for the tested region is Dis=αX+(1−α)Y=Y=Chart (S16).
If the depth of the tested region is between 0 and 10 m, then the region is a shallow sea region. In this case, the parameter α is set to α=1−0.1 * Depth (S13), and the displayed image Dis for the tested region is
Dis=αX+(1−α)Y=(1−0.1 * Depth) * X+0.1 * Depth * Y (S16). Hence, the aerial photograph X is overlapped with the chart Y translucently in a shallow sea region. In a shallow sea region of higher depth, where, for example, depth approaches 10 m, α is smaller and approaches 0. Therefore, the displayed image Dis for the tested region Dis=αX+(1−α)Y has a larger contribution from the chart Y and a smaller contribution from the aerial photo X.
On the other hand, in a very shallow sea region of small depth where, for example, depth approaches 0 m, α is larger and approaches 1, and therefore the displayed image Dis for the tested region Dis=αX+(1−α)Y has a larger contribution from the aerial photo X and a smaller contribution from the chart Y.
With the blending procedure illustrated in
Other depth values for shallow water regions and deep water regions may also be used. Additionally, the photo data and chart data may be divided into more regions than deep water region, shallow water region and land region. Transparency factors may be associated with every region.
The shallow sea areas in
The methods and apparatuses of the present invention obtain images by blending two or more layers, using pixel-associated data such as depth or altitude. Other data associated with pixels may also be used. The images such obtained may be used in survey systems, such as in a GPS plotter for marine use.
Methods and apparatuses of the present invention are applicable to a variety of navigational images including aerial photos, charts, satellite photos, geographic photos, maps, atmospheric, planetary or other type of chart displaying properties associated with locations on a chart, etc. Multiple photos, charts, maps, and other imaging data associated with a displayed area may be blended using methods and apparatuses of the present invention, to clearly display a multitude of data on a blended image.
Although detailed embodiments and implementations of the present invention have been described above, it should be apparent that various modifications are possible without departing from the spirit and scope of the present invention.
The present application claims priority under 35 USC §119(e) to U.S. Provisional Application No. 60/935,823 filed Aug. 31, 2007, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4692880 | Merz et al. | Sep 1987 | A |
5379129 | Othmer et al. | Jan 1995 | A |
5409379 | Montag et al. | Apr 1995 | A |
6009188 | Cohen et al. | Dec 1999 | A |
7271814 | Anwar et al. | Sep 2007 | B2 |
7436405 | Losasso Petterson et al. | Oct 2008 | B2 |
7532770 | Pfister | May 2009 | B2 |
7532771 | Taylor et al. | May 2009 | B2 |
7567260 | Hamburg | Jul 2009 | B2 |
7633511 | Shum et al. | Dec 2009 | B2 |
7711162 | Li | May 2010 | B2 |
8217957 | Isaacson | Jul 2012 | B1 |
8411113 | Cornell et al. | Apr 2013 | B1 |
20020061131 | Sawhney et al. | May 2002 | A1 |
20030011610 | Kitsutaka | Jan 2003 | A1 |
20030235344 | Kang et al. | Dec 2003 | A1 |
20050057574 | Andrews | Mar 2005 | A1 |
20060104542 | Blake et al. | May 2006 | A1 |
20070071341 | Pfister | Mar 2007 | A1 |
20070236507 | Tigges | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
1729256 | Dec 2006 | EP |
1729256 | Dec 2006 | EP |
Entry |
---|
Carsten Daschsbacher et al., “Height-Field Synthesis by Non-Parametric Sampling”, Nov 18, 2005, VMV, p. 1-6. |
Anonymous, “Become a layer-blending expert”, Dec. 31, 2003, pp. 1-3, http://www.adobe.com/designcenter/photoshop/articles/phs8advblend/phs8advblend.pdf (retrieved from Internet on Apr. 8, 2009), XP002524044. |
Anonymous, “Navionics Platinum Chart Card—User's Guide”, Jun. 30, 2005, pp. 1-29, http://www.raymarine.com/submittedfiles/handbooks/e—series/81259—1—NGC.pdf, (retrieved from Internet on Apr. 11, 2009), XP002524045. |
Anonymous, “Raymarine—Raytech RNS”, Dec. 31, 2006, Chapters 5 and 6, pp. 1-16, http://www.raymarine.com/SubmittedFiles/Handbooks/raytech/RayTechRNS6—Handbook.pdf, (retrieved from Internet on Apr. 11, 2009), XP0025224046. |
Adam Cort, “Eletronic Charts”, Sailing, Dec. 31, 2004, pp. 1-3, http://www.gpsnavx.com/pdf/Sailing.pdf, (retrieved from Internet on Apr. 14, 2009), XP002524047. |
Anonymous, “Furuno-NavNet 3D”, Nov. 8, 2007, pp. 1-2, http://www.naucat.com/vijesti/category/asp?GID=2&1an=en&idVijesti=1258>, (retrieved from Internet on Apr. 9, 2009), XP002524048. |
International Preliminary Report on Patentability (IPRP) dated Mar. 2, 2010, of Corresponding International Application No. PCT/IB2008/002187. |
UKIPO Office Action dated Jan. 24, 2012 of Corresponding Foreign Application No. GB0917484.8. |
Number | Date | Country | |
---|---|---|---|
20090067750 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60935823 | Aug 2007 | US |