The present invention relates to the checking of turbomachine blades.
After its manufacture and before it is mounted on a rotor disk or a casing, a turbomachine blade is checked, that is to say inspected in order to determine whether this blade manufactured in an industrial process corresponds to a reference blade, that is to say to the theoretically desired blade. This essential check is used to verify the main deviations from the definition and to sanction possible discrepancies in performance.
This check proves to be even more important in the case of engines under development, especially for demonstrators or prototypes under development. This is because geometrical knowledge of the parts used makes it possible to overcome possible prejudicial discrepancies in the understanding of the operation of the turbomachine.
Various techniques for checking blades are known in the prior art. One essential step common to various checking techniques consists, according to the prior art, in making a three-dimensional recording in the Cartesian coordinates of a plurality of points of an inspected blade. The measurement is performed automatically by means of a device, known to those skilled in the art, comprising a support on which a blade to be measured is immobilized and at least one sensor for measuring the geometrical coordinates at various points on the blade. In a first variant, the support is immobile and the sensor can be moved mechanically. Conversely, in a second variant, the support can be moved mechanically and the sensor is immobile. In a third variant, both the support and the sensor can be moved mechanically.
Document U.S. Pat. No. 5,047,966 describes various techniques for the three-dimensional geometric measurement of a blade. Document U.S. Pat. No. 4,653,011 involves a contact technique in which the end of a sensor comes into contact with the object to be measured. Other techniques, which are contactless, make use of X-ray sources (U.S. Pat. No. 6,041,132) or laser sources (U.S. Pat. No. 4,724,525).
A standard technique for measuring the geometry of successive points is also described in U.S. Pat. No. 5,047,966. The cartesian coordinates of points are recorded in parallel sections of the blade. In the example cited, 840 discrete points are recorded in 28 parallel sections. The number of points may vary according to the desired precision. At the present time, 300 points may be required for a single section. These points on the measured blade are then stored in a memory on a computer recording medium.
To determine the conformity of the blade produced in an industrial process to the desired theoretical blade, on the one hand a model of a reference blade and, on the other hand, acceptable tolerances are provided.
This reference model defines an ideal blade by various geometrical points stored on a computer recording medium. Such a model is illustrated in document EP 1 498 577, which describes a table containing the cartesian coordinates of a reference blade. In this example, a tolerance of ±0.150 inches in a direction normal to the surface of any point on the checked blade is set. A checked blade departing from the reference blade can thus be rejected.
The tolerances may also take into account deviations in translation or in angular orientation, as described in document U.S. Pat. No. 6,748,112, without distinction between more relevant points than others. The prior art therefore relies on exclusively geometrical criteria for validating or rejecting a checked blade.
The requirements in terms of desired precision at the present time are such that the mass of information, essentially consisting of the cartesian coordinates of all the measured points in a plurality of blade sections becomes considerable and it is difficult to synthesize it. Moreover, the geometrical deviations cannot be directly interpreted from an aerodynamics standpoint.
One object of the present invention is to solve the aforementioned problems. Contrary to the methods of checking turbomachine blades of the prior art, which check the conformity of the blades according to geometrical criteria for the entire blade, the blade checking method according to the invention proposes to check the blades according to relevant aerodynamic parameters at essential points with respect to the aerodynamic quality of the blade.
Another object of the invention is to synthesize the mass of information, essentially consisting of the cartesian coordinates of all the measured points, so that it can be more easily and more quickly processed.
According to the invention, the method of checking turbomachine blades having a profile comprising a centerline, a suction face, a pressure face, a leading edge and a trailing edge, consists in:
The term “nominal parameter” is understood within the context of the present invention to mean the parameter as intended.
The aerodynamic parameters may in particular be the angle of attack of the blade, the blade entry or exit angle on the centerline, the suction face or the pressure face, and the blade entry and exit corresponding to regions located near the leading edge LE and trailing edge TE, respectively.
Such parameters can be aerodynamically interpreted more easily and the decision to validate or reject a checked blade can be made very quickly.
According to the invention, the check is preferably carried out on a limited number of cross sections with respect to what is called the radial axis, these sections being located near the base, in the middle and near the tip of the blade.
To carry out most of the steps of the checking method, a computer program, in other words a sequence of instructions and of data recorded on a medium, and capable of being processed by a computer, is preferably used. The present invention therefore also relates to a computer program that can be loaded directly into the memory of a computer, intended to implement the method according to the invention.
Moreover, the invention also relates to a set of means intended to implement the checking method, more precisely to a system of checking turbomachine blades, comprising:
The invention will be more clearly understood and other features and advantages of the invention will become apparent on reading the rest of the description with reference to the appended drawings which show, respectively:
To carry out the measurement, the blade is preferably immobilized on a support.
The various points on a section of the blade 10 make it possible, by calculation, to determine the chord 14 and the centerline 11 of the blade. On an aerodynamic part, such as a blade or a wing, the chord 14 is the segment whose ends are the leading edge LE and the trailing edge TE, the leading edge LE being the point most upstream on the blade profile with respect to a flow of air over this profile and the trailing edge TE being the point most downstream on the blade profile with respect to a flow of air over this profile. The centerline 11 of the blade, also called the skeleton or mean camber line, is the set of points equidistant from the suction face 12 and from the pressure face 13. All the parameters are calculated for a given blade section 10.
According to the method of the invention, a first checked parameter may be the angle of attack γ, that is to say the angle defined by the chord 14 of the blade and the motor axis m, as illustrated in
Most of the distances involved in the parameters are calculated as reduced curvilinear abscissa on a curve which may, in the present invention, be the centerline 11, the suction face 12 or the pressure face 13 of a blade section 10. The curvilinear abscissa is reduced, which means that the length of the curve bounded by its two ends is dimensionless and that a distance, calculated on this curve starting from one of its ends, varies according to a scale from 0 to 1. For reasons of simplicity, the distances are expressed as a percentage of the total length of the curve starting from one of its ends.
A second checked parameter may be an angle β1c formed by:
This percentage P must be between 1% and 20%, the optimum percentage P being 7.2% as in the example shown in
A third checked parameter may be an angle βls formed by:
as illustrated in
A fourth checked parameter may be an angle βlp formed by:
as illustrated in
A fifth checked parameter may be an angle βtc formed by:
as illustrated in
A sixth checked parameter may be an angle βts formed by:
as illustrated in
A seventh checked parameter may be an angle βtp formed by:
as illustrated in
The angles βlc, βls, βlp, βtc, βts and βtp, also called the blade entry angle on the centerline 11, the suction face 12 and the pressure face 13 and the blade exit angle on the centerline 11, the suction face 12 and the pressure face 13, respectively, make it possible to take into account the way in which the air flows on entering and exiting the blade.
An eighth checked parameter may be a thickness dl of the blade section 10 at a distance corresponding to a percentage P of the total length of the centerline 11 starting from the leading edge LE as curvilinear abscissa, as illustrated in
A ninth checked parameter may be a thickness dt of the blade section 10 at a distance corresponding to a percentage P of the total length of the centerline 11 starting from the trailing edge TE as curvilinear abscissa, as illustrated in
A tenth checked parameter may be a maximum thickness dmax of the blade section 10, as illustrated in
An eleventh checked parameter may be a value VARβlc representing the maximum difference between:
A twelfth checked parameter may be a value VARβls representing the maximum difference between:
A thirteenth checked parameter may be a value VARβlp representing the maximum difference between:
A fourteenth checked parameter may be a value VARβtc representing the maximum difference between:
A fifteenth checked parameter may be a value VARβts representing the maximum difference between:
A sixteenth checked parameter may be a value VARβtp representing the maximum difference between:
A seventeenth checked parameter may be a value AVβlc representing the average value of the angle βlc over a portion lying between a percentage P1 and a percentage P2 of the total length of the centerline 11 starting from the leading edge LE as curvilinear abscissa.
An eighteenth checked parameter may be a value AVβls representing the average value of the angle βls over a portion lying between a percentage P1 and a percentage P2 of the total length of the suction face 12 starting from the leading edge LE as curvilinear abscissa.
A nineteenth checked parameter may be a value AVβlp representing the average value of the angle βlp over a portion lying between a percentage P1 and a percentage P2 of the total length of the pressure face 13 starting from the leading edge LE as curvilinear abscissa.
A twentieth checked parameter may be the value AVβtc representing the average value of the angle βtc over a portion lying between a percentage P1 and a percentage P2 of the total length of the centerline 11 starting from the trailing edge TE as curvilinear abscissa.
A twenty-first checked parameter may be a value AVβts representing the average value of the angle βts over a portion lying between a percentage P1 and a percentage P2 of the total length of the suction face 12 starting from the trailing edge TE as curvilinear abscissa.
A twenty-second checked parameter may be a value AVβtp representing the average value of the angle βtp over a portion lying between a percentage P1 and a percentage P2 of the total length of the pressure face 13 starting from the trailing edge TE as curvilinear abscissa.
The values P1 and P2 fall within the [1%-20%] interval. It is preferable for this interval to relate to a portion representative of the centerline, of the suction face or of the pressure face essentially upstream of the point LC, LS or LP relative to the direction of flow of the air. Likewise, it is also preferable for this interval to relate to a portion representative of the centerline, of the suction face or of the pressure face essentially downstream of the point TC, TS or TP with respect to the direction of flow of the air.
The [7%-13%] interval makes it possible to obtain significant results, allowing a greater precision of the checked parameter.
In order to check the turbomachine blades, it is possible to combine a check taking into account the aerodynamic parameters defined above with a conventional check of the prior art.
According to a preferred method of implementing the invention, several aerodynamic parameters are chosen simultaneously to check the blade, these parameters being the angle of attack γ, the angle βlc, the angle βls, the angle βtc, the angle βts, the thickness dl, the thickness dt, the thickness dmax, VARβlc, VARβls and VARβts of the blade section 10. This selection of more relevant parameters makes it possible to limit the number of parameters so as to make them more easily exploitable. Moreover, it has been found that the validity of these parameters implies, quite systematically, the validity of the entire blade section 10.
The following table illustrates examples of parameters for a given blade section and also the tolerance associated with each parameter.
Each nominal aerodynamic parameter defines, with its associated tolerance, a validity range within which the measured aerodynamic parameter must lie in order to validate the blade. When the measured aerodynamic parameter does not lie within this validity range, the measured blade is rejected.
If a plurality of aerodynamic parameters are taken into consideration in the method, an aerodynamic parameter not lying within its corresponding validity range would entail rejection of the blade. All of the chosen parameters must be valid in order for the checked blade to be validated.
These parameters may be calculated for a plurality of sections of a checked blade, each of the sections having separate nominal parameters. However, it may be judicious to take into account a limited number of sections. This is because it has been found that the fact of selecting and checking three sections located near the base, in the middle and near the tip of a blade, respectively, is sufficient to have an idea of the overall validity of the blade.
A section located near the base may be a section lying between 0% and 30% of the height of a blade. A section located near the middle may be a section lying between 30% and 70% of the height of a blade. A section located near the tip may be a section lying between 70% and 100% of the height of a blade. Preferably, the three sections are located at 10%, 50% and 90% respectively, of the height of the blade, as illustrated in
A blade, the sections 10 of which at 10%, 50% and 90% of its height meet the criteria according to the invention, has, quite systematically, sections that are valid over its entire height. Conversely, a blade in which one of the three sections 10 does not meet the criteria described above has, quite systematically, a plurality of incorrect sections over its entire height. An additional time saving is therefore achieved by judiciously choosing significant sections.
The method according to the invention makes it possible to save a considerable amount of time in checking the blades, especially after their manufacture.
The processing corresponding to each step of the method, especially the calculations of the various parameters, may advantageously be implemented by a computer program organized in modules 24, 25, 26 and 27, each module carrying out one step of the checking method.
The invention also relates to a system for checking turbomachine blades, comprising means 21 for measuring the geometrical coordinates of a plurality of points on a blade 20 to be checked, and a means 23 for the processing of a computer program intended to implement the method of checking turbomachine blades.
Such a system is illustrated in
The system for checking turbomachine blades designed to implement the method of checking turbomachine blades according to the invention essentially comprises the following means:
Number | Date | Country | Kind |
---|---|---|---|
05 08046 | Jul 2005 | FR | national |