This application claims priority to European Patent Application No. 17461647.4 filed Dec. 15, 2017, the entire contents of which is incorporated herein by reference.
The present disclosure relates to check valves.
Check valves are valves that allow fluid flow in one direction therethrough and prevent flow in the opposite direction. They are widely used in a range of applications, for example in air conditioning systems, for example in aircraft air conditioning systems.
Check valves commonly include a pair of valve elements or flappers located at an opening in a valve housing. The flappers are hingedly supported on a hinge pin mounted to the valve housing for rotation between a closed position in which they lie across and close the opening, preventing fluid flow through the opening in one direction and an open position in which, under the pressure of a fluid (gas or liquid) on one side of the check valve, the flappers rotate from their closed positions so as to allow the fluid to flow through the valve in the opposite direction.
In known check valve arrangements, a stop is provided to limit the rotational movement of the flapper elements as they open. Typically, the stop comprises a stop pin which is mounted to posts arranged on opposed sides of the valve housing opening. The stop pin is spaced from the opening such that when the flappers open, they engage the stop pin.
In one known check valve arrangement, as in US 2017/0204981 A1, each flapper comprises a primary flapper element and a secondary flapper element, each pivotally mounted to a hinge extending across the valve. The primary flapper element comprises a flapper opening therethrough and the secondary flapper element is pivotally mounted to the hinge pin such that it may rotate relative to the primary flapper element for opening or closing the flapper opening.
The present disclosure relates to a check valve of this general construction having a modified stop arrangement.
From a first aspect, the disclosure provides a check valve including a valve housing defining a pair of valve openings; a pair of flappers pivotably mounted for rotation relative to the housing between an open position in which they permit fluid flow through the respective valve openings and a closed position in which they prevent fluid flow through the valve openings; and a stop element arranged such that the flappers will contact the stop element in their open positions. Each flapper includes a primary flapper element pivotally mounted to a hinge pin that extends across the valve, and a secondary flapper element. The primary flapper element further includes at least one flapper opening formed therethrough. The secondary flapper element is pivotally mounted such that it may rotate relative to the primary flapper element for opening and closing the at least one flapper opening in the primary flapper element. The stop element, the primary flapper element and secondary flapper element are configured such that when the flapper is in the open position and in contact with the stop element, both the primary and secondary flapper elements contact the stop element and a clearance is provided between the primary flapper element and the secondary flapper element of the flapper.
The check valve may further include one or more bumpers provided on the primary flapper elements and/or the stop element for creating the clearance.
The check valve may include at least one bumper on the primary flapper element, for contacting the stop element in the open position.
The check valve may include at least one bumper provided on the stop element for contacting the primary flapper element in the open position.
The at least one bumper may include a collar that extends circumferentially around the stop element.
The bumpers may be symmetrically arranged about a hinge pin axis.
Alternatively, the bumpers may be asymmetrically arranged about a hinge pin axis.
The check valve may include a pair of bumpers, one to either side of the secondary flapper element.
The pair of bumpers may be symmetrically arranged about a central axis.
The at least one bumper may have a greater height than the thickness of the secondary flapper element.
The check valve may further include a recess defined in the stop element for receiving the secondary flapper element.
The recess may have a depth greater than the thickness of the secondary flapper element.
The check valve may include a pair of recesses arranged on opposed sides of the stop element.
The check valve may include comprising an annular recess formed on the stop element.
The disclosure also provides a check valve flapper that includes a primary flapper element and a secondary flapper element. The primary and secondary flapper elements have mounting lugs for pivotally mounting the elements to a common hinge pin. The primary flapper element has at least one flapper opening formed therethrough. The secondary flapper element is configured to be rotatable relative to the primary flapper element and to cooperate with the primary flapper element to close the at least one flapper opening in one relative rotational position. The primary flapper element includes at least one bumper formed on the same side of the primary flapper element as the secondary flapper element. The bumper has a height greater than a thickness of the secondary flapper element.
A first embodiment of a check valve 2 in accordance with this disclosure is illustrated in
The check valve 2 comprises a valve housing 4. The valve housing 4 is a generally planar annular element which in use may be mounted in a pipe, duct or the like. The valve housing 4 comprises a pair of generally D-shaped valve openings 6 which are separated by a central web 8 (see
A pair of mounting posts 12 extend upwardly from the valve housing 4. As shown, the mounting posts 12 may be separately formed from the valve housing and mounted thereto by suitable means, for example by bolts or other fasteners 14. Alternatively, the mounting posts 12 may be integrally formed, for example cast, with the valve housing 4.
A hinge pin 16 (see
The valve openings 6 are closed by a pair of generally D-shaped flappers 20 which are pivotally mounted to the hinge pin 16. Each flapper 20 comprises a primary flapper element 22 and a secondary flapper element 24. The primary flapper element 22 and the secondary flapper element 24 are separately pivotally mounted to the hinge pin 16. Each primary flapper element 22 has a pair of primary mounting lugs 26 arranged one on either side of the associated secondary flapper element 24. Each secondary flapper element 24 has a pair of secondary mounting lugs 28. The secondary mounting lugs 28 of the two secondary flapper elements 24 are arranged in an alternating fashion along the hinge pin 16.
Each primary flapper element 22 is generally planar and is D-shaped in shape. The lower surface 30 of each primary flapper element 22 is formed with a peripheral lip 32 which is configured to engage around the periphery of the associated valve housing opening 6 when the valve 2 is closed.
A flapper opening 34 is formed through a central region 36 each primary flapper element 22. In this embodiment, the flapper opening is generally rectangular in shape, but other shapes of flapper opening 34, for example circular, oval or ellipsoidal, are contemplated within the scope of the disclosure. The flapper opening 34 is positioned generally centrally between the sides of each primary flapper element 22, between the mounting lugs 26 of the primary flapper element 22, but is offset from the centre of the primary flapper element 22 in a direction towards the hinge pin 22 or mounting lugs 26. The stresses in this region of the primary flapper element 22 will be relatively low.
Each secondary flapper element 24 is generally planar or plate-like in shape. It has a lower surface 38 which is shaped complementarily to the upper surface 40 of the associated primary flapper element 22 at least around the flapper opening 34 so as to be capable of closing the flapper opening 34 when the secondary flapper element 24 is received on the upper surface 40 of the primary flapper element 22. Alternatively, the secondary flapper element 24 may at least partially enter the flapper opening 34.
In this embodiment, each secondary flapper element 24 is of the same order of thickness as each primary flapper element 22, or at least as the central region 36 of each primary flapper element 22. They may, however, depending on the particular application, be thinner than each primary flapper element 22 or even thicker. However, due to their size, the mass of the secondary flapper elements 24 and their moments of inertia about the hinge pin 16 will be significantly lower than the mass of the primary flapper elements 22 and their moments of inertia about the hinge pin 16.
In this embodiment, the primary and secondary flapper elements 22, 24 may be formed of the same material. The material chosen will depend on the particular application. For example, in low temperature and/or pressure applications, an aluminium alloy may be a suitable material. For higher temperature and/or pressure applications, a steel, such as a nickel steel (for example Inconel®) or a stainless steel may be appropriate. Similar materials may be used for the valve housing 4 and mounting posts 12.
When an opening pressure differential is applied to the check valve 2 in an opening direction A, the secondary flapper elements 24 will start to pivot around the hinge pin 16 before the primary hinge flapper elements 22, due to their lower mass and inertia. The rotation of the secondary flapper elements 24 relative to the primary flapper elements 22 will begin to open the flapper openings 34. This has the effect of reducing the relative pressure acting on the primary flapper elements 22, as in effect, some of the fluid flow is vented through the flapper openings 34. This in turn means that the primary flapper elements 22 will pivot less quickly than in a unitary construction.
The secondary flapper elements 24 will continue to rotate until they impact the stop element 18. In this position, the primary flapper elements 22 are have not yet reached their fully open positions. In earlier check valves as disclosed in US 2017/0204981 A, the primary flapper elements 22 will continue to rotate until they impact the now fully opened secondary flapper elements 24. However, in accordance with the present disclosure, the primary flapper elements 22 will impact the stop element 18, rather than the secondary flapper elements 24, as will now be explained in more detail below.
The check valve 2 shown in
The bumpers 50 may be elongate, as shown, for example having an upper surface 60 with an oblong shape. In other embodiments, the bumpers 50 may have another shape, for example a circular or rectangular shape. The bumpers 50 may have sides 62 with a planar upper portion 64 and a filleted root portion 66.
The bumpers 50 may be integrally formed with the primary flapper elements 22, for example by casting or additive manufacturing.
As can be seen in
The bumpers 50 each have a greater height H than the thickness t of the secondary flapper elements 24 as can be appreciated from
It will be appreciated that each primary flapper element 22 may have more or fewer bumpers 50 than shown in the Figures. However, two bumpers 50 on each primary flapper element 22 are advantageous to avoid uneven forces in the primary flapper elements 22. Advantageously, the bumpers 50 may be arranged symmetrically with respect to the central axis X (see
The desired clearance between the primary flapper elements 22 and secondary flapper elements 24 can also be achieved in a number of different ways. Alternative embodiments illustrating such arrangements are shown in
It will be appreciated that, in an alternative arrangement, a single bumper 52A may be provided on each side of the stop element 18. However, providing two bumpers 52A on each side of the stop element 18 are advantageous to avoid uneven forces in the primary flapper elements 22. Advantageously, the bumpers 52A may be arranged symmetrically with respect to the central axis X (see
The bumpers 52A may be aligned, as shown, on opposite sides of the stop element 18. This will allow, as in the earlier embodiment, the impact force of the primary flapper elements 22 on the stop element 18 to be at the same axial position along the stop element 18, thereby potentially mitigating adverse bending forces in the stop element 18.
The bumpers 52A may be elongate, as shown, for example having a surface 60A with an oblong shape, or may have another shape, for example circular or rectangular, surface. The bumpers 52A may have sides 62A with a planar upper portion 64A and a filleted root portion 66A.
The bumpers 52A may be integrally formed with the stop element 18, for example by casting or additive manufacturing.
The use of a collar 52B or collars 52B, may enable the stop element 18 to be positioned at any angular configuration in the mounting posts 12 without impairing the functionality of the bumpers 52B. This may facilitate assembly of the check valve 2. The collars 52B may also facilitate manufacture of the stop element 18, allowing it, for example to be formed as a turned component.
The collars 52B may have a circular shape as viewed along the hinge axis, or alternatively, may be formed to have a square, hexagonal or other shape as viewed along the hinge axis.
It will be appreciated that the stop element 18 may have more or fewer bumpers 52B or collars 52B than shown in
The recesses 56 may have surfaces 60C which contact the secondary flapper 260C are arranged such that they will lie parallel to the opposed surfaces of the secondary flapper elements 24 in the open position such that an areal, rather than a line contact occurs between the secondary flapper elements 24 and the stop element. This will dissipate impact forces over a larger area of the stop element 18.
The recesses 56 receive the secondary flapper elements 24 in the open position of the valve 2. The recesses 56 have greater depths D than the heights H of the secondary flapper elements 24 so that similarly to the embodiments discussed with regard to
The clearances 54 are equal to the difference between the depths D of the recesses 56 and the heights H of the secondary flapper elements 24. The recesses 56 may have, as shown, lengths LR slightly larger in the direction parallel to the hinge pin axis A than the lengths LF of the secondary flapper elements 24. The recesses 56 may have curved sides, with radii of curvature R.
In certain embodiments, the recesses 56 may allow the check valve flappers 20 to open further than the other embodiments provided herein, providing a greater flow area through the valve 2.
It will be appreciated that the bumpers 52A, 52B and/or the recess 56 of the embodiments shown in
It will also be appreciated that various features of the embodiments shown in the figures may be used in combination. For example, bumpers 50 could be provided on the primary flapper elements 22 and bumpers 52A could be provided on the stop element 18, which would result in bumpers 50 contacting bumpers 52A in the open position of the valve 2.
In further embodiments, as illustrated in
In further embodiments, as illustrated in
In another embodiment, illustrated in
The various arrangements as discussed above, wherein both the primary and the secondary flapper elements 22, 24 contact the stop element 18 and clearances 54 are provided between the primary and secondary flapper elements 22, 24, may be advantageous in that they may mitigate the possibility of damage to the primary flapper element 22 due to the impact of the secondary flapper element 24 thereon. For example, stresses which may arise from the primary flapper elements 22 contacting the secondary flapper elements 24 around the flapper openings 34 in an open position may be avoided. This will potentially prolong the life of the flapper elements 22 and thus the serviceable life of the check valve 2.
It will be appreciated that the flapper element construction and/or the stop element construction disclosed herein may be employed in new valve constructions, and potentially also in the refurbishment or repair of existing check vales where the prior unitary flappers or flappers wherein the primary flapper element 22 does not contact the stop element 18 in the open position may be replaced with the new construction.
It will also be understood that the above is a description of a limited number of possible embodiments of the disclosure and that modifications may be made thereto without departing from the scope of the disclosure.
For example, in the embodiment described above, the primary flapper element 22 is provided with just a single flapper opening 34. More than one flapper opening 34 may be provided in each primary flapper element 22. A single secondary flapper element 24 or more than one secondary flapper element 24 may be arranged to close the flapper openings 34. Multiple flapper openings 34 and/or secondary flapper elements 24 may be more suited to larger check valves. In these instances, additional bumpers 50, 52A, collars 52B and/or recesses 56 will be provided to prevent contact between any of the secondary flapper elements 24 and the primary flapper elements 22.
As used herein, terms relating to “up” or “above” are made with reference to the direction from the hinge pin 16 to the stop element 18, perpendicular to the hinge pin 16, as being up. It will be appreciated however, that the valve 2 may be used in other orientations and so the upwards direction is defined with regard to the frame of reference of the valve 2 rather than its environment.
Number | Date | Country | Kind |
---|---|---|---|
17461647 | Dec 2017 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4230148 | Ogle, Jr. | Oct 1980 | A |
4693269 | Yamada | Sep 1987 | A |
4892540 | Vallana | Jan 1990 | A |
4896695 | Pysh | Jan 1990 | A |
4964422 | Ball | Oct 1990 | A |
4967790 | Ganske | Nov 1990 | A |
4971103 | Scaramucci | Nov 1990 | A |
4977924 | Scaramucci | Dec 1990 | A |
4982759 | Scaramucci | Jan 1991 | A |
4989635 | Dunmire | Feb 1991 | A |
5000223 | Scaramucci | Mar 1991 | A |
5002567 | Bona | Mar 1991 | A |
5004010 | Huet | Apr 1991 | A |
5026391 | McQueen | Jun 1991 | A |
5037542 | Carroll | Aug 1991 | A |
5044396 | Daudet | Sep 1991 | A |
5046525 | Powell | Sep 1991 | A |
5061278 | Bicer | Oct 1991 | A |
5078737 | Bona | Jan 1992 | A |
5078739 | Martin | Jan 1992 | A |
5080669 | Tascon | Jan 1992 | A |
5088905 | Beagle | Feb 1992 | A |
5090445 | Jackson | Feb 1992 | A |
5107888 | Dunmire | Apr 1992 | A |
5116366 | Hwang | May 1992 | A |
5127927 | Holmes | Jul 1992 | A |
5135538 | Pawlak | Aug 1992 | A |
5141020 | Sunderhaus | Aug 1992 | A |
5143112 | Scaramucci | Sep 1992 | A |
5143113 | Scaramucci | Sep 1992 | A |
5143117 | Klein | Sep 1992 | A |
5150733 | Scaramucci | Sep 1992 | A |
5154693 | East | Oct 1992 | A |
5156182 | Scaramucci | Oct 1992 | A |
5156183 | Scaramucci | Oct 1992 | A |
5159953 | Sato | Nov 1992 | A |
5161566 | Scaramucci | Nov 1992 | A |
5161570 | Scaramucci | Nov 1992 | A |
5171263 | Boyer | Dec 1992 | A |
5172721 | Sato | Dec 1992 | A |
5172888 | Ezekoye | Dec 1992 | A |
5176170 | Boyesen | Jan 1993 | A |
5178631 | Waits | Jan 1993 | A |
5178632 | Hanson | Jan 1993 | A |
5181535 | Scaramucci | Jan 1993 | A |
5191913 | Scaramucci | Mar 1993 | A |
5194038 | Klomhaus | Mar 1993 | A |
5195927 | Raisanen | Mar 1993 | A |
5197980 | Gorshkov | Mar 1993 | A |
5201685 | Raisanen | Apr 1993 | A |
5222519 | Sato | Jun 1993 | A |
5236007 | Scaramucci | Aug 1993 | A |
5236009 | Ackroyd | Aug 1993 | A |
5236451 | Bokros | Aug 1993 | A |
5245956 | Martin | Sep 1993 | A |
5246032 | Muddiman | Sep 1993 | A |
5251657 | Scaramucci | Oct 1993 | A |
5259411 | Guzorek | Nov 1993 | A |
5285816 | Herlihy | Feb 1994 | A |
5301709 | Gasaway | Apr 1994 | A |
5314467 | Shu | May 1994 | A |
5318063 | Muddiman | Jun 1994 | A |
5341840 | Manson | Aug 1994 | A |
5365975 | Cote | Nov 1994 | A |
5381821 | Muddiman | Jan 1995 | A |
5383485 | Lai | Jan 1995 | A |
5392810 | Cooper | Feb 1995 | A |
5584315 | Powell | Dec 1996 | A |
5607469 | Frey | Mar 1997 | A |
5622205 | Petersen | Apr 1997 | A |
5671769 | Booth | Sep 1997 | A |
5713389 | Wilson, Jr. | Feb 1998 | A |
5716271 | Paidosh | Feb 1998 | A |
5727999 | Lewis | Mar 1998 | A |
5746246 | Yokota | May 1998 | A |
5855224 | Lin | Jan 1999 | A |
5861029 | Evdokimov | Jan 1999 | A |
5878773 | Robol | Mar 1999 | A |
5913642 | Boehler | Jun 1999 | A |
5921862 | Ucciardi | Jul 1999 | A |
5960825 | Scancarello | Oct 1999 | A |
6009894 | Trussart | Jan 2000 | A |
6012483 | Beddies | Jan 2000 | A |
6044862 | Schumann | Apr 2000 | A |
6085781 | Boutry | Jul 2000 | A |
6109297 | Shackelford | Aug 2000 | A |
6192933 | Engelmann | Feb 2001 | B1 |
6237625 | Randolph | May 2001 | B1 |
6264452 | Sun | Jul 2001 | B1 |
6328052 | Loyning | Dec 2001 | B1 |
6432135 | Goldowsky | Aug 2002 | B1 |
6475078 | Borcherding | Nov 2002 | B1 |
6543474 | Fetterman, Jr. | Apr 2003 | B2 |
6557645 | Ringer | May 2003 | B1 |
6648010 | Goodwin | Nov 2003 | B1 |
6668858 | Bazargan | Dec 2003 | B1 |
6789568 | Bunnell | Sep 2004 | B1 |
6823905 | Smith | Nov 2004 | B1 |
6848468 | Hsien | Feb 2005 | B1 |
7273062 | Stender, Jr. | Sep 2007 | B1 |
7568498 | Denike et al. | Aug 2009 | B2 |
7874307 | Deocampo | Jan 2011 | B1 |
8991415 | Luppino | Mar 2015 | B1 |
9404248 | Marshall | Aug 2016 | B1 |
9506575 | Fallon | Nov 2016 | B2 |
9581256 | Barone | Feb 2017 | B2 |
10088065 | Olejak | Oct 2018 | B2 |
20080078458 | Denike et al. | Apr 2008 | A1 |
20130019966 | Hawa | Jan 2013 | A1 |
20160084393 | Barone | Mar 2016 | A1 |
20170204981 | Olejak | Jul 2017 | A1 |
20170292621 | Olszowy | Oct 2017 | A1 |
20170328485 | Yang | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
H10141525 | May 1998 | JP |
Entry |
---|
Extended European Search Report for International Application No. 17461647.4 dated Jun. 12, 2018, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190186645 A1 | Jun 2019 | US |