Data Storage Devices (DSDs) are used to record data onto or to reproduce data from a storage media. Metadata such as a translation table is often used by a DSD to keep track of a current location of data by mapping a logical address for the data to a physical address where the data is stored in the DSD.
The translation table is typically stored in a volatile memory to allow quick access to the translation table. In such an arrangement, the translation table can be check-pointed or stored to a non-volatile memory so that it is available across power cycles of the DSD. However, given the generally increasing data capacity of today's DSDs, the size of metadata such as translation tables is increasing. As a result, the amount of space needed to store the metadata in non-volatile memory is greater and the amount of time it takes to check-point the metadata increases.
The features and advantages of the embodiments of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of what is claimed.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the present disclosure. It will be apparent, however, to one of ordinary skill in the art that the various embodiments disclosed may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail to avoid unnecessarily obscuring the various embodiments.
In the example embodiment of
DSD 106 includes controller 120 which comprises circuitry such as one or more processors for executing instructions and can include a microcontroller, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), hard-wired logic, analog circuitry and/or a combination thereof. In one implementation, controller 120 can include a System on a Chip (SoC).
Host interface 126 is configured to interface DSD 106 with host 101 and may interface according to a standard such as, for example, PCI express (PCIe), Serial Advanced Technology Attachment (SATA), or Serial Attached SCSI (SAS). As will be appreciated by those of ordinary skill in the art, host interface 126 can be included as part of controller 120.
In the example of
As appreciated by those of ordinary skill in the art, disk 150 may form part of a disk pack with additional disks radially aligned below disk 150. In addition, head 136 may form part of a head stack assembly including additional heads with each head arranged to read data from and write data to a corresponding surface of a disk in a disk pack.
Disk 150 includes a number of radial spaced, concentric tracks (not shown) for storing data on a surface of disk 150 from an Inside Diameter (ID) portion to an Outside Diameter (OD) portion of disk 150. The tracks on disk 150 may be grouped together into zones of tracks with each track divided into a number of sectors that are spaced circumferentially along the tracks.
As shown in
In some embodiments, disk 150 or portions of disk 150 can include Shingle Magnetic Recording (SMR). SMR has recently been introduced as a way of increasing the amount of data that can be stored in a given area on the disk by increasing the number of Tracks Per Inch (TPI) by overlapping tracks on the disk to result in narrow tracks at the non-overlapping portion of the tracks. Although SMR generally increases the recording density of the disk, SMR typically requires that the tracks are sequentially written since a new write to a previously overlapped track could also affect data in an adjacent track.
Due to the sequential writing of SMR, updates to previously written data are typically written in a new location rather than overwriting the previously written data in the same location. A translation table, such as translation table 22, can be used to keep track of a current location for the data since there may be several previous or obsolete versions of the data on disk 150.
Translation table 22 is stored in volatile memory 140 to allow quick access to translation table 22. As discussed in more detail below, translation table 22 is check-pointed or stored to non-volatile memory such as disk 150 or solid-state memory 128 so that it is available across power cycles of DSD 106.
However, due to the large size of translation table 22, it may take a significant amount of time to save it to non-volatile memory and may slow performance of host 101. To help address these concerns, the present disclosure provides for the storing of portions of metadata or blocks of metadata in circular buffer 152 that have changed since a previous check-point so as to ordinarily avoid having to check-point a large amount of metadata.
In addition, circular buffer 152 can utilize SMR to increase the amount of metadata that can be check-pointed to circular buffer 152. As noted above, SMR typically requires that tracks are sequentially written since a new write to a previously overlapped track could also affect data in an adjacent track. The data objects or metadata written in circular buffer 152 can be sequentially written toward one end of circular buffer 152 before wrapping back to the beginning of circular buffer 152 to overwrite previously written data objects and metadata.
This sequential writing of circular buffer 152 allows for the use of SMR in circular buffer 152 and therefore a greater space savings on disk 150 in storing data objects or metadata. In addition, the use of SMR in circular buffer 152 allows for circular buffer 152 to be treated similarly to other SMR zones on disk 150 without having to make additional accommodations for a zone of non-overlapping tracks using a conventional write-in-place policy.
Root area 154 stores mapping data identifying locations of the data objects or metadata stored in circular buffer 152. In other embodiments, the location of circular buffer 152 and root area 154 may differ from the locations shown in
In the embodiment of
In addition to disk 150, the NVM media of DSD 106 also includes solid-state memory 128 for storing data. While the description herein refers to solid-state memory generally, it is understood that solid-state memory may comprise one or more of various types of memory devices such as flash integrated circuits, Chalcogenide RAM (C-RAM), Phase Change Memory (PC-RAM or PRAM), Programmable Metallization Cell RAM (PMC-RAM or PMCm), Ovonic Unified Memory (OUM), Resistance RAM (RRAM), NAND memory (e.g., Single-Level Cell (SLC) memory, Multi-Level Cell (MLC) memory, or any combination thereof), NOR memory, EEPROM, Ferroelectric Memory (FeRAM), Magnetoresistive RAM (MRAM), other discrete NVM chips, or any combination thereof.
As with SMR portions of disk 150, solid-state memory 128 may also use a logical to physical mapping for keeping track of the location of data. In this regard, solid-state memory 128 may use an indirection system to map data to various physical locations in the storage media of solid-state memory 128 to provide for wear leveling. Such wear leveling can ordinarily prolong the service life of solid-state memory 128 by providing a more even usage of the storage media in solid-state memory 128. However, the indirection system of solid-state memory 128 generates additional metadata such as a logical to physical mapping that can be stored in translation table 22.
Volatile memory 140 can include, for example, a Dynamic Random Access Memory (DRAM), which can be used by DSD 106 to temporarily store data. Data stored in volatile memory 140 can include data read from NVM media (e.g., disk 150 or solid-state memory 128), data to be written to NVM media, instructions loaded from firmware of DSD 106 for execution by controller 120, or data used in executing firmware of DSD 106.
As shown in the embodiment of
In operation, host interface 126 receives read and write commands from host 101 via host interface 126 for reading data from and writing data to the NVM media of DSD 106. In response to a write command from host 101, controller 120 may buffer the data to be written for the write command in volatile memory 140.
For data to be stored in solid-state memory 128, controller 120 receives data from host interface 126 and may buffer the data in volatile memory 140. In one implementation, the data is then encoded into charge values for charging cells (not shown) of solid-state memory 128 to store the data.
In response to a read command for data stored in solid-state memory 128, controller 120 in one implementation reads current values for cells in solid-state memory 128 and decodes the current values into data that can be transferred to host 101. Such data may be buffered by controller 120 before transferring the data to host 101 via host interface 126.
For data to be written to disk 150, controller 120 can encode the buffered data into write signal 32 which is provided to head 136 for magnetically writing data to the surface of disk 150.
In response to a read command for data stored on disk 150, controller 120 positions head 136 via VCM control signal 30 to magnetically read the data stored on the surface of disk 150. Head 136 sends the read data as read signal 32 to controller 120 for decoding, and the data is buffered in volatile memory 140 for transferring to host 101.
In different embodiments, other metadata besides translation table 22 may be logically divided into blocks of metadata. Such metadata may include, for example, information indicating a structure, history, or contents of data or can indicate an environmental condition or state of the storage media.
In addition,
As discussed in more detail below, by keeping track of the portions of translation table 22 that have changed, it is ordinarily possible to reduce the time and resources needed to check-point or store translation table 22 to non-volatile memory such as disk 150 or solid-state memory 128. This can be accomplished by only check-pointing or storing the portions of translation table 22 that have changed without having to check-point or store all of translation table 22. As the amount of data stored in DSD 106 increases, the size of translation table 22 generally increases to account for the locations of the data and the advantage of only saving the changed blocks becomes more significant.
Data objects A to H can include data objects or metadata that is stored in volatile memory 140 that is changed during the operation of DSD 106. One example of such data, can include translation table 22 or portions of translation table 22. In this example, translation table 22 may be updated with new physical addresses when data is rewritten on disk 150 or solid-state memory 128. Translation table 22 is updated in volatile memory 140 and changed blocks of translation table 22 are later stored in circular buffer 152 to provide locations of data upon a startup of DSD 106.
As shown in
To keep track of the new locations of the metadata, controller 120 can update mapping data in root area 154 to identify the new locations for metadata blocks B′, E′, and F′. As noted above, root area 154 can be located on disk 150 as in the embodiment of
The writing of circular buffer 152 continues until block 15 has been written and then writing returns to circular buffer block 0 and advances toward the end of circular buffer 152.
Free space in circular buffer 152 is indicated with X's in blocks 0 to 2 and in blocks 14 and 15. The free space in circular buffer 152 can include previous versions of metadata, such as previous versions of metadata blocks A to H, or empty blocks without data. In other embodiments, the number of circular buffer blocks and metadata blocks stored in circular buffer 152 may differ.
In the example of
In addition, each of the blocks in circular buffer 152 can be the same size so as to facilitate the relocation of data from one of blocks 0 to 15 to any of the other blocks in circular buffer 152. Controller 120 may pad data or increase a size of data to be stored in circular buffer 152 in order to meet a modular size for each of blocks 0 to 18.
In block 402, controller 120 logically divides metadata stored in volatile memory 140 into blocks of metadata. In the example of
In block 404, controller 120 identifies at least one block of metadata that has changed during operation of DSD 106. The identification of block 404 may be accomplished through the use of flags as in the example of
In block 406, controller 120 stores the at least one changed block in circular buffer 152 to check-point the changed metadata. By only storing the changed blocks of metadata, it is ordinarily possible to reduce the time and required resources to check-point the metadata.
In block 502, controller 120 counts a predetermined number of write commands received from host 101 or waits a predetermined amount of time since not receiving any read or write commands from host 101. In this way, the check-pointing of the metadata can take place after there have been a certain number of changes to the metadata stored in volatile memory 140 or if there is an idle time when DSD 106 is not otherwise servicing read and write commands from host 101.
In block 504, controller 120 identifies at least one block of metadata that has changed during operation of DSD 106. The identification of block 504 may be accomplished through the use of flags as in the example of
In block 506, controller 120 ensures coherency between the at least one changed block of metadata stored in volatile memory 140 and the copy of the at least one changed block being stored in circular buffer 152. In the embodiment of
In block 508, controller 120 stores the at least one changed block of metadata in circular buffer 152. When writing the at least one changed block of metadata in circular buffer 152, controller 120 may write the at least one changed block of metadata sequentially in a next available circular buffer block to allow for SMR in circular buffer 152. By using SMR in circular buffer 152, it is ordinarily possible to save space on disk 150 and in some embodiments to simplify operation of DSD 106 by not having to manage both non-overlapping tracks in Conventional Magnetic Recording (CMR) zones and overlapping tracks in SMR zones. In other words, sequential writing in circular buffer 152 can in some embodiments allow controller 120 to treat all of disk 150 similarly as SMR zones.
In block 510, controller 120 updates mapping data in root area 154 to account for storing the at least one changed block of metadata in block 508. As discussed above, the mapping data in root area 154 can identify locations in circular buffer 152 for the metadata or data objects stored in circular buffer 152. In the example where the metadata stored in circular buffer 152 is from translation table 22, the mapping data of root area 154 can be used upon startup of DSD 106 to locate metadata used to rebuild translation table 22 in volatile memory 140 or to recover a previous version of translation table 22.
In block 512, controller 120 clears flags indicating changes to the at least one changed block of metadata stored in block 508. This resets the status of the blocks of metadata to allow for the identification of changed blocks in a subsequent iteration of the metadata check-pointing process. In block 514, controller 120 allows changes to once again be made to the at least one changed block of metadata.
Those of ordinary skill in the art will appreciate that the various illustrative logical blocks, modules, and processes described in connection with the examples disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Furthermore, the foregoing processes can be embodied on a computer readable medium which causes a processor or computer to perform or execute certain functions.
To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, and modules have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Those of ordinary skill in the art may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The various illustrative logical blocks, units, modules, and controllers described in connection with the examples disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The activities of a method or process described in connection with the examples disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. The steps of the method or algorithm may also be performed in an alternate order from those provided in the examples. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable media, an optical media, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC).
The foregoing description of the disclosed example embodiments is provided to enable any person of ordinary skill in the art to make or use the embodiments in the present disclosure. Various modifications to these examples will be readily apparent to those of ordinary skill in the art, and the principles disclosed herein may be applied to other examples without departing from the spirit or scope of the present disclosure. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the disclosure is, therefore, indicated by the following claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
4769770 | Miyadera et al. | Sep 1988 | A |
5613066 | Matsushima et al. | Mar 1997 | A |
6018789 | Sokolov et al. | Jan 2000 | A |
6065095 | Sokolov et al. | May 2000 | A |
6078452 | Kittilson et al. | Jun 2000 | A |
6081447 | Lofgren et al. | Jun 2000 | A |
6092149 | Hicken et al. | Jul 2000 | A |
6092150 | Sokolov et al. | Jul 2000 | A |
6092231 | Sze | Jul 2000 | A |
6094707 | Sokolov et al. | Jul 2000 | A |
6105104 | Guttmann et al. | Aug 2000 | A |
6111717 | Cloke et al. | Aug 2000 | A |
6145052 | Howe et al. | Nov 2000 | A |
6175893 | D'Souza et al. | Jan 2001 | B1 |
6178056 | Cloke et al. | Jan 2001 | B1 |
6191909 | Cloke et al. | Feb 2001 | B1 |
6195218 | Guttmann et al. | Feb 2001 | B1 |
6202121 | Walsh et al. | Mar 2001 | B1 |
6205494 | Williams | Mar 2001 | B1 |
6208477 | Cloke et al. | Mar 2001 | B1 |
6223303 | Billings et al. | Apr 2001 | B1 |
6230233 | Lofgren et al. | May 2001 | B1 |
6246346 | Cloke et al. | Jun 2001 | B1 |
6249393 | Billings et al. | Jun 2001 | B1 |
6256695 | Williams | Jul 2001 | B1 |
6262857 | Hull et al. | Jul 2001 | B1 |
6263459 | Schibilla | Jul 2001 | B1 |
6272694 | Weaver et al. | Aug 2001 | B1 |
6278568 | Cloke et al. | Aug 2001 | B1 |
6279089 | Schibilla et al. | Aug 2001 | B1 |
6289484 | Rothberg et al. | Sep 2001 | B1 |
6292912 | Cloke et al. | Sep 2001 | B1 |
6310740 | Dunbar et al. | Oct 2001 | B1 |
6317850 | Rothberg | Nov 2001 | B1 |
6324604 | Don et al. | Nov 2001 | B1 |
6327106 | Rothberg | Dec 2001 | B1 |
6337778 | Gagne | Jan 2002 | B1 |
6339811 | Gaertner et al. | Jan 2002 | B1 |
6369969 | Christiansen et al. | Apr 2002 | B1 |
6384999 | Schibilla | May 2002 | B1 |
6388833 | Golowka et al. | May 2002 | B1 |
6405342 | Lee | Jun 2002 | B1 |
6408357 | Hanmann et al. | Jun 2002 | B1 |
6408406 | Parris | Jun 2002 | B1 |
6411452 | Cloke | Jun 2002 | B1 |
6411458 | Billings et al. | Jun 2002 | B1 |
6412083 | Rothberg et al. | Jun 2002 | B1 |
6415349 | Hull et al. | Jul 2002 | B1 |
6425128 | Krapf et al. | Jul 2002 | B1 |
6441981 | Cloke et al. | Aug 2002 | B1 |
6442328 | Elliott et al. | Aug 2002 | B1 |
6445524 | Nazarian et al. | Sep 2002 | B1 |
6449767 | Krapf et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6470420 | Hospodor | Oct 2002 | B1 |
6480020 | Jung et al. | Nov 2002 | B1 |
6480349 | Kim et al. | Nov 2002 | B1 |
6480932 | Vallis et al. | Nov 2002 | B1 |
6483986 | Krapf | Nov 2002 | B1 |
6487032 | Cloke et al. | Nov 2002 | B1 |
6490635 | Holmes | Dec 2002 | B1 |
6493173 | Kim et al. | Dec 2002 | B1 |
6499083 | Hamlin | Dec 2002 | B1 |
6519104 | Cloke et al. | Feb 2003 | B1 |
6525892 | Dunbar et al. | Feb 2003 | B1 |
6545830 | Briggs et al. | Apr 2003 | B1 |
6546489 | Frank, Jr. et al | Apr 2003 | B1 |
6550021 | Dalphy et al. | Apr 2003 | B1 |
6552880 | Dunbar et al. | Apr 2003 | B1 |
6553457 | Wilkins et al. | Apr 2003 | B1 |
6574774 | Vasiliev | Jun 2003 | B1 |
6578106 | Price | Jun 2003 | B1 |
6580573 | Hull et al. | Jun 2003 | B1 |
6594183 | Lofgren et al. | Jul 2003 | B1 |
6600620 | Krounbi et al. | Jul 2003 | B1 |
6601137 | Castro et al. | Jul 2003 | B1 |
6603622 | Christiansen et al. | Aug 2003 | B1 |
6603625 | Hospodor et al. | Aug 2003 | B1 |
6604220 | Lee | Aug 2003 | B1 |
6606682 | Dang et al. | Aug 2003 | B1 |
6606714 | Thelin | Aug 2003 | B1 |
6606717 | Yu et al. | Aug 2003 | B1 |
6611393 | Nguyen et al. | Aug 2003 | B1 |
6615312 | Hamlin et al. | Sep 2003 | B1 |
6639748 | Christiansen et al. | Oct 2003 | B1 |
6647481 | Luu et al. | Nov 2003 | B1 |
6654193 | Thelin | Nov 2003 | B1 |
6657810 | Kupferman | Dec 2003 | B1 |
6661591 | Rothberg | Dec 2003 | B1 |
6665772 | Hamlin | Dec 2003 | B1 |
6687073 | Kupferman | Feb 2004 | B1 |
6687078 | Kim | Feb 2004 | B1 |
6687850 | Rothberg | Feb 2004 | B1 |
6690523 | Nguyen et al. | Feb 2004 | B1 |
6690882 | Hanmann et al. | Feb 2004 | B1 |
6691198 | Hamlin | Feb 2004 | B1 |
6691213 | Luu et al. | Feb 2004 | B1 |
6691255 | Rothberg et al. | Feb 2004 | B1 |
6693760 | Krounbi et al. | Feb 2004 | B1 |
6694477 | Lee | Feb 2004 | B1 |
6697914 | Hospodor et al. | Feb 2004 | B1 |
6704153 | Rothberg et al. | Mar 2004 | B1 |
6708251 | Boyle et al. | Mar 2004 | B1 |
6710951 | Cloke | Mar 2004 | B1 |
6711628 | Thelin | Mar 2004 | B1 |
6711635 | Wang | Mar 2004 | B1 |
6711660 | Milne et al. | Mar 2004 | B1 |
6715044 | Lofgren et al. | Mar 2004 | B2 |
6724982 | Hamlin | Apr 2004 | B1 |
6725329 | Ng et al. | Apr 2004 | B1 |
6735650 | Rothberg | May 2004 | B1 |
6735693 | Hamlin | May 2004 | B1 |
6744772 | Eneboe et al. | Jun 2004 | B1 |
6745283 | Dang | Jun 2004 | B1 |
6751402 | Elliott et al. | Jun 2004 | B1 |
6757481 | Nazarian et al. | Jun 2004 | B1 |
6772274 | Estakhri | Aug 2004 | B1 |
6772281 | Hamlin | Aug 2004 | B2 |
6781826 | Goldstone et al. | Aug 2004 | B1 |
6782449 | Codilian et al. | Aug 2004 | B1 |
6791779 | Singh et al. | Sep 2004 | B1 |
6792486 | Hanan et al. | Sep 2004 | B1 |
6799274 | Hamlin | Sep 2004 | B1 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6826003 | Subrahmanyam | Nov 2004 | B1 |
6826614 | Hanmann et al. | Nov 2004 | B1 |
6829688 | Grubbs et al. | Dec 2004 | B2 |
6832041 | Boyle | Dec 2004 | B1 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6845405 | Thelin | Jan 2005 | B1 |
6845427 | Atai-Azimi | Jan 2005 | B1 |
6850443 | Lofgren et al. | Feb 2005 | B2 |
6851055 | Boyle et al. | Feb 2005 | B1 |
6851063 | Boyle et al. | Feb 2005 | B1 |
6853731 | Boyle et al. | Feb 2005 | B1 |
6854022 | Thelin | Feb 2005 | B1 |
6862660 | Wilkins et al. | Mar 2005 | B1 |
6880043 | Castro et al. | Apr 2005 | B1 |
6882486 | Kupferman | Apr 2005 | B1 |
6884085 | Goldstone | Apr 2005 | B1 |
6886068 | Tomita | Apr 2005 | B2 |
6888831 | Hospodor et al. | May 2005 | B1 |
6892217 | Hanmann et al. | May 2005 | B1 |
6892249 | Codilian et al. | May 2005 | B1 |
6892313 | Codilian et al. | May 2005 | B1 |
6895455 | Rothberg | May 2005 | B1 |
6895468 | Rege et al. | May 2005 | B2 |
6895500 | Rothberg | May 2005 | B1 |
6898730 | Hanan | May 2005 | B1 |
6901479 | Tomita | May 2005 | B2 |
6910099 | Wang et al. | Jun 2005 | B1 |
6920455 | Weschler | Jul 2005 | B1 |
6928470 | Hamlin | Aug 2005 | B1 |
6931439 | Hanmann et al. | Aug 2005 | B1 |
6934104 | Kupferman | Aug 2005 | B1 |
6934713 | Schwartz et al. | Aug 2005 | B2 |
6940873 | Boyle et al. | Sep 2005 | B2 |
6943978 | Lee | Sep 2005 | B1 |
6948165 | Luu et al. | Sep 2005 | B1 |
6950267 | Liu et al. | Sep 2005 | B1 |
6954733 | Ellis et al. | Oct 2005 | B1 |
6961814 | Thelin et al. | Nov 2005 | B1 |
6965489 | Lee et al. | Nov 2005 | B1 |
6965563 | Hospodor et al. | Nov 2005 | B1 |
6965966 | Rothberg et al. | Nov 2005 | B1 |
6967799 | Lee | Nov 2005 | B1 |
6967810 | Kasiraj et al. | Nov 2005 | B2 |
6968422 | Codilian et al. | Nov 2005 | B1 |
6968450 | Rothberg et al. | Nov 2005 | B1 |
6973495 | Milne et al. | Dec 2005 | B1 |
6973570 | Hamlin | Dec 2005 | B1 |
6976190 | Goldstone | Dec 2005 | B1 |
6983316 | Milne et al. | Jan 2006 | B1 |
6986007 | Procyk et al. | Jan 2006 | B1 |
6986154 | Price et al. | Jan 2006 | B1 |
6995933 | Codilian et al. | Feb 2006 | B1 |
6996501 | Rothberg | Feb 2006 | B1 |
6996669 | Dang et al. | Feb 2006 | B1 |
7002926 | Eneboe et al. | Feb 2006 | B1 |
7003674 | Hamlin | Feb 2006 | B1 |
7006316 | Sargenti, Jr. et al. | Feb 2006 | B1 |
7009820 | Hogg | Mar 2006 | B1 |
7023639 | Kupferman | Apr 2006 | B1 |
7024491 | Hanmann et al. | Apr 2006 | B1 |
7024549 | Luu et al. | Apr 2006 | B1 |
7024614 | Thelin et al. | Apr 2006 | B1 |
7027716 | Boyle et al. | Apr 2006 | B1 |
7028174 | Atai-Azimi et al. | Apr 2006 | B1 |
7031902 | Catiller | Apr 2006 | B1 |
7046465 | Kupferman | May 2006 | B1 |
7046488 | Hogg | May 2006 | B1 |
7050252 | Vallis | May 2006 | B1 |
7054937 | Milne et al. | May 2006 | B1 |
7055000 | Severtson | May 2006 | B1 |
7055167 | Masters | May 2006 | B1 |
7057836 | Kupferman | Jun 2006 | B1 |
7062398 | Rothberg | Jun 2006 | B1 |
7075746 | Kupferman | Jul 2006 | B1 |
7076604 | Thelin | Jul 2006 | B1 |
7082494 | Thelin et al. | Jul 2006 | B1 |
7088538 | Codilian et al. | Aug 2006 | B1 |
7088545 | Singh et al. | Aug 2006 | B1 |
7092186 | Hogg | Aug 2006 | B1 |
7095577 | Codilian et al. | Aug 2006 | B1 |
7099095 | Subrahmanyam et al. | Aug 2006 | B1 |
7106537 | Bennett | Sep 2006 | B1 |
7106947 | Boyle et al. | Sep 2006 | B2 |
7110202 | Vasquez | Sep 2006 | B1 |
7111116 | Boyle et al. | Sep 2006 | B1 |
7114029 | Thelin | Sep 2006 | B1 |
7120737 | Thelin | Oct 2006 | B1 |
7120806 | Codilian et al. | Oct 2006 | B1 |
7126776 | Warren, Jr. et al. | Oct 2006 | B1 |
7129763 | Bennett et al. | Oct 2006 | B1 |
7133600 | Boyle | Nov 2006 | B1 |
7136244 | Rothberg | Nov 2006 | B1 |
7146094 | Boyle | Dec 2006 | B1 |
7149046 | Coker et al. | Dec 2006 | B1 |
7150036 | Milne et al. | Dec 2006 | B1 |
7155448 | Winter | Dec 2006 | B2 |
7155616 | Hamlin | Dec 2006 | B1 |
7171108 | Masters et al. | Jan 2007 | B1 |
7171110 | Wilshire | Jan 2007 | B1 |
7194576 | Boyle et al. | Mar 2007 | B1 |
7200698 | Rothberg | Apr 2007 | B1 |
7205805 | Bennett | Apr 2007 | B1 |
7206497 | Boyle et al. | Apr 2007 | B1 |
7215496 | Kupferman et al. | May 2007 | B1 |
7215771 | Hamlin | May 2007 | B1 |
7237054 | Cain et al. | Jun 2007 | B1 |
7240161 | Boyle | Jul 2007 | B1 |
7249365 | Price et al. | Jul 2007 | B1 |
7263709 | Krapf | Aug 2007 | B1 |
7274639 | Codilian et al. | Sep 2007 | B1 |
7274659 | Hospodor | Sep 2007 | B2 |
7275116 | Hanmann et al. | Sep 2007 | B1 |
7280302 | Masiewicz | Oct 2007 | B1 |
7292774 | Masters et al. | Nov 2007 | B1 |
7292775 | Boyle et al. | Nov 2007 | B1 |
7296284 | Price et al. | Nov 2007 | B1 |
7302501 | Cain et al. | Nov 2007 | B1 |
7302579 | Cain et al. | Nov 2007 | B1 |
7318088 | Mann | Jan 2008 | B1 |
7319806 | Willner et al. | Jan 2008 | B1 |
7325244 | Boyle et al. | Jan 2008 | B2 |
7330323 | Singh et al. | Feb 2008 | B1 |
7346790 | Klein | Mar 2008 | B1 |
7366641 | Masiewicz et al. | Apr 2008 | B1 |
7369340 | Dang et al. | May 2008 | B1 |
7369343 | Yeo et al. | May 2008 | B1 |
7372650 | Kupferman | May 2008 | B1 |
7380147 | Sun | May 2008 | B1 |
7392340 | Dang et al. | Jun 2008 | B1 |
7404013 | Masiewicz | Jul 2008 | B1 |
7406545 | Rothberg et al. | Jul 2008 | B1 |
7412585 | Uemura | Aug 2008 | B2 |
7415571 | Hanan | Aug 2008 | B1 |
7436610 | Thelin | Oct 2008 | B1 |
7437502 | Coker | Oct 2008 | B1 |
7440214 | Ell et al. | Oct 2008 | B1 |
7451344 | Rothberg | Nov 2008 | B1 |
7471483 | Ferris et al. | Dec 2008 | B1 |
7471486 | Coker et al. | Dec 2008 | B1 |
7486060 | Bennett | Feb 2009 | B1 |
7486460 | Tsuchinaga et al. | Feb 2009 | B2 |
7490212 | Kasiraj et al. | Feb 2009 | B2 |
7496493 | Stevens | Feb 2009 | B1 |
7509471 | Gorobets | Mar 2009 | B2 |
7516267 | Coulson et al. | Apr 2009 | B2 |
7518819 | Yu et al. | Apr 2009 | B1 |
7526184 | Parkinen et al. | Apr 2009 | B1 |
7529880 | Chung et al. | May 2009 | B2 |
7539924 | Vasquez et al. | May 2009 | B1 |
7543117 | Hanan | Jun 2009 | B1 |
7551383 | Kupferman | Jun 2009 | B1 |
7562282 | Rothberg | Jul 2009 | B1 |
7577973 | Kapner, III et al. | Aug 2009 | B1 |
7596797 | Kapner, III et al. | Sep 2009 | B1 |
7599139 | Bombet et al. | Oct 2009 | B1 |
7603530 | Liikanen et al. | Oct 2009 | B1 |
7619841 | Kupferman | Nov 2009 | B1 |
7647544 | Masiewicz | Jan 2010 | B1 |
7649704 | Bombet et al. | Jan 2010 | B1 |
7653927 | Kapner et al. | Jan 2010 | B1 |
7656603 | Feb 2010 | B1 | |
7656763 | Jin et al. | Feb 2010 | B1 |
7657149 | Boyle | Feb 2010 | B2 |
7669044 | Fitzgerald et al. | Feb 2010 | B2 |
7672072 | Boyle et al. | Mar 2010 | B1 |
7673075 | Masiewicz | Mar 2010 | B1 |
7685360 | Brunnett et al. | Mar 2010 | B1 |
7688540 | Mei et al. | Mar 2010 | B1 |
7724461 | McFadyen et al. | May 2010 | B1 |
7725584 | Hanmann et al. | May 2010 | B1 |
7730295 | Lee | Jun 2010 | B1 |
7760458 | Trinh | Jul 2010 | B1 |
7768776 | Szeremeta et al. | Aug 2010 | B1 |
7804657 | Hogg et al. | Sep 2010 | B1 |
7813954 | Price et al. | Oct 2010 | B1 |
7827320 | Stevens | Nov 2010 | B1 |
7839588 | Dang et al. | Nov 2010 | B1 |
7840878 | Tang et al. | Nov 2010 | B1 |
7843660 | Yeo | Nov 2010 | B1 |
7852596 | Boyle et al. | Dec 2010 | B2 |
7859782 | Lee | Dec 2010 | B1 |
7872822 | Rothberg | Jan 2011 | B1 |
7898756 | Wang | Mar 2011 | B1 |
7898762 | Guo et al. | Mar 2011 | B1 |
7900037 | Fallone et al. | Mar 2011 | B1 |
7907364 | Boyle et al. | Mar 2011 | B2 |
7929234 | Boyle et al. | Apr 2011 | B1 |
7933087 | Tsai et al. | Apr 2011 | B1 |
7933090 | Jung et al. | Apr 2011 | B1 |
7934030 | Sargenti, Jr. et al. | Apr 2011 | B1 |
7940491 | Szeremeta et al. | May 2011 | B2 |
7944639 | Wang | May 2011 | B1 |
7945727 | Rothberg et al. | May 2011 | B2 |
7949564 | Hughes et al. | May 2011 | B1 |
7974029 | Tsai et al. | Jul 2011 | B2 |
7974039 | Xu et al. | Jul 2011 | B1 |
7982993 | Tsai et al. | Jul 2011 | B1 |
7984200 | Bombet et al. | Jul 2011 | B1 |
7990648 | Wang | Aug 2011 | B1 |
7992179 | Kepner, III et al. | Aug 2011 | B1 |
8004785 | Tsai et al. | Aug 2011 | B1 |
8006027 | Stevens et al. | Aug 2011 | B1 |
8014094 | Jin | Sep 2011 | B1 |
8014977 | Masiewicz et al. | Sep 2011 | B1 |
8019914 | Vasquez et al. | Sep 2011 | B1 |
8040625 | Boyle | Oct 2011 | B1 |
8078943 | Lee | Dec 2011 | B1 |
8079045 | Krapf et al. | Dec 2011 | B2 |
8082433 | Fallone | Dec 2011 | B1 |
8085487 | Jung et al. | Dec 2011 | B1 |
8089719 | Dakroub | Jan 2012 | B1 |
8090902 | Bennett et al. | Jan 2012 | B1 |
8090906 | Blaha et al. | Jan 2012 | B1 |
8091112 | Elliott | Jan 2012 | B1 |
8094396 | Zhang et al. | Jan 2012 | B1 |
8094401 | Peng et al. | Jan 2012 | B1 |
8116020 | Lee | Feb 2012 | B1 |
8116025 | Chan et al. | Feb 2012 | B1 |
8134793 | Vasquez et al. | Mar 2012 | B1 |
8134798 | Thelin et al. | Mar 2012 | B1 |
8139301 | Li et al. | Mar 2012 | B1 |
8139310 | Hogg | Mar 2012 | B1 |
8144419 | Liu | Mar 2012 | B1 |
8145452 | Masiewicz et al. | Mar 2012 | B1 |
8149528 | Suratman et al. | Apr 2012 | B1 |
8154812 | Boyle et al. | Apr 2012 | B1 |
8159768 | Miyamura | Apr 2012 | B1 |
8161328 | Wilshire | Apr 2012 | B1 |
8164849 | Szeremeta et al. | Apr 2012 | B1 |
8174780 | Tsai et al. | May 2012 | B1 |
8190575 | Ong et al. | May 2012 | B1 |
8194338 | Zhang | Jun 2012 | B1 |
8194340 | Boyle et al. | Jun 2012 | B1 |
8194341 | Boyle | Jun 2012 | B1 |
8201066 | Wang | Jun 2012 | B1 |
8271692 | Dinh et al. | Sep 2012 | B1 |
8279550 | Hogg | Oct 2012 | B1 |
8281218 | Ybarra et al. | Oct 2012 | B1 |
8285923 | Stevens | Oct 2012 | B2 |
8289656 | Huber | Oct 2012 | B1 |
8305705 | Roohr | Nov 2012 | B1 |
8307156 | Codilian et al. | Nov 2012 | B1 |
8310775 | Boguslawski et al. | Nov 2012 | B1 |
8315006 | Chahwan et al. | Nov 2012 | B1 |
8316263 | Gough et al. | Nov 2012 | B1 |
8320067 | Tsai et al. | Nov 2012 | B1 |
8324974 | Bennett | Dec 2012 | B1 |
8332695 | Dalphy et al. | Dec 2012 | B2 |
8341337 | Ong et al. | Dec 2012 | B1 |
8350628 | Bennett | Jan 2013 | B1 |
8356184 | Meyer et al. | Jan 2013 | B1 |
8370683 | Ryan et al. | Feb 2013 | B1 |
8375225 | Ybarra | Feb 2013 | B1 |
8375274 | Bonke | Feb 2013 | B1 |
8380922 | DeForest et al. | Feb 2013 | B1 |
8390948 | Hogg | Mar 2013 | B2 |
8390952 | Szeremeta | Mar 2013 | B1 |
8392689 | Lott | Mar 2013 | B1 |
8407393 | Yolar et al. | Mar 2013 | B1 |
8413010 | Vasquez et al. | Apr 2013 | B1 |
8417566 | Price et al. | Apr 2013 | B2 |
8421663 | Bennett | Apr 2013 | B1 |
8422172 | Dakroub et al. | Apr 2013 | B1 |
8427771 | Tsai | Apr 2013 | B1 |
8429343 | Tsai | Apr 2013 | B1 |
8433937 | Wheelock et al. | Apr 2013 | B1 |
8433977 | Vasquez et al. | Apr 2013 | B1 |
8443167 | Fallone et al. | May 2013 | B1 |
8458526 | Dalphy et al. | Jun 2013 | B2 |
8462466 | Huber | Jun 2013 | B2 |
8467151 | Huber | Jun 2013 | B1 |
8489841 | Strecke et al. | Jul 2013 | B1 |
8493679 | Boguslawski et al. | Jul 2013 | B1 |
8498074 | Mobley et al. | Jul 2013 | B1 |
8499198 | Messenger et al. | Jul 2013 | B1 |
8512049 | Huber et al. | Aug 2013 | B1 |
8514506 | Li et al. | Aug 2013 | B1 |
8531791 | Reid et al. | Sep 2013 | B1 |
8554741 | Malina | Oct 2013 | B1 |
8560759 | Boyle ete al. | Oct 2013 | B1 |
8565053 | Chung | Oct 2013 | B1 |
8576511 | Coker et al. | Nov 2013 | B1 |
8578100 | Huynh et al. | Nov 2013 | B1 |
8578242 | Burton et al. | Nov 2013 | B1 |
8589773 | Wang et al. | Nov 2013 | B1 |
8593753 | Anderson | Nov 2013 | B1 |
8595432 | Vinson et al. | Nov 2013 | B1 |
8599510 | Fallone | Dec 2013 | B1 |
8601248 | Thorsted | Dec 2013 | B2 |
8611032 | Champion et al. | Dec 2013 | B2 |
8612650 | Carrie et al. | Dec 2013 | B1 |
8612706 | Madril et al. | Dec 2013 | B1 |
8612798 | Tsai | Dec 2013 | B1 |
8619383 | Jung et al. | Dec 2013 | B1 |
8621115 | Bombet et al. | Dec 2013 | B1 |
8621133 | Boyle | Dec 2013 | B1 |
8626463 | Stevens et al. | Jan 2014 | B2 |
8630052 | Jung et al. | Jan 2014 | B1 |
8630056 | Ong | Jan 2014 | B1 |
8631188 | Heath et al. | Jan 2014 | B1 |
8631197 | Hall | Jan 2014 | B2 |
8634158 | Chahwan et al. | Jan 2014 | B1 |
8635412 | Wilshire | Jan 2014 | B1 |
8640007 | Schulze | Jan 2014 | B1 |
8654619 | Cheng | Feb 2014 | B1 |
8661193 | Cobos et al. | Feb 2014 | B1 |
8667248 | Neppalli | Mar 2014 | B1 |
8670205 | Malina et al. | Mar 2014 | B1 |
8683295 | Syu et al. | Mar 2014 | B1 |
8683457 | Hughes et al. | Mar 2014 | B1 |
8687306 | Coker et al. | Apr 2014 | B1 |
8693133 | Lee et al. | Apr 2014 | B1 |
8694841 | Chung et al. | Apr 2014 | B1 |
8699159 | Malina | Apr 2014 | B1 |
8699171 | Boyle | Apr 2014 | B1 |
8699172 | Gunderson et al. | Apr 2014 | B1 |
8699175 | Olds et al. | Apr 2014 | B1 |
8699185 | Teh et al. | Apr 2014 | B1 |
8700850 | Lalouette | Apr 2014 | B1 |
8743502 | Bonke et al. | Jun 2014 | B1 |
8749910 | Dang et al. | Jun 2014 | B1 |
8751699 | Tsai et al. | Jun 2014 | B1 |
8755141 | Dang | Jun 2014 | B1 |
8755143 | Wilson et al. | Jun 2014 | B2 |
8756361 | Pruett et al. | Jun 2014 | B1 |
8756382 | Carlson et al. | Jun 2014 | B1 |
8769593 | Elliott et al. | Jul 2014 | B1 |
8773802 | Anderson et al. | Jul 2014 | B1 |
8780478 | Huynh et al. | Jul 2014 | B1 |
8782334 | Boyle et al. | Jul 2014 | B1 |
8793429 | Call et al. | Jul 2014 | B1 |
8793532 | Tsai et al. | Jul 2014 | B1 |
8797669 | Burton et al. | Aug 2014 | B1 |
8799977 | Kapner, III et al. | Aug 2014 | B1 |
8856438 | Warner et al. | Oct 2014 | B1 |
9563397 | Stoev | Feb 2017 | B1 |
20040019718 | Schauer et al. | Jan 2004 | A1 |
20040109376 | Lin | Jun 2004 | A1 |
20050071537 | New et al. | Mar 2005 | A1 |
20050071593 | Vincent | Mar 2005 | A1 |
20050144517 | Zayas | Jun 2005 | A1 |
20060090030 | Ljdens et al. | Apr 2006 | A1 |
20060112138 | Fenske et al. | May 2006 | A1 |
20060117161 | Venturi | Jun 2006 | A1 |
20060181993 | Blacquiere et al. | Aug 2006 | A1 |
20070016721 | Gay | Jan 2007 | A1 |
20070067603 | Yamamoto et al. | Mar 2007 | A1 |
20070204100 | Shin et al. | Aug 2007 | A1 |
20070226394 | Noble | Sep 2007 | A1 |
20070245064 | Liu | Oct 2007 | A1 |
20070288686 | Arcedera et al. | Dec 2007 | A1 |
20070294589 | Jarvis et al. | Dec 2007 | A1 |
20080098195 | Cheon et al. | Apr 2008 | A1 |
20080104308 | Mo et al. | May 2008 | A1 |
20080183955 | Yang et al. | Jul 2008 | A1 |
20080195801 | Cheon et al. | Aug 2008 | A1 |
20080256287 | Lee et al. | Oct 2008 | A1 |
20080256295 | Lambert et al. | Oct 2008 | A1 |
20080270680 | Chang | Oct 2008 | A1 |
20080307192 | Sinclair | Dec 2008 | A1 |
20090019218 | Sinclair et al. | Jan 2009 | A1 |
20090043985 | Tuuk et al. | Feb 2009 | A1 |
20090055620 | Feldman et al. | Feb 2009 | A1 |
20090063548 | Rusher et al. | Mar 2009 | A1 |
20090113702 | Hogg | May 2009 | A1 |
20090119353 | Oh et al. | May 2009 | A1 |
20090150599 | Bennett | Jun 2009 | A1 |
20090154254 | Wong et al. | Jun 2009 | A1 |
20090164535 | Gandhi | Jun 2009 | A1 |
20090164696 | Allen | Jun 2009 | A1 |
20090187732 | Greiner et al. | Jul 2009 | A1 |
20090193184 | Yu et al. | Jul 2009 | A1 |
20090198952 | Khmelnitsky et al. | Aug 2009 | A1 |
20090204750 | Estakhri et al. | Aug 2009 | A1 |
20090222643 | Chu | Sep 2009 | A1 |
20090240873 | Yu et al. | Sep 2009 | A1 |
20090276604 | Baird | Nov 2009 | A1 |
20100011275 | Yang | Jan 2010 | A1 |
20100049926 | Fuente | Feb 2010 | A1 |
20100049927 | Fuente | Feb 2010 | A1 |
20100061150 | Wu et al. | Mar 2010 | A1 |
20100161881 | Nagadomi et al. | Jun 2010 | A1 |
20100169543 | Edgington et al. | Jul 2010 | A1 |
20100169551 | Yano et al. | Jul 2010 | A1 |
20100208385 | Toukairin | Aug 2010 | A1 |
20100306551 | Meyer et al. | Dec 2010 | A1 |
20110226729 | Hogg | Sep 2011 | A1 |
20120159042 | Lott et al. | Jun 2012 | A1 |
20120275050 | Wilson et al. | Nov 2012 | A1 |
20120281963 | Krapf et al. | Nov 2012 | A1 |
20120303928 | Hall | Nov 2012 | A1 |
20120324980 | Nguyen et al. | Dec 2012 | A1 |
20140019680 | Jin | Jan 2014 | A1 |
20140372380 | Brion, Jr. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2009102425 | Aug 2009 | WO |
Entry |
---|
Rosenblum, “The Design and Implementation of a Log-structured File System”, EECS Department, University of California, Berkeley, Technical Report No. UCB/CSD-92-696, Jun. 1992. |
Mendel Rosenblum, John K. Ousterhout, “The Design and Implementation of a Log-Structured File System”, University of California, ACM Transactions on Computer Systems, Feb. 1992, pp. 26-52, vol. 10, No. 1, Berkeley, California. |
Amer, et al., “Design Issues for a Shingled Write Disk System”, 26th IEEE Symposium on Massive Storage Systems and Technologies: Research Track (MSST 2010), May 2010, 12 pages. |
David M. Hamilton , et al., U.S. Appl. No. 14/335,539, filed Jul. 18, 2014, 21 pages. |
David C. Pruett, et al., U.S. Appl. No. 12/895,855, filed Oct. 1, 2010, 27 pages. |
Robert M. Fallone, et al., U.S. Appl. No. 13/027,432, filed Feb. 15, 2011, 22 pages. |