The present invention relates to extending the life of check valves in hostile environments, and is particularly suitable for use in lubrication systems for natural gas compressors.
Natural gas compressors receive natural gas from wells and compress the gas into compressed natural gas (“CNG”), which is more readily stored. Lubrication systems for natural gas compressors are described, for example, in U.S. Pat. No. 5,835,372 to Roys et al. To lubricate the compressor, a small volume of lubricant at high pressure is typically applied periodically into the compressor cylinder. A check valve inserted between the lubricant line and the compressor cylinder seals the compressor cylinder to prevent natural gas from flowing into the lubrication line. The high pressure lubricant periodically opens the valve to inject the lubricant. The lubricant is at a higher pressure than the natural gas, so when the valve is open, the lubricant flows into the cylinder, instead of the natural gas flowing out of the cylinder. To prevent the hot natural gas from contaminating or otherwise damaging the check valve, an oil reservoir device is typically mounted between the cylinder and the check valve to maintain an oil barrier between the check valve and the natural gas.
An object of the invention is to reduce check valve failures and extend the life of lubricated equipment.
Embodiments of the invention reliable method to extend the life of not only gas compressor check valves, but of check valves in any application, particularly applications in which the valve is exposed to hot, corrosive, or contaminated fluids. This invention includes a device that provides a fluid barrier to protect check valves. In a preferred embodiment, the device has a small internal volume to prevent delaying lubricant from reaching the compressor upon start up as the device is filled.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more through understanding of the present invention, and advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Applicant has found through his investigations of check valve failures in CNG compressors that check valves in compressors should preferably not be installed directly on the cylinder. Gas migrating into the check valve as it opens and closes can also create coking, that is, formation of carbon deposits from the lubricant, on the ball and seat of the check valve due to heat from the compressed gas or air. The coking causes premature failure of the valve. Vertical installation of the check valve allows the introduction of hot, contaminated gas into the check valve each time the valve opens to inject oil into the lubrication point, but failures can occur regardless of the orientation of the check valve on the cylinder.
Applicant has found that the prior art reservoir device shown in
A. Volume of Oil
The interior volume of the various check valve, reservoir, and fitting components must be filled before oil will pass through those components and lubricate the compressor. The volume of oil needed to fill the check valve cavity on the discharge end, the ¼″×¼″ nipple that couples the check valve to the reservoir device, and the reservoir device void, is approximately 0.183 cubic inches. If a divider block system providing the lubrication cycles every 30 seconds and has a 0.006 piston size, the compressor could operate for 15 minutes before lubrication is injected into the lubrication point. CNG compressors typically operate intermittently, on demand. Due to the frequent starting and stopping and the limited run times of CNG compressors during operation, this delay in providing lubrication can cause premature wear or failure of cylinder and packing components. A typical CNG compressor can start as many as 150 times each day and run for only a short period of time, such as five to fifteen minutes. This problem of delaying the delivery of lubricant is exasperated when using divider block systems having longer cycle times. The combination of long cycle time of the divider block and the extra time required to fill the void in the reservoir device after replacement of parts on the lube system, can present a major problem in providing lubrication to the compressor components.
B. Dilution of Oil by Natural Gas
After start-up, the compressor fills the CNG storage bottles with the compressed gas to a specified pressure, typically 3600 psi, and then automatically shuts down. The remaining gas in the cylinder is released (“blown down”) to allow the unit to start again in an unloaded state. As the compressor cylinder compresses gas, the volume of oil in the reservoir device becomes saturated with dissolved gas. As the compressor stops and the cylinder is blown down, the dissolved gas comes out of solution because of the rapid decompressing of the oil and creates foaming of the oil (entrained air) which in turn forces out some of the oil in the reservoir device, replacing the oil with gas released from solution. This process forces the oil contained in the check valve cavity, the oil in the ¼″×¼″ nipple, and the oil in the reservoir device out with the gas blown down. At start-up the divider block system must fill all of these voids before lubrication is introduced into the injection point to lubricate the cylinder and packing. This causes premature wear or failure of the compressor components.
C. Vibration-Induced Failures
The combined weight of the reservoir device, double female check valve, ¼″×¼″ MPT nipple, and the tubing fitting shown in
D. Premature Failure of Cylinders/Packing
When the NPT connector of the reservoir device cracks, the oil needed to lubricate the compressor components leaks to atmosphere with the gas and the compressor will continue to operate causing the compressor components (cylinders/packing) to suffer premature wear and failure due to lack of lubrication.
While the prior art reservoir device described above protects the check valve from the gasses in the cylinder to some extent by providing an oil barrier seal, those components suffer from the problems described in A-D above. Preferred embodiments of the invention provide a liquid seal between the check valve and the environment into which the liquid is being injected that overcomes the above problems. Below are described embodiments that provide oil head seals between the check valve and gas/debris in the cylinder.
In one embodiment, shown in
The female-by-female check valve manufactured and installed on thousands of gas and air compressors incorporates ¼″ NPS (national pipe straight) thread connections. The tube fitting and male pipe nipple used to assemble the check valve and components use NPT threads. When connecting these different types of threads, the result is that only 1½ to 2 threads are actually available to create the sealing area. Although this connection is insufficient to comply with preferred engineering practices, it is still used by many compressor manufacturers. To ensure reliable sealing between the components, users should employ industry standard NPTF (NPT female) to NPTM (NPT male) thread connections.
Check valve 301 is relatively small and light, thereby reducing or eliminating vibration-induced failures. Check valve 301 provides to the compressor industry a dependable solution to extend the longevity and reliability of divider block system injection check valves. The use of double self guiding poppets, although not required for every implementation, is preferred in most implementations to provide a sure seal.
Check valve protection device 300 includes a solid body 302 having a first passage 304 that provides fluid to the device (not shown) to which the fluid is to be delivered and a second passage 306 receiving the fluid from a check valve 301, which screws into a first threaded cavity 312 in solid body 302. A second threaded cavity 314 provides a fluid connection between passage 304 and passage 306, the second threaded cavity being sealed by a plug 318. Plug 318 is screwed into the second threaded cavity 314 to leave just sufficient space in the second threaded cavity 314 to allow fluid to flow readily from passage 304 to passage 306 through the second threaded cavity 314. Plug 318 can be preferably removed to install a pressure gauge to check actual injection pressure for field troubleshooting. This aspect is novel and is provided to enable troubleshooting of the compressor cylinder and the lubrication system. The industry has never had an easy way to check the system pressure at the injection point, and this design makes a pressure check possible.
While the embodiment shown in
The total weight of the combination of check valve 301 and check valve protection device 300 shown in
The embodiment of
The invention is not limited to any particular arrange of internal passages. A preferred embodiment provides a small fill capacity, regardless of the design of the device, so that the lubricant is delivered rapidly to the lubricated system and the check valve or other device is protected. A preferred protection device works while mounted in any orientation on the compressor. That is, an oil head remain between the compressor and the check valve in any orientation.
With an operating pressure rating of about 10,000 PSI and operating temperature rating of about 400° F., the check valve and protection device combination of
In this embodiment, the o-ring provides the primary sealing surface. If the o-ring should fail, the ball provides a metal-to-metal back-up seal. The metal-to-metal sealing surface reduces or eliminates problems at elevated temperatures or with fluids that would not be compatible with the o-ring elastomer in the double poppet of
This embodiment provides several additional advantages over prior art check valves. It eliminates the need to machine small poppets and can use commercially available balls and springs. The ball 802 is easily guided onto the o-ring surface and does not require precise positioning on the o-ring to seal. The o-ring is typically stationary in its seat, and will not expand due to pressure. The o-ring provides a very effective sealing surface for low pressure applications and is forgiving should debris become caught between the ball and the o-ring seal; the ball can crush small debris and continue to seal. If the o-ring loses its sealing ability due to failure caused by temperature, fluid compatibility issues, excessive pressure, or heat, the ball will travel downward compressing the o-ring and contact the metal surface of the seat. This provides a metal-to-metal back-up sealing surface.
The system describes herein provides the compressor industry with a dependable solution to extend the longevity and reliability of divider block system injection check valve. The invention includes more than one novel and inventive aspect, and not all implementations will require all aspects to be combined in each implementation. Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. The invention is not limited to the use of check valves in CNG compressors, but is useful on all systems, such as compressors, and in any environment where contamination or corrosion of equipment, is possible.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application is a divisional application of U.S. patent application Ser. No. 11/411,424, filed on Apr. 26, 2006, which claims priority from U.S. Prov. Pat. App. No. 60/675,142, filed Apr. 27, 2005, both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
339251 | Ames | Apr 1886 | A |
1201414 | Winkley | Oct 1916 | A |
1534173 | Fogelberg | Aug 1922 | A |
1524257 | Kensig | Jan 1925 | A |
1632775 | Bijur | Jun 1927 | A |
1633056 | Wishart et al. | Jun 1927 | A |
1640600 | Crosby | Aug 1927 | A |
1664733 | Braun | Apr 1928 | A |
1770683 | Davis | Jul 1930 | A |
1940452 | Glab | Aug 1930 | A |
2202211 | Kling | May 1940 | A |
2531319 | Briggs | Nov 1950 | A |
2845945 | Mancusi, Jr. | Aug 1958 | A |
3202178 | Wolfe | Aug 1965 | A |
3656584 | Lyden | Apr 1972 | A |
3769999 | Flanagan et al. | Nov 1973 | A |
3834124 | Ichikawa | Sep 1974 | A |
4671915 | Fujimoto et al. | Jun 1987 | A |
5025762 | Gohara et al. | Jun 1991 | A |
D321928 | Milo | Nov 1991 | S |
D339399 | Lin | Sep 1993 | S |
D364210 | Loerop et al. | Nov 1995 | S |
D370963 | Daansen | Jun 1996 | S |
5835372 | Roys et al. | Nov 1998 | A |
6021805 | Horne et al. | Feb 2000 | A |
D426617 | Hansen | Jun 2000 | S |
6779558 | Bruck et al. | Aug 2004 | B1 |
D496091 | Katzman et al. | Sep 2004 | S |
7434593 | Noll et al. | Oct 2008 | B2 |
7458388 | Huang | Dec 2008 | B2 |
Entry |
---|
Aerial Corporation, “Double Throttle Check Valve Sandwich Plate,” Webpage, [http://www.arielcorp.com/ext—data/vendor—literature/rotary/HYTOS—Check—Valve1989.pdf], Published prior to Jun. 28, 2010, 2 pages. |
Sloan Brothers Company, “Omni Air Trap: Part #SB-OT-1/4 SB-OT-1/8,” WebSite, [www.sbco.com], Published prior to Jun. 28, 2010, 1 page. |
Hopkins, Ellen, “New Divider Block Lube-System Check Valve and Check Valve Protector,” CompressorTech, Mar. 2006, 3 pages. |
Number | Date | Country | |
---|---|---|---|
60675142 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11411424 | Apr 2006 | US |
Child | 12423375 | US |