The present disclosure generally relates to check valves, and more particularly to valve members of check valves having geometries capable of minimizing sticking together of the valve members during bulk packing or during assembly of the check valves.
Patients are commonly injected with IV solutions that are initially provided in an IV reservoir (a bottle or bag) and dripped into the vein of the patient through an IV line. Typically, an injection port is provided along the IV line and adapted to function with a syringe to permit an injectate to be added to the IV solution. A check valve is also commonly included in the IV line to permit fluid flow only in the direction of the patient. This ensures that the injectate flows downstream toward the patient, not upstream toward the IV reservoir.
Conventional check valves utilize disc-shaped valve members that are generally flat and usually made of silicone which is naturally sticky. This geometry allows for the valve members to stick together (during bulk packing) thereby causing a condition known as “shingling” which makes automated assembly of the conventional check valves difficult.
The present disclosure generally relates to check valves, and more particularly to valve members of check valves having geometries capable of minimizing sticking together of the valve members during bulk packing or during assembly of the check valves.
In accordance with various embodiments of the present disclosure, a check valve includes an upper housing, a lower housing, a cavity interposed between and defined by the upper and lower housings, and a valve member mounted in the cavity to selectively permit fluid flow in a first direction, and prevent fluid backflow in a second direction opposite to the first direction. The upper housing defines an inlet of the check valve and the lower housing defines an outlet of the check valve. The cavity fluidly connects the inlet and the outlet. The valve member includes a valve body and a valve stem portion extending axially through a central axis of the valve body.
In accordance with various embodiments of the present disclosure, a check valve includes an upper housing defining an inlet of the check valve, a lower housing axially coupled to the upper housing and comprising an outlet of the check valve, and a cavity interposed between and defined by the upper and lower housings for fluidly connecting the inlet and the outlet. The check valve further includes a flexible valve member mounted in the cavity to selectively permit fluid flow in a first direction, and prevent fluid backflow in a second direction opposite to the first direction. The flexible valve member includes a body having a plurality of longitudinally extending feet disposed about an outer circumferential perimeter of the body.
In accordance with various embodiments of the present disclosure, a flexible valve member includes a valve body, and a plurality of feet disposed about and extending longitudinally from an outer circumferential perimeter of the valve body.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the subject technology as claimed. It is also to be understood that other aspects may be utilized, and changes may be made without departing from the scope of the subject technology
The following figures are included to illustrate certain aspects of the embodiments, and should not be viewed as exclusive embodiments. The subject matter disclosed is capable of considerable modifications, alterations, combinations, and equivalents in form and function, as will occur to those skilled in the art and having the benefit of this disclosure.
The detailed description set forth below describes various configurations of the subject technology and is not intended to represent the only configurations in which the subject technology may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the subject technology. Accordingly, dimensions may be provided in regard to certain aspects as non-limiting examples. However, it will be apparent to those skilled in the art that the subject technology may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject technology.
It is to be understood that the present disclosure includes examples of the subject technology and does not limit the scope of the appended claims. Various aspects of the subject technology will now be disclosed according to particular but non-limiting examples. Various embodiments described in the present disclosure may be carried out in different ways and variations, and in accordance with a desired application or implementation.
The present description relates in general to check valves, and more particularly, for example and without limitation, to more particularly to valve members of check valves having geometries capable of minimizing sticking together of the valve members during bulk packing or during assembly of the check valves.
In accordance with some embodiments, the valve member may include a valve body and a valve stem portion extending axially through a central axis of the valve body. The valve members of the various embodiments described herein are advantageous in that the valve body and the valve stem portion may define a “jack” shape geometry that will reduce the exposed surface area available for sticking of the valve members during assembly. In particular, the presence of the valve stem portion limits the exposed surface area of the valve bodies available for sticking or “shingling.” In some embodiments, the exposed surface area of the valve members available for sticking is reduced by up to 69%. The valve members can then be fed along an assembly line or track with reduced surface area for sticking and/or friction.
In accordance with some embodiments, the valve member either including or excluding the stem portion may additionally include plurality of feet at an outer circumferential perimeter of the valve body. The feet may each extend longitudinally from the outer circumferential perimeter of the valve body. The feet may be spaced apart from each other so as to form a castle-like shape around the perimeter of the valve body, and thus may be referred to as castellated feet. As depicted, the castellated feet may be oriented substantially perpendicularly with respect to the outer circumferential perimeter of the valve body. Benefits are realized in the geometry of the valve members with the castellated feet in that the castellated feet further prevent or obstruct contacting of the upper and/or lower surfaces of the valve bodies during bulk packing, assembly and/or transportation. In particular, since the upper surface of each of the castellated feet protrudes and is thus raised above the upper surface of the valve body, contacting and sticking together of the exposed surface areas of the upper surfaces of the valve body is limited. Similarly, since the lower surface of each of the castellated feet protrudes below the lower surface of the valve body, contacting and sticking together of the exposed surface areas of the lower surfaces of the valve body is limited. Additional benefits are realized in that due to the longitudinally protruding structure of the castellated feet, the valve member is capable of being maintained concentrically in a cavity of the check valve when the valve experiences a back pressure condition. Valves are symmetrical and can be assembled on either side.
The upper housing 10 may include an inlet 20 of the check valve 100 at the first end 12, and the lower housing 15 may include an outlet 25 of the check valve 100. The body 101 may define an internal flow passage 85 axially extending between the inlet 20 and the outlet 25 and in fluid communication therewith. As is understood, the check valve 100 may permit fluid to flow from the inlet 20 to the outlet 25 (as indicated by arrow A), and minimize, or otherwise limit, fluid flow from the outlet 25 to the inlet 20 (as indicated by arrow B). As depicted, the upper housing and the lower housing 15 may define the cavity 30 for fluidly connecting the inlet 20 and the outlet 25. In the depicted embodiments the flexible valve member 35 may be mounted in the cavity to selectively permit fluid flow in the first direction (indicated by arrow A), and prevent fluid backflow (reverse flow) in the second direction opposite to the first direction (indicated by arrow B).
In accordance with some embodiments, the valve member 35 may have a valve body 22 and a valve stem portion 18 extending axially through a central axis X2 of the valve body 22. The valve body 22 may be in the form of a disc or any other circular plate. As depicted, the valve member 35 may be mounted on a support portion 28 of the lower housing 14. In particular, the support portion 28 may include a central aperture 44 and a plurality of axially extending slots 46 through which fluid flowing from the inlet 20 and into the cavity 30 may enter the outlet 25 in an open state of the check valve 100. As depicted, the valve stem portion 18 of the valve member 35 may be mounted in the central aperture 44 of the support portion. The aforementioned configuration of the valve member 35 may provide several manufacturing and assembly advantages. A common issue experienced during packaging, transportation and assembly of the check valve is that when conventional valve members (e.g., disc-type check valve members) are packaged in bulk and/or transported on a conveyance line, the valve members are prone to shingling. In particular, since conventional disc-type valve members are generally flat and made of silicone which is naturally sticky, this geometry allows for the conventional disc-type valve members to stick together (during bulk packing), thereby causing the “shingling”. This makes automated assembly difficult. The valve member 35 of the various embodiments described herein is advantageous in that the valve body 22 and the valve stem portion 18 may define a “jack” shape geometry of the valve member 35 that will reduce the exposed surface area available for sticking of the valve members 35 during assembly. In particular, the presence of stem portion 18 limits the exposed surface area of the bodies 22 available for sticking or shingling. The probability for sticking of the valve members to occur is thus much lower since the stem portions will keep surfaces of the bodies apart at least in part. In some embodiments, the exposed surface area of the valve members 35 available for sticking is reduced by up to 69%. As illustrated in
Referring back to
The upper housing 11 may include an inlet 20 of the check valve 200 at the first end 19, and the lower housing 16 may include an outlet 25 of the check valve 200. Similar to the embodiments of
In accordance with some embodiments, similar to the valve member 35, the valve member 37 may have a valve body 22 and a valve stem portion 18 extending axially through the central axis X2 of the valve body 22. In the depicted embodiments, the valve member 37 additionally has a plurality of feet 24 disposed along an outer circumferential perimeter 33 of the valve body 22. The feet 24 may each extend longitudinally from the outer circumferential perimeter 23 of the valve body 22. As depicted, the feet 24 may be oriented substantially perpendicularly with respect to the outer circumferential perimeter 23 of the valve body 22. In particular, the feet 24 may extend from and protrude substantially perpendicularly from an upper surface 22A and a lower surface 22B of the valve body 22. As such, an upper surface 24A of each of the feet 24 may be positioned or protrude a predetermined height above the upper surface 22A of the valve body 22. Similarly, a lower surface 24B of each of the feet 24 may be positioned or protrude a predetermined height below the lower surface 22B of the valve body 22. In some embodiments, the feet 24 may be spaced apart from each other at regular intervals. For example, the valve member 37 may have two or more feet 24 equally spaced apart from each other. In other embodiments. However, the feet 24 may be spaced apart from each other at irregular intervals. For example, a spacing between each of the feet may vary according to the desired application. In some embodiments, adjacent pairs of the feet 24 define a recessed flow portion 29 therebetween, and through which fluid entering the cavity 30 from the upper housing may flow into the lower housing.
As depicted, the feet 24 may have a polygonal shape, for example a rectangular, square or any other suitable polygonal shape. In other embodiments, the feet 24 may have a curved shape, for example a circular, an oval or oblong shape. The configuration of the valve member 37 with adjacent feet 24 interposed by respective recessed flow portions 29 may yield a structure resembling that of a castle. Thus, the feet 24 may be referred to herein as castellated feet 24. However, the various embodiments of the present disclosure are not limited the aforementioned configurations, and the shapes and spacing apart (i.e. the extent or size of the recessed flow portions 29) of the feet 24 from each other may be varied as desired.
Similar to the embodiments of
In some embodiments, the exposed surface area of the valve members 37 available for sticking is reduced by up to 69%. As illustrated in
In accordance with some embodiments, the check valve 200 may further include a filter member 26 coupled, attached or otherwise bonded to an internal surface, e.g., surface 55 of the upper housing 11. For example, the filter member 26 may be coupled, attached or otherwise bonded to a ledge 53 of the internal surface 55 through any appropriate methods including, but not limited to ultrasonic welding, heat sealing, insert molding, gluing or other attachment methods. The filter member 26 may be disposed upstream of, and spaced apart from the valve member 37. As such, when the valve member 37 is subjected to an excessive reverse flow (flow from the outlet 25 to the inlet 20) causing the valve member 37 to bow or deflect upwards, a gap remains between the filter member 26 and the valve member 37 to prevent the valve member 37 from stretching the filter member 26 past its elastic limit. Thus integrity of the filter member 26 is maintained even in the excessive backflow condition. The filter member 26 may be configured to restrict and minimize passage of undesirable matter in the fluid flowing through the check valve 200.
The filter member 26 may be formed of a porous material capable of preventing particulate matter of a particular size from passing through and potentially reaching and causing failure of the valve member 37. For example, the filter member 26 may be formed of a porous plastic material. Alternatively, the filter member 26 may be made of a non-woven cast material, a cork material, or any other porous fabric or material. The filter member 26 may be formed with a plurality of small holes or it may be woven, to provide pores of about 20 to 200 microns in size. In some embodiments, filter member 26 may be a flexible material such as a metal or polymeric material. In some embodiments, the filter member 40 may be formed of a material capable of withstanding or filtering flow rates of between 3 to 8 liters per hour. Additionally, the filter member 26 may be formed of a porous material capable of withstanding backpressures resulting from reverse flow of up to 200 KPa. Advantageously, the latter configuration may minimize the possibility of the filter member 26 collapsing under the backpressure resulting from reverse fluid flow.
Referring to
The upper housing 13 may include an inlet 20 of the check valve 300 at the first end 19, and the lower housing 17 may include an outlet 25 of the check valve 300. Similar to the embodiments of
In accordance with some embodiments, the valve member 39 may be similar in structure to the valve member 37, with the exception that the valve member 39 excludes the valve stem portion 18. Thus, similar to the valve member 37, the valve member 39 may have a plurality of longitudinally extending feet 24 at an outer circumferential perimeter 23 of the valve body 22. As described above, the feet 24 may be disposed around the outer circumferential perimeter 23 of the valve body 22 in manner resembling that of a castle, and therefore may be referred to herein as castellated feet 42. The castellated feet 24 may each extend longitudinally from the outer circumferential perimeter 23 of the valve body 22. Since the castellated feet 24 of the valve member 37 are identical to the castellated feet 24 of the valve member 39 and a detailed description of the castellated feet 24 was provided with respect to the valve member 37, a detailed description thereof shall be omitted with respect to the valve member 39.
In the depicted embodiments, the valve member 39 may be mounted on a support portion 34 of the lower housing 17. The configuration of the valve member 39 with the plurality of castellated teeth 24 may provide similar manufacturing and assembly advantages as the valve member 37 of
Additional benefits are realized in that due to the longitudinally protruding structure of the castellated feet 24, the valve member 39 is capable of being maintained concentrically in the cavity 30 of the check valve 300 when the valve member 39 experiences a back pressure condition. Furthermore, because the valve member 39 is symmetrically shaped it can be assembled on either side thereof. In all other respects, the valve member 39 may be identical to the valve member 37 described above with respect to
In accordance with some embodiments, the check valve 300 may further include a filter member 26 coupled, attached or otherwise bonded to an inner surface, e.g., surface 59 of the upper housing 13. For example, the filter member 26 may be coupled, attached or otherwise bonded through any appropriate methods including, but not limited to ultrasonic welding, heat sealing, insert molding, gluing or other attachment methods. The filter member 26 may be disposed upstream of, and spaced apart from the valve member 37. As depicted, the filter member 26 may be coupled or otherwise attached to a ledge 53 of an internal surface 55 of the upper housing 13. The filter member 26 may be configured to restrict and minimize passage of undesirable matter in the fluid flowing through the check valve 300.
The filter member 26 may be formed of a porous material capable of preventing particulate matter of a particular size from passing through and potentially reaching and causing failure of the valve member 37. For example, the filter member 26 may be formed of a porous plastic material. Alternatively, the filter member 26 may be made of a non-woven cast material, a cork material, or any other porous fabric or material. The filter member 26 may be formed with a plurality of small holes or it may be woven, to provide pores of about 20 to 200 microns in size. In some embodiments, filter member 26 may be a flexible material such as a metal or polymeric material. In some embodiments, the filter member 40 may be formed of a material capable of withstanding or filtering flow rates of between 3 to 8 liters per hour. Additionally, the filter member 26 may be formed of a porous material capable of withstanding backpressures resulting from reverse flow of up to 200 KPa. Advantageously, the latter configuration may minimize the possibility of the filter member 26 collapsing under the backpressure resulting from reverse fluid flow.
In accordance with some embodiments, the upper housing 13 may include at least one longitudinally extending rib 45 that protrudes radially inward from the upstream internal surface 57. The at least one longitudinally extending rib 45 may be configured as a protruding surface which is disposed directly above or upstream of the filter member 26. In some embodiments, the filter member 26 may be disposed between the plurality of longitudinally extending ribs 45 and the flexible valve member 39. As depicted, the filter member 26 is positioned spaced apart from and disposed with a gap G between the filter member 26 and distal ends 51 of the plurality of ribs The aforementioned configuration is advantageous to maximize surface area for fluid flow from the inlet into the cavity and to minimize obstruction of fluid flow from the inlet 20 to the outlet 25.
During operation, when a downstream pressure (i.e., a pressure applied by a fluid flowing from the outlet 25 to the inlet 20 is applied to the valve member 39, the valve member 39 may deflect towards the sealing surface 42 to block the fluid communication between the inlet 20 and the cavity 30, thereby restricting backflow of the fluid from the outlet 25 to the inlet 20. Preventing backflow of the fluid is advantageous in that it restricts undesirable particulate matter, for example, contained in a drug dispensed from a secondary path from flowing back through the check valve 300, thereby preventing the patient from receiving the proper drug dosage concentration or from timely delivery of the drug.
As depicted, during operation, fluid may enter the check valve 300 via the inlet 20, and flow through the filter member 26 where it is filtered to trap the undesirable particulate matter, and into the cavity 30. Any grit or other undesirable particulate matter larger in size than the pores of the filter member 26 may be trapped in the filter member 40, and prevented from passing downstream to the valve member 39. The upstream pressure (i.e., pressure applied by fluid flowing from the inlet 20 to the outlet 25) applied to the valve member 39 causes the valve member 39 to bow or bend downwards at the outer edges thereof and deflect away from the sealing surface 42. Thus, the check valve is shifted from the closed state to an open state where the inlet 20, the cavity 30, and the outlet 25 are fluidly communicated. In the open state, a gap may be created between the sealing surface 42 and the upper surface 22A of the valve member 35 to allow the filtered fluid to flow therethrough. The filtered fluid may then flow through the gap, into the cavity 30, and exit the check valve 100 via the outlet 25 in the lower housing 17.
The configuration in which the filter member 40 is positioned upstream of the valve member is advantageous in that it prevents passage of undesirable particulate matter to the valve member 35 which could otherwise cause damage or wear to the valve member. The aforementioned configuration also prevents the undesirable particulate matter from potentially becoming lodged between the valve member 40 and the sealing surface 70, thereby preventing the valve member 35 from fully closing and sealing against reverse flow (backflow).
In contrast, in a conventional check valve configuration which does not include an integrated filter member, during low flow conditions, pressure exerted on the check valve as a result of the fluid flow may not be sufficient to fully open the check valve (e.g., to deflect the valve member 35) such that grit (or other undesirable particulate matter) may pass through the gap. In such conditions, the grit may get lodged in the gap and the valve may not completely close. This undesirably causes the check valve to “weep,” and allow fluid to flow through the valve in the reverse direction, thereby making the check valve ineffective.
In accordance with some embodiments, the valve member 41 may be similar in structure to the valve member 39, with the exception that the valve member 41 includes an additional friction rib 43 not present in valve member 39. Thus, similar to the valve member 39, the valve member 41 may have a plurality of longitudinally extending feet 24 at an outer circumferential perimeter 23 of the valve body 22. As described above, the feet 24 may be disposed around the outer circumferential perimeter 23 of the valve body 22 in manner resembling that of a castle, and therefore may be referred to herein as castellated feet 24. The castellated feet 24 may each extend longitudinally from the outer circumferential perimeter 23 of the valve body 22. Since a detailed description of the castellated feet 24 was provided with respect to the valve member 37, a detailed description thereof shall be omitted with respect to the valve member 41.
In the depicted embodiments, the valve member 41 may be mounted on a support portion 34 of the lower housing 17. The configuration of the valve member 41 with the plurality of castellated feet 24 may provide similar manufacturing and assembly advantages as the valve member 39 of
Additional benefits are realized in that due to the longitudinally protruding structure of the castellated feet 24, the valve member 41 is capable of being maintained concentrically in the cavity 30 of the check valve 400 when the valve member 41 experiences a back pressure condition. Furthermore, because the valve member 41 is symmetrically shaped it can be assembled on either side thereof. In all other respects, the valve member 41 may be identical to the valve member 39 described above with respect to
In accordance with some embodiments, the valve members 35, 37, 39, and 41 may be formed of a flexible, resilient material which is fluid impervious. For example, the valve members 37, 39, and 41 may be made of a silicon material. In other embodiments, however, the valve members 35, 37, 39, and 41 may be formed of any non-sticking, resilient material such as natural or synthetic rubber or plastic. The valve members 35, 37, 39, and 41 may be formed of a material having a shore hardness of 70 or less.
In some embodiments, the valve members 35, 37, 39, and 41 are not limited to any particular shape or size. In the depicted embodiments, however, the size of the valve members 35, 37, 39, and 41 may be limited based on desired deflection/bending characteristics of the valve members valve members 35, 37, 39, and 41 when subjected to either of the upstream or downstream forces. For example, the valve members 35, 37, 39, and 41 may be sized and shaped so as to flex or bend under fluid pressure to permit forward flow (from the inlet 20 to the outlet of the fluid into the cavity 30, and to limit fluid flow in the reverse direction.
In accordance with some embodiments, the check valve 400 may further include a filter member 26 coupled, attached or otherwise bonded to an inner surface, e.g., surface 59 of the upper housing 13. Since a detailed description of the filter member 26, how it functions, and how it may be coupled, attached or otherwise bonded to the upper housing 13 was provided with respect to the valve members 37, a detailed description thereof shall be omitted with respect to the valve member 41.
As illustrated in
In some embodiments, the downstream pressure applied by the fluid flowing from the outlet 25 to the inlet 20 which places check valve 400 in the closed state may cause the valve member 41 to be displaced from its mounting position on the support portion 34. In particular, a central axis X4 of the valve member 41 may be misaligned with the central longitudinal axis X1 of the check valve such that the valve member 41 contacts the downstream internal surface 59 of the upper housing 13. The aforementioned configuration of the valve member 41 with the castellated feet 24 having the curved friction ribs 43 is advantageous in that since the friction ribs 43 protrude radially outward a greater extent than an outer surface of the castellated feet 24, only the portion of the valve member 41 on which the friction ribs 43 are disposed contacts the downstream internal surface 59. Thus, as illustrated in
As illustrated in
In some embodiments, the upstream pressure applied by the fluid flowing from the inlet to the outlet which places check valve 400 in the open state may cause the valve member 41 to be displaced from its mounting position on the support portion 34. In particular, a central axis X4 of the valve member 41 may be misaligned with the central longitudinal axis X1 of the check valve such that the valve member 41 contacts the downstream internal surface 59 of the upper housing 13 as discussed above. The aforementioned configuration of the valve member 41 with the castellated feet 24 having the curved friction ribs 43 is advantageous in that since the friction ribs 43 protrude radially outward a greater extent than an outer surface of the castellated feet 24, when the check valve 100 is in the open state where fluid flows from the inlet 20 towards the outlet 25 and contacts the valve member 41, the valve member 41 with the curved friction ribs 43 is displaced so as to follow a radial curved trajectory path away from the downstream internal surface 59 of the upper housing 13. In this manner the curved friction ribs 43 further separate the valve member 41 from the downstream internal surface 59 of the upper housing 13. Since contact between the valve member 41 and the downstream internal surface is minimized in this way, friction between the valve member 41 and the downstream internal surface 59 of the upper housing 13 is also minimized.
Various examples of aspects of the disclosure are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. Identification of the figures and reference numbers are provided below merely as examples for illustrative purposes, and the clauses are not limited by those identifications.
Clause 1: A check valve, comprising: an upper housing defining an inlet of the check valve; a lower housing defining an outlet of the check valve; a cavity interposed between and defined by the upper and lower housings for fluidly connecting the inlet and the outlet; and a valve member mounted in the cavity to selectively permit fluid flow in a first direction, and prevent fluid backflow in a second direction opposite to the first direction, the valve member comprising a valve body and a valve stem portion extending axially through a central axis of the valve body.
Clause 2: The check valve of Clause 1, further comprising a plurality of feet extending longitudinally from an outer circumferential perimeter of the valve body.
Clause 3: The check valve of Clause 2, wherein adjacent pairs of the feet each define a recessed flow portion through which fluid entering the cavity flows from the upper housing into the lower housing.
Clause 4: The check valve of Clause 1, further comprising a filter member coupled to an inner surface of the upper housing, the filter member being disposed upstream of the valve member.
Clause 5: The check valve of Clause 1, wherein: the lower housing comprises a support portion disposed in the cavity at a central portion thereof, a central axis of the support portion being aligned with a central longitudinal axis of the check valve; and the valve member is configured to be mounted and supported on the support portion.
Clause 6: The check valve of Clause 1, wherein: the upper housing comprises an internal surface and an external surface, the internal surface including an upstream internal surface and a downstream internal surface; and the downstream internal surface of the upper housing includes a projection extending into the cavity, the projection being circularly disposed about a central axis of the valve member.
Clause 7: The check valve of Clause 6, wherein: a sealing surface is defined at a distal end of the projection; and in a closed state, the valve member is configured to contact the sealing surface to limit fluid flow past the sealing surface.
Clause 8: The check valve of Clause 7, wherein: when an upstream pressure is applied to the valve member, the valve member is configured to deflect away from the sealing surface to fluidly communicate the inlet and the cavity; and when a downstream pressure is applied to the valve member, the valve member is configured to deflect towards the sealing surface to block the fluid communication between the inlet and the cavity, and restrict backflow of the fluid from the outlet to the inlet.
Clause 9: A check valve, comprising: an upper housing defining an inlet of the check valve; a lower housing axially coupled to the upper housing and comprising an outlet of the check valve; a cavity interposed between and defined by the upper and lower housings for fluidly connecting the inlet and the outlet; and a flexible valve member mounted in the cavity to selectively permit fluid flow in a first direction, and prevent fluid backflow in a second direction opposite to the first direction, the flexible valve member comprising a body having a plurality of longitudinally extending feet disposed about an outer circumferential perimeter of the body.
Clause 10: The check valve of Clause 9, wherein: the upper housing comprises an internal surface and an external surface, the internal surface including an upstream internal surface and a downstream internal surface; and the upstream internal surface comprises a plurality of longitudinally extending ribs, the longitudinally extending ribs being radially spaced apart on the upstream internal surface about a central longitudinal axis of the check valve, and protruding radially inward from the upstream internal surface.
Clause 11: The check valve of Clause 10, further comprising a filter member mounted in the upper housing and disposed between the longitudinally extending ribs and the flexible valve member.
Clause 12: The check valve of Clause 11, wherein the filter member is positioned spaced apart from and disposed with a gap between the filter member and distal ends of the longitudinally extending ribs to maximize surface area for fluid flow from the inlet into the cavity.
Clause 13: The check valve of Clause 11, wherein: the downstream internal surface of the upper housing includes a projection extending into the cavity, the projection being circularly disposed about a central axis of the flexible valve member, and a distal end of the projection defining a sealing surface; and in a closed state, the valve member is configured to contact the sealing surface to limit fluid flow past the sealing surface.
Clause 14: The check valve of Clause 13, wherein: when a downstream pressure is applied to the valve member, the valve member is configured to deflect towards the sealing surface to block fluid communication between the inlet and the cavity, and restrict backflow of the fluid from the outlet to the inlet; and the longitudinally extending ribs are configured to support the valve member and to limit an extent to which the valve member stretches the filter member when the valve member is subjected to excessive back pressure.
Clause 15: The check valve of Clause 9, wherein the valve member comprises a valve body and a stem portion extending through a central axis of the valve body for supporting the valve member in the lower housing.
Clause 16: The check valve of Clause 9, wherein each of the longitudinally extending feet comprises at least one curved friction rib extending radially outward from an outer surface of a respective longitudinally extending foot of the plurality of longitudinally extending feet.
Clause 17: The check valve of Clause 16, wherein when a central axis of the valve member is misaligned with a central longitudinal axis of the check valve such that the valve member contacts an internal surface of the upper housing and the check valve is in a closed state, a surface area of contact of the valve member with the internal surface of the upper housing is limited to a surface area of the at least one friction rib contacting the internal surface.
Clause 18: The check valve of Clause 17, wherein the at least one friction rib contacting the internal surface of the upper housing comprises a maximum of two friction ribs.
Clause 19: The check valve of Clause 16, wherein when a central axis of the valve member is misaligned with a central longitudinal axis of the check valve such that the valve member contacts an internal surface of the upper housing and the check valve is in an open state with fluid flowing from the inlet towards the outlet, the curved friction ribs are displaced to follow a radial curved trajectory path away from the internal surface of the curved rib to further separate the valve from the internal surface of the upper housing.
Clause 20: A flexible valve member of a check valve, the flexible valve member comprising: a valve body; and a plurality of feet disposed about and extending longitudinally from an outer circumferential perimeter of the valve body.
Clause 21: The check valve of Clause 20, further comprising a valve stem portion extending axially through a central axis of the valve body.
Clause 22: The check valve of Clause 20, further comprising each of the feet comprises a curved friction rib extending radially outward from an outer surface of the respective foot.
The present disclosure is provided to enable any person skilled in the art to practice the various aspects described herein. The disclosure provides various examples of the subject technology, and the subject technology is not limited to these examples. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. Headings and subheadings, if any, are used for convenience only and do not limit the invention.
The word “exemplary” is used herein to mean “serving as an example or illustration.” Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. In one aspect, various alternative configurations and operations described herein may be considered to be at least equivalent.
As used herein, the phrase “at least one of” preceding a series of items, with the term “or” to separate any of the items, modifies the list as a whole, rather than each item of the list. The phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrase “at least one of A, B, or C” may refer to: only A, only B, or only C; or any combination of A, B, and C.
A phrase such as an “aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. An aspect may provide one or more examples. A phrase such as an aspect may refer to one or more aspects and vice versa. A phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. An embodiment may provide one or more examples. A phrase such an embodiment may refer to one or more embodiments and vice versa. A phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A configuration may provide one or more examples. A phrase such a configuration may refer to one or more configurations and vice versa.
In one aspect, unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. In one aspect, they are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain.
It is understood that the specific order or hierarchy of steps, or operations in the processes or methods disclosed are illustrations of exemplary approaches. Based upon implementation preferences or scenarios, it is understood that the specific order or hierarchy of steps, operations or processes may be rearranged. Some of the steps, operations or processes may be performed simultaneously. In some implementation preferences or scenarios, certain operations may or may not be performed. Some or all of the steps, operations, or processes may be performed automatically, without the intervention of a user. The accompanying method claims present elements of the various steps, operations or processes in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.” Furthermore, to the extent that the term “include,” “have,” or the like is used, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
The Title, Background, Summary, Brief Description of the Drawings and Abstract of the disclosure are hereby incorporated into the disclosure and are provided as illustrative examples of the disclosure, not as restrictive descriptions. It is submitted with the understanding that they will not be used to limit the scope or meaning of the claims. In addition, in the Detailed Description, it can be seen that the description provides illustrative examples and the various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed configuration or operation. The following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
The claims are not intended to be limited to the aspects described herein, but are to be accorded the full scope consistent with the language of the claims and to encompass all legal equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirement of 35 U.S.C. § 101, 102, or 103, nor should they be interpreted in such a way.
This application is a divisional of U.S. patent application Ser. No. 16/292,223, entitled “Castellated Check Valves,” filed Mar. 4, 2019, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16292223 | Mar 2019 | US |
Child | 18486590 | US |