This invention relates to automated banking machines. Specifically, this invention relates to an automated banking machine which delivers and receives various types of sheet materials through a single opening in the machine.
Automated banking machines are known in the prior art. A common type of automated banking machine is an automated teller machine (ATM). ATMs may be used by individuals to receive cash from their accounts, to pay bills, to transfer cash between accounts, and to make deposits. Certain ATMs also enable customers to deposit checks, money orders, travelers checks, or other instruments. Such ATMs sometimes have the capability of creating an electronic image of a deposited instrument.
ATMs may also provide various types of sheets to customers. Such sheets include currency bills that customers withdraw from the machine. Customers may also receive sheet materials such as money orders, bank checks, scrip, stamps, or other sheet materials stored in or produced by the machine. Customers may also receive from an ATM a printed sheet which is a receipt indicating the particulars of the transactions they have conducted at the machine. In addition customers may request and receive from some ATMs a more detailed statement of transactions conducted on their account.
ATMs currently in use often have several different locations on the machine where sheets are received from or delivered to a customer. For example, most machines include one area for delivering cash to a customer and another area for receiving deposits. More than one deposit receiving area may also be provided for different types of deposits. For example, an ATM may have one opening for receiving envelope deposits, and a separate opening for receiving negotiable instruments, such as checks. ATMs may also have a particular area for delivering receipts to the customer. If the machine has the capability of printing a complete account statement on larger paper an additional area may be provided where statement sheets are delivered.
Having different areas on the customer interface of an ATM to receive and provide different types of sheets is required because each type of sheet is processed by a different mechanism within the machine. Each of these mechanisms has its own separate access to the customer. This makes machines with different features substantially different from other machines and adds complexity to their operation. Providing several different passageways and transports for receiving and providing sheet materials to customers also adds complexity and cost to a machine.
While the drawbacks associated with multiple sheet delivery and receiving openings is easily appreciated with regard to ATMs, other automated banking machines have similar drawbacks. For example the machines used by bank tellers to count currency received from customers are generally totally different machines than those used to dispense currency that is to be provided by the teller to a customer. Separate machines are also provided for receiving and imaging checks and other types of negotiable instruments and documents of value. Often a separate terminal is provided to print a record of a transaction for a customer. The drawbacks associated with having different machine interfaces to receive and deliver documents is common to automated banking machines other than ATMs. Thus there exists a need for an automated banking machine that has a simpler user interface, which is capable of receiving as well as providing various types of sheets through a single opening, and which may be capable of carrying out a variety of transactions.
It is an object of an exemplary embodiment of the present invention to provide an automated banking machine.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine which has a simpler customer interface.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine which has a single opening for receiving and providing various types of sheets and documents.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine which performs a plurality of banking transaction functions and which has a compact physical size.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine that may be more readily configured to provide different banking functions.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine that is economical to manufacture and operate.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine that accepts and delivers various types of banking documents in a stack from and to customers, respectively.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine that enables selectively separating sheets from a stack and processing such sheets in different ways depending upon the type of sheet.
It is a further object of an exemplary embodiment of the present invention to provide an automated banking machine that enables selectively assembling document sheets into a stack.
It is a further object of an exemplary embodiment of the present invention to provide a method for operation of an automated banking machine in which sheets are selectively removed from a stack by transporting the stack in a first transport path through an intersection with a second transport path, in which a sheet directing apparatus adjacent to the intersection selectively separates sheets from the stack.
It is a further object of an exemplary embodiment of the present invention to provide a method for operation of an automated banking machine in which a sheet moving in a first transport path and a sheet moving in a second transport path are brought together in aligned relation to form a stack, as the sheets pass through an intersection of the first and second transport paths.
Further objects of exemplary embodiments of the present invention will remain apparent in the following Best Modes for Carrying Out Invention and the appended claims.
The foregoing objects are accomplished in an exemplary embodiment of the present invention by an automated banking machine having a transport which moves sheets or stacks of sheets along a first transport path. The first transport path extends from a user accessible opening on an interface of the machine. The machine also includes an internal second transport path for transporting sheets. The second transport path meets the first transport path at an intersection. A sheet directing apparatus is positioned adjacent to the intersection. The machine further includes at least one sheet dispensing device and at least one sheet accepting device for dispensing and receiving sheets, respectively. The sheet dispensing and receiving devices are in operative connection with either the first or second transport paths.
In operation of the machine a stack of sheets which may include various types of documents is received from a user is moved from the opening along the first transport path. As the stack passes the intersection the sheet directing apparatus is selectively operative to separate a sheet from the stack and direct the sheet into the second transport path. Once in the second transport path the separated sheet may be handled individually for processing or storage in the machine. Passing the stack through the intersection enables selectively removing sheets from the stack in response to operation of the sheet directing apparatus.
Sheets dispensed or otherwise held in the machine are enabled to be assembled into a stack by moving a sheet in the first transport path. A sheet in the second transport path is moved to the intersection in coordinated relation with the first sheet. The first and second sheets engage in aligned relation and form a stack in the first transport path as the sheets move through the intersection. Additional sheets are selectively added to the stack as the stack is thereafter again moved through the intersection while successive sheets are brought to the intersection through the second transport path. Various types of sheets are selectively assembled into the stack in the operation of the machine. Control circuitry operates the components of the machine to assemble the stack. Once the stack is assembled, it is delivered to the user by passing it along the first transport path to the user opening.
In exemplary embodiments data may be acquired and stored which is usable to determine the individual users who have provided and/or received particular sheets from the machine. This may enable the machine to determine the source or disposition of suspect notes for example. Alternatively or in addition, exemplary embodiments may limit the dispense of documents such as checks, money orders or cash from the machine to particular individuals to reduce the risk of money laundering or other illegal or fraudulent activity. Other exemplary embodiments may include other or additional features.
Referring now to the drawings, and particularly to
Customer interface 12 further includes a keypad 16. Keypad 16 includes a plurality of buttons which may be actuated by a customer to provide inputs to the machine. Customer interface 12 further includes a card reader slot 18. Card slot 18 is used to input a card with encoded data thereon that is usable to identify the customer and/or the customer's account information. Card slot 18 is connected to a card reader of a conventional type for reading data encoded on the card. Other exemplary embodiments may include types of input devices other than a card reader and/or a keypad. Some embodiments may include input devices such as biometric readers that may be operative to receive customer identifying inputs such as fingerprints, iris scans, retina scans, face topography data, voice data or other inputs that provide data that is usable to identify a user. An example of an ATM that uses biometric input devices and other types of input devices is shown in U.S. Pat. No. 6,023,688 the disclosure of which is incorporated herein by reference.
Customer interface 12 further includes an opening 20. Opening 20 as later explained, is used to receive stacks of sheets or documents from a customer operating machine 10. Opening 20 is also used to deliver stacks of documents to customers operating the machine. Although opening 20 is shown exposed in
As shown in
Machine 10 further includes an upper enclosure portion 26. The upper enclosure portion has components of the customer interface 12 thereon. The customer interface portion 12 includes a fascia 28. Fascia 28 is preferably movably mounted on the upper enclosure portion 26 and may be selectively opened to gain access to components housed in the upper enclosure portion. A locking mechanism (not shown) is preferably included in the upper enclosure portion of the exemplary embodiment for preventing unauthorized persons from gaining access to the interior thereof.
As shown in
The interior of ATM 10 is schematically shown in
The exemplary ATM may operate in response to the indicia on the canisters to adjust the operation of the dispensers to conform to the canister contents and position. In the exemplary embodiment the sheet holding canisters and other devices, may include indicia of the type shown in U.S. Pat. No. 4,871,085. The information represented by the indicia is read by the reading apparatus and the resulting signals transmitted to the machine control circuitry. The control circuitry adjusts operation of the sheet dispensing and receiving devices in response to the signals to conform to the type and character of the sheets held in the various canisters.
In the exemplary embodiment of machine 10 shown in
Depository 40, currency dispensers 30 and 32 and sheet receiving and delivering devices 34, 36 and 38 are all positioned within the chest portion 22 of the machine 10. In the exemplary embodiment, the sheet dispensing and receiving devices, except for the depository, in the exemplary embodiment may be interchangeably positioned in the machine. The control circuitry adjusts operation of the machine accordingly based on the device positions and the indicia on the canisters or devices.
Each of the currency dispensers 30 and 32, sheet receiving and delivering devices 34, 36 and 38, and the depository 40 are in communication with a sheet transport path generally indicated 42. Sheet transport path 42 comprises a plurality of sheet transports which are aligned and in operative connection through a rear area of the chest portion. Sheet transport path 42 may include one or more sheet transports of the type shown in U.S. Pat. No. 5,240,638, the disclosure of which is incorporated herein. Each of the depository 40, currency dispensers 30 and 32 and sheet receiving and delivering devices 34, 36 and 38 are in operative connection with the sheet transport path 42, and are enabled to deliver sheets to and/or receive sheets from the sheet transport path 42.
Sheet transport path 42 extends through an opening (not shown) in the chest portion 22 of the ATM chest. Wiring that connects components located in the chest portion with components in the upper enclosure portion 26 also extends through an opening in the chest portion and is connected to control circuitry, schematically indicated 44. The control circuitry 44 preferably includes at least one processor in operative connection with at least one memory or data store, and is operative to carry out programmed instructions based on data stored in the memory. The control circuitry in the exemplary embodiment operates the machine to carry out the operations hereinafter described.
Upper enclosure portion 26 includes the fascia 28 and the customer accessible opening 20. A first transport path generally indicated 46 extends inside the machine from opening 20. First transport path 46 preferably includes an interwoven belt type transport of the type shown in U.S. Pat. No. 5,797,599, the disclosure of which is incorporated by reference. A transport of this type is schematically shown in
Transport 48 includes a plurality of spaced first rolls 50 and a plurality of intermediate spaced second rolls 52. Rolls 50 and 52, which are preferably crowned rolls, support elastomeric belts thereon. First rolls 50 support first belts 54 and second rolls 52 support second belts 56. Belts 54 and 56 extend longitudinally in the transport 48.
A stack of sheets schematically represented by sheet 58 in
Referring again to
Upper enclosure portion 26 also includes various sheet producing, dispensing and/or receiving devices. These dispensing and receiving devices may include dispensers or devices for receiving or dispensing sheets similar to those shown in U.S. Pat. No. 4,494,747 or U.S. application Ser. No. 09/390,929, and may include removable canisters for holding sheets therein. Such removable canisters may also include indicia of the type described in U.S. Pat. No. 4,871,085, which are read by apparatus within the machine. The control circuitry may be operative to control the operation of the machine in response to the indicia.
Devices 62 and 64 may serve as part of document producing device and may hold sheets such as blank receipt or statement forms. Alternatively, one of such canisters may hold blank instruments which must be completed, such as scrip forms, money orders or travelers checks. A further sheet dispensing device 66 may dispense documents that need to be completed before dispense such as bank checks or documents that are dispensed without further processing such as plates of stamps.
A sheet receiving device 68 is also preferably included in the upper enclosure portion. Sheet receiving device 68 may be used for holding sheets such as checks or other instruments, which have been input by a customer to the machine and which have been imaged and/or canceled through processing in the machine. Examples of check processing can be of the type disclosed in previously mentioned U.S. application Ser. No. 10/944,224 filed Sep. 16, 2004, which is incorporated herein by reference. In an exemplary embodiment of the invention, an automated banking machine can cash financial checks. For example, an ATM can read indicia such as an amount from a check, produce image data representative of the check indicia, determine whether the image data can be accurately identified within a predetermined level of assurance, send identifiable data in a check cashing authorization request to an ATM host, receive authorization from the host to cash the check, operate a cash dispenser to dispense cash associated with the check, and print cancellation data on the check. Checks processed by the ATM can be either stored in the machine or returned to the ATM user.
The exemplary upper enclosure portion further includes at least one printing device schematically indicated 70. Printing device 70 may be used for selectively printing on sheets under control of the control circuitry. An imaging device schematically indicated 72 is also included. Imaging device 72 is preferably of the type which enables reading and generating an electronic image of a document, such as that shown in U.S. Pat. No. 5,534,682 or U.S. Pat. No. 5,923,413 the disclosures of each of which are incorporated as if fully rewritten herein.
In some embodiments an imaging device may operate in conjunction with the control circuitry to produce signals which comprise an electronic representation of an image of a check or other instrument. The electronic representation may include all or selected portions of one or both sides of the sheet. For example in some situations it may be suitable to obtain an electronic image of alphabetic, numerical and/or other symbols or features on the check. For example such data may be analyzed using character recognition software such as software commercially available from Check Solutions Inc. or other companies to determine the maker, amount and/or other data pertinent to the check for purposes of receiving and/or cashing the check.
In some embodiments printing devices or other devices may also serve as part of a cancellation device. Such a cancellation device may serve to print or otherwise mark checks or other documents received by the machine. For example, the machine may mark as cancelled checks which are received and processed by the ATM. In some embodiments such checks or documents may be marked through operation of the cancellation device and then stored in a check storage location in the machine. In other embodiments the cancellation device after the document has been imaged, may mark the document as cancelled and return the cancelled document to the user of the machine. In some embodiments one or more such cancelled documents may be assembled in a stack in a manner hereafter discussed, when returned to a user. Cancelled documents may also be returned in an assembled stack with other documents such as a receipt for the transaction and/or notes dispensed by the ATM as a result of cashing the check. The control circuitry may also operate to store data corresponding to the check and the identity of the user of the ATM providing the check to the machine in one or more data store for purposes of record keeping. For example the data store may store data corresponding to the check with the data that corresponds to a user's account number, biometric data, photograph or other data usable to identify a user. Of course these approaches are exemplary and other approaches may be used.
In some embodiments the control circuitry may operate to check the user identity data before cashing one or more checks. The control circuitry may also be programmed to limit the risk of check cashing by unauthorized persons and/or to reduce the risk of money laundering. For example before cashing a check the control circuitry may operate to compare data corresponding to the characters identifying the payee indicated on the check to other input data corresponding to the user of the machine and/or to the characters on the check comprising the endorsement. If the payee, user and/or endorsement data does not correspond, the control circuitry may operate so that the check is not accepted or cashed. Further the control circuitry may operate to determine the amount and/or nature of checks the particular user has presented at the ATM and/or within a prior time period. The ATM may also operate to communicate with other computers in a network to determine the amount or nature of checks presented by the user at other ATMs. If the user's check presenting activities fall outside certain established programmed parameters, such that the user's activities may be indicative of theft of the check or money laundering, for example, the ATM may refuse the transaction.
In the alternative and/or in addition a user presenting a check may be required by the control circuitry to provide at least one biometric input. This may be done even in circumstances where the user may be identifiable by data on a card or another manner. The biometric identification data may be compared to stored data and used to evaluate the check cashing activities of this particular user. A determination may be made by the control circuitry or by a remote computer to determine if the activities fall outside the established parameters such that the current transaction is suspicious and not permitted. In this way a user with multiple cards and/or multiple identities may be prevented from conducting transactions that might be suspicious in terms of theft or money laundering. Of course some embodiments may also operate to cross check biometric data with data on a debit or credit card or other item or other device presented by the user to the ATM to provide greater assurance as to the identity of the user. Of course in other embodiments other approaches may be used.
The exemplary handling devices 62, 64 and 66, as well as the sheet receiving device 68, of the ATM are all in communication with one or more transports. These transports may be of the type shown in U.S. Pat. No. 5,342,165, the disclosure of which is incorporated herein, or other suitable sheet transport devices. The sheet transport devices form a sheet transport path 74. Sheet transport path 74 extends to transport path 46 and meets transport path 46 at a second intersection 76.
The upper enclosure portion may also include additional or other devices. Such devices may include a journal printer as schematically indicated by rolls 78. The journal printer is used to make a paper record of transactions conducted at machine 10. Electronic journals may also be made by the control circuitry and stored in memory. Other devices which may be included in the machine are other types of document producing devices, audio output devices, customer sensors, cameras and recorders, biometric sensing devices and other apparatus suitable for use in the operation of the particular type of automated banking machine.
Transport paths 42, 46 and 74 of the exemplary machine are shown in greater detail in
Second belts 88 extend between a second roll 90 and rolls 92, 94 and 96. Second belts 88 are driven by a second reversible drive schematically indicated 98. As shown in
First transport path 46 further includes a further transport section 100. Transport section 100 is similar to the transport shown in
Rolls 106 have positioned adjacent thereto a plurality of holding rolls 108. Rolls 108 are positioned in spaced axial intermediate relation of third belts 102. This configuration imparts a wave configuration to sheets and stacks of sheets in a manner comparable to that imparted to sheets held by transport 48 as shown in
Adjacent to first intersection 60, where sheet path 42 meets sheet path 46, is a sheet directing apparatus generally indicated 110. Sheet directing apparatus 110 includes sheet engaging rolls 112 and further rolls 114. Rolls 112 and 114 have resilient belts 116 mounted thereon. It should be understood that rolls 112 and 114 are driven by one or more independent reversible drives (not shown) under control of the control circuitry 44. It should be understood that rolls 112 and 114 and belts 116 in
Transport path 42 further includes transport 118 which is adjacent to depository 40. Transport 118 includes a plurality of rolls which drive belts 120 in response to a reversing drive (not shown). Rolls 122 which are engaged with belts 120, as well as rolls 124 which are independently driven by one or more reversible drives (not shown), are positioned in the sheet path 42 adjacent to rolls 114 and 96. The purpose of this configuration is later discussed in detail.
As schematically represented in
Various sheet manipulating and processing operations performed by the exemplary automated banking machine of the described embodiment are now explained in detail with reference to
As shown in
As shown in
As shown in
The next step in the operation of the exemplary stack assembly mechanism is represented in
As sheet 140 moves toward the intersection 60 the control circuitry operates to begin moving sheet 132 in the first direction along path 46 toward the intersection. The control circuitry coordinates the operation of the drives for the various components so that sheet 140 and sheet 132 pass through the intersection 60 in coordinated relation. As a result, sheets 132 and 140 engage in aligned, abutting relation so as to form a stack as they move through the intersection 60.
As shown in
It will be appreciated that a stack comprising a significant number of generally aligned and abutting sheets may be formed in the manner described. Because the sheets are selectively dispensed from the dispensing devices and/or sheet producing devices adjacent to transport path 42, the sheets may be stacked in a desired order as determined by the control circuitry. For example, sheets which are currency notes may be stacked in order from highest to lowest denomination, or vice versa. Particular sheets may be placed in a desired location within the stack. Once the stack has been assembled in the desired manner by the control circuitry of the machine, it may be moved in first transport path 46 to the opening 20 so it may be taken by a customer.
It should also be noted that in the position of stack 144 shown in
As schematically represented in
It will be understood that sheets from sheet path 74 may be delivered individually through intersection 76 into sheet path 46, and may thereafter be added to a stack formed at intersection 60 in a manner similar to that previously described. It should also be understood that sheet path 74 includes appropriate sensors that are operatively connected to the control circuitry. The control circuitry operates so that sheets from the sheet path 74 may be added to a stack in engaged, aligned relation with the other sheets in the stack as the sheets pass through intersection 76. As a result the associated structures operate as a further stack assembly mechanism.
As shown in
Once the printing or imaging activity has been conducted on the sheet in sheet path 150, the sheet may be returned to the first sheet path 46. Once the sheet 148 is returned to the first sheet path it may be selectively moved to one of the other sheet paths 42 or 74. From these sheet paths it may be directed into and stored in an appropriate sheet storage device or location in the machine. Alternatively, sheet 148 may be selectively moved to be combined in a stack with other sheets at intersections 60 or 76. This may in some embodiments provide for the delivery of cancelled checks to a user. Such cancelled checks may be delivered in a stack with other checks, receipts, notes or other documents.
In some embodiments the sheet turnover members 136 may be configured so that sheets in transport path 150 may be directly added to a stack of sheets at the intersection of sheet path 46 and the turnover device. This is accomplished by configuring or moving the turnover member so that the tines in the lower position do not interfere with the passage of a stack of sheets in the first direction past the turnover member. This feature provides yet another stack assembly mechanism and may be particularly advantageous when a customer receipt is printed on a sheet by the printer in sheet path 150, and it is desired to have the receipt at the top of the stack. This may be achieved by positioning the stack in the holding device formed by holding rolls 108 and transport section 100, and moving the stack in the first direction to the right in
It should be understood that in other embodiments, sheets from paths 74 and 42, as well as from path 150, may all be added to a stack as the stack moves from the holding device provided by transport section 100 and holding rolls 108, in the first direction toward the customer. This can be readily envisioned from the schematic view shown in
It should be understood that other sheet turnover devices, other than, or in addition to turnover member 136, may be provided in other embodiments. For example, in
Alternatively, turnover of the sheet 154 may be accomplished by moving it into transport path 174 and thereafter disposing directing member 152 away from roll 108. Once this is done, sheet 154 may again be directed into path 146 and moved to the right as shown in
The components adjacent to intersection 60 may also be operated as a sheet turnover device. This is represented schematically in
It should be further understood that sheets which originate in transport path 42 may also be directed in the manner shown in
A further useful aspect of the exemplary embodiment is that it includes a separating mechanism for separating sheets from a stack as represented schematically in
As stack 158 moves toward intersection 60 the control circuitry of the machine operates sheet directing apparatus 110 so that rolls 112 and 114, and belts 116 journaled thereon, move relative to the stack in a direction opposed to the direction of stack movement. As a result of this movement by the sheet directing apparatus, a first sheet 160 which bounds a first side of the stack, is frictionally engaged by belts 116 and is stripped and separated from the stack. The first sheet 160 is directed into the sheet path 42 as the stack which comprises the remaining sheets continues on path 46. This enables sheet 160 to be handled separately by the devices adjacent to path 42, or to be later brought individually back to path 46 for individual transport to devices adjacent to other paths.
It should be noted that in the exemplary embodiment a sensor 162 is positioned adjacent to path 42. Sensor 162 may be a photo electric sensor connected to the control circuitry for sensing the position of the sheet. Alternatively, sensor 162 may comprise a plurality of similar or different sensors adapted for sensing features of a sheet. Sensor 162 may be part of a validation device such as that previously discussed that is suitable for determining note type and denomination. This enables the control circuitry to properly identify a currency sheet and place it in a designated note handling mechanism, storage position or other the sheet receiving device. Sensors 162 may alternatively operate in connection with the control circuitry to provide a validation mechanism to determine or assess the genuineness of a sheet. In other embodiments other features such as magnetic ink indicia, bar coding and other features may be detected for purposes of identifying the type of sheet as it moves past the sensors.
As previously mentioned, in some embodiments the validation device may be operative to identify particular sheets, such as by serial number or other characteristics. In some embodiments such information may be stored for suspect notes, and in others for all or certain selected categories of notes. Such data concerning individual notes may be stored in a data store in correlated relation with information usable to determine the identity of the user who provided the note to the machine. Other data may be stored as well, such as for example, the storage location or position where the note is stored in the machine or other information that can be used to recover the particular note and/or to document the transaction.
In some embodiments the machine may hold in a data store, identifying information related to notes for purposes of comparison to notes provided to the machine. This may include in some embodiments information corresponding to properties, characteristics or numbers associated with known counterfeit or invalid notes. Such information used for comparison may also include identifying data for individual notes already deposited in the machine. Thus for example, if a note provided to the machine is individually identified by determining the serial number, the serial number may be compared through operation of the control circuitry to stored data for serial numbers of known counterfeits. Alternatively or in addition, the serial number of the note provided to the ATM may be compared to serial numbers for notes previously deposited or input in the machine. In the event of a match in either example the control circuitry would act in response to the apparent suspect note in accordance with its programming. This may include capturing and storing the suspect note, capturing additional data about the user presenting the suspect note, notifying authorities or taking other action.
In embodiments where identifying data on all notes is captured and used for comparison, the control circuitry may operate to indicate when the note has been dispensed out of the machine. This may include for example deleting the information about the note such as its serial number from the data store upon dispense. Alternatively such indication may include storing the information indicative that the particular note has been dispensed. The information about the note dispensed may in some embodiments be stored in correlated relation with information unable to identify the user who received the note from the machine. Of course other approaches may be used in other embodiments and the approaches discussed with regard to notes may also be applied to other types of documents.
Returning to the discussion of the operation of the separating mechanism, after sheet 160 is separated from the stack 158 as shown in
It should be understood that while in the embodiment shown the sheet directing apparatus comprises a plurality of rolls having resilient surfaces thereon that move at a relative speed that is less than the speed of the moving stack, in other embodiments other types of stripping and separating devices may be used. These may include for example, resilient pads or rolls. Such devices may also include resilient suction cup type mechanisms or vacuum generating devices. Further alternative forms of sheet directing devices may include other physical members that engage selectively one or more sheets so as to direct them from path 46 into another path 42.
It should also be noted that in the exemplary embodiment shown in
As will be appreciated from the foregoing discussion, in some banking machines it may be desirable to process certain sheets individually. For example, if it is determined that a sheet separated from a stack is a check or other negotiable instrument that must be transferred to the imaging device, it may be desirable to clear a path which enables the sheet requiring such handling to be transported individually. This can be accomplished by disposing the stack of sheets that are not currently being processed individually away from the single sheet in first path 46. In this manner the sheet requiring individual handling can be transferred to path 150 or such other location as may be necessary without causing the remaining stack to undergo transport to an undesirable location.
A further alternative to facilitate individual handling of particular sheets is represented by the alternative embodiment shown in
Transport section 166 terminates in rolls 174 and 176. Rolls 174 and 176 are coaxial with other rolls that are spaced intermediate thereto that are part of transport section 168. Transport section 168 terminates at rolls 178 and 180 which are adjacent to a customer accessible opening indicated 182. Transport section 168 is operated by at least one independent reversible drive in response to the control circuitry.
Transport sections 166 and 168 along path 46 provide locations in which documents or stacks of documents may be temporarily stored as other documents are routed through intersections 60 and 76. After the necessary processing is done on the individual documents, the documents that are temporarily stored in the transport sections 166 and 168 may be moved to other transport sections for further processing. It should be understood that transport sections 166 and 168 include appropriate sensors for sensing the positions of the documents being temporarily stored therein which enables the control circuitry to coordinate movement thereof.
A further advantage of the exemplary embodiment described herein is that not only may the automated banking machine 10 accept individual documents and stacks of documents from a customer, but it may also accept conventional deposit envelopes. As shown in
Deposit envelope 184 moves in transport path 46 in the direction of Arrow E as shown in
The ability of the embodiment of the automated banking machine to handle depository envelopes, stacks of sheets and individual sheets, provides enhanced functionality for the machine. The ability of the exemplary embodiment to accept thick items in the area of path 42 adjacent to the intersection, also enables the control circuitry to use the area adjacent to the intersection as a temporary storage location for stacks of sheets. This may be desirable in some embodiments where a receipt form is delivered on transport path 74 and must be directed to transport path 150 for printing thereon before being combined with a stack to be delivered to a customer.
The exemplary embodiment of the ATM has the capability of storing the assembled stack of sheets adjacent to intersection 60 in transport path 42 until such time as the printed receipt is moved into the intersection along first path 46. As the receipt form is produced by a document producing device and moved into the intersection 60 by transport section 100, the stack is moved into the intersection in coordinated relation therewith so that the printed receipt is assembled into the stack and positioned at the top side of the stack. The assembled stack may be moved along transport path 46 to the opening where it may be taken by the customer.
In some embodiments the ATM may also operate to provide certain types of documents in exchange for other documents. As previously discussed, some embodiments may receive checks or other instruments, validate the check, and provide the user with currency notes. In some embodiments, a user may provide notes to the ATM and receive other types of documents such as money orders, scrip, vouchers, gift certificates or bank checks. In some embodiments the control circuitry may operate in the manner previously discussed to store information concerning individual notes in a data store in correlated relation with information usable to identify the user who deposited the notes in the machine. Some embodiments may store in correlated relation with all or a portion of such data, information which identifies the check, money order or other document provided by the machine to the user.
In some embodiments the ability of a single user to provide cash to the ATM may be controlled or limited to avoid money laundering or other suspect activities. For example, a user placing notes in the ATM to purchase money orders or other documents, may be required to provide at least one identifying input. This may include a biometric input such as a thumbprint for example. Such at least one identifying input may include data on a card or other device a user provides to operate the machine, or may be in lieu thereof or in addition thereto. Alternatively, some embodiments may enable use of the ATM to buy documents such as money orders, gift certificates or other documents without using a card or similar device to access the machine. In some cases a user may exchange notes of certain denominations for notes of other denominations. In such cases the control circuitry may require at least one identifying input from the user requesting to exchange cash for other documents.
The control circuitry may operate in accordance with programmed instructions and parameters to limit the number or value of documents a user may purchase or otherwise receive. This may include comparing user identifying data with data input in connection with prior transactions. This may be done by comparing user input data stored in a data store at the particular ATM, and/or data stored in computers connected to the ATM. By limiting the number or value of documents a user can purchase with cash, either overall, for a particular document or within a given time period, the risk of illegal activities such as money laundering can be minimized. Further such systems may more readily enable funds to be tracked.
An alternative embodiment of an automated banking machine is indicated 186 in
The sheet handling mechanism for machine 186 is indicated 192 in
The operation of the alternative sheet handling mechanism 192 is similar to that previously described except that the sheets, envelopes or stacks of sheets that are processed may be received from or delivered to either customer opening 194 or customer opening 196. Because of the high speed capability of the exemplary embodiment, it is possible for the sheet handling mechanism 192 to adequately service two users simultaneously without undue delay.
As will be appreciated from the foregoing description, the modifications necessary for the sheet handling mechanism of the first embodiment to accommodate two simultaneous users is relatively modest. In the exemplary embodiment it is possible to increase the number of customer interfaces on the machine from one to two at a relatively small cost. This is particularly advantageous for an automated teller machine positioned in a high customer traffic area. It is also useful for automated banking machines, such as those used by tellers to count and dispense currency notes. This is because the configuration of the sheet handling mechanism enables two tellers or other personnel to be serviced by a single machine.
Exemplary embodiments may operate to assure operation in accordance with the principles of U.S. application Ser. No. 09/664,698 filed Sep. 19, 2000, the disclosure of which is incorporated by reference as if fully rewritten herein.
Thus the automated banking machine of the exemplary embodiment of the present invention achieves at least some of the above stated objectives, eliminates difficulties encountered in the use of prior devices and systems, solves problems and attains the desirable results described herein.
In the foregoing description certain terms have been used for brevity, clarity and understanding. However, no unnecessary limitations are to be implied therefrom because such terms are used for descriptive purposes and are intended to be broadly construed. Moreover the descriptions and illustrations given are by way of examples and the invention is not limited to the exact details shown or described.
In the following claims any feature described as a means for performing a function shall be construed as encompassing any means capable of performing the recited function, and not mere equivalents of the particular means described in the foregoing description. The inclusion of an Abstract shall not be deemed to limit the claimed invention to the features described in such Abstract.
Having described the features, discoveries and principles of the invention, the manner in which it is constructed and operated, and the advantages and useful results attained; the new and useful structures, devices, elements, arrangements, parts, combinations, systems, equipment, operations, methods, and relationships are set forth in the appended claims.
This application claims the benefit under 35 USC § 120 of U.S. application Ser. No. 10/830,191 filed Apr. 21, 2004, which claims the benefit under 35 USC § 120 of U.S. application Ser. No. 09/993,070 filed Nov. 13, 2001, now U.S. Pat. No. 6,749,111, which claims the benefit under 35 USC § 119(e) of U.S. provisional application 60/338,919 filed Nov. 5, 2001. U.S. application Ser. No. 09/993,070 also claims the benefit under 35 USC § 120 of each of U.S. application Ser. No. 09/911,329 filed Jul. 23, 2001, now U.S. Pat. No. 6,607,081; U.S. application Ser. No. 09/390,929 filed Sep. 7, 1999, now U.S. Pat. No. 6,331,000; and U.S. application Ser. No. 09/664,698 filed Sep. 19, 2000, now U.S. Pat. No. 6,315,194. U.S. application Ser. No. 09/911,329 claims the benefit under 35 USC § 120 of U.S. application Ser. No. 08/980,467 filed Nov. 28, 1997, now U.S. Pat. No. 6,273,413, and U.S. application Ser. No. 09/633,486 filed Aug. 7, 2000, now U.S. Pat. No. 6,573,983. U.S. application Ser. No. 09/633,486 claims the benefit under 35 USC § 120 of U.S. application Ser. No. 09/135,384 filed Aug. 17, 1998, now U.S. Pat. No. 6,101,266, which claims the benefit under 35 USC § 120 of U.S. application Ser. No. 08/749,260 filed Nov. 15, 1996, now U.S. Pat. No. 5,923,413. U.S. application Ser. No. 09/390,929 claims the benefit under 35 USC § 119(e) of U.S. provisional application 60/100,758 filed Sep. 17, 1998. U.S. application Ser. No. 09/664,698 claims the benefit under 35 USC § 119(e) of U.S. provisional application 60/155,281 filed Sep. 21, 1999. This application also claims the benefit under 35 USC § 120 of U.S. application Ser. No. 10/944,224 filed Sep. 16, 2004, which claims the benefit under 35 USC § 120 of U.S. application Ser. No. 09/723,304 filed Nov. 27, 2000, which claims the benefit under 35 USC § 119(e) of U.S. provisional application 60/167,996 filed Nov. 30, 1999. U.S. application Ser. No. 10/944,224 also claims the benefit pursuant to 35 U.S.C. § 119(e) of each of U.S. provisional application 60/504,282 filed Sep. 17, 2003; U.S. provisional application 60/504,776 filed Sep. 17, 2003; U.S. provisional application 60/503,825 filed Sep. 22, 2003; U.S. provisional application 60/537,581 filed Jan. 20, 2004; U.S. provisional application 60/537,788 filed Jan. 20, 2004; U.S. provisional application 60/537,795 filed Jan. 20, 2004; and U.S. provisional application 60/584,622 filed Jun. 29, 2004. This application also claims the benefit under 35 USC § 120 of U.S. application Ser. No. 11/168,131 filed Jun. 27, 2005, which claims the benefit under 35 USC § 120 of U.S. application Ser. No. 11/039,655 filed Jan. 19, 2005. U.S. application Ser. No. 11/168,131 claims the benefit pursuant to 35 U.S.C. § 119(e) of each of U.S. provisional application 60/584,532 filed Jun. 29, 2004; U.S. provisional application 60/584,578 filed Jun. 29, 2004; U.S. provisional application 60/584,592 filed Jun. 29, 2004; 60/584,622 filed Jun. 29, 2004; U.S. provisional application 60/584,742 filed Jun. 29, 2004; and U.S. provisional application 60/678,916 filed May 6, 2005. U.S. application Ser. No. 11/039,655 claims the benefit pursuant to 35 U.S.C. § 119(e) of each of U.S. provisional application 60/537,581 filed Jan. 20, 2004; U.S. provisional application 60/537,788 filed Jan. 20, 2004; U.S. provisional application 60/537,795 filed Jan. 20, 2004; and U.S. provisional application 60/584,622 filed Jun. 29, 2004. The entire disclosures of each and all of the foregoing applications are incorporated herein by reference as if fully rewritten herein.
Number | Name | Date | Kind |
---|---|---|---|
3496370 | Haville et al. | Feb 1970 | A |
3765523 | Nakanishi | Oct 1973 | A |
3782543 | Martelli et al. | Jan 1974 | A |
3955812 | Suda et al. | May 1976 | A |
3979112 | Munn et al. | Sep 1976 | A |
4023011 | Nakajama et al. | May 1977 | A |
4095781 | Kistner et al. | Jun 1978 | A |
4147430 | Gorgone | Apr 1979 | A |
4159054 | Yoshida | Jun 1979 | A |
4163570 | Greenaway | Aug 1979 | A |
4176783 | Eppich | Dec 1979 | A |
4179031 | Ward | Dec 1979 | A |
4179685 | O'Maley | Dec 1979 | A |
4183665 | Iannandrea | Jan 1980 | A |
4187463 | Kivenson | Feb 1980 | A |
4204765 | Iannandrea | May 1980 | A |
4211918 | Nyfeler | Jul 1980 | A |
4234844 | Yuki | Nov 1980 | A |
4255057 | Williams | Mar 1981 | A |
4255652 | Weber | Mar 1981 | A |
4266761 | Buck | May 1981 | A |
4277774 | Fujii et al. | Jul 1981 | A |
4283708 | Lee | Aug 1981 | A |
4288781 | Sellner | Sep 1981 | A |
4302781 | Ikeda | Nov 1981 | A |
4309602 | Gonsalves | Jan 1982 | A |
4311914 | Huber | Jan 1982 | A |
4319137 | Nakamura | Mar 1982 | A |
4321672 | Braun et al. | Mar 1982 | A |
4348656 | Gorgone | Sep 1982 | A |
4349111 | Shah | Sep 1982 | A |
4352988 | Ishida | Oct 1982 | A |
4355300 | Weber | Oct 1982 | A |
4363584 | Kokubo | Dec 1982 | A |
4383275 | Sasaki | May 1983 | A |
4386432 | Nakamura | May 1983 | A |
4399553 | Toyama | Aug 1983 | A |
4429991 | Williams | Feb 1984 | A |
4435834 | Pauli | Mar 1984 | A |
4442541 | Finkel | Apr 1984 | A |
4461028 | Okubo | Jul 1984 | A |
4464786 | Nishito | Aug 1984 | A |
4464787 | Fish | Aug 1984 | A |
4465925 | Goi | Aug 1984 | A |
4472627 | Weinberger | Sep 1984 | A |
4473157 | Hirose et al. | Sep 1984 | A |
4482058 | Steiner | Nov 1984 | A |
4486098 | Buchegger | Dec 1984 | A |
4487306 | Nao | Dec 1984 | A |
4490846 | Ishida | Dec 1984 | A |
4494747 | Graef et al. | Jan 1985 | A |
4500002 | Koshio | Feb 1985 | A |
4501439 | Antes | Feb 1985 | A |
4504084 | Jauch | Mar 1985 | A |
4511133 | Kokubo et al. | Apr 1985 | A |
4513439 | Gorgone | Apr 1985 | A |
4514085 | Kaye | Apr 1985 | A |
4524276 | Ohtombe | Jun 1985 | A |
4537504 | Baltes | Aug 1985 | A |
4538719 | Gray | Sep 1985 | A |
4539702 | Oka | Sep 1985 | A |
4540081 | Mori et al. | Sep 1985 | A |
4542287 | Watanabe | Sep 1985 | A |
4542829 | Emery | Sep 1985 | A |
4546869 | Dean | Oct 1985 | A |
4550433 | Takahashi | Oct 1985 | A |
4556140 | Okada | Dec 1985 | A |
4558224 | Gober | Dec 1985 | A |
4563771 | Gorgone | Jan 1986 | A |
4569513 | Backman | Feb 1986 | A |
4572349 | Furuya | Feb 1986 | A |
4584529 | Aoyama | Apr 1986 | A |
4587412 | Apisdorf | May 1986 | A |
4587434 | Roes | May 1986 | A |
4588292 | Collins | May 1986 | A |
4591799 | Faillon | May 1986 | A |
4592090 | Curl | May 1986 | A |
4617457 | Granzow et al. | Oct 1986 | A |
4618257 | Bayne | Oct 1986 | A |
4625870 | Nao et al. | Dec 1986 | A |
4628194 | Dobbins | Dec 1986 | A |
4645936 | Gorgone | Feb 1987 | A |
4652015 | Crane | Mar 1987 | A |
4653647 | Hashimoto | Mar 1987 | A |
4659112 | Reiner | Apr 1987 | A |
4660705 | Kai | Apr 1987 | A |
4677682 | Miyagawa | Jun 1987 | A |
4678072 | Kobayashi | Jul 1987 | A |
4700368 | Munn | Oct 1987 | A |
4723072 | Naruse | Feb 1988 | A |
4731663 | Kovalchick | Mar 1988 | A |
4733308 | Nakamura | Mar 1988 | A |
4747493 | Nakanishi | May 1988 | A |
4749074 | Ueki | Jun 1988 | A |
4749087 | Buttifant | Jun 1988 | A |
4754862 | Rawicz/Szczerbo | Jul 1988 | A |
4760923 | Lundblad et al. | Aug 1988 | A |
4761205 | Crane | Aug 1988 | A |
4794585 | Lee | Dec 1988 | A |
4809837 | Hayashi | Mar 1989 | A |
4823393 | Kawakami | Apr 1989 | A |
4827531 | Milford | May 1989 | A |
4834230 | Kondo | May 1989 | A |
4837840 | Goldman | Jun 1989 | A |
4850468 | Kobayashi | Jul 1989 | A |
4858744 | Dolejs | Aug 1989 | A |
4864238 | Seitz | Sep 1989 | A |
4871085 | Graef et al. | Oct 1989 | A |
4880096 | Kobayashi | Nov 1989 | A |
4881268 | Uchida | Nov 1989 | A |
4884671 | Gardellini | Dec 1989 | A |
4889200 | Yoshimori et al. | Dec 1989 | A |
4905840 | Yuge et al. | Mar 1990 | A |
4906829 | Iseli | Mar 1990 | A |
4908516 | West | Mar 1990 | A |
4922109 | Bercovitz | May 1990 | A |
4922110 | Melcher | May 1990 | A |
4928230 | Kawamura et al. | May 1990 | A |
4947441 | Hara | Aug 1990 | A |
4966304 | Kelly | Oct 1990 | A |
4973851 | Lee | Nov 1990 | A |
4980543 | Hara et al. | Dec 1990 | A |
4980569 | Crane | Dec 1990 | A |
4996604 | Ogawa | Feb 1991 | A |
5004327 | Rosen | Apr 1991 | A |
5007520 | Harris | Apr 1991 | A |
5010243 | Fukushima | Apr 1991 | A |
5027415 | Hara | Jun 1991 | A |
5034616 | Bercovitz | Jul 1991 | A |
5044707 | Mallik | Sep 1991 | A |
5047871 | Meyer | Sep 1991 | A |
5063163 | Carmeli | Nov 1991 | A |
5064074 | Edin et al. | Nov 1991 | A |
5068519 | Bryce | Nov 1991 | A |
5076441 | Gerlier | Dec 1991 | A |
5083769 | Young | Jan 1992 | A |
5083975 | Young | Jan 1992 | A |
5099975 | Ullman | Mar 1992 | A |
5101184 | Antes | Mar 1992 | A |
5122754 | Gotaas | Jun 1992 | A |
5151607 | Crane | Sep 1992 | A |
5167313 | Dobbins | Dec 1992 | A |
5199543 | Kamagami | Apr 1993 | A |
5201395 | Takizawa | Apr 1993 | A |
5210398 | Metlitsky | May 1993 | A |
5222584 | Zouzoulas | Jun 1993 | A |
5231462 | Dschen | Jul 1993 | A |
5237164 | Takada | Aug 1993 | A |
5242041 | Isobe | Sep 1993 | A |
5247159 | Yuge et al. | Sep 1993 | A |
5259490 | Gardinelli | Nov 1993 | A |
5260582 | Danek | Nov 1993 | A |
5267753 | Chock | Dec 1993 | A |
5276396 | Seitz | Jan 1994 | A |
5279403 | Harbaugh | Jan 1994 | A |
5280333 | Wunderer | Jan 1994 | A |
5283422 | Storch | Feb 1994 | A |
5295196 | Raterman | Mar 1994 | A |
5301786 | Yoshihara | Apr 1994 | A |
5304813 | De Man | Apr 1994 | A |
5308992 | Crane et al. | May 1994 | A |
5315511 | Matsuura et al. | May 1994 | A |
5330041 | Dobbins et al. | Jul 1994 | A |
5341408 | Melcher et al. | Aug 1994 | A |
5342165 | Graef et al. | Aug 1994 | A |
5346206 | Steinhart | Sep 1994 | A |
5367577 | Gotaas | Nov 1994 | A |
5374825 | Doty et al. | Dec 1994 | A |
5377805 | Ono et al. | Jan 1995 | A |
5381019 | Sato | Jan 1995 | A |
5390003 | Yamaguchi et al. | Feb 1995 | A |
5393556 | Romano | Feb 1995 | A |
5394969 | Harbaugh | Mar 1995 | A |
5399874 | Gonsalves et al. | Mar 1995 | A |
5405131 | Zouzoulas | Apr 1995 | A |
5407191 | Ukai | Apr 1995 | A |
5411249 | Zouzoulas | May 1995 | A |
5411436 | Kaplan | May 1995 | A |
5416307 | Danek et al. | May 1995 | A |
5417316 | Harbaugh | May 1995 | A |
5419423 | Ishida et al. | May 1995 | A |
5419424 | Harbaugh | May 1995 | A |
5420406 | Izawa et al. | May 1995 | A |
5421443 | Hatamachi et al. | Jun 1995 | A |
5427036 | Fee et al. | Jun 1995 | A |
5427462 | Jackson et al. | Jun 1995 | A |
5430664 | Cargill et al. | Jul 1995 | A |
5432506 | Chapman | Jul 1995 | A |
5434427 | Crane et al. | Jul 1995 | A |
5437357 | Ota et al. | Aug 1995 | A |
5437897 | Tanaka et al. | Aug 1995 | A |
5438403 | Hoshino et al. | Aug 1995 | A |
5443144 | Dobbins et al. | Aug 1995 | A |
5450937 | Ono et al. | Sep 1995 | A |
5462149 | Waine et al. | Oct 1995 | A |
5467405 | Raterman et al. | Nov 1995 | A |
5467406 | Graves et al. | Nov 1995 | A |
5468971 | Ebstein et al. | Nov 1995 | A |
5476169 | Takarada et al. | Dec 1995 | A |
5476256 | Fortuna et al. | Dec 1995 | A |
5503387 | Straessler et al. | Apr 1996 | A |
5534682 | Graef et al. | Jul 1996 | A |
5547061 | Itako et al. | Aug 1996 | A |
5568251 | Davies et al. | Oct 1996 | A |
5569015 | Gerlier | Oct 1996 | A |
5598006 | Stringa | Jan 1997 | A |
5633949 | Graves et al. | May 1997 | A |
5650605 | Morioka et al. | Jul 1997 | A |
5652802 | Graves et al. | Jul 1997 | A |
5680935 | Mistander et al. | Oct 1997 | A |
5687963 | Mennie | Nov 1997 | A |
5692067 | Raterman et al. | Nov 1997 | A |
5692740 | Holtje | Dec 1997 | A |
5724438 | Graves | Mar 1998 | A |
5751840 | Raterman et al. | May 1998 | A |
5775682 | Hosking et al. | Jul 1998 | A |
5790245 | Kanesashi | Aug 1998 | A |
5790693 | Graves et al. | Aug 1998 | A |
5790697 | Munro et al. | Aug 1998 | A |
5797599 | Meyer et al. | Aug 1998 | A |
5803705 | Keyes | Sep 1998 | A |
5813825 | Arikawa et al. | Sep 1998 | A |
5815592 | Mennie et al. | Sep 1998 | A |
5822448 | Graves et al. | Oct 1998 | A |
5832104 | Graves et al. | Nov 1998 | A |
5867589 | Graves et al. | Feb 1999 | A |
5870487 | Graves et al. | Feb 1999 | A |
5874717 | Kern et al. | Feb 1999 | A |
5875259 | Mennie et al. | Feb 1999 | A |
5876029 | Wright et al. | Mar 1999 | A |
5897625 | Gustin et al. | Apr 1999 | A |
5899448 | Hosking | May 1999 | A |
5903339 | Levasseur | May 1999 | A |
5913656 | Collins | Jun 1999 | A |
5922959 | Kayani | Jul 1999 | A |
5923413 | Laskowski | Jul 1999 | A |
5960963 | Chodack et al. | Oct 1999 | A |
5975273 | Zwahlen et al. | Nov 1999 | A |
5987439 | Gustin et al. | Nov 1999 | A |
6006989 | Ademmer et al. | Dec 1999 | A |
6073837 | Milne | Jun 2000 | A |
6129273 | Shah | Oct 2000 | A |
6189785 | Lowery | Feb 2001 | B1 |
6213457 | Schlough | Apr 2001 | B1 |
6273413 | Graef | Aug 2001 | B1 |
6315194 | Graef et al. | Nov 2001 | B1 |
6331000 | Beskitt et al. | Dec 2001 | B1 |
6371368 | Owens et al. | Apr 2002 | B1 |
6505177 | Drummond et al. | Jan 2003 | B1 |
6540090 | Sakani et al. | Apr 2003 | B1 |
6607081 | Graef et al. | Aug 2003 | B2 |
6749111 | Graef et al. | Jun 2004 | B2 |
7137551 | Crews et al. | Nov 2006 | B1 |
Number | Date | Country |
---|---|---|
3621093 | Sep 1987 | DE |
3621095 | Sep 1987 | DE |
0535543 | Apr 1993 | EP |
2168686 | Jun 1986 | GB |
58-169287 | Oct 1983 | JP |
63-37039 | Feb 1988 | JP |
63-51267 | Mar 1988 | JP |
1-173285 | Jul 1989 | JP |
4-41368 | Dec 1992 | JP |
7-172629 | Jul 1995 | JP |
8-055255 | Feb 1996 | JP |
WO 9324402 | Dec 1993 | WO |
Number | Date | Country | |
---|---|---|---|
20060038005 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
60338919 | Nov 2001 | US | |
60100758 | Sep 1998 | US | |
60155281 | Sep 1999 | US | |
60167996 | Nov 1999 | US | |
60504282 | Sep 2003 | US | |
60503825 | Sep 2003 | US | |
60537581 | Jan 2004 | US | |
60537795 | Jan 2004 | US | |
60584532 | Jun 2004 | US | |
60584578 | Jun 2004 | US | |
60584592 | Jun 2004 | US | |
60584622 | Jun 2004 | US | |
60584742 | Jun 2004 | US | |
60504776 | Sep 2003 | US | |
60678916 | May 2005 | US | |
60537581 | Jan 2004 | US | |
60537788 | Jan 2004 | US | |
60537795 | Jan 2004 | US | |
60584622 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09993070 | Nov 2001 | US |
Child | 10830191 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10830191 | Apr 2004 | US |
Child | 11214461 | US | |
Parent | 09911329 | Jul 2001 | US |
Child | 09993070 | US | |
Parent | 08980467 | Nov 1997 | US |
Child | 09911329 | US | |
Parent | 09633486 | Aug 2000 | US |
Child | 09911329 | Jul 2001 | US |
Parent | 09135384 | Aug 1998 | US |
Child | 09633486 | US | |
Parent | 08749260 | Nov 1996 | US |
Child | 09135384 | US | |
Parent | 09390929 | Sep 1999 | US |
Child | 09993070 | Nov 2001 | US |
Parent | 09664698 | Sep 2000 | US |
Child | 09993070 | Nov 2001 | US |
Parent | 11214461 | Aug 2005 | US |
Child | 09993070 | Nov 2001 | US |
Parent | 10944224 | Sep 2004 | US |
Child | 11214461 | US | |
Parent | 09723304 | Nov 2000 | US |
Child | 10944224 | US | |
Parent | 11214461 | US | |
Child | 10944224 | US | |
Parent | 11168131 | Jun 2005 | US |
Child | 11214461 | US | |
Parent | 11039655 | Jan 2005 | US |
Child | 11168131 | US |