The present invention relates to a pump and, more particularly, to a check valve for a pump.
A bottle or can is often equipped with a pump operable for dispensing liquid from the bottle or can. The liquid can be used for skin care, shower, cleaning and disinfection.
Taiwanese Patent M371789 discloses a conventional pump for dispensing liquid from a bottle. The pump includes a check valve inserted in a reduced section of a valve housing 70. The check valve includes an annular frame 42 elastically connected to a circular membrane 43 that is adapted for closing an aperture 74 made in the reduced section of the valve housing 70. The circular membrane 43 can properly close the aperture 74 only when the circular membrane 43 extends parallel to an annular portion of the housing 70 that extends around the aperture 74. However, the circular membrane 43 is often biased from the proper orientation when the pump is filled with viscous liquid. In this case, leak happens.
The present invention is therefore intended to obviate or at least alleviate the problems encountered in prior art.
It is the objective of the present invention to provide a reliable pump.
To achieve the foregoing objective, the pump includes a collar, a cylinder and an elastic valve. The collar includes a wall, a tubular insert extending in the wall, and a connective portion formed between the wall and the tubular insert. The cylinder includes first and second open ends, first and second chambers respectively in communication with the first and second open ends, and a neck in communication with the first and second chambers. The elastic valve includes a ring, a plug extending in the ring, and elastic strips formed between the plug and the ring so that the plug is movable relative to the ring. The tubular insert is inserted in the first chamber via the first open end when the cylinder is connected to the wall, and the plug normally blocks the neck to form a first check valve when the elastic valve is connected to the second chamber.
Other objectives, advantages and features of the present invention will be apparent from the following description referring to the attached drawings.
The present invention will be described via detailed illustration of two embodiments referring to the drawings wherein:
Referring to
The cylinder 80 is preferably a tubular element that includes two open ends 81 and 82, three chambers 84, 85 and 87, a neck 86 and a vent 89. The open end 81 is made with diameter larger than that of the open end 82. An annular flange 83 extends on an external face of the cylinder 80, near the open end 81. The chamber 84 is in communication with the open end 81. The chamber 85 is in communication with the open end 82. An annular rib 88 is formed on an internal face of the cylinder 80 in the chamber 85. At an end, the chamber 87 is in communication with the chamber 84. The chamber 87 is made with diameter smaller than that of the chamber 84, thus forming a shoulder 91 between them. At another end, the chamber 87 is in communication with the chamber 85 via the neck 86. An annular rib 93 is formed on the internal face of the cylinder 80 in the chamber 87. The vent 89 is made in the periphery of the cylinder 80, in communication with the chamber 84.
Referring to
Referring to
Referring to
The piston 50 is an elastic and tough element made of rubber, plastics or polymer for example. The piston 50 is in the shape of a ring that includes an external annular portion 51 extending around an internal annular portion 52. The external annular portion 51 and the internal annular portion 52 are made in one piece. The external annular portion 51 includes a reduced portion between two ends to provide a concave face 53. The piston 50 further includes an axial extensive portion 54 extending from the internal annular portion 52 and a circumferential expansive portion 56 extending from the axial extensive portion 54. The axial extensive portion 54 is made with an external diameter smaller than that of the internal annular portion 52, thereby forming a shoulder 55 between them.
Referring to
Referring
The washer 32 is inserted in the collar 40 via the end 41 so that it is placed against the end 42. A portion of the cylinder 80 that extends around the open end 81 is inserted in the containing space 49. Together, the piston 50, the piston rod 60, the elastic valve 70 and the cylinder 80 are moved so that the annular flange 83 is moved throughout the washer 32 and engaged with the annular rib 38 to keep the collar 40 partially in the cylinder 80. The annular portion 45 of the collar 40 shields the cylinder 80. The tubular insert 46 is inserted in the chamber 84 via the open end 81.
The pipe 20 includes a channel 21 that includes an exit 22 in an end, an entrance 23 in another end, a reduced section 24 near the exit 22, an enlarged section 25 in communication with the entrance 23, and an intermediate section 26 between the reduced section 24 and the enlarged section 25. Two ribs 27 extend on an internal face of the intermediate section 26 of the pipe 20. Moreover, the pipe 20 includes an annular flange 28 on an external face.
Referring to
The piston rod 60 is inserted in the channel 21 through the entrance 23, the enlarged section 25 of the channel 21 and the intermediate section 26. The rib 63 is engaged with the rib 27 to connect the pipe 20 to the piston rod 60. Thus, the exit 65 is in communication with the reduced section 24 of the channel 21. Moreover, there is a space 18 between the piston 50 and the plug 74 or between the piston 50 and the elastic valve 70.
The collar 40 is connected to an open end of a bottle 90 so that the tube 34 includes an end inserted in the chamber 85 of the cylinder 80 via the open end 82. The annular rib 88 squeezes the tube 34 so that the tube 34 extends into the bottle 90 but does not fall. Now, the pipe 20 is pushed several times to determine whether the pump works properly to dispense liquid from the bottle 90.
Referring to
Referring to
The connective tube 14 is inserted in the channel 21 through the exit 22 so that the sprout 12 is in communication with the channel 21 via the connective tube 14. The annular flange 28 of the pipe 20 is placed against the stop 16.
In a dispensing process, the nozzle 10 is pressed, i.e., moved toward the collar 40. In a refill process, the spring 30 moves the nozzle 10 to the original position, i.e., away from the collar 40.
Referring to
The spring 30 is compressed between the annular flange 28 and the annular portion 45 of the collar 40. The vent 89 of the cylinder 80 is not closed by the external annular portion 51 of the piston 50. Thus, air is allowed to enter the bottle 90 via the nozzle 10, the gap between the pipe 20 and the collar 40 and the vent 89 of the cylinder 80 as indicated by an arrow head 92 to increase the volume of the bottle 90 again.
In the dispensing process, three check valves come to work. The first check valve is made by the plug 74 and the neck 86. Normally, the plug 74 is supported by the elastic strips 73, and the neck 86 is blocked by the convex face 76. Thus, the liquid cannot enter the chamber 85 of the cylinder 80 via the tube 34. The solid section 62 exerts an adequate force to press the plug 74 against resistance from the liquid even if the liquid is sticky or includes particles that could otherwise cause trouble for the plug 74 blocking the neck 86. Moreover, the efficiency of the convex face 76 blocking the neck 86 is increased.
The second check valve is made of the circumferential expansive portion 56 of the piston 50 and the portion of the pipe 20 that extends around the enlarged section 25 of the channel 21. In the dispensing process, the circumferential expansive portion 56 of the piston 50 is in contact with the pipe 20 so that the liquid cannot enter the space between the piston 50 and the tubular insert 46 from the space 18.
The third check valve is made of the portion of the pipe 20 around the entrance 23 and the shoulder 55 of the piston 50. The pipe 20 rubs against the shoulder 55. Thus, the third check valve cooperates with the second check valve to keep the liquid from space 18 out of the space between the piston 50 and the tubular insert 46.
Referring to
Now, the vent 89 of the cylinder 80 is blocked by the external annular portion 51 of the piston 50. Thus, air cannot enter the bottle 90 from the exterior. The entrances 66 of the piston rod 60 are blocked by the internal annular portion 52 of the piston 50, which is placed against the solid section 62. The travel of the liquid into the channel 64 is interrupted.
Particularly, the solid section 62 no longer presses the plug 74 of the elastic valve 70. Thus, the volume of the space 18 is increased because the piston 50 is moved away from the elastic valve 70, thereby sucking the plug 74 against the elastic strips 73. The convex face 76 of the plug 74 is moved away from the neck 86. The first check valve does not block the pump. Hence, liquid can enter the chamber 85 of the cylinder 80 from the bottle 90 via the tube 34 as indicated by an arrow head 11, and the volume of the space 18 is increased.
In the refill process, with the first check valve disabled, the pipe 20 of the third check valve is away from the shoulder 55, not being able to prevent leak. However, the second check valve continues to prevent leak because the circumferential expansive portion 56 is still in contact with the pipe 20. The second check valve is used with a fourth check valve to effectively prevent leak. The fourth check valve is made of an edge of the external annular portion 51 of the piston 50 in contact with the concave face 47 of the tubular insert 46. Thus, the second and fourth check valves together keep the liquid from the space 18 out of the space between the piston 50 and the tubular insert 46.
Referring to
Each of the rectilinear ribs 36 is inserted in the gap 33 between two adjacent ones of the sealing units 15, without interfering with the movement of the nozzle 10 and the pipe 20 relative to the collar 40. If necessary, the nozzle 10 is moved as indicated by an arrow head 94. Thus, the pipe 20 is rotated in a same sense of direction so that the rectilinear ribs 36 are stopped by the restraints 19. The rectilinear ribs 36 are placed on the tracks 17 so that the sealing units 15 are in the way of the movement of the restraint 29 and that the nozzle 10 is kept in the refill process. The nozzle 10 can be rotated in an opposite sense of direction relative to the collar 40 to allow the movement of the nozzle 10 relative to the collar 40. Thus, the nozzle 10 can be pressed.
The present invention has been described via illustration of the embodiments. Those skilled in the art can derive variations from the embodiments without departing from the scope of the present invention. Therefore, the embodiments shall not limit the scope of the present invention defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
5725128 | Foster | Mar 1998 | A |
5806721 | Tada | Sep 1998 | A |
5842605 | Lehmkuhl | Dec 1998 | A |
6332561 | Garcia | Dec 2001 | B1 |
6685062 | Ki | Feb 2004 | B1 |
7431181 | Masuda | Oct 2008 | B2 |
7938298 | Lee | May 2011 | B2 |
8631976 | Moretti | Jan 2014 | B2 |
9539597 | Ding | Jan 2017 | B2 |
20050000985 | Masuda | Jan 2005 | A1 |
20120325862 | Kuwahara | Dec 2012 | A1 |
20130140332 | Csaszar | Jun 2013 | A1 |
20140084027 | Wang | Mar 2014 | A1 |
20140217124 | Kim | Aug 2014 | A1 |
20150251203 | Wang | Sep 2015 | A1 |
20160303602 | Kang | Oct 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180171998 A1 | Jun 2018 | US |