Chasing solvent for enhanced recovery processes

Information

  • Patent Grant
  • 11142681
  • Patent Number
    11,142,681
  • Date Filed
    Friday, June 8, 2018
    5 years ago
  • Date Issued
    Tuesday, October 12, 2021
    2 years ago
Abstract
Methods to optimize solvent use in solvent-dominated processes for recovery of hydrocarbons. Methods include injecting a solvent composition into a reservoir at a pressure above a liquid/vapor phase change of the solvent composition; injecting a chaser into the reservoir at a pressure above the liquid/vapor phase change of the solvent composition; allowing the solvent composition to mix with hydrocarbons in the reservoir and at least partially dissolve into the hydrocarbons to produce a solvent/hydrocarbon mixture; reducing the pressure in the reservoir below the liquid/vapor phase change pressure of the solvent composition thereby flowing at least a fraction of the solvent/hydrocarbon mixture from the reservoir; and repeating these steps as required.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from Canadian Patent Application 2,972,203 filed Jun. 29, 2017 entitled CHASING SOLVENT FOR ENHANCED RECOVERY PROCESSES.


BACKGROUND
Field of Disclosure

The present disclosure relates generally to the recovery of hydrocarbons. More specifically, the disclosure relates to methods for optimizing solvent use and reducing the solvent volume used per unit of hydrocarbon production in solvent-dominated processes for recovering bitumen and heavy oil from underground reservoirs.


Description of Related Art

This section is intended to introduce various aspects of the art that may be associated with the present disclosure. This discussion aims to provide a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as an admission of prior art.


Modern society is greatly dependent on the use of hydrocarbon resources for fuels and chemical feedstock. Hydrocarbons are generally found in subsurface formations that can be termed “reservoirs.” Removing hydrocarbons from the reservoirs depends on numerous physical properties of the subsurface formations, such as the permeability of the rock containing the hydrocarbons, the ability of the hydrocarbons to flow through the subsurface formations, and the proportion of hydrocarbons present, among other things. Easily harvested sources of hydrocarbons are dwindling, leaving less accessible sources to satisfy future energy needs. As the prices of hydrocarbons increase, the less accessible sources become more economically attractive.


Recently, the harvesting of oil sands to remove heavy oil has become more economical. Hydrocarbon removal from oil sands may be performed by several techniques. For example, a well can be drilled in an oil sand reservoir and steam, hot gas, solvents, or a combination thereof, can be injected to release the hydrocarbons. The released hydrocarbons may be collected by wells and brought to the surface.


At the present time, solvent-dominated recovery processes (SDRPs) are not commonly used as commercial recovery processes to produce highly viscous oil. Solvent-dominated means that the injectant comprises greater than 50 percent (%) by mass of solvent or that greater than 50% of the produced oil's viscosity reduction is obtained by chemical solvation rather than by thermal means. Highly viscous oils are produced primarily using thermal methods in which heat, typically in the form of steam, is added to the reservoir.


Cyclic solvent-dominated recovery processes (CSDRPs) are a subset of SDRPs. A CSDRP may be a non-thermal recovery method that uses a solvent to mobilize viscous oil by cycles of injection and production. One possible laboratory method for roughly comparing the relative contribution of heat and dilution to the viscosity reduction obtained in a proposed oil recovery process is to compare the viscosity obtained by diluting an oil sample with a solvent to the viscosity reduction obtained by heating the sample.


In a CSDRP, a solvent composition may be injected through a well into a subterranean formation, causing pressure to increase. Next, the pressure is lowered and reduced-viscosity oil is produced to the surface of the subterranean formation through the same well through which the solvent was injected. Multiple cycles of injection and production may be used. CSDRPs may be particularly attractive for thinner or lower-oil-saturation reservoirs. In such reservoirs, thermal methods utilizing heat to reduce viscous oil viscosity may be inefficient due to excessive heat loss to the overburden and/or underburden and/or reservoir with low oil content.


References describing specific CSDRPs include: Canadian Patent No. 2,349,234 (Lim et al.); G. B. Lim et al., “Three-dimensional Scaled Physical Modeling of Solvent Vapour Extraction of Cold Lake Bitumen,” The Journal of Canadian Petroleum Technology, 35(4), pp. 32-40 (April 1996); G. B. Lim et al., “Cyclic Stimulation of Cold Lake Oil Sand with Supercritical Ethane,” SPE Paper 30298 (1995); U.S. Pat. No. 3,954,141 (Allen et al.); and M. Feali et al., “Feasibility Study of the Cyclic VAPEX Process for Low Permeable Carbonate Systems,” International Petroleum Technology Conference Paper 12833 (2008).


The family of processes within the Lim et al. references describes a particular SDRP that is also a CSDRP. These processes relate to the recovery of heavy oil and bitumen from subterranean reservoirs using cyclic injection of a solvent in the liquid state which vaporizes upon production.


With reference to FIG. 1, which is a simplified diagram based on Canadian Patent No. 2,349,234 (Lim et al.), one CSDRP process is described as a single well method for cyclic solvent stimulation, the single well preferably having a horizontal wellbore portion and a perforated liner section. A vertical wellbore 101 driven through overburden 102 into reservoir 103 and is connected to a horizontal wellbore portion 104. The horizontal wellbore portion 104 comprises a perforated liner section 105 and an inner bore 106. The horizontal wellbore portion comprises a downhole pump 107. In operation, solvent or viscosified solvent is driven down and diverted through the perforated liner section 105 where it percolates into reservoir 103 and penetrates reservoir material to yield a reservoir penetration zone 108. Oil dissolved in the solvent or viscosified solvent flows into the well and is pumped by downhole pump 107 through an inner bore 106 through a motor at the wellhead 109 to a production tank 110 where oil and solvent are separated and the solvent is recycled to be reused in the process. Each instance of injection of solvent and production of oil dissolved in solvent is considered a “cycle.”


In a SDRP, one of the key metrics to measure the efficiency of the process is solvent intensity (solvent volume used per unit of hydrocarbon production), which may also be expressed as a solvent to oil ratio (ratio of solvent injected to oil produced), similar to the steam to oil ratio used in thermal recovery processes. In a CSDRP, solvent volumes injected grow cycle over cycle, and the efficiency of the process is reduced. Solvents can also vary in price and availability. Therefore, efficient and effective use and recovery of solvents are key to the economics and robustness of a SDRP.


SUMMARY

The present disclosure provides methods for optimizing solvent use and reducing solvent intensity in CSDRP. In some embodiments, the methods include injecting a solvent composition into an underground reservoir at a pressure above a liquid/vapor phase change pressure of the solvent composition; injecting a chaser into the reservoir at a pressure above the liquid/vapor phase change pressure of the solvent composition; allowing the solvent composition to mix with hydrocarbons in the reservoir and at least partially dissolve into the hydrocarbons to produce a solvent/hydrocarbon mixture; reducing the pressure in the reservoir below the liquid/vapor phase change pressure of the solvent composition thereby flowing at least a fraction of the solvent/hydrocarbon mixture from the reservoir; and repeating these steps as required. In other embodiments, the chaser may comprise between 1% and 80% of the total injected volume at any given cycle, wherein “total injected volume” is understood to mean the aggregate volume of solvent composition and chaser injected during a given cycle. The ratio of chaser volume to the total injected volume may increase, decrease or remain the same over consecutive cycles.


The chaser may replace part of the solvent to be injected in CSDRP to help reduce the solvent use, restore or maintain the reservoir pressure, and also to push the solvent further into the reservoir for better mixing with oil. The chaser can be water, gas, or any other non-hydrocarbon fluid. The chaser can be wholly or partially obtained from the same operation of the CSDRP, or derived from other commercial operations (e.g. cyclic steam stimulation, steam-assisted gravity drainage, etc.), or a different source that is readily available on site. For example, produced water from CSDRP, disposal water at elevated temperature from the thermal operations, flue gas, or any other sources that contain one or more components of water, C1, CO2, N2, etc. may provide sources of chaser agents.


The foregoing has broadly outlined the features of the present disclosure so that the detailed description that follows may be better understood. Additional features will also be described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the disclosure will become apparent from the following description, appending claims and the accompanying drawings, which are briefly described below.



FIG. 1 is an exemplary schematic of a cyclic solvent-dominated recovery process.



FIG. 2 is an exemplary schematic of solvent composition “fingering” into oil sands during CSDRP.



FIG. 3 is an exemplary schematic of a low utilization zone of solvent composition in CSDRP.



FIG. 4 is an exemplary schematic of chaser replacing solvent composition in a low utilization zone in CSDRP.



FIG. 5 is an exemplary schematic of a CSDRP incorporating solvent chasing according to certain aspects of the present disclosure.



FIG. 6 is a graph of simulated injected solvent composition volumes over CSDRP cycles.



FIG. 7 is a graph of simulated Oil to Injected Solvent Ratios over CSDRP cycles.



FIG. 8 is a graph of simulated solvent recovery percentages over CSDRP cycles.



FIG. 9 is a graph of retained solvent volumes over CSDRP cycles.



FIG. 10 is a flow chart of a method of recovering hydrocarbons according to the present disclosure.





It should be noted that the figures are merely examples and no limitations on the scope of the present disclosure are intended thereby. Further, schematics are generally not drawn to scale, but are drafted for purposes of convenience and clarity in illustrating various aspects of the disclosure. Certain features and components herein may be shown exaggerated in scale or in schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. When referring to the figures described herein, the same reference numerals may be referenced in multiple figures for the sake of simplicity.


DETAILED DESCRIPTION

To promote an understanding of the principles of the disclosure, reference will now be made to the features illustrated in the drawings and no limitation of the scope of the disclosure is hereby intended. Any alterations and further modifications, and any further applications of the principles of the disclosure as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates. For the sake of clarity, some features not relevant to the present disclosure may not be shown in the drawings.


At the outset, for ease of reference, certain terms used in this application and their meanings as used in this context are set forth. To the extent a term used herein is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Further, the present techniques are not limited by the usage of the terms shown below, as all equivalents, synonyms, new developments, and terms or techniques that serve the same or a similar purpose are considered to be within the scope of the present claims.


As one of ordinary skill would appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name only. In the following description and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus, should be interpreted to mean “including, but not limited to.”


A “hydrocarbon” is an organic compound that primarily includes the elements of hydrogen and carbon, although nitrogen, sulfur, oxygen, metals, or any number of other elements may be present in small amounts. Hydrocarbons generally refer to components found in heavy oil or in oil sands. Hydrocarbon compounds may be aliphatic or aromatic, and may be straight chained, branched, or partially or fully cyclic.


“Bitumen” is a naturally occurring heavy oil material. Generally, it is the hydrocarbon component found in oil sands. Bitumen can vary in composition depending upon the degree of loss of more volatile components. It can vary from a very viscous, tar-like, semi-solid material to solid forms. The hydrocarbon types found in bitumen can include aliphatics, aromatics, resins, and asphaltenes. A typical bitumen might be composed of:

    • 19 weight (wt.) percent (%) aliphatics (which can range from 5 wt. % to 30 wt. % or higher);
    • 19 wt. % asphaltenes (which can range from 5 wt. % to 30 wt. % or higher);
    • 30 wt. % aromatics (which can range from 15 wt. % to 50 wt. % or higher);
    • 32 wt. % resins (which can range from 15 wt. % to 50 wt. % or higher); and
    • some amount of sulfur (which can range in excess of 7 wt. %), based on the total bitumen weight.


In addition, bitumen can contain some water and nitrogen compounds ranging from less than 0.4 wt. % to in excess of 0.7 wt. %. The percentage of the hydrocarbon found in bitumen can vary. The term “heavy oil” includes bitumen as well as lighter materials that may be found in a sand or carbonate reservoir.


“Heavy oil” includes oils which are classified by the American Petroleum Institute (“API”), as heavy oils, extra heavy oils, or bitumens. The term “heavy oil” includes bitumen. Heavy oil may have a viscosity of about 1,000 centipoise (cP) or more, 10,000 cP or more, 100,000 cP or more, or 1,000,000 cP or more. In general, a heavy oil has an API gravity between 22.3° API (density of 920 kilograms per meter cubed (kg/m3) or 0.920 grams per centimeter cubed (g/cm3)) and 10.0° API (density of 1,000 kg/m3 or 1 g/cm3). An extra heavy oil, in general, has an API gravity of less than 10.0° API (density greater than 1,000 kg/m3 or 1 g/cm3). For example, a source of heavy oil includes oil sand or bituminous sand, which is a combination of clay, sand, water and bitumen.


The term “viscous oil” as used herein means a hydrocarbon, or mixture of hydrocarbons, that occurs naturally and that has a viscosity of at least 10 cP at initial reservoir conditions. Viscous oil includes oils generally defined as “heavy oil” or “bitumen.” Bitumen is classified as an extra heavy oil, with an API gravity of about 10° or less, referring to its gravity as measured in degrees on the API Scale. Heavy oil has an API gravity in the range of about 22.3° to about 10°. The terms viscous oil, heavy oil, and bitumen are used interchangeably herein since they may be extracted using similar processes.


In-situ is a Latin phrase for “in the place” and, in the context of hydrocarbon recovery, refers generally to a subsurface hydrocarbon-bearing reservoir. For example, in-situ temperature means the temperature within the reservoir. In another usage, an in-situ oil recovery technique is one that recovers oil from a reservoir within the earth.


The term “subterranean formation” refers to the material existing below the Earth's surface. The subterranean formation may comprise a range of components, e.g. minerals such as quartz, siliceous materials such as sand and clays, as well as the oil and/or gas that is extracted. The subterranean formation may be a subterranean body of rock that is distinct and continuous. The terms “reservoir” and “formation” may be used interchangeably.


The term “wellbore” as used herein means a hole in the subsurface made by drilling or inserting a conduit into the subsurface. A wellbore may have a substantially circular cross section or any other cross-sectional shape. The term “well,” when referring to an opening in the formation, may be used interchangeably with the term “wellbore.”


The articles “the,” “a” and “an” are not necessarily limited to mean only one, but rather are inclusive and open ended to include, optionally, multiple such elements.


As used herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numeral ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and are considered to be within the scope of the disclosure.


“At least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entity in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.


Where two or more ranges are used, such as but not limited to 1 to 5 or 2 to 4, any number between or inclusive of these ranges is implied.


As used herein, the phrases “for example,” “as an example,” and/or simply the terms “example” or “exemplary,” when used with reference to one or more components, features, details, structures, methods and/or figures according to the present disclosure, are intended to convey that the described component, feature, detail, structure, method and/or figure is an illustrative, non-exclusive example of components, features, details, structures, methods and/or figures according to the present disclosure. Thus, the described component, feature, detail, structure, method and/or figure is not intended to be limiting, required, or exclusive/exhaustive; and other components, features, details, structures, methods and/or figures, including structurally and/or functionally similar and/or equivalent components, features, details, structures, methods and/or figures, are also within the scope of the present disclosure. Any embodiment or aspect described herein as “exemplary” is not to be construed as preferred or advantageous over other embodiments.


CSDRP Process Description


During CSDRP, a reservoir may accommodate injected solvent composition and non-solvent fluid (also referred to as “additional injectants” or “non-solvent injectants”) by dilating a reservoir pore space by applying an injection pressure. As illustrated in FIG. 2, the solvent composition 202 injected through wellbore 204 “fingers” into the oil sands 206. The solvent composition 202 then mixes with the viscous oil to yield a reduced viscosity mixture with higher mobility than the native viscous oil. “Fingering” may occur when two fluids of different viscosities come in contact with one another and one fluid penetrates the other in a finger-like pattern, that is, in an uneven manner.


The primary mixing mechanism of the solvent with the oil may be dispersive mixing, not diffusion. The solvent composition injected in each cycle may replace the volume of previously recovered fluid and may add additional fluid to contact previously uncontacted viscous oil. The injection well and the production well may utilize a common wellbore.


While producing hydrocarbon during CSDRP, pressure may be reduced and the solvent composition, any non-solvent injectant, and viscous oil may flow back to the same well in which the solvent and non-solvent injectant were injected, to be produced to the surface of the reservoir as produced fluid. The produced fluid may be a mixture of the solvent composition and viscous oil (herein referred as “solvent/hydrocarbon mixture”). Each instance of solvent injection and production of a solvent/hydrocarbon mixture is considered a CSDRP cycle.


As the pressure in the reservoir falls, the produced fluid rate may decline with time. Production of the produced fluid may be governed by any of the following mechanisms: gas drive via solvent vaporization and native gas exsolution, compaction drive as the reservoir dilation relaxes, fluid expansion, and gravity-driven flow. The relative importance of the mechanisms depends on static properties such as solvent properties, native GOR (Gas to Oil Ratio), fluid and rock compressibility characteristics, and/or reservoir depth. The relative importance of the mechanism may depend on operational practices such as solvent injection volume, producing pressure, and/or viscous oil recovery to-date, among other factors.


CSDRP—Solvent Composition


The solvent may be a light, but condensable, hydrocarbon or mixture of hydrocarbons comprising ethane, propane, butane, or pentane. The solvent may comprise at least one of ethane, propane, butane, pentane, and carbon dioxide. The solvent may comprise greater than 50% C2-C5 hydrocarbons on a mass basis. The solvent may be greater than 50 mass % propane, optionally with diluent when it is desirable to adjust the properties of the injectant to improve performance.


Additional injectants may include CO2, natural gas, C5+ hydrocarbons, ketones, and alcohols. Non-solvent injectants that are co-injected with the solvent may include steam, non-condensable gas, or hydrate inhibitors. The solvent composition may comprise at least one of diesel, viscous oil, natural gas, bitumen, diluent, C5+ hydrocarbons, ketones, alcohols, non-condensable gas, water, biodegradable solid particles, salt, water soluble solid particles, and solvent soluble solid particles.


To reach a desired injection pressure of the solvent composition, a viscosifier and/or a solvent slurry may be used in conjunction with the solvent. The viscosifier may be useful in adjusting solvent viscosity to reach desired injection pressures at available pump rates. The viscosifier may include diesel, viscous oil, bitumen, and/or diluent. The viscosifier may be in the liquid, gas, or solid phase. The viscosifier may be soluble in either one of the components of the injected solvent and water. The viscosifier may transition to the liquid phase in the reservoir before or during production. In the liquid phase, the viscosifiers are less likely to increase the viscosity of the produced fluids and/or decrease the effective permeability of the formation to the produced fluids.


The solvent composition may be as described in Canadian Patent No. 2,645,267 (Chakrabarty, issued Apr. 16, 2013). The solvent composition may comprise (i) a polar component, the polar component being a compound comprising a non-terminal carbonyl group; and (ii) a non-polar component, the non-polar component being a substantially aliphatic substantially non-halogenated alkane. The solvent composition may have a Hansen hydrogen bonding parameter of 0.3 to 1.7 (or 0.7 to 1.4). The solvent composition may have a volume ratio of the polar component to non-polar component of 10:90 to 50:50 (or 10:90 to 24:76, 20:80 to 40:60, 25:75 to 35:65, or 29:71 to 31:69). The polar component may be, for instance, a ketone or acetone. The non-polar component may be, for instance, a C2-C7 alkane, a C2-C7 n-alkane, an n-pentane, an n-heptane, or a gas plant condensate comprising alkanes, naphthenes, and aromatics. For further details and explanation of the Hansen Solubility Parameter System see, for example, Hansen, C. M. and Beerbower, Kirk-Othmer, Encyclopedia of Chemical Technology, (Suppl. Vol. 2nd Ed), 1971, pp 889-910 and “Hansen Solubility Parameters A User's Handbook” by Charles Hansen, CRC Press, 1999.


The solvent composition may be as described in Canadian Patent No. 2,781,273 (Chakrabarty, issued May 20, 2014). The solvent composition may comprise (i) an ether with 2 to 8 carbon atoms; and (ii) a non-polar hydrocarbon with 2 to 30 carbon atoms. Ether may have 2 to 8 carbon atoms. Ether may be di-methyl ether, methyl ethyl ether, di-ethyl ether, methyl iso-propyl ether, methyl propyl ether, di-isopropyl ether, di-propyl ether, methyl iso-butyl ether, methyl butyl ether, ethyl iso-butyl ether, ethyl butyl ether, iso-propyl butyl ether, propyl butyl ether, di-isobutyl ether, or di-butyl ether. Ether may be di-methyl ether. The non-polar hydrocarbon may a C2-C30 alkane. The non-polar hydrocarbon may be a C2-C5 alkane. The non-polar hydrocarbon may be propane. The ether may be di-methyl ether and the hydrocarbon may be propane. The volume ratio of ether to non-polar hydrocarbon may be 10:90 to 90:10; 20:80 to 70:30; or 22.5:77.5 to 50:50.


The solvent composition may comprise at least 5 mol % of a high-aromatics component (based upon total moles of the solvent composition) comprising at least 60 wt. % aromatics (based upon total mass of the high-aromatics component). As described in Canadian Patent No. 2,900,178 (Wang et al., issued Sep. 6, 2016), one suitable and inexpensive high-aromatics component is gas oil from a catalytic cracker of a hydrocarbon refining process, also known as a light catalytic gas oil (LCGO).


CSDRP—Phase of Injected Solvent


The solvent composition may be injected into the well at a pressure in the underground reservoir above a liquid/vapor phase change pressure such that at least 25 mass % of the solvent enters the reservoir in the liquid phase. At least 50, 70, or even 90 mass % of the solvent may enter the reservoir in the liquid phase. Injection of the solvent composition as a liquid may be preferred for increasing solvent injection pressure. The solvent composition may be injected into the well at rates and pressures such that immediately after completing injection into the well at least 25 mass % of the injected solvent is in a liquid state in the reservoir (e.g., underground).


A fraction of the solvent may be injected in the solid phase in order to mitigate adverse solvent fingering, increase injection pressure, and/or keep the average distance of the solvent closer to the wellbore than in the case of pure liquid phase injection. Less than 20 mass % of the injectant may enter the reservoir in the solid phase. Less than 10 mass % or less than 50 mass % of the solvent may enter the reservoir in the solid phase. Once in the reservoir, the solid phase of the solvent may transition to a liquid phase before or during production to prevent or mitigate reservoir permeability reduction during production.


Injection of the solvent as a vapor may assist uniform solvent distribution along a horizontal well, particularly when variable injection rates are targeted. Vapor injection in a horizontal well may facilitate an upsize in the port size of installed inflow control devices (ICDs) that minimize the risk of plugging the ICDs. Injecting the solvent as a vapor may increase the ability to pressurize the reservoir to a desired pressure by lowering effective permeability of the injected vapor in a formation comprising liquid viscous oil.


A non-condensable gas may be injected into the reservoir to achieve a desired pressure, along with or followed by injection of the solvent. Injecting a primarily non-condensable gas followed by primarily solvent injection (where primarily means greater than 50 mass % of the mixture of non-condensable gas and solvent) may provide a way to maintain the desired injection pressure target. A non-solvent injectant in the vapor phase, such as CO2 or natural gas, may be injected, followed by injection of the solvent composition.


Although a CSDRP may be predominantly a non-thermal process in that heat is not used principally to reduce the viscosity of the viscous oil, the use of heat is not excluded. Heating may be beneficial to improve performance, improve process start-up, or provide flow assurance during production. For start-up, low-level heating (for example, less than 100° C.) may be appropriate. Low-level heating of the solvent prior to injection may also be performed to prevent hydrate formation in tubulars and in the reservoir. Heating to higher temperatures may benefit recovery. Two non-exclusive scenarios of injecting a heated solvent are as follows. In one scenario, vapor solvent would be injected and would condense before it reaches the bitumen. In another scenario, a vapor solvent would be injected at up to 200° C. and would become a supercritical fluid at downhole operating pressure.


CSDRP—Pore Volume


As described in Canadian Patent No. 2,734,170 (Dawson et al., issued Sep. 24, 2013), one method of managing fluid injection in a CSDRP is for the cumulative volume injected over all injection periods in a given cycle (VINJECTANT) to equal the net reservoir voidage (VVOIDAGE) resulting from previous injection and production cycles plus an additional volume (VADDITIONAL), for example approximately 2-15%, or approximately 3-8% of the pore volume (PV) of the reservoir volume associated with the well pattern. In mathematical terms, the volume (V) may be represented by:

VINJECTANT=VVOIDAGE+VADDITIONAL


One way to approximate the net in-situ volume of fluids produced is to determine the total volume of non-solvent liquid hydrocarbon fraction produced (VPRODUCED OIL) and aqueous fraction produced (VPRODUCED WATER) minus the net injectant fractions produced (VINJECTED SOLVENT−VPRODUCED SOLVENT). For example, in the case where 100% of the injectant is solvent and the reservoir contains only oil and water, an equation that represents the net in-situ volume of fluids produced (VVOIDAGE) is:

VVOIDAGE=VOILPRODUCED+VWATERPRODUCED−(VSOLVENTINJECTED−VSOLVENTPRODUCED)

CSDRP—Diluent


In the context of this specification, diluent means a liquid compound that can be used to dilute the solvent and can be used to manipulate the viscosity of any resulting solvent/hydrocarbon mixture. By such manipulation of the viscosity of the solvent/hydrocarbon (and diluent) mixture, the invasion, mobility, and distribution of solvent in the reservoir can be controlled so as to increase viscous oil production.


The diluent is typically a viscous hydrocarbon liquid, especially a C4-C20 hydrocarbon, or mixture thereof, may be locally produced and may be used to thin bitumen to pipeline specifications. Pentane, hexane, and heptane may be components of such diluents. Bitumen itself can be used to modify the viscosity of the solvent, often in conjunction with ethane solvent.


The diluent may have an average initial boiling point close to the boiling point of pentane (36° C.) or hexane (69° C.) though the average boiling point (defined further below) may change with reuse as the mix changes (some of the solvent originating among the recovered viscous oil fractions). More than 50% by volume of the diluent may have an average boiling point lower than the boiling point of decane (174° C.). More than 75% by volume, such as more than 80% by volume or more than 90% by weight of the diluent, may have an average boiling point between the boiling point of pentane and the boiling point of decane. The diluent may have an average boiling point close to the boiling point of hexane (69° C.) or heptane (98° C.), or even water (100° C.).


More than 50% by weight of the diluent (such as more than 75% or 80% by weight or more than 90% by weight) may have a boiling point between the boiling points of pentane and decane. More than 50% by weight of the diluent may have a boiling point between the boiling points of hexane (69° C.) and nonane (151° C.), particularly between the boiling points of heptane (98° C.) and octane (126° C.).


CSDRP—Reservoir Performance


As described in Canadian Patent No. 2,900,179 (Wang et al.), CSDRP performance may further be improved by using a solvent mixture that has multiple components with different saturation pressures at a certain temperature, i.e., the solvent mixture exhibits liquid-vapor phase behavior over a range of pressures, to address drops in reservoir pressure changes that increase bitumen viscosity and reduce bitumen production rates.


The solvent composition may comprise multiple components with different saturation pressures at a certain temperature. The solvent composition may be in a liquid phase upon injection. A viscosity-reducing component (greater than 50 mol %) of the solvent composition, such as propane or dimethyl ether, may remain in the liquid phase during most of the production period, playing its role of reducing the bitumen viscosity. The solvent composition may also include more volatile components (e.g., C1 or C2) that can easily vaporize when production pressure drops, providing additional gas drive to enhance production. To enhance the performance further, the difference between the pressure at which gas exsolution initiates and a lower bound where all or most solvent has been vaporized may be maximized. This may be achieved by replacing a small fraction of the viscosity-reducing component (e.g., 5-20 mol %) with a heavier solvent having higher solubility and lower vapor pressure.


The solvent composition may thus have two components having a difference in vaporization pressure (at the temperature of the reservoir) greater than 200 kPa. The first component may comprise greater than 50 mol % ethane, propane, butane, pentane, heptane, hexane, dimethyl ether, or a combination thereof, based upon total moles of the first component. The first component may comprise between 5 mol % and 30 mol % of hydrocarbons with a molecular weight of at least 58 g/mol, based upon total moles of the first component. The first component may comprise at least 50 mol % diluent, based upon total moles of the first component.


The second component may comprise at least 10 mol % methane, based on total moles of the solvent composition. The second component may have an average molecular weight of less than 33 g/mol. The second component may comprise greater than 50 mol % methane, ethane, carbon dioxide, or a combination thereof, based upon total moles of the second component.


The first component may comprise (i) a polar component, the polar component being a compound comprising a non-terminal carbonyl group; and (ii) a non-polar component, the non-polar component being a substantially aliphatic substantially non-halogenated alkane. The first component may have a Hansen hydrogen bonding parameter of 0.3 to 1.7 and the volume ratio of the polar component to the non-polar component may be 10:90 to 50:50. The polar component may be a ketone or acetone. The non-polar component may be a C2-C7 alkane, a C2-C7 n-alkane, an n-pentane, an n-heptane, or a gas plant condensate comprising alkanes, naphthenes, and aromatics.


The first component may comprise (i) an ether with 2 to 8 carbon atoms; and (ii) a non-polar hydrocarbon with 2 to 30 carbon atoms. The ether may be di-methyl ether, methyl ethyl ether, di-ethyl ether, methyl iso-propyl ether, methyl propyl ether, di-isopropyl ether, di-propyl ether, methyl iso-butyl ether, methyl butyl ether, ethyl iso-butyl ether, ethyl butyl ether, iso-propyl butyl ether, propyl butyl ether, di-isobutyl ether, or di-butyl ether. The non-polar hydrocarbon may be a C2-C30 alkane, a C2-05 alkane, or propane. The volume ratio of the ether to the non-polar hydrocarbon may be 10:90 to 90:10.









TABLE 1







Operating Ranges for a CSDRP









Parameter
Broader Option
Narrower Option





Cumulative
Fill-up estimated pattern pore
Inject a cumulative volume in a


injectant volume
volume plus a cumulative 3-8% of
cycle, beyond a primary pressure


per cycle
estimated pattern pore volume; or
threshold, of 3-8% of estimated



inject, beyond a primary pressure
pore volume.



threshold, for a cumulative period of



time (e.g. days to months); or



inject, beyond a primary pressure



threshold, a cumulative of 3-8% of



estimated pore volume.


Injectant
Main solvent (>50 mass %) C2-C5.
Main solvent (>50 mass %) is


composition,
Alternatively, wells may be
propane (C3) or ethane (C2).


main
subjected to compositions other than



main solvents to improve well



pattern performance (i.e. CO2



flooding of a mature operation or



altering in-situ stress of reservoir).



CO2


Injectant
Additional injectants may include
Only diluent, and only when


composition,
CO2 (up to about 30 mass %), C3+,
needed to achieve adequate


additive
viscosifiers (e.g. diesel, viscous oil,
injection pressure. Or, a polar



bitumen, diluent), ketones, alcohols,
compound having a non-terminal



sulphur dioxide, hydrate inhibitors,
carbonyl group (e.g. a ketone, for



steam, non-condensable gas,
instance acetone).



biodegradable solid particles, salt,



water soluble solid particles, or



solvent soluble solid particles.


Injectant phase &
Solvent injected such that at the end
Solvent injected as a liquid, and


Injection
of the injection cycle, greater than
most solvent injected just under


pressure
25% by mass of the solvent exists as
fracture pressure and above



a liquid and less than 50% by mass
dilation pressure,



of the injectant exists in the solid
Pfracture > Pinjection > Pdilation > Pvapor



phase in the reservoir, with no



constraint as to whether most



solvent is injected above or below



dilation pressure or fracture



pressure.


Injectant
Enough heat to prevent hydrates and
Enough heat to prevent hydrates


temperature
locally enhance wellbore inflow
with a safety margin,



consistent with Boberg-Lantz mode
Thydrate + 5° C. to Thydrate + 50° C.


Injection rate
0.1 to 10 m3/day per meter of
0.2 to 6 m3/day per meter of


during
completed well length (rate
completed well length (rate


continuous
expressed as volumes of liquid
expressed as volumes of liquid


injection
solvent at reservoir conditions).
solvent at reservoir conditions).




Rates may also be designed to




allow for limited or controlled




fracture extent, at fracture




pressure or desired solvent




conformance depending on




reservoir properties.


Threshold
Any pressure above initial reservoir
A pressure between 90% and


pressure
pressure.
100% of fracture pressure.


(pressure at


which solvent


continues to be


injected for


either a period of


time or in a


volume amount)


Well length
As long of a horizontal well as can
500 m-1500 m (commercial



practically be drilled; or the entire
well).



pay thickness for vertical wells.


Well
Horizontal wells parallel to each
Horizontal wells parallel to each


configuration
other, separated by some regular
other, separated by some regular



spacing of 20-1000 m.
spacing of 50-600 m.



Also vertical wells, high angle slant



wells & multi-lateral wells. Also



infill injection and/or production



wells (of any type above) targeting



bypassed hydrocarbon from



surveillance of pattern performance.


Well orientation
Orientated in any direction.
Horizontal wells orientated




perpendicular to (or with less




than 30 degrees of variation) the




direction of maximum horizontal




in-situ stress.


Minimum
Generally, the range of the MPP
A low pressure below the vapor


producing
should be, on the low end, a
pressure of the main solvent,


pressure (MPP)
pressure significantly below the
ensuring vaporization, or, in the



vapor pressure, ensuring
limited vaporization scheme, a



vaporization; and, on the high-end, a
high pressure above the vapor



high pressure near the native
pressure. At 500 m depth with



reservoir pressure. For example,
pure propane, 0.5 MPa (low)-1.5 MPa



perhaps 0.1 MPa (megapascals)-5 MPa,
(high), values that



depending on depth and mode
bound the 800 kPa vapor



of operation (all-liquid or limited
pressure of propane.



vaporization).


Oil rate
Switch to injection when rate equals
Switch when the instantaneous



2 to 50% of the max rate obtained
oil rate declines below the



during the cycle. Alternatively,
calendar day oil rate (CDOR)



switch when absolute rate equals a
(e.g. total oil/total cycle length).



pre-set value. Alternatively, well is
Likely most economically



unable to sustain hydrocarbon flow
optimal when the oil rate is at



(continuous or intermittent) by
about 0.5 × CDOR.



primary production against
Alternatively, switch to injection



backpressure of gathering system or
when rate equals 20-40% of the



well is “pumped off” unable to
max rate obtained during the



sustain flow from artificial lift.
cycle.



Alternatively, well is out of sync



with adjacent well cycles.


Gas rate
Switch to injection when gas rate
Switch to injection when gas rate



exceeds the capacity of the pumping
exceeds the capacity of the



or gas venting system. Well is
pumping or gas venting system.



unable to sustain hydrocarbon flow
During production, an optimal



(continuous or intermittent) by
strategy is one that limits gas



primary production against
production and maximizes liquid



backpressure of gathering system
from a horizontal well.



with or without compression



facilities.


Oil to Solvent
Begin another cycle if the OISR of
Begin another cycle if the OISR


Ratio
the just completed cycle is above
of the just completed cycle is



0.15 or economic threshold.
above 0.25.


Abandonment
Atmospheric or a value at which all
For propane and a depth of


pressure
of the solvent is vaporized. Steps e)
500 m, about 340 kPa, the likely


(pressure at
and f) (described below) may start
lowest obtainable bottomhole


which well is
from this point at the same or higher
pressure at the operating depth


produced after
pressure.
and well below the value at


CSDRP cycles

which all of the propane is


are completed)

vaporized. Steps e) and f)




(described below) may start from




this point at the same or higher




pressure.









Table 1 outlines the operating ranges for certain CSDRPs. The present disclosure is not intended to be limited by such operating ranges.


In Table 1, the options may be formed by combining two or more parameters and, for brevity and clarity, each of these combinations will not be individually listed.


In CSDRP, cycles may grow progressively in length and the volume of solvent needed for efficient recovery increase accordingly as viscous oil is recovered and the well is depleted. In later cycles, large volumes of solvent composition must often be injected to re-pressurize the formation and fill voidage created as a result of reservoir fluid (oil, gas, water, etc.) production. More specifically, as shown in FIG. 3, as the solvent composition 202 replaces the volume of recovered viscous oil, the solvent composition 202 near the wellbore 204 is not fully utilized for mixing and viscosity reduction. This “low utilization zone” 208 is mainly used to fill voidage and maintain pressurization. Employing solvent (which is relatively expensive compared to other injectants) in the low utilization zone 208 essentially as a filling agent significantly reduces CSDRP efficiency and increases operational costs.


Solvent Chasing


Solvent use in CSDRP may be optimized to reduce solvent intensity by implementing some aspects of the present disclosure. With reference to FIG. 4, as “fingers” grow during CSDRP cycles, part or all solvent composition 202 that would have been injected in a given cycle may be replaced with a “chaser” 210. The chaser 210 may be water, gas, or any other non-hydrocarbon fluid that is different from the solvent composition 202 and safe to operate with. The chaser 210 may be cheaper than the solvent composition or more readily available. Preferably, the chaser 210 may be a non-compressible liquid (e.g., water) or low molecular weight gas (e.g., methane). For example, acceptable chasers 210 may include water (fresh, brackish, procuded, disposal, steam condensate), gas (C1, CO2, N2, flue gas from boilers) or any combination thereof.


Injecting a chaser 210 during certain CSDRP cycles may assist in pressure maintenance and forcing solvent composition 202 further into the reservoir for enhancing solvent/oil contact and mixing. By reducing solvent use and utilizing instead a more economical substance as chaser 210, CSDRP process economics may be improved.


The target temperature of the chaser 210 may be higher than the initial temperature of the reservoir or, in some embodiments, between 10 and 300° C., or for water, between 10 and 90° C. In some embodiments, the density of the chaser 210 may be greater than the density of the solvent composition 202 at reservoir conditions, preferably >10% greater than the density of the solvent composition 202.


The chaser 210 may be injected at any CSDRP cycle, and may be omitted during one or more intervening cycles. In some embodiments, the chaser 210 may be injected after the second or third CSDRP cycle or when oil sands 206 near the wellbore 204 have been depleted. Injection of solvent composition 202 and chaser 210 can alternate multiple times within a cycle with the first slug of injection being solvent.


In some embodiments, for cycles including chaser injection, the chaser 210 may be injected toward the end of an injection cycle following injection of solvent composition 202 during the same cycle. In this way, the chaser 210 may fill voidage created by the solvent composition 202 permeating increasing volumes within the reservoir and help maintain a desired pressure and penetration of the solvent composition 202. The amount of chaser 210 relative to the solvent composition 202 volume may be any amount, preferably in the range between 1% and 80% in any given cycle. In some embodiments, the amount of chaser 210 injected into the well relative to the solvent composition 202 volume may remain constant and in others it may progressively increase over cycles, or decrease over cycles, or alternate between periods of gradual increase and gradual decrease. Preferably, the chaser 210 may account for between 1% and 10% of the total injected fluid by volume in the first injection cycle including chaser, and gradually increase to a maximum of 80% of the total injected fluid by volume.


As discussed above, one method of managing chaser injection in a CSDRP is for the cumulative volume injected over all injection periods in a given cycle (VINJECTANT) to equal the net reservoir voidage (VVOIDAGE) resulting from previous injection and production cycles plus an additional volume (VADDITIONAL). When use of a chaser is incorporated into the process and VINJECTANT is equal to the sum of the volume of solvent (VSOLVENT) and the volume of chaser (VCHASER), the latter may be represented in mathematical terms by:

VCHASER=VVOIDAJE+VADDITIONAL−VSOLVENT


The chaser 210 may be injected at a pressure above the liquid/vapor change pressure of the solvent composition 202 and, preferably, at a similar or same pressure as the solvent composition, in the range of 1,000-10,000 kPa.


Liquid chaser can be injected into the reservoir using the same injection system as the solvent composition, but one or more separate storage tanks may be used to store the chaser. A gas chaser may benefit from using a compressor and multiphase injection system. A recovered liquid chaser such as water can be separated from the produced solvent/hydrocarbon mixture on the surface by gravity separation and then sent to storage tanks for re-injection. Recovered gas chaser may be mostly produced from the casing and then compressed for re-injection.


For example, as shown in FIG. 5, the chaser may be injected into overburden 102 and reservoir 103 using the same wellbore 101 and horizontal wellbore portion 104 used to inject the solvent composition. The chaser may percolate to the reservoir penetration zone 108 through the perforated liner section 105 following the solvent composition. As does oil dissolved in the solvent, the chaser may flow back into the well and be pumped by the downhole pump 107 through the inner bore 106 through the motor at the wellhead 109 to a production tank 110, where the chaser may be separated from the solvent and oil to be stored in a separate tank from the solvent and reused in the CSDRP process.


In some embodiments, the chaser may be derived from a variety of hydrocarbon recovery processes. In embodiments in which water is employed as chaser, the water may be fresh or recycled water, water produced during a CSDRP process (with some make-up water as needed), or disposal water from other processes. For example, water produced during (i) steam-assisted gravity drainage (SAGD) processes; (ii) solvent-assisted SAGD (SA-SAGD) processes; (iii) expanding solvent SAGD (ES-SAGD) processes; (iv) cyclic steam simulation (CSS) processes; or (v) cyclic solvent processes (CSP) may be utilized in an adjacent CSDRP site as chaser 210. In this way, processes and methods according to the present disclosure may be integrated with existing steam-based operations to utilize disposal water. One benefit of doing so is that disposed water may have a temperature higher than the ambient temperature of the reservoir, which can range between 5 and 30° C. in heavy oil reservoirs in Canada. This residual heat may aid the solvent/oil mixing process in CSDRP by reducing the oil viscosity further, as well as potentially mitigating flow assurance issues.


In some embodiments, the chaser 210 may be heated by other means, such as by utilizing residual heat from separation processes already incorporated into CSDRP. In particular, while the oil and chaser 210 (e.g., water) may be separated using gravity-based processes, the remaining solvent/oil mixture may be separated employing processes that involve heating the mixture. Some of this heat may be further employed to heat the chaser 210. In some embodiments, the chaser 210 may have a temperature anywhere between 10 and 300° C., or between 10 and 90° C. for water, when injected into the well. Alternatively, the chaser 210 may have a temperature between 20 and 250° C. above the ambient temperature of the reservoir, or more preferably about 60° C. above the ambient temperature of the reservoir.


One measure of efficiency in CSDRP is the ratio of produced oil volume to injected solvent volume over a time interval, or “oil to injected solvent ratio” (OISR). The time interval may be one complete injection/production cycle. The time interval may be from the beginning of first injection to the present or some other time interval. When the ratio falls below a certain threshold, further solvent composition injection may become uneconomic. OISR is only one measure of solvent efficiency, and those skilled in the art will recognize there are other measures of solvent recovery, such as solvent storage ratio (SSR), percentage loss, volume of unrecovered solvent per volume of recovered oil, or its inverse, the volume of produced oil to volume of lost solvent ratio (OLSR).


Simulations on an exemplary underground reservoir with horizontal wells of commercial scale (i.e., 1000 meters long at 100 meters well spacing) illustrate the benefits of the disclosed methods over conventional CSDRP. The parameters selected to model a reservoir in this study represent a typical heavy oil reservoir with the following properties:

    • Porosity ˜0.35
    • Gross thickness ˜30 m
    • Bitumen saturation ˜8 wt %
    • Initial temperature 16° C.
    • Initial pressure 3000 KPa
    • In-situ bitumen viscosity 200,000-1,000,000 cP


The simulations are intended as an example only, and the disclosed methods may be utilized with a variety of well configurations and sizes, such as different well lengths and spacings, different well layout and vertical separations, as well as different well orientations. In addition, this disclosure contemplates ratios between chaser and total injected volume that may remain constant or vary over cycles, or may range 1 and 80% over any cycle as discussed above.


Three models were simulated and compared. The first model (Case 1) was a CSDRP utilizing pure propane as the solvent composition for all cycles. In the second model (Case 2) was based on injecting water as chaser at the end of injection cycles, starting with cycle 3. The injected water volume was 20% of the total cycle injection volume. Finally, the third model (Case 3) was similar to the second but the water (i.e., chaser) content was increased from 20% of the total cycle injection volume in cycle 3 to 60% in cycle 7 (in 10% increments over each cycle).



FIG. 6 is a graph illustrating the solvent injection volume (in 103 m3) for cycles 3 to 7 for each of the models. (Cycles 1 and 2 are not shown as they involve injecting pure solvent [propane] and are identical for the three models.) As can be observed in FIG. 6, the injected solvent volume decreases in Cases 2 and 3 compared to Case 1 over successive cycles. In particular, for Case 2 which involves a constant chaser/solvent ratio (1/4) for cycle 3 and beyond, the injected solvent volume remains 80% of the total volume injected for every cycle after cycle 2 in Case 1, while the amount of injected solvent in Case 3 progressively decreases starting at cycle 3 compared to Case 1 to reach 40% in cycle 7.



FIG. 7 is a graph illustrating the OISR for cycles 3 to 7 in each model. As shown in the graph, the OISR gradually decreases over time for Case 1, given that increasing solvent volumes are necessary to reach viscous oil in the formation as the oil is depleted and the solvent necessarily has to fill larger voidage to mix with the remaining oil. In contrast, Case 2 exhibits higher OISR over time compared to Case 1 because the injected solvent volume is necessarily lower. Notably, the decrease in OISR for Case 2 remains roughly proportionally constant compared to Case 1, suggesting that simply using a constant chaser/solvent ratio may prolong the economic viability of a CSDRP over time.


Even more advantageously, the OISR for Case 3 shown in FIG. 7 initially increased over cycles 3 to 5, and slightly dropped over cycles 6 and 7. The OISR in cycle 3 was the same for Cases 2 and 3, given that both began with a chaser amount of 20% of total injected volume in cycle 3. But as the ratio of chaser to total injected volume increased (from 20% to 60% over five cycles), it can be appreciated in FIG. 7 that the difference in OISR for Cases 2 and 3 continuously increased, suggesting that oil can be recovered with less and less solvent even as the formation gets depleted.



FIG. 8 plots the percentage of solvent that is recovered after each cycle for each model. The percentage for Case 1 slightly increases over time from 80% to about 84-85%. While solvent recovery is marginally lower for Case 2 (about 75% initially) it also increases over time to reach about 82-83% in cycle 7. Unlike Cases 1 and 2, however, Case 3 exhibits a slight decrease in solvent recovery in cycles 4 and 5, returning to roughly the same level in cycle 7 as in cycle 3. In other words, gradually increasing the chaser/solvent ratio as in Case 3 results in a remarkable improvement in OISR over CSDRP cycles while solvent recovery is minimally affected. While only 7-cycle results are presented here for illustration, the ultimate solvent recovery in all the cases after cycle 8 and blow-down reaches above 90%.


These advantages are further appreciated in FIG. 9, which shows that, even though the percentage of solvent recovery may be lower for Case 3 compared to Cases 1 and 2, the absolute amount of solvent lost is still lower for Case 3. In other words, progressively increasing the ratio of chaser to total injected volume over consecutive cycles may further result in overall reduced solvent use in CSDRP processes incorporating solvent chasing.


Given the lower operational costs expected from using inexpensive chasers instead of solvent composition to fill voidage in CSDRP cycles, the advantages of the methods disclosed herein are clearly demonstrated. Although not included in these simulations, the advantages over pure solvent composition CSDRP cycles may be expected to be more significant if the chaser is further heated before injection or hot disposal water from another source is used as chaser.


With reference to FIG. 10, a method for recovering hydrocarbons from an underground reservoir may comprise: (a) injecting a solvent composition into the reservoir at a pressure above a liquid/vapor phase change pressure of the solvent composition (302); (b) injecting a chaser into the reservoir at a pressure above the liquid/vapor phase change pressure of the solvent composition (304); (c) allowing the solvent composition to mix with the hydrocarbons and at least partially dissolve into the hydrocarbons to produce a solvent/hydrocarbon mixture (306); (d) reducing the pressure in the reservoir below the liquid/vapor phase change pressure of the solvent composition thereby flowing at last a fraction of the solvent/hydrocarbon mixture from the reservoir (308); and (e) repeating steps (a) to (d) as required (310). In some embodiments, step 310 may comprise increasing or decreasing the ratio of chaser volume injected in step 308 to the total injected volume of solvent composition and chaser injected in a given cycle. Reducing the pressure in step 308 may further result in flowing at least a portion of the chaser injected in step 304 from the reservoir thereby producing a recovered chaser. In yet other embodiments, step 310 may further include reusing at least a portion of recovered chaser as the chaser injected in step 304 when the process is repeated. Step 310 may be preceded by one or more cycles comprising steps 302, 306 and 308, and omitting step 304.


Additional Description

By way of example, the following clauses are offered as further description of the present disclosure:


Embodiment 1

A method for recovering hydrocarbons from an underground reservoir, the method comprising: (a) injecting a solvent composition into the reservoir at a pressure above a liquid/vapor phase change pressure of the solvent composition; (b) injecting a chaser into the reservoir at a pressure above the liquid/vapor phase change pressure of the solvent composition; (c) allowing the solvent composition to mix with the hydrocarbons and at least partially dissolve into the hydrocarbons to produce a solvent/hydrocarbon mixture; (d) reducing the pressure in the reservoir below the liquid/vapor phase change pressure of the solvent composition thereby flowing at last a fraction of the solvent/hydrocarbon mixture from the reservoir; and (e) repeating steps (a) to (d) as required.


Embodiment 2

The method of embodiment 1, wherein a ratio of the volume of the chaser injected in step (b) to the total injected volume of solvent composition and chaser injected in steps (a) and (b) is between 1% and 80%.


Embodiment 3

The method of embodiments 1 or 2, wherein step (e) comprises increasing or decreasing the ratio of the volume of the chaser injected in step (b) to the total injected volume of solvent composition and chaser injected in steps (a) and (b).


Embodiment 4

The method of any one of embodiments 1 to 3, wherein the chaser includes one of water, steam, methane, CO2, N2, flue gas or a combination of thereof.


Embodiment 5

The method of any one of embodiments 1 to 4, wherein at least a portion of the chaser is derived from at least one of:


(i) a steam-assisted gravity drainage (SAGD) process;


(ii) a solvent-assisted SAGD (SA-SAGD) process;


(iii) an expanding solvent SAGD (ES-SAGD) process;


(iv) cyclic steam stimulation (CSS); and


(v) cyclic solvent processes (CSP).


Embodiment 6

The method of any one of embodiments 1 to 5, wherein reducing the pressure in step (d) further results in flowing at least a portion of the volume of the chaser injected in step (b) from the reservoir thereby producing a recovered chaser.


Embodiment 7

The method of embodiment 6, wherein step (e) further includes reusing at least a portion of the recovered chaser as the chaser when step (b) is repeated.


Embodiment 8

The method of any one of embodiments 1 to 7, wherein the chaser is injected into the reservoir in step (b) at a temperature higher than the initial temperature of the reservoir.


Embodiment 9

The method of any one of embodiments 1 to 8, wherein the chaser is injected into the reservoir in step (b) at a temperature between 10 and 90° C.


Embodiment 10

The method of any one of embodiments 1 to 8, wherein the chaser is injected into the reservoir in step (b) at a temperature between 10 and 300° C.


Embodiment 11

The method of any one of claims 1 to 10, wherein the repeating step (e) is preceded by one or more cycles comprising steps (a), (c) and (d), and omitting step (b).


Embodiment 12

The method of any one of the embodiments 1 to 11, wherein the chaser is injected at a pressure between 1,000 and 10,000 kPa.


Embodiment 13

The method of any one of embodiments 1 to 12, wherein the density of the chaser is greater than the density of the solvent composition at reservoir conditions.


Embodiment 14

The method of any one of embodiments 1 to 13, wherein the density of the chaser is more than 10% greater than the density of the solvent composition at reservoir conditions.


Embodiment 15

The method of any one of embodiments 1 to 14, wherein step (e) comprises reducing an average molecular weight of the solvent composition by at least 10%.


Embodiment 16

The method of any one of embodiments 1 to 15, wherein the solvent composition comprises at least 5 mol % of an aromatic species, based upon total moles of the solvent composition.


Embodiment 17

The method of any one of the embodiments 1 to 17, wherein the solvent composition comprises a first component and a second component that have at least 200 kPa difference in their vaporization pressure at the temperature of the reservoir.


Embodiment 18

The method of embodiment 17, wherein the second component comprises at least 10 mol % methane, based on total moles of the solvent composition.


Embodiment 19

The method of embodiment 17, wherein the second component has an average molecular weight of less than 33 g/mol.


Embodiment 20

The method of any one of embodiments 17 to 19, wherein the first component comprises greater than 50 mol % ethane, propane, butane, pentane, heptane, hexane, dimethyl ether, or a combination thereof, based upon total moles of the first component.


Embodiment 21

The method of any one of embodiments 17 to 19, wherein the first component comprises between 5 mol % and 30 mol % of hydrocarbons with a molecular weight of at least 58 g/mol, based upon total moles of the first component.


Embodiment 22

The method of any one of embodiments 17 to 19, wherein the first component comprises at least 50 mol % diluent, based upon total moles of the first component.


Embodiment 23

The method of any one of embodiments 17 to 22, wherein the second component comprises greater than 50 mol % methane, ethane, carbon dioxide, or a combination thereof, based upon total moles of the second component.


Embodiment 24

The method of any one of embodiments 17 to 19, wherein the first component comprises:


(i) a polar component, the polar component being a compound comprising a non-terminal carbonyl group; and


(ii) a non-polar component, the non-polar component being a substantially aliphatic substantially non-halogenated alkane;


wherein the first component has a Hansen hydrogen bonding parameter of 0.3 to 1.7; and wherein the first component has a volume ratio of the polar component to the non-polar component of 10:90 to 50:50.


Embodiment 25

The method of embodiment 24, wherein the polar component is a ketone or acetone.


Embodiment 26

The method of embodiment 24, wherein the non-polar component is a C2-C7 alkane, a C2-C7 n-alkane, an n-pentane, an n-heptane, or a gas plant condensate comprising alkanes, naphthenes, and aromatics.


Embodiment 27

The method of any of the embodiments 17 to 19, wherein the first component comprises:


(i) an ether with 2 to 8 carbon atoms; and


(ii) a non-polar hydrocarbon with 2 to 30 carbon atoms.


Embodiment 28

The method of embodiment 27, wherein the ether is di-methyl ether, methyl ethyl ether, di-ethyl ether, methyl iso-propyl ether, methyl propyl ether, di-isopropyl ether, di-propyl ether, methyl iso-butyl ether, methyl butyl ether, ethyl iso-butyl ether, ethyl butyl ether, iso-propyl butyl ether, propyl butyl ether, di-isobutyl ether, or di-butyl ether.


Embodiment 29

The method of any one of embodiments 27 or 28, wherein the non-polar hydrocarbon is a C2-C30 alkane, a C2-C5 alkane, or propane.


Embodiment 30

The method of any one of embodiments 1 to 29, wherein injection in steps (a) and (b) and production of the at least a fraction of solvent/hydrocarbon mixture in step (d) are through a common wellbore.


Advantages of the methods disclosed herein over conventional CSDRP include an increase of solvent utilization and efficiency; reduction of solvent demand and storage, leading to simpler commercial solvent supply logistics and lower operational costs; potential integration with existing CSS operations to reduce CSS costs on disposal water and improve CSDRP performance by utilizing the residual heat of CSS disposal water; and better solvent allocation for faster ramp up of bitumen rate in commercial applications with solvent supply constraints.


Disclosed aspects of the present disclosure may include any combinations of the methods and systems shown in the preceding numbered paragraphs. This is not to be considered a complete listing of all possible aspects, as any number of variations can be envisioned from the description above. It should be understood that the numerous changes, modifications, and alternatives to the preceding disclosure can be made without departing from the scope of the disclosure. The preceding description, therefore, is not meant to limit the scope of the disclosure. Rather, the scope of the disclosure is to be determined only by the appended claims and their equivalents. It is also contemplated that structures and features in the present examples can be altered, rearranged, substituted, deleted, duplicated, combined, or added to each other.

Claims
  • 1. A method for recovering hydrocarbons from an underground reservoir, the method comprising: (a) injecting a solvent into the reservoir at a pressure above a liquid/vapor phase change pressure of the solvent;(b) injecting a chaser into the reservoir at a pressure above the liquid/vapor phase change pressure of the solvent;(c) allowing the solvent to mix with the hydrocarbons and at least partially dissolve into the hydrocarbons to produce a solvent/hydrocarbon mixture;(d) reducing the pressure in the reservoir below the liquid/vapor phase change pressure of the solvent thereby flowing at last a fraction of the solvent/hydrocarbon mixture from the reservoir; and(e) repeating steps (a) to (d), wherein the composition of the solvent in the repeated steps (a)-(d) is a first solvent composition which is the same as the composition of the solvent in the initial steps (a)-(d), or the composition of the solvent in the repeated steps (a)-(d) is a second solvent further comprising a diluent and has a different composition than the solvent in the initial steps (a)-(d);wherein the entire injection of the solvent and chaser in steps (a) and (b) and the entire production of the solvent/hydrocarbon mixture in step (d) are through a common wellbore; andwherein the volume of chaser in step (b) is between 1% and 10% of the total injected fluid by volume of the combined solvent and chaser, and the volume of the chaser as a percentage of the total injected fluid by volume of the combined solvent and chaser is increased in multiple repeated cycles of step (e) to a maximum of 80% of the total injected fluid by volume.
  • 2. The method of claim 1, wherein the chaser displaces the solvent within the underground reservoir and reduces the amount of total solvent used in a cycle that is required to restore or maintain the pressure of the underground reservoir.
  • 3. The method of claim 2, wherein the chaser is utilized to push the solvent further into the underground reservoir to improve the mixing of the solvent with the hydrocarbons in the underground reservoir.
  • 4. The method of claim 1, wherein the chaser includes one of water, steam, CO2, N2, flue gas or a combination of thereof.
  • 5. The method of claim 4, wherein at least a portion of the chaser is derived from at least one of: (i) a steam-assisted gravity drainage (SAGD) process;(ii) a solvent-assisted SAGD (SA-SAGD) process;(iii) an expanding solvent SAGD (ES-SAGD) process;(iv) cyclic steam stimulation (CSS); and(v) cyclic solvent processes (CSP).
  • 6. The method of claim 1, wherein reducing the pressure in step (d) further results in flowing at least a portion of the volume of the chaser injected in step (b) from the reservoir thereby producing a recovered chaser.
  • 7. The method of claim 6, wherein step (e) further includes reusing at least a portion of the recovered chaser as the chaser when step (b) is repeated.
  • 8. The method of claim 1, wherein the chaser is injected into the reservoir in step (b) at a temperature higher than the initial temperature of the reservoir.
  • 9. The method of claim 1, wherein the chaser is injected into the reservoir in step (b) at a temperature between 10 and 90° C.
  • 10. The method of claim 1, wherein the repeating step (e) is preceded by one or more cycles comprising steps (a), (c) and (d), and omitting step (b).
  • 11. The method of claim 1, wherein the density of the chaser is more than 10% greater than the density of the solvent at reservoir conditions.
  • 12. The method of claim 1, wherein step (e) comprises the second solvent wherein an average molecular weight of the second solvent is at least 10% lower than average molecular weight of the first solvent.
  • 13. The method of claim 1, wherein the solvent comprises at least 5 mol % of an aromatic species, based upon total moles of the solvent.
  • 14. The method of claim 1, wherein the solvent comprises a first component and a second component that have at least 200 kPa difference in their vaporization pressure at the temperature of the reservoir.
  • 15. The method of claim 14, wherein the second component comprises at least 10 mol % methane, based on total moles of the solvent.
  • 16. The method of claim 14, wherein the second component has an average molecular weight of less than 33 g/mol.
  • 17. The method of claim 14, wherein the first component comprises between 5 mol % and 30 mol % of hydrocarbons with a molecular weight of at least 58 g/mol, based upon total moles of the first component.
  • 18. The method of claim 17, wherein the second component comprises greater than 50 mol % methane, ethane, carbon dioxide, or a combination thereof, based upon total moles of the second component.
  • 19. The method of claim 14, wherein the first component comprises: (i) a polar component, the polar component being a compound comprising a non-terminal carbonyl group; and(ii) a non-polar component, the non-polar component being a substantially aliphatic substantially non-halogenated alkane;wherein the first component has a Hansen hydrogen bonding parameter of 0.3 to 1.7; and wherein the first component has a volume ratio of the polar component to the non-polar component of 10:90 to 50:50.
  • 20. The method of claim 19, wherein the polar component is a ketone or acetone.
  • 21. The method of claim 19, wherein the non-polar component is a C2-C7 alkane or a gas plant condensate comprising alkanes, naphthenes, and aromatics.
  • 22. The method of claim 14, wherein the first component comprises: (i) an ether with 2 to 8 carbon atoms; and(ii) a non-polar hydrocarbon with 2 to 30 carbon atoms.
  • 23. The method of claim 22, wherein the non-polar hydrocarbon is a C2-C5 alkane.
Priority Claims (1)
Number Date Country Kind
CA 2972203 Jun 2017 CA national
US Referenced Citations (785)
Number Name Date Kind
1422204 Hoover et al. Jul 1922 A
1491138 Hixon Apr 1924 A
2365591 Ranney Dec 1944 A
2412765 Buddrus Dec 1946 A
2813583 Marx et al. Nov 1957 A
2859818 Hall et al. Nov 1958 A
2862558 Dixon Dec 1958 A
2910123 Elkins et al. Jan 1959 A
2876838 Williams Mar 1959 A
2881838 Morse et al. Apr 1959 A
2909224 Allen Oct 1959 A
3126961 Craig, Jr. et al. Mar 1964 A
3156299 Trantham Nov 1964 A
3163215 Stratton Dec 1964 A
3174544 Campion et al. Mar 1965 A
3182722 Reed May 1965 A
3205944 Walton Sep 1965 A
3221809 Walton Dec 1965 A
3232345 Trantham et al. Feb 1966 A
3237689 Justheim Mar 1966 A
3246693 Crider Apr 1966 A
3280909 Closmann et al. Oct 1966 A
3294167 Vogel Dec 1966 A
3310109 Marx et al. Mar 1967 A
3314476 Staples et al. Apr 1967 A
3315745 Rees, Jr. Apr 1967 A
3322194 Strubbar May 1967 A
3332482 Trantham Jul 1967 A
3333632 Kyte Aug 1967 A
3334687 Parker Aug 1967 A
3342257 Jacobs et al. Sep 1967 A
3342259 Powell Sep 1967 A
3347313 Matthews et al. Oct 1967 A
3349845 Holbert et al. Oct 1967 A
3351132 Dougan et al. Nov 1967 A
3361201 Howard Jan 1968 A
3363686 Gilchrist Jan 1968 A
3363687 Dean Jan 1968 A
3373804 Glass et al. Mar 1968 A
3379246 Skylar et al. Apr 1968 A
3379248 Strange Apr 1968 A
3406755 Sharp Oct 1968 A
3411578 Holmes Nov 1968 A
3412793 Needham Nov 1968 A
3412794 Craighead Nov 1968 A
3422891 Alexander et al. Jan 1969 A
3430700 Satter et al. Mar 1969 A
3441083 Fitzgerald Apr 1969 A
3454095 Messenger et al. Jul 1969 A
3454958 Parker Jul 1969 A
3456721 Smith Jul 1969 A
3490529 Parker Jan 1970 A
3490531 Dixon Jan 1970 A
3507330 Gill Apr 1970 A
3547192 Claridge et al. Dec 1970 A
3554285 Meldau Jan 1971 A
3572436 Riehl Mar 1971 A
3605888 Crowson et al. Sep 1971 A
3608638 Terwiltiger Sep 1971 A
3653438 Wagner Apr 1972 A
3685581 Hess et al. Aug 1972 A
3690376 Zwicky et al. Sep 1972 A
3703927 Harry Nov 1972 A
3705625 Whitten et al. Dec 1972 A
3724043 Eustance Apr 1973 A
3727686 Prates et al. Apr 1973 A
3759328 Ueber et al. Sep 1973 A
3768559 Allen et al. Oct 1973 A
3771598 McBean Nov 1973 A
3782465 Bell et al. Jan 1974 A
3782472 Siess, Jr. Jan 1974 A
3796262 Allen et al. Mar 1974 A
3804169 Closmann Apr 1974 A
3805885 Van Huisen Apr 1974 A
3822747 Maguire, Jr. Jul 1974 A
3822748 Allen et al. Jul 1974 A
3823777 Allen et al. Jul 1974 A
3827495 Reed Aug 1974 A
3837399 Allen et al. Sep 1974 A
3837402 Stringer Sep 1974 A
3838738 Redford et al. Oct 1974 A
3847219 Wang et al. Nov 1974 A
3847224 Allen et al. Nov 1974 A
3872924 Clampitt Mar 1975 A
3881550 Barry May 1975 A
3882941 Pelofsky May 1975 A
3892270 Lindquist Jul 1975 A
3905422 Woodward Sep 1975 A
3913671 Redford et al. Oct 1975 A
3929190 Chang et al. Dec 1975 A
3931856 Barnes Jan 1976 A
3941192 Carlin et al. Mar 1976 A
3945436 Barry Mar 1976 A
3945679 Clossmann et al. Mar 1976 A
3946809 Hagedorn Mar 1976 A
3946810 Barry Mar 1976 A
3954139 Allen May 1976 A
3954141 Allen May 1976 A
3958636 Perkins May 1976 A
3964546 Allen Jun 1976 A
3964547 Hujsak et al. Jun 1976 A
3967853 Closmann et al. Jul 1976 A
3978920 Bandyopadhyay et al. Sep 1976 A
3983939 Brown et al. Oct 1976 A
3993133 Clampitt Nov 1976 A
3994341 Anderson et al. Nov 1976 A
3997004 Wu Dec 1976 A
3999606 Bandyopadhyay et al. Dec 1976 A
4003432 Paull et al. Jan 1977 A
4004636 Brown et al. Jan 1977 A
4007785 Allen et al. Feb 1977 A
4007791 Johnson Feb 1977 A
4008764 Allen Feb 1977 A
4008765 Anderson et al. Feb 1977 A
4019575 Pisio et al. Apr 1977 A
4019578 Terry et al. Apr 1977 A
4020901 Pisio et al. May 1977 A
4022275 Brandon May 1977 A
4022277 Routson May 1977 A
4022279 Driver May 1977 A
4022280 Stoddard et al. May 1977 A
4026358 Allen May 1977 A
4033411 Goins Jul 1977 A
4037655 Carpenter Jul 1977 A
4037658 Anderson Jul 1977 A
4049053 Fisher et al. Sep 1977 A
4066127 Harnsberger Jan 1978 A
4067391 Dewell Jan 1978 A
4068715 Wu Jan 1978 A
4068717 Needham Jan 1978 A
4078608 Allen et al. Mar 1978 A
4079585 Helleur Mar 1978 A
4084637 Todd Apr 1978 A
4085799 Bousaid et al. Apr 1978 A
4085800 Engle et al. Apr 1978 A
4085803 Butler Apr 1978 A
4088188 Widmyer May 1978 A
4099564 Hutchinson Jul 1978 A
4099568 Allen Jul 1978 A
4109720 Allen et al. Aug 1978 A
4114687 Payton Sep 1978 A
4114691 Payton Sep 1978 A
4116275 Butler et al. Sep 1978 A
4119149 Wu et al. Oct 1978 A
4120357 Anderson Oct 1978 A
4124071 Allen et al. Nov 1978 A
4124074 Allen et al. Nov 1978 A
4127170 Redford Nov 1978 A
4129183 Kalfoglou Dec 1978 A
4129308 Hutchinson Dec 1978 A
4130163 Bombardieri Dec 1978 A
4133382 Cram et al. Jan 1979 A
4133384 Allen et al. Jan 1979 A
4140180 Bridges et al. Feb 1979 A
4140182 Vriend Feb 1979 A
4141415 Wu et al. Feb 1979 A
4144935 Bridges et al. Mar 1979 A
RE30019 Lindquist Jun 1979 E
4160479 Richardson et al. Jul 1979 A
4160481 Turk et al. Jul 1979 A
4166503 Hall et al. Sep 1979 A
4174752 Slater et al. Nov 1979 A
4175618 Wu et al. Nov 1979 A
4191252 Buckley et al. Mar 1980 A
4202168 Acheson et al. May 1980 A
4202169 Acheson et al. May 1980 A
4207945 Hall et al. Jun 1980 A
4212353 Hall Jul 1980 A
4217956 Goss et al. Aug 1980 A
4223728 Pegg Sep 1980 A
4228853 Harvey et al. Oct 1980 A
4228854 Sacuta Oct 1980 A
4228856 Reale Oct 1980 A
4246966 Stoddard et al. Jan 1981 A
4248302 Churchman Feb 1981 A
4249602 Burton, III et al. Feb 1981 A
4250964 Jewell et al. Feb 1981 A
4252194 Felber et al. Feb 1981 A
4260018 Shum et al. Apr 1981 A
4262745 Stewart Apr 1981 A
4265310 Britton et al. May 1981 A
4270609 Choules Jun 1981 A
4271905 Redford et al. Jun 1981 A
4274487 Hollingsworth et al. Jun 1981 A
4280559 Best Jul 1981 A
4282929 Krajicek Aug 1981 A
4284139 Sweany Aug 1981 A
RE30738 Bridges et al. Sep 1981 E
4289203 Swanson Sep 1981 A
4295980 Motz Oct 1981 A
4296814 Stalder et al. Oct 1981 A
4300634 Clampitt Nov 1981 A
4303126 Blevins Dec 1981 A
4305463 Zakiewicz Dec 1981 A
4306981 Blair, Jr. Dec 1981 A
4319632 Marr, Jr. Mar 1982 A
4319635 Jones Mar 1982 A
4324291 Wong et al. Apr 1982 A
4325432 Henry Apr 1982 A
4326968 Blair, Jr. Apr 1982 A
4327805 Poston May 1982 A
4330038 Soukup et al. May 1982 A
4333529 McCorquodale Jun 1982 A
4344483 Fisher et al. Aug 1982 A
4344485 Butler Aug 1982 A
4344486 Parrish Aug 1982 A
4345652 Roque Aug 1982 A
4362213 Tabor Dec 1982 A
4372385 Rhoades et al. Feb 1983 A
4372386 Rhoades et al. Feb 1983 A
4379489 Rollmann Apr 1983 A
4379592 Vakhnin et al. Apr 1983 A
4380265 Mohaupt Apr 1983 A
4380267 Fox Apr 1983 A
4381124 Verty et al. Apr 1983 A
4382469 Bell et al. May 1983 A
4385661 Fox May 1983 A
4387016 Gagon Jun 1983 A
4389320 Clampitt Jun 1983 A
4390062 Fox Jun 1983 A
4390067 William Jun 1983 A
4392530 Odeh et al. Jul 1983 A
4393937 Dilgren et al. Jul 1983 A
4396063 Godbey Aug 1983 A
4398602 Anderson Aug 1983 A
4398692 Macfie Aug 1983 A
4406499 Yildirim Sep 1983 A
4407367 Kydd Oct 1983 A
4410216 Allen Oct 1983 A
4411618 Donaldson et al. Oct 1983 A
4412585 Bouck Nov 1983 A
4415034 Bouck Nov 1983 A
4417620 Shafir Nov 1983 A
4418752 Boyer et al. Dec 1983 A
4423779 Livingston Jan 1984 A
4427528 Lindörfer et al. Jan 1984 A
4429744 Cook Feb 1984 A
4429745 Cook Feb 1984 A
4431056 Shu Feb 1984 A
4434851 Haynes, Jr. et al. Mar 1984 A
4441555 Shu Apr 1984 A
4444257 Stine Apr 1984 A
4444261 Islip Apr 1984 A
4445573 McCaleb May 1984 A
4448251 Stine May 1984 A
4450909 Sacuta May 1984 A
4450911 Seglin et al. May 1984 A
4450913 Allen et al. May 1984 A
4452491 Seglin et al. Jun 1984 A
4453597 Brown et al. Jun 1984 A
4456065 Heim et al. Jun 1984 A
4456066 Shu Jun 1984 A
4456068 Burrill, Jr. et al. Jun 1984 A
4458756 Clark Jul 1984 A
4458759 Isaacs et al. Jul 1984 A
4460044 Porter Jul 1984 A
4465137 Sustek, Jr. et al. Aug 1984 A
4466485 Shu Aug 1984 A
4469177 Venkatesan Sep 1984 A
4471839 Snavely et al. Sep 1984 A
4473114 Bell et al. Sep 1984 A
4475592 Pachovsky Oct 1984 A
4475595 Watkins et al. Oct 1984 A
4478280 Hopkins et al. Oct 1984 A
4478705 Ganguli Oct 1984 A
4480689 Wunderlich Nov 1984 A
4484630 Chung Nov 1984 A
4485868 Sresty et al. Dec 1984 A
4487262 Venkatesan et al. Dec 1984 A
4487264 Hyne et al. Dec 1984 A
4488600 Fan Dec 1984 A
4488976 Dilgren et al. Dec 1984 A
4491180 Brown et al. Jan 1985 A
4495994 Brown et al. Jan 1985 A
4498537 Cook Feb 1985 A
4498542 Eisenhawer et al. Feb 1985 A
4499946 Martin et al. Feb 1985 A
4501325 Frazier et al. Feb 1985 A
4501326 Edmunds Feb 1985 A
4501445 Gregoli Feb 1985 A
4503910 Shu Mar 1985 A
4503911 Harman et al. Mar 1985 A
4508170 Littmann Apr 1985 A
4513819 Islip et al. Apr 1985 A
4515215 Hermes et al. May 1985 A
4516636 Doscher May 1985 A
4522260 Wolcott, Jr. Jun 1985 A
4522263 Hopkins et al. Jun 1985 A
4524826 Savage Jun 1985 A
4527650 Bartholet Jul 1985 A
4528104 House et al. Jul 1985 A
4530401 Hartman et al. Jul 1985 A
4532993 Dilgren et al. Aug 1985 A
4532994 Toma et al. Aug 1985 A
4535845 Brown et al. Aug 1985 A
4540049 Hawkins et al. Sep 1985 A
4540050 Huang et al. Sep 1985 A
4545435 Bridges et al. Oct 1985 A
4546829 Martin et al. Oct 1985 A
4550779 Zakiewicz Nov 1985 A
4556107 Duerksen et al. Dec 1985 A
4558740 Yellig, Jr. Dec 1985 A
4565245 Mims et al. Jan 1986 A
4565249 Pebdani et al. Jan 1986 A
4572296 Watkins Feb 1986 A
4574884 Schmidt Mar 1986 A
4574886 Hopkins et al. Mar 1986 A
4577688 Gassmann et al. Mar 1986 A
4579176 Davies et al. Apr 1986 A
4589487 Venkatesan et al. May 1986 A
4595057 Deming et al. Jun 1986 A
4597441 Ware et al. Jul 1986 A
4597443 Shu et al. Jul 1986 A
4598770 Shu et al. Jul 1986 A
4601337 Lau et al. Jul 1986 A
4601338 Prats et al. Jul 1986 A
4607695 Weber Aug 1986 A
4607699 Stephens Aug 1986 A
4607700 Duerksen et al. Aug 1986 A
4610304 Doscher Sep 1986 A
4612989 Rakach et al. Sep 1986 A
4612990 Shu Sep 1986 A
4615391 Garthoffner Oct 1986 A
4620592 Perkins Nov 1986 A
4620593 Haagensen Nov 1986 A
4635720 Chew Jan 1987 A
4637461 Hight Jan 1987 A
4637466 Hawkins et al. Jan 1987 A
4640352 Vanmeurs et al. Feb 1987 A
4640359 Livesey et al. Feb 1987 A
4641710 Klinger Feb 1987 A
4645003 Huang et al. Feb 1987 A
4645004 Bridges et al. Feb 1987 A
4646824 Huang et al. Mar 1987 A
4648835 Esienhawer et al. Mar 1987 A
4651825 Wilson Mar 1987 A
4651826 Holmes Mar 1987 A
4653583 Huang et al. Mar 1987 A
4662438 Taflove et al. May 1987 A
4662440 Harmon et al. May 1987 A
4662441 Huang et al. May 1987 A
4665035 Tunac May 1987 A
4665989 Wilson May 1987 A
4667739 Van Meurs et al. May 1987 A
4679626 Perkins Jul 1987 A
4682652 Huang et al. Jul 1987 A
4682653 Angstadt Jul 1987 A
4685515 Huang et al. Aug 1987 A
4687058 Casad et al. Aug 1987 A
4690215 Roberts et al. Sep 1987 A
4691773 Ward et al. Sep 1987 A
4694907 Stahl et al. Sep 1987 A
4696311 Muiis et al. Sep 1987 A
4697642 Vogel Oct 1987 A
4699213 Fleming Oct 1987 A
4700779 Huang et al. Oct 1987 A
4702314 Huang et al. Oct 1987 A
4702317 Shen Oct 1987 A
4705108 Little et al. Nov 1987 A
4706751 Gondouin Nov 1987 A
4707230 Ajami Nov 1987 A
4718485 Brown et al. Jan 1988 A
4718489 Hallam et al. Jan 1988 A
4727489 Frazier et al. Feb 1988 A
4727937 Shum et al. Mar 1988 A
4739831 Settlemeyer et al. Apr 1988 A
4753293 Bohn Jun 1988 A
4756369 Jennings, Jr. et al. Jul 1988 A
4757833 Danley Jul 1988 A
4759571 Stone et al. Jul 1988 A
4766958 Faecke Aug 1988 A
4769161 Angstadt Sep 1988 A
4775450 Ajami Oct 1988 A
4782901 Phelps et al. Nov 1988 A
4785028 Hoskin et al. Nov 1988 A
4785883 Hoskin et al. Nov 1988 A
4787452 Jennings, Jr. Nov 1988 A
4793409 Bridges et al. Dec 1988 A
4793415 Holmes et al. Dec 1988 A
4804043 Shu et al. Feb 1989 A
4809780 Shen Mar 1989 A
4813483 Ziegler Mar 1989 A
4817711 Jeambey Apr 1989 A
4817714 Jones Apr 1989 A
4818370 Gregoli et al. Apr 1989 A
4819724 Bou-Mikael Apr 1989 A
4828030 Jennings, Jr. May 1989 A
4828031 Davis May 1989 A
4828032 Telezke et al. May 1989 A
4834174 Vandevier May 1989 A
4834179 Kokolis et al. May 1989 A
4844155 Megyeri et al. Jul 1989 A
4846275 McKay Jul 1989 A
4850429 Mims et al. Jul 1989 A
4856587 Nielson Aug 1989 A
4856856 Phelps et al. Aug 1989 A
4860827 Lee et al. Aug 1989 A
4861263 Schirmer Aug 1989 A
4867238 Bayless et al. Sep 1989 A
4869830 Konak et al. Sep 1989 A
4874043 Joseph et al. Oct 1989 A
4877542 Lon et al. Oct 1989 A
4884155 Spash Nov 1989 A
4884635 McKay et al. Dec 1989 A
4886118 Van Meurs et al. Dec 1989 A
4892146 Shen Jan 1990 A
4895085 Chips Jan 1990 A
4895206 Price Jan 1990 A
4896725 Parker et al. Jan 1990 A
4901795 Phelps et al. Feb 1990 A
4903766 Shu Feb 1990 A
4903768 Shu Feb 1990 A
4903770 Friedeman et al. Feb 1990 A
4915170 Hoskin Apr 1990 A
4919206 Freeman et al. Apr 1990 A
4926941 Glandt et al. May 1990 A
4926943 Hoskin May 1990 A
4928766 Hoskin May 1990 A
4930454 Latty et al. Jun 1990 A
4940091 Shu et al. Jul 1990 A
4945984 Price Aug 1990 A
4947933 Jones et al. Aug 1990 A
4961467 Pebdani Oct 1990 A
4962814 Alameddine Oct 1990 A
4964461 Shu Oct 1990 A
4966235 Gregoli et al. Oct 1990 A
4969520 Jan et al. Nov 1990 A
4974677 Shu Dec 1990 A
4982786 Jennings, Jr. Jan 1991 A
4983364 Buck et al. Jan 1991 A
4991652 Hoskin et al. Feb 1991 A
5010953 Friedman et al. Apr 1991 A
5013462 Danley May 1991 A
5014787 Duerksen May 1991 A
5016709 Combe et al. May 1991 A
5016710 Renard et al. May 1991 A
5016713 Sanchez et al. May 1991 A
5024275 Anderson et al. Jun 1991 A
5025863 Haines Jun 1991 A
5027898 Naae Jul 1991 A
5036915 Wyganowski Aug 1991 A
5036917 Jennings, Jr. et al. Aug 1991 A
5036918 Jennings, Jr. et al. Aug 1991 A
5040605 Showalter Aug 1991 A
5042579 Glandt et al. Aug 1991 A
5046559 Glandt Sep 1991 A
5046560 Teletzke et al. Sep 1991 A
5052482 Gondouin Oct 1991 A
5054551 Duerksen Oct 1991 A
5056596 McKay et al. Oct 1991 A
5058681 Reed Oct 1991 A
5060726 Glandt et al. Oct 1991 A
5065819 Kasevich Nov 1991 A
5083612 Ashrawi Jan 1992 A
5083613 Gregoli et al. Jan 1992 A
5085275 Gondouin Feb 1992 A
5095984 Irani Mar 1992 A
5099918 Bridges et al. Mar 1992 A
5101898 Hong Apr 1992 A
5105880 Shen Apr 1992 A
5109927 Supernaw et al. May 1992 A
5123485 Vasicek et al. Jun 1992 A
5131471 Duerksen et al. Jul 1992 A
5145002 McKay Sep 1992 A
5145003 Duerksen Sep 1992 A
5148869 Sanchez Sep 1992 A
5152341 Kasevich et al. Oct 1992 A
5156214 Hoskin et al. Oct 1992 A
5167280 Sanchez et al. Dec 1992 A
5172763 Mohammadi et al. Dec 1992 A
5174377 Kumar Dec 1992 A
5178217 Mohammadi et al. Jan 1993 A
5186256 Downs Feb 1993 A
5197541 Hess et al. Mar 1993 A
5199488 Kasevich et al. Apr 1993 A
5199490 Surles et al. Apr 1993 A
5201815 Hong et al. Apr 1993 A
5215146 Sanchez Jun 1993 A
5215149 Lu Jun 1993 A
5236039 Edelstein et al. Aug 1993 A
5238066 Beattie et al. Aug 1993 A
5246071 Chu Sep 1993 A
5247993 Sarem et al. Sep 1993 A
5252226 Justice Oct 1993 A
5271693 Johnson et al. Dec 1993 A
5273111 Brannan et al. Dec 1993 A
5277830 Hoskin et al. Jan 1994 A
5279367 Osterloh Jan 1994 A
5282508 Ellingsen et al. Feb 1994 A
5289881 Schuh Mar 1994 A
5293936 Bridges Mar 1994 A
5295540 Djabbarah et al. Mar 1994 A
5297627 Sanchez et al. Mar 1994 A
5305829 Kumar Apr 1994 A
5318124 Ong et al. Jun 1994 A
5325918 Berryman et al. Jul 1994 A
5339897 Leaute Aug 1994 A
5339898 Yu et al. Aug 1994 A
5339904 Jennings, Jr. et al. Aug 1994 A
5350014 McKay Sep 1994 A
5358054 Bert Oct 1994 A
5361845 Jamaluddin et al. Nov 1994 A
5377757 Ng Jan 1995 A
5404950 Ng et al. Apr 1995 A
5407009 Butler et al. Apr 1995 A
5411086 Burcham et al. May 1995 A
5411089 Vinegar et al. May 1995 A
5411094 Northrop May 1995 A
5413175 Edmunds May 1995 A
5414231 Sato et al. May 1995 A
5417283 Ejiogu et al. May 1995 A
5431224 Laali Jul 1995 A
5433271 Vinegar et al. Jul 1995 A
5449038 Horton et al. Sep 1995 A
5450902 Mathews Sep 1995 A
5456315 Kinsman et al. Oct 1995 A
5458193 Horton et al. Oct 1995 A
5483801 Craze Jan 1996 A
5503226 Wadleigh Apr 1996 A
5511616 Bert Apr 1996 A
5513705 Djabbarah et al. May 1996 A
5531272 Ng et al. Jul 1996 A
5534186 Walker et al. Jul 1996 A
5542474 Djabbarah et al. Aug 1996 A
5547022 Juprasert et al. Aug 1996 A
5553974 Nazarian Sep 1996 A
5560737 Schuring et al. Oct 1996 A
5565139 Walker et al. Oct 1996 A
5589775 Kuckes Dec 1996 A
5607016 Butler Mar 1997 A
5607018 Schuh Mar 1997 A
5626191 Greaves et al. May 1997 A
5626193 Nzekwu et al. May 1997 A
5635139 Holst et al. Jun 1997 A
5646309 Hammarberg et al. Jul 1997 A
5650128 Holst et al. Jul 1997 A
5660500 Marsden, Jr. et al. Aug 1997 A
5674816 Loree Oct 1997 A
5677267 Suarez et al. Oct 1997 A
5682613 Dinatale Nov 1997 A
5685371 Richardson et al. Nov 1997 A
5691906 Togashi et al. Nov 1997 A
5709505 Williams et al. Jan 1998 A
5713415 Bridges Feb 1998 A
5720350 McGuire Feb 1998 A
5725054 Shayegi Mar 1998 A
5738937 Baychar Apr 1998 A
5765964 Calcote et al. Jun 1998 A
5771973 Jensen Jun 1998 A
5788412 Jatkar Aug 1998 A
RE35891 Jamaluddin et al. Sep 1998 E
5803171 McCaffery et al. Sep 1998 A
5803178 Cain Sep 1998 A
5813799 Calcote et al. Sep 1998 A
5823631 Herbolzheimer et al. Oct 1998 A
5826656 McGuire et al. Oct 1998 A
5860475 Ejiogu et al. Jan 1999 A
5899274 Frauenfeld et al. May 1999 A
5923170 Kuckes Jul 1999 A
5931230 Lesage et al. Aug 1999 A
5941081 Burgener Aug 1999 A
5957202 Huang Sep 1999 A
5984010 Elias et al. Nov 1999 A
6000471 Langset Dec 1999 A
6004451 Rock et al. Dec 1999 A
6012520 Yu et al. Jan 2000 A
6015015 Luft et al. Jan 2000 A
6016867 Gregoli et al. Jan 2000 A
6016868 Gregoli et al. Jan 2000 A
6026914 Adams et al. Feb 2000 A
6039116 Stevenson et al. Mar 2000 A
6039121 Kisman Mar 2000 A
6048810 Baychar Apr 2000 A
6050335 Parsons Apr 2000 A
6056057 Vinegar et al. May 2000 A
6102122 de Rouffignac Aug 2000 A
6109358 McPhee et al. Aug 2000 A
6148911 Gipson et al. Nov 2000 A
6158510 Bacon et al. Dec 2000 A
6158513 Nistor et al. Dec 2000 A
6167966 Ayasse et al. Jan 2001 B1
6173775 Elias et al. Jan 2001 B1
6186232 Isaccs et al. Feb 2001 B1
6189611 Kasevich Feb 2001 B1
6205289 Kobro Mar 2001 B1
6230814 Nasr et al. May 2001 B1
6244341 Miller Jun 2001 B1
6257334 Cyr et al. Jul 2001 B1
6263965 Schmidt et al. Jul 2001 B1
6276457 Moffatt et al. Aug 2001 B1
6285014 Beck et al. Sep 2001 B1
6305472 Richardson et al. Oct 2001 B2
6318464 Mokrys Nov 2001 B1
6325147 Doerler et al. Dec 2001 B1
6328104 Graue Dec 2001 B1
6353706 Bridges Mar 2002 B1
6357526 Abdel-Halim et al. Mar 2002 B1
6405799 Vallejos et al. Jun 2002 B1
6409226 Slack et al. Jun 2002 B1
6412557 Ayasse et al. Jul 2002 B1
6413016 Nelson et al. Jul 2002 B1
6454010 Thomas et al. Sep 2002 B1
6484805 Perkins et al. Nov 2002 B1
6536523 Kresnyak et al. Mar 2003 B1
6554067 Davies et al. Apr 2003 B1
6561274 Hayes et al. May 2003 B1
6581684 Wellington et al. Jun 2003 B2
6588500 Lewis Jul 2003 B2
6591908 Nasr Jul 2003 B2
6607036 Ranson et al. Aug 2003 B2
6631761 Yuan et al. Oct 2003 B2
6662872 Gutek et al. Dec 2003 B2
6666666 Gilbert et al. Dec 2003 B1
6681859 Hill Jan 2004 B2
6688387 Wellington et al. Feb 2004 B1
6702016 de Rouffignac et al. Mar 2004 B2
6708759 Leaute et al. Mar 2004 B2
6712136 de Rouffignac et al. Mar 2004 B2
6712150 Misselbrook et al. Mar 2004 B1
6715546 Vinegar et al. Apr 2004 B2
6715547 Vinegar et al. Apr 2004 B2
6715548 Wellington et al. Apr 2004 B2
6715549 Wellington et al. Apr 2004 B2
6719047 Fowler et al. Apr 2004 B2
6722429 de Rouffignac et al. Apr 2004 B2
6722431 Karanikas et al. Apr 2004 B2
6725920 Zhang et al. Apr 2004 B2
6729394 Hassan et al. May 2004 B1
6729395 Shahin, Jr. et al. May 2004 B2
6729397 Zhang et al. May 2004 B2
6729401 Vinegar et al. May 2004 B2
6732794 Wellington et al. May 2004 B2
6732795 de Rouffignac et al. May 2004 B2
6732796 Vinegar et al. May 2004 B2
6733636 Heins May 2004 B1
6736215 Maher et al. May 2004 B2
6736222 Kuckes et al. May 2004 B2
6739394 Vinegar et al. May 2004 B2
6742588 Wellington et al. Jun 2004 B2
6742593 Vinegar et al. Jun 2004 B2
6745831 de Rouffignac et al. Jun 2004 B2
6745832 Wellington et al. Jun 2004 B2
6745837 Wellington et al. Jun 2004 B2
6755246 Chen et al. Jun 2004 B2
6758268 Vinegar et al. Jul 2004 B2
6769486 Lim et al. Aug 2004 B2
6782947 de Rouffignac et al. Aug 2004 B2
6789625 de Rouffignac et al. Sep 2004 B2
6794864 Mirotchnik et al. Sep 2004 B2
6805195 Vinegar et al. Oct 2004 B2
6814141 Huh et al. Nov 2004 B2
6877556 Wittle et al. Apr 2005 B2
6883607 Nenniger et al. Apr 2005 B2
6962466 Vinegar et al. Nov 2005 B2
7013970 Collie et al. Mar 2006 B2
7056725 Lu Jun 2006 B1
7069990 Bilak Jul 2006 B1
7272973 Craig Sep 2007 B2
7294156 Chakrabarty et al. Nov 2007 B2
7322409 Wittle et al. Jan 2008 B2
7363973 Nenniger et al. Apr 2008 B2
7434619 Rossi et al. Oct 2008 B2
7464756 Gates et al. Dec 2008 B2
7527096 Chung et al. May 2009 B2
7770643 Daussin Aug 2010 B2
7918269 Cavender et al. Apr 2011 B2
7975763 Banerjee et al. Jul 2011 B2
8141636 Speirs et al. Mar 2012 B2
8176982 Gil et al. May 2012 B2
8215392 Rao Jul 2012 B2
8256511 Boone et al. Sep 2012 B2
8327936 Coskuner Dec 2012 B2
8434551 Nenniger et al. May 2013 B2
8455405 Chakrabarty Jun 2013 B2
8474531 Nasr et al. Jul 2013 B2
8528642 Boone Sep 2013 B2
8596357 Nenniger Dec 2013 B2
8602098 Kwan Dec 2013 B2
8616278 Boone et al. Dec 2013 B2
8684079 Wattenbarger et al. Apr 2014 B2
8752623 Sirota et al. Jun 2014 B2
8770289 Boone Jul 2014 B2
8776900 Nenniger et al. Jul 2014 B2
8783358 Critsinelis et al. Jul 2014 B2
8844639 Gupta et al. Sep 2014 B2
8857512 Nenniger et al. Oct 2014 B2
8899321 Dawson et al. Dec 2014 B2
8985205 Nenniger Mar 2015 B2
9103205 Wright et al. Aug 2015 B2
9115577 Alvestad et al. Aug 2015 B2
9316096 Bang et al. Apr 2016 B2
9341049 Hailey, Jr. et al. May 2016 B2
9347312 Vincelette et al. May 2016 B2
9359868 Scott Jun 2016 B2
9394769 Nenniger Jul 2016 B2
9488040 Chakrabarty et al. Nov 2016 B2
9506332 Saeedfar Nov 2016 B2
9644467 Chakrabarty May 2017 B2
9739123 Wheeler et al. Aug 2017 B2
9809786 Olson et al. Nov 2017 B2
9845669 Miller et al. Dec 2017 B2
9951595 Akinlade et al. Apr 2018 B2
9970282 Khaledi et al. May 2018 B2
9970283 Khaledi et al. May 2018 B2
10000998 Chakrabarty et al. Jun 2018 B2
10041340 Chakrabarty Aug 2018 B2
10094208 Hoier et al. Oct 2018 B2
10145226 Yee et al. Dec 2018 B2
20010009830 Bachar Jul 2001 A1
20010017206 Davidson et al. Aug 2001 A1
20010018975 Richardson et al. Sep 2001 A1
20020029881 de Rouffignac et al. Mar 2002 A1
20020033253 de Rouffignac et al. Mar 2002 A1
20020038710 Maher et al. Apr 2002 A1
20020040779 Wellington et al. Apr 2002 A1
20020046838 Karanikas et al. Apr 2002 A1
20020056551 Wellington et al. May 2002 A1
20020104651 McClung, III Aug 2002 A1
20020148608 Shaw Oct 2002 A1
20020157831 Kurlenya et al. Oct 2002 A1
20030000711 Gutek et al. Jan 2003 A1
20030009297 Mirotchnik et al. Jan 2003 A1
20060231455 Olsvik et al. Oct 2006 A1
20080115945 Lau et al. May 2008 A1
20080153717 Pomerleau et al. Jun 2008 A1
20080173447 Da Silva et al. Jul 2008 A1
20090288826 Gray Nov 2009 A1
20100258308 Speirs et al. Oct 2010 A1
20100276140 Edmunds et al. Nov 2010 A1
20100276341 Speirs et al. Nov 2010 A1
20100276983 Dunn et al. Nov 2010 A1
20100282593 Speirs et al. Nov 2010 A1
20110229071 Vincelette et al. Sep 2011 A1
20110272152 Kaminsky et al. Nov 2011 A1
20110272153 Boone et al. Nov 2011 A1
20110276140 Vresilovic et al. Nov 2011 A1
20110303423 Kaminsky et al. Dec 2011 A1
20120234535 Dawson et al. Sep 2012 A1
20120285700 Scott Nov 2012 A1
20130000896 Boone Jan 2013 A1
20130000898 Boone Jan 2013 A1
20130025861 Kift et al. Jan 2013 A1
20130043025 Scott Feb 2013 A1
20130045902 Thompson et al. Feb 2013 A1
20130098607 Kerr Apr 2013 A1
20130105147 Scott May 2013 A1
20130112408 Oxtoby May 2013 A1
20130153215 Scott et al. Jun 2013 A1
20130153216 Scott Jun 2013 A1
20130199777 Scott Aug 2013 A1
20130199779 Scott Aug 2013 A1
20130199780 Scott Aug 2013 A1
20130206405 Kift et al. Aug 2013 A1
20130328692 Johannessen Dec 2013 A1
20140034305 Dawson Feb 2014 A1
20140048259 Menard Feb 2014 A1
20140054028 Little et al. Feb 2014 A1
20140069641 Kosik Mar 2014 A1
20140083694 Scott et al. Mar 2014 A1
20140083706 Scott et al. Mar 2014 A1
20140096959 Hocking Apr 2014 A1
20140144627 Salazar Hernandez et al. May 2014 A1
20140174744 Boone et al. Jun 2014 A1
20140251596 Gittins et al. Sep 2014 A1
20150034555 Speirs et al. Feb 2015 A1
20150053401 Khaledi et al. Feb 2015 A1
20150083413 Salazar et al. Mar 2015 A1
20150107833 Boone et al. Apr 2015 A1
20150107834 Shen et al. Apr 2015 A1
20150144345 Bilozir et al. May 2015 A1
20160061014 Sood et al. Mar 2016 A1
20160153270 Chen et al. Jun 2016 A1
20170051597 Akiya et al. Feb 2017 A1
20170130572 Yuan et al. May 2017 A1
20170210972 Williamson et al. Jul 2017 A1
20170241250 Singh et al. Aug 2017 A1
20180030381 Olson et al. Feb 2018 A1
20180073337 Park et al. Mar 2018 A1
20180265768 Williamson Sep 2018 A1
20190002755 Wang et al. Jan 2019 A1
20190032460 Khaledi et al. Jan 2019 A1
20190032462 Motahhari et al. Jan 2019 A1
20190063199 Doraiswamy et al. Feb 2019 A1
20190119577 Witham et al. Apr 2019 A1
20190120043 Gupta et al. Apr 2019 A1
Foreign Referenced Citations (118)
Number Date Country
0603924 Aug 1960 CA
0836325 Mar 1970 CA
0852003 Sep 1970 CA
0956885 Oct 1974 CA
0977675 Nov 1975 CA
1015656 Aug 1977 CA
1027851 Mar 1978 CA
1059432 Jul 1979 CA
1061713 Sep 1979 CA
1072442 Feb 1980 CA
1295118 Feb 1992 CA
1300000 May 1992 CA
2108723 Apr 1995 CA
2108349 Aug 1996 CA
2349234 Nov 2002 CA
2369244 Apr 2005 CA
2147079 Oct 2006 CA
2235085 Jan 2007 CA
2281276 Feb 2007 CA
2647973 Oct 2007 CA
2304938 Feb 2008 CA
2299790 Jul 2008 CA
2633061 Jul 2008 CA
2374115 May 2010 CA
2652930 Jul 2010 CA
2621991 Sep 2010 CA
2660227 Sep 2010 CA
2730875 Aug 2012 CA
2734170 Sep 2012 CA
2971941 Dec 2012 CA
2436158 Jun 2013 CA
2553297 Jul 2013 CA
2654848 Oct 2013 CA
2777966 Nov 2013 CA
2781273 Dec 2013 CA
2781273 May 2014 CA
2804521 Jul 2014 CA
2917260 Jan 2015 CA
2917263 Jan 2015 CA
2841520 Feb 2015 CA
2785871 May 2015 CA
2691399 Sep 2015 CA
2847759 Sep 2015 CA
2900178 Oct 2015 CA
2900179 Oct 2015 CA
2893170 Nov 2015 CA
2853445 Dec 2015 CA
2854171 Dec 2015 CA
2898065 Jan 2016 CA
2962274 Jan 2016 CA
2890491 Feb 2016 CA
2893221 Apr 2016 CA
2872120 May 2016 CA
2875846 May 2016 CA
2900179 May 2016 CA
2898943 Jun 2016 CA
2897785 Jul 2016 CA
2900178 Sep 2016 CA
2707776 Nov 2016 CA
2893552 Nov 2016 CA
2935652 Jan 2017 CA
2857329 Feb 2017 CA
2915571 Feb 2017 CA
2856460 May 2017 CA
2956771 Aug 2017 CA
2981619 Dec 2017 CA
2875848 May 2018 CA
2899805 May 2018 CA
2928044 Jul 2018 CA
2974714 Sep 2018 CA
2965117 Oct 2018 CA
2958715 Mar 2019 CA
101870894 Apr 2009 CN
0144203 Jun 1985 EP
0261793 Mar 1988 EP
0283602 Sep 1988 EP
0747142 Apr 2001 EP
2852713 Sep 2004 FR
1457696 Dec 1976 GB
1463444 Feb 1977 GB
2156400 Oct 1985 GB
2164978 Apr 1986 GB
2286001 Oct 1995 GB
2357528 Jun 2001 GB
2391890 Feb 2004 GB
2391891 Feb 2004 GB
2403443 Jan 2005 GB
20130134846 May 2012 KR
198201214 Apr 1982 WO
198912728 Dec 1989 WO
199421889 Sep 1994 WO
199967503 Dec 1999 WO
200025002 May 2000 WO
200066882 Nov 2000 WO
200181239 Nov 2001 WO
200181715 Nov 2001 WO
200192673 Dec 2001 WO
200192768 Dec 2001 WO
2002086018 Oct 2002 WO
2002086276 Oct 2002 WO
2003010415 Feb 2003 WO
2003036033 May 2003 WO
2003036038 May 2003 WO
2003036039 May 2003 WO
2003036043 May 2003 WO
2003038233 May 2003 WO
2003040513 May 2003 WO
2003062596 Jul 2003 WO
2004038173 May 2004 WO
2004038174 May 2004 WO
2004038175 May 2004 WO
2004050567 Jun 2004 WO
2004050791 Jun 2004 WO
2004097159 Nov 2004 WO
2005012688 Feb 2005 WO
WO-2014003941 Jan 2014 WO
2015158371 Oct 2015 WO
2017222929 Dec 2017 WO
Non-Patent Literature Citations (55)
Entry
Lim, G. B., et al., (1996) “Three-dimensional Scaled Physical Modeling of Solvent Vapour Extraction of Cold Lake Bitumen,” The Journal of Canadian Petroleum Technology, (April) 35(4), pp. 32-40.
Lim, G. B., (1995) “Cyclic Stimulation of Cold Lake Oil Sand with Supercritical Ethane,” SPE Paper 30298, pp. 521-528.
Ai-Gosayier, M., et al. (2015) “In Situ Recovery of Heavy-Oil From Fractured Carbonate Reservoirs: Optimization of Steam-Over-Solvent Injection Method” Journal of Petroleum Science and Engineering, vol. 130, pp. 77-85.
Andrade, M.R., et al. (2007), “Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate”, Aquaculture, vol. 264, pp. 130-134.
Bayestehparvin, B., et al. (2015) “Dissolution an dMobilization of Bitumen at Pore Scale”, SPE174482-MS, Prepared for presentation at the SPE Canada Heavy Oil Technical Conference held in Calgary, Alberta, Canada, Jun. 9-11, 2015; 23 pages.
Butler, R. M. et al. (1991) “A new process (VAPEX) for recovering heavy oils using hot water and hydrocarbon vapour”, CIM/SPE Annual Technical Conference Jan.-Feb. vol. 30, No. 1, pp. 97-106.
Butler, R. M. et al. (1993) “Recovery of Heavy Oils Using Vapourized Hydrocarbon Solvents: Further Development of the Vapex Process” The Journal of Canadian Petroleum Technology, Jun., vol. 32, No. 6, pp. 56-64.
Castanier, L.M., et al. (2005) “Heavy oil upgrading in-situ via solvent injection and combustion: A “new” method”, EAGE 67th Conference & Exhibition—Madrid, Spain, Jun. 13-16, 2005; 4 pages.
Cristofari, J., et al. (2008) “Laboratory Investigation of the Effect of Solvent Injection on In-Situ Combustion” SPE 99752 prepared for presentation at the 2006 SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Apr. 22-26. 11 pages.
Cunha, L.B. (2005) “Recent In-Situ Oil Recovery-Technologies for Heavy- and Extraheavy-Oil Reserves”, SPE 94986, prepared for presentation at the 2005 SPE Latin American and Caribbean Petroleum Enginerring Conference held in Rio de Janeiro, Brazil, Jun. 20-23; 5 pages.
Deng, X (2005) “Recovery Performance and Economics of Steam/Propane Hybrid Process.” SPE/PS-CIM/CHOA 97760, PS2005-341, SPE/PS-CIM/CHOA International Thermal Operations and Heavy Oil Symposium, copyright, pp. 1-7.
Diaz, J. A. D. (2006) “An Experimental Study of Steam and Steam-Propane Injection Using a Novel Smart Horizontal Producer to Enhance Oil Production in the San Ardo Field.” Presentation given at Sponsor's Meeting, Crisman Institute, Aug. 3, Department of Petroleum Engineering, Texas A&M University (7 pages).
Doan, Q., et al. (2011) “Potential Pitfalls From Successful History—Match Simulation of a Long-Running Clearwater-Fm Sagd Well Pair” SPE 147318, Prepared for presentation at the SPE Annual Technical Conference and Exhibition held in Denver, Colorado, Oct. 30-Nov. 2; 9 pages.
D'Silva, J, et al. (2008) “In-Situ Combustion With Solvent Injection” SPE 117684, Prepared for presentation at the SPE International Thermal Operations and Heavy Oil Symposium held in Calgary, Alberta, Canada, Oct. 20-23; 11 pages.
D'Silva, J., et al. (2011) “Integration of In-Situ Combustion With Solvent Injection—A Detailed Study” SPE 141570, Prepared for presentation at the SPE Projects and Facilities Challenges Conference at METS held in Doha, Qatar, Feb. 13-16; 11 pages.
Dunn-Norman, S., et al. (2002) “Recovery Methods for Heavy Oil in Ultra-Shallow Reservoirs” SPE 76710, prepared for presentation at the SPE Western Regional/AAPG Pacific Section Joint Meeting held in Anchorage, Alaska, May 20-22, 6 pages.
Frauenfeld, T.W., et al (2006) “Economic Analysis of Thermal Solvent Processes” Pet-Soc 2006-164; Presented at the Petroleum Socity's 7th Canadian International Peteroleum Conference (57th Annual Technical Meeting), Calgary, Alberta, Canada, Jun. 13-15, 2006; 9 pages.
Gates, I.D., et al. (2011) “Evolution of In Situ Oil Sands Recovery Technology: What Happened and What's New?” SPE150686, Prepared for presentation at the SPE Heavy Oil Conference and Exhibition held in Kuwait City, Kuwait, Dec. 12-14, 2011; 10 pages.
Ghoodjani, E., et al. (2012) “A Review on Thermal Enhanced Heavy Oil Recovery From Fractured Carbonate Reservoirs” SPE 150147, Prepared for presentation at the SPE Heavy Oil Conference Canada held in Calgary, Alberta, Canada, Jun. 12-14, 2012; 8 pages.
Goldthorpe, S. (2013) “Cement Plant CO2 to DME,” IEAGHG Information Paper; 2013-IP9, Jun. 2013, 1 page.
Greaser, G.R., et al. (2003) “New Thermal Recovery Tech nology and Technology Transfer for Successful Heavy Oil Development.” SPE69731, Society of Petroleum Engineers, Inc., 7 pages.
Hong, K.C. (1999) “Recent Advances in Steamflood Technology.” SPE 54078, Copyright 1999, Society of Petroleum Engineers, Inc., 14 pages.
Jaiswal, N. J. (2006) “Experimental and Analytical Studies of Hydrocarbon Yields Under Dry-, Steam-, and Steam with Propane-Distillation.” Presentation given at Crisman Institute's Halliburton Center for Unconventional Resources, Aug. 3, 2006, Department of Petroleum Engineering, Texas A&M University (5 pages).
Jiang, Q., et al. (2010) “Evaluation of Recovery Technologies for the Grosmont Carbonate Reservoirs” Journal of Canadian Petroleum Technology, vol. 49, No. 5, pp. 56-64.
Kamal, C., et al. (2012), “Spirulina platensis—A novel green inhibitor for acid corrosion of mild steel”, Arabian Journal of Chemistry, vol. 5, pp. 155-161.
Khaledi, R., et al. (2018) “Azeotropic Heated Vapour Extraction—A New Thermal-Solvent Assisted Gravity Drainage Recovery Process”, SPE189755-MS, SPE Canada Heavy Oil Technical Conference held in Calgary, Alberta, Canada, Mar. 13-14, 2018, 20 pages.
Lei, H., et al. (2012) “An Evaluation of Air Injection as a Follow-Up Process to Cyclic Steam Stimulation in a Heavy Oil Reservoir” SPE 150703, Prepared for presentation at the SPE Heavy Oil Conference Canada held in Calgary, Alberta, Canada, Jun. 12-14, 2012; 13 pages.
Lennox, T.R. et al (1980) “Geology of In Situ Pilot Project, Wabasca Oil Sands Deposit, Alberta” Saskatchewan Geological Society Special Publication No. 5; Conference and Core Seminar, Regina, Oct. 15-17, 1980; pp. 267-268.
Lim, G.B. et al. (1994) “Three Dimensional Scaled Physcial Modeling of Solvent Vapour Extraction of Cold Lake Bitumen,” Canadian SPE Int'l Conf. on Recent Advances in Horizontal Well Applications, Paper No. HWC94-46, Calgary, Canada, Mar. 20-23, 1994, 11 pages.
Lim, G.B. et al. (1995) “Cyclic Stimulation of Cold Lake Oil Sand with Supercriticall Ethane,” SPE #30298, Int'l Heavy Oil Symposium, Calgary, Alberta, Canada, Jun. 19-21, 1995, pp. 521-528.
Lyubovsky, M., et al. (2005) “Catalytic Partial ‘Oxidation of Methane to Syngas’ at Elevated Pressures,” Catalysis Letters, v. 99, Nos. 3-4, Feb. 2005, pp. 113-117.
Mamora, D. D., (2006) “Thermal Oil Recovery Research at Texas A&M in the Past Five Years—an Overview.” Presentation given at the Crisman Institute Halliburton Center for Unconventional Resources, Research Meeting Aug. 3, Department of Petroleum Engineering, Texas A&M University (13 pages).
Mert, B.D., et al. (2011) “The role of Spirulina platensis on corrosion behavior of carbon steel”, Materials Chemistry and Physics, vol. 130, pp. 697-701.
Mokrys, I. J., et al. (1993) “In-Situ Upgrading of Heavy Oils andBitumen by Propane Deasphalting: The Vapex Process” SPE 25452, Mar. 21-23, Oklahoma City, OK, pp. 409-424.
Mulac, A.J.,et al. (1981) “Project Deep Steam Preliminary Field Test Bakersfield, California.” SAND80-2843, Printed Apr. 62 pages.
Naderi, K., et al. (2015) “Effect of Bitumen Viscosity and Bitumen—Water Interfacial Tension on Steam Assisted Bitumen Recovery Process Efficiency”, Journal of Petroleum Science and Engineering 133, pp. 862-868.
Nasr, T.N., et al. (2005) “Thermal Techniques for the Recovery of Heavy Oil and Bitumen” SPE 97488 prepared for presentation at the SPE International Improved Oil Recovery Conferencein Asia Pacific held in Kuala Lumpur, Malaysia, Dec. 5-6, 2005. 15 pages.
Nasr, T.N. et al. (2006) “New Hybrid Steam-Solvent Processes for the Recovery of Heavy Oil and Bitumen” SPE 101717 Prepared for presentation at the Abu Dhabi International Petroleum Exhibition and Conference held in Abu Dhabi, U.A.E., Nov. 5-8, 2006; 17 pages.
National Energy Board, (2004) “Canada's Oil Sands. Opportunities and Challenges to 2015.” An Energy Market Assessment, May (158 pages).
Nexant, Inc. (2008), “Dimethyl Ether Technology and Markets,” CHEMSystems PERP Program Report 07/08S3, Dec. 2008, 7 pages.
NTIS, Downhole Steam-Generator Study, vol. 1, Conception and Feasibility Evaluation. Final Report, Sep. 1978-Sep. 1980, Sandia National Labs, Albuquerque NM, Jun. 1982. 260 pages.
Oceaneering; Website: http://www.oceaneering.com/Brochures/MFV%20%Oceaneering%20Multiflex.pdf, Oceaneering Multiflex, Oceaneering International, Incorporated, printed Nov. 23, 2005, 2 pages.
Qi, G.X. et al. (2001) “DME Synthesis from Carbon Dioxide and Hydrogen Over Cu—Mo/HZSM-5,” Catalysis Letters, V. 72, Nos. 1-2, 2001, pp. 121-124.
Redford, et al. (1980) “Hydrocarbon-Steam Processes for Recovery of Bitumen from Oil Sands” SPE8823, Prepared for presentation at the First Joint SPE/DOE Symposium on Enhanced Oil Recovery at Tulsa, Oklahoma, Apr. 20-23; 12 pages.
Saeedfar, A., et al. (2018) “Critical Consideration for Analysis of RF-Thermal Recovery of Heavy Petroleum” SPE-189714-MS, Prepared for presentation at the SPE Canada Heavy Oil Technical Conference held in Calgary, Alberta, Canada, Mar. 13-14, 2018; 13 pages.
Seibert, B. H. (2012) “Sonic Azeotropic Gravity Extraction of Heavy Oil From Oil Sands”, SPE157849-MS, SPE Heavy Oil Conference Canda held in Calgary, Alberta, Canada, Jun. 12-14, 2012, 10 pages.
Sharma, J. et al. (2010) “Steam-Solvent Coupling at the Chamber Edge in an In Situ Bitumen Recovery Process” SPE 128045, Prepared for presentation at the SPE Oil and Gas India Conference and Exhibition held in Mumbai, India Jan. 20-22; 26 pages.
Stark, S.D. (2013) “Cold Lake Commercialization of the Liquid Addition to Steam for Enhancing Recovery (Laser) Process” IPTC 16795, Prepared for presentation at the International Petroleum Technology Conference held in Beijing, China, Mar. 26-28, 2013, 15 pages.
Wan Nik, W.B., et al. (2012), “Marine Extracts as Corrosion Inhibitor for Aluminum in Seawater Applications”, International Journal of Engineering Research and Applications (IJERA), vol. 2, Issue 1; pp. 455-458.
Zhang, L. et al. (2013) “Dehydration of Methanol to Dimethyl Ether Over y-AL2O3 Catalyst: Intrinsic Kinetics and Effectiveness Factor,” Canadian Journal of Chem. Engineering, v.91, Sep. 2013, pp. 1538-1546.
International Search Report and the Written Opinion of the International Searching Authority, or the Declaration (2 pages), International Search Report (4 pages), and Written Opinion of the International Searching Authority (6 pages) for International Application No. PCT/US2007/080985 dated Feb. 28, 2008.
International Preliminary Report on Patentability (2 pages); Written Opinion of the International Searching Authority (6 pages); all dated Apr. 23, 2009 in PCT International Application No. PCT/US2007/080985 filed Oct. 10, 2007 (Total 8 pages).
Hansen, C. M., et al. (1971) “Encyclopedia of Chemical Technology” First Suppl. vol., pp. 889-910.
Hansen, C. (1999) “Hansen Solubility Parameters A User's Handbook”, pp. ii-iv, 1-74 and 151-175.
Feali, M., et al. (2008) “Feasibility Study of the Cyclic VAPEX Process for Low Permeable Carbonate Systems”, International Petroleum Technology Conference paper 12833, pp. 1-5.
Related Publications (1)
Number Date Country
20190002755 A1 Jan 2019 US